LM8850 High-Performance, Step-Up DC-DC Converter for High-Power Applications in Mobile Devices

Check for Samples: **LM8850**

FEATURES
- 6µA typ. Quiescent Current
- \(V_{OUT} = 3.6V \) to 5.7V (max \(V_O = 5.7V \))
- Operates from a Single Lithium Ion Cell (2.3V to 5.5V)
- 8 User-selectable Output Voltages via I^2C
- High-speed 3.4 MHz I^2C-compatible Interface
- Up to 1.0A Maximum Load Current Capability
- 4 Levels of Current Limiting
- Auto-mode Operation and Forced PWM
- 2.5 MHz Switching Frequency (typ.)
- ±2.5% DC Output Voltage Precision
- 1.0 μH Inductor (2520 Case Size)
- 4.7 μF Input and Output Capacitors (0603 case size)
- PGOOD Signal
- True Shutdown Isolation
- Output Over-voltage Protection
- Internal Active Voltage Balancing for Supercapacitors
- DSBGA 9-bump Package
 - (1.58 mm x 1.62 mm x 0.35 mm)(0.5 mm pitch)

APPLICATIONS
- Flash LED
- Mobile Phones
- WiMAX
- USB
- Audio Amplifier

DESCRIPTION
LM8850 is a step-up DC-DC converter optimized for use with a supercapacitor to protect a battery from power surges and enable new high power applications in mobile device architectures. The device creates an ideal rail from 3.6V to 5.7V boosting from a single Li-Ion cell with an input voltage range of 2.3V to 5.5V; Target \(V_{OUT} \) must be at least 10% higher than \(V_{IN} \).

An I^2C interface controlling multiple output voltage settings, input current limits, and load currents up to 1A provides superior user flexibility. The LM8850 operates in Auto mode, where the converter is in PFM mode at light loads and switches to PWM mode at heavy loads. Hysteretic PFM extends the battery life by reduction of the quiescent current to 6µA (typ.) during light load and standby conditions. Synchronous operation provides true shutdown isolation and improves its efficiency at medium-to-full load conditions.

Typical Application Circuit

![Typical Application Circuit](image_url)
DESCRIPTION (CONTINUED)

High-switching frequency enables smaller passive components. Internal compensation is used for a broader range of inductor and output capacitor values to meet system demand and achieve small system solution size.

LM8850 is available in a 9-bump ultra-thin DSBGA package. Only four external surface-mount components, a 1.0 µH inductor, a 4.7 µF for input capacitor, 4.7 µF for output capacitor and 0.05F-1.0F supercapacitor for energy storage are required.

Connection Diagram

![Figure 1. 9-Bump Ultra-Thin DSBGA Package](image)

See Package Number YPD0009

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>VIN</td>
<td>Power Supply Input. Connect to input filter capacitor (See Typical Application Circuit)</td>
</tr>
<tr>
<td>A2</td>
<td>SW</td>
<td>Switching node. Connection to the internal NFET switch and PFET synchronous rectifier</td>
</tr>
<tr>
<td>A3</td>
<td>GND</td>
<td>Ground Pin</td>
</tr>
<tr>
<td>B1</td>
<td>SDA</td>
<td>I^2C data (Use a 2kΩ pull-up resistor)</td>
</tr>
<tr>
<td>B2</td>
<td>PG</td>
<td>Power Good indicator</td>
</tr>
<tr>
<td>B3</td>
<td>VOUT</td>
<td>Output pin.</td>
</tr>
<tr>
<td>C1</td>
<td>SCLK</td>
<td>I^2C Clock (Use a 2kΩ pull-up resistor)</td>
</tr>
<tr>
<td>C2</td>
<td>EN</td>
<td>Enable pin. The device is in shutdown when voltage to this pin is <0.4V and enabled when >1.2V. Do not leave this pin floating.</td>
</tr>
<tr>
<td>C3</td>
<td>BAL</td>
<td>Balancing pin for active voltage balancing of supercapacitor</td>
</tr>
</tbody>
</table>

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.
Absolute Maximum Ratings\(^{(1)(2)}\)

<table>
<thead>
<tr>
<th>Pin to GND</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN Pin to GND</td>
<td>−0.2V to 6.5V</td>
</tr>
<tr>
<td>EN, PG, SDA, SCLK pins to GND</td>
<td>−0.2V to 6.0V</td>
</tr>
<tr>
<td>VOUT to GND</td>
<td>(GND−0.2V) to 6.5V</td>
</tr>
<tr>
<td>SW pin to GND</td>
<td>−0.2V to 6.5V</td>
</tr>
<tr>
<td>BAL to GND</td>
<td>−0.2V to VOUT</td>
</tr>
<tr>
<td>Junction Temperature (T_{J\text{MAX}})</td>
<td>+150°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>−65°C to +150°C</td>
</tr>
<tr>
<td>Continuous Power Dissipation(^{(3)})</td>
<td>Internally Limited</td>
</tr>
<tr>
<td>Maximum Lead Temperature (Soldering, 10 sec.)</td>
<td>260°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ESD Rating (^{(4)})</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Body Model</td>
<td>2kV</td>
</tr>
<tr>
<td>Machine Model</td>
<td>200V</td>
</tr>
<tr>
<td>Charged Device Model</td>
<td>500V</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Operating Ratings are conditions under which operation of the device is ensured. Operating Ratings do not imply ensured performance limits. For ensured performance limits and associated test conditions, see the Electrical Characteristics tables.

\(^{(2)}\) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

\(^{(3)}\) Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at \(T_J = 150°C\) (typ.) and disengages at \(T_J = 140°C\) (typ.).

\(^{(4)}\) The Human Body Model is a 100 pF capacitor discharged through a 1.5 kΩ resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each pin. MIL-STD-883–3015.7.

Operating Ratings\(^{(1)(2)}\)

<table>
<thead>
<tr>
<th>Voltage Range</th>
<th>2.3V to 5.5V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Load Current</td>
<td>0mA to 1.0A</td>
</tr>
<tr>
<td>Junction Temperature (T_J) Range</td>
<td>−40°C to +125°C</td>
</tr>
<tr>
<td>Ambient Temperature (T_A) Range (^{(3)})</td>
<td>−40°C to +85°C</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Operating Ratings are conditions under which operation of the device is ensured. Operating Ratings do not imply ensured performance limits. For ensured performance limits and associated test conditions, see the Electrical Characteristics tables.

\(^{(2)}\) All voltages are with respect to the potential at the GND pin.

\(^{(3)}\) In applications where high power dissipation and/or poor package resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature \(T_{A\text{MAX}}\) is dependent on the maximum operating junction temperature \(T_{J\text{MAX-OP}} = 125°C\), the maximum power dissipation of the device in the application \(P_{\text{D-MAX}}\) and the junction-to-ambient thermal resistance of the part/package \(\theta_{JA}\) in the application, as given by the following equation: \(T_{A\text{MAX}} = T_{J\text{MAX-OP}} - \theta_{JA} P_{\text{D-MAX}}\).

Thermal Properties

<table>
<thead>
<tr>
<th>Junction-to-Ambient Thermal Resistance (\theta_{JA})</th>
<th>70°C/W</th>
</tr>
</thead>
</table>

\(^{(1)}\) Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high power dissipation exists, special care must be given to thermal dissipation issues in board design.
Electrical Characteristics\(^{(1)(2)(3)(4)}\)

Limits in standard typeface are for \(T_A = 25^\circ C\). Limits in **boldface** type apply over the operating junction temperature range \((-40^\circ C \leq T_J = T_A \leq +85^\circ C)\). Unless otherwise noted, specifications apply to the LM8850 open loop Typical Application Circuit with \(V_{IN} = EN = 3.6V\).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{OUT})</td>
<td>Output Voltage</td>
<td>(I_{OUT} = 0mA, V_{OUT} = 5V)</td>
<td>-2.5</td>
<td>3.6</td>
<td>+2.5</td>
<td>%</td>
</tr>
<tr>
<td>(V_{OUT})</td>
<td>Output Voltage Range</td>
<td>(VSEL) bits = 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(VSEL) bits = 0 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(VSEL) bits = 0 1 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(VSEL) bits = 0 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output Voltage Range</td>
<td>(VSEL) bits = 1 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(VSEL) bits = 1 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(VSEL) bits = 1 1 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(VSEL) bits = 1 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{SHDN})</td>
<td>Shutdown Supply Current</td>
<td></td>
<td>0.4</td>
<td></td>
<td>3</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(I_{Q_PFM})</td>
<td>Quiescent Current in PFM Mode</td>
<td></td>
<td>6</td>
<td></td>
<td>10</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(I_{Q_PWM})</td>
<td>Quiescent Current in PWM Mode</td>
<td></td>
<td>330</td>
<td></td>
<td>500</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(R_{DS_ON\ (NFET)})</td>
<td>Pin-Pin Resistance for Sync NFET</td>
<td>(V_{IN} = V_{GS} = 3.6V)</td>
<td></td>
<td></td>
<td>200</td>
<td>(m\Omega)</td>
</tr>
<tr>
<td>(R_{DS_ON\ (PFET)})</td>
<td>Pin-Pin Resistance for PFET</td>
<td>(V_{IN} = V_{GS} = 5.0V)</td>
<td></td>
<td></td>
<td>215</td>
<td>(m\Omega)</td>
</tr>
<tr>
<td>(I_{LIM})</td>
<td>Switch Peak Current Limit</td>
<td>(ISEL) bits = 1 1 1</td>
<td>1350</td>
<td>1500</td>
<td>1650</td>
<td>(mA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(VIN = 4.5V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ISEL) bits = 1 0 1</td>
<td>923</td>
<td>1025</td>
<td>1128</td>
<td>(mA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(VIN = 4.5V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ISEL) bits = 0 1 1</td>
<td>666</td>
<td>740</td>
<td>814</td>
<td>(mA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(VIN = 4.5V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ISEL) bits = 0 0 1</td>
<td>477</td>
<td>530</td>
<td>583</td>
<td>(mA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(VIN = 4.5V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_{ON})</td>
<td>Turn on Time</td>
<td>(T_{ON} = 00)</td>
<td>5</td>
<td></td>
<td></td>
<td>(secs)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_{ON} = 01)</td>
<td>7.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_{ON} = 10)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_{ON} = 11)</td>
<td>12.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{EN})</td>
<td>Pin Input current</td>
<td>(EN)</td>
<td>0.01</td>
<td>1</td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(F_{OSC})</td>
<td>Internal Oscillator Frequency</td>
<td></td>
<td>2.25</td>
<td>2.5</td>
<td>2.75</td>
<td>(MHz)</td>
</tr>
<tr>
<td>(V_{IH})</td>
<td>Logic High Input</td>
<td></td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{IL})</td>
<td>Logic Low Input</td>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OH})</td>
<td>Logic Output High</td>
<td></td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Logic Input High</td>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) All voltages are with respect to the potential at the GND pin.
(2) Min and Max limits are specified by design, test or statistical analysis. Typical numbers are not ensured, but do represent the most likely norm.
(3) The parameters in the electrical characteristic table are tested under open loop conditions at \(V_{IN} = 3.6V\) unless otherwise specified. For performance over the input voltage range and closed loop condition, refer to the datasheet curves.
(4) Open-loop Electrical Characteristics taken without supercapacitor.

Table 1. Dissipation Rating Table

<table>
<thead>
<tr>
<th>(\theta_{JA})</th>
<th>(T_A \leq 25^\circ C) Power Rating</th>
<th>(T_A \leq 60^\circ C) Power Rating</th>
<th>(T_A \leq 85^\circ C) Power Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>70°C/W</td>
<td>1500 mW</td>
<td>980 mW</td>
<td>600 mW</td>
</tr>
</tbody>
</table>
Typical Performance Characteristics

Figure 2. I_q Shutdown

Figure 3. I_q PFM, No Load

Figure 4. I_q, PWM

Figure 5. Efficiency, $V_{OUT} = 5V$, PWM Mode, 25°C

Figure 6. Efficiency Room temp, 100 mV PFM ripple

Figure 7. Efficiency over PFM ripple, $V_{IN} = 3.9V$, Room Temp
Typical Performance Characteristics (continued)

Unless otherwise noted: \(V_{\text{OUT}} = 5.0\,\text{V}, T_A = 25^\circ\text{C} \), Supercapacitor = TDK EDLC272020–501–2F–50).

Figure 8. Line Regulation, \(V_{\text{OUT}} 5\,\text{V} \)

\(V_{\text{IN}} = 3.6\,\text{V}, 100\,\text{mV} \) Ripple, Auto Mode

Figure 9. Load Regulation, \(V_{\text{OUT}} 5\,\text{V} \)

\(V_{\text{IN}} = 3.6\,\text{V}, 100\,\text{mV} \) Ripple, Auto Mode

Figure 10. Line Regulation, \(V_{\text{OUT}} 5\,\text{V} \), 250 mA Load, 100 mV Ripple, Auto Mode

Figure 11. Osc Freq Error Normalized to 3.6V

Figure 12. Startup \(V_{\text{IN}} 2.7\,\text{V}, V_{\text{OUT}} 5.3\,\text{V} \), 5sec Delay, Room Temp

Figure 13. Startup \(V_{\text{IN}} 3.6\,\text{V}, V_{\text{OUT}} 5.0\,\text{V} \), 5sec Delay, Room Temp
Typical Performance Characteristics (continued)

Unless otherwise noted: $V_{OUT} = 5.0\text{V}$, $T_A = 25^\circ\text{C}$, Supercapacitor = TDK EDLC272020–501–2F–50.

Input Current and V_{OUT}, 1.5A Current Limit

Figure 14.

Line Transient

$V_{IN} = 2.7\text{V} - 3.6\text{V}, I_{LOAD} = 600\text{ mA}$

Figure 16.

Load Transient

$V_{IN} = 2.7\text{V}$, $V_{OUT} = 5.0\text{V}$, $I_{LOAD} = 0-1000\text{ mA}$

Figure 18.

Input Current and V_{OUT}, 500 mA Current Limit

Figure 15.

Line Transient

$V_{IN} = 3.6\text{V} - 4.2\text{V}, I_{LOAD} = 600\text{ mA}$

Figure 17.

Load Transient

$V_{IN} = 2.7\text{V}$, $V_{OUT} = 5.0\text{V}$, $I_{LOAD} = 1000-0\text{ mA}$

Figure 19.
Typical Performance Characteristics (continued)

Unless otherwise noted: $V_{OUT} = 5.0\,\text{V}$, $T_A = 25^\circ\text{C}$, Supercapacitor = TDK EDLC272020–501–2F–50).

Load Transient

$V_{IN} = 3.6\,\text{V}$, $V_{OUT} = 5.0\,\text{V}$, $I_{LOAD} = 200-800\,\text{mA}$

Figure 20.

$V_{IN} = 3.6\,\text{V}$, $V_{OUT} = 5.0\,\text{V}$, $I_{LOAD} = 800-200\,\text{mA}$

Figure 21.

$V_{IN} = 4.2\,\text{V}$, $V_{OUT} = 5.0\,\text{V}$, $I_{LOAD} = 0-200\,\text{mA}$

Figure 22.

$V_{IN} = 4.2\,\text{V}$, $V_{OUT} = 5.0\,\text{V}$, $I_{LOAD} = 200-0\,\text{mA}$

Figure 23.
OPERATION DESCRIPTION

LM8850 FUNCTIONALITY

The LM8850, a high-efficiency, step-up DC-DC switching boost converter, delivers a constant voltage from a stable DC input voltage source. Using a voltage mode architecture with synchronous rectification, the LM8850 has the ability to deliver up to 600 mA of load current, depending on the input voltage, output voltage, ambient temperature, and the inductor chosen.

There are three modes of operation depending on the current required - PWM (Pulse Width Modulation), PFM (Pulse Frequency Modulation), and shutdown. The device operates in PWM mode at load currents of approximately 200 mA or higher. Lighter output current loads cause the device to automatically switch into PFM for reduced current consumption ($I_{q} = 6 \mu A$ typ). Shutdown mode turns off the voltage regulation and offers the lowest current consumption ($I_{\text{SHUTDOWN}} = 0.4 \mu A$ typ).

Once enabled, the LM8850 charges the supercapacitor utilizing all of the default settings in the registers. The $I^{2}C$ must be used to change the default settings and this can only be done with the LM8850 enabled. Once a register is written to, the changes will transition immediately. Every time the EN pin transitions from VIL to VIH, registers 0 and 1 are reset to their defaults settings and any settings need to be rewritten into the appropriate registers.

AUTO MODE

The LM8850 utilizes AUTO mode to reduce the amount of energy required to maintain the regulated output voltage under light load conditions. The transition from Auto mode to PWM mode varies depending on input voltage and output voltage. For an output voltage of 5.0V and an input voltage of 3.6V, the transition will occur around 225 mA.

Auto mode can only be used with a supercapacitor. If no supercapacitor is being used in the circuit, Auto-Mode must be disabled via $I^{2}C$.

V_{RIPPLE}

The ripple voltage used in Auto-Mode is programmable via $I^{2}C$. The ripple voltage can be set to 50, 100, 200 and 250 mV. The larger the ripple voltage, the more constant energy will be supplied by the supercapacitor. The regulator will remain asleep until the effective energy to reduce the supercapacitor’s voltage by the ripple value has been used by the load.

POWER GOOD

The Power Good signal is both an output and a read only register bit. The Power Good signal will have a V_{OH} value if the V_{OUT} is greater than 85% of its programmed value. This is a typical value for 5.0V and 3.6V V_{IN}. The typical value will vary based on input and output voltage.

PROGRAMMABLE V_{OUT}

The output voltage of the LM8850 can be programmed via $I^{2}C$ to any of 8 different values: 3.6, 3.9, 4.2, 4.5, 4.7, 5.0, 5.3, and 5.7V. The only requirement is that the input voltage must remain 10% below the desired output voltage for it to remain in regulation. The output voltage can be changed while the part is enabled and regulating. The transition time will depend on load conditions.

TURN-ON TIME

The LM8850 has four programmable turn time values, 5, 7.5, 10, and 12.5 seconds. During the turn on time, the LM8850 is ramping to the output voltage while limiting the inrush current which charges the supercapacitor.

BALANCING CIRCUIT

The LM8850 has an internal balancing circuit that helps maintain voltage balance between the two capacitors within the super capacitor. The BAL pin regulates a voltage of $V_{\text{OUT}}/2$ between the two capacitors. If one capacitor is overcharged or less charged, the LM8850 will use the balancing circuit to correct this charge imbalance. The balancing circuit can be turned off/on via the $I^{2}C$ registers ($\text{BALMODE} – \text{Control Reg01, bit 3}$). The balancing circuit also has the ability to stay ON even after the LM8850 is shutting down ($\text{BAL} – \text{Control Reg00, bit 4}$).
I²C Interface
Control of LM8850 is done via I²C compatible interface. This includes switch over from AUTO to PWM mode, adjustment of current limit, output voltage, PFM Hysteresis voltage, and start-up time. The I²C interface can also switch the active voltage balance circuit ON during shutdown. Additionally, there is a flag bit that reads back PGOOD condition.

I²C SIGNALS
In I²C-compatible mode, the SCL pin is used for the I²C clock and the SDA pin is used for the I²C data. Both these signals need a pull-up resistor according to I²C specification. The values of the pull-up resistors are determined by the capacitance of the bus. See I²C specification from Philips for further details. Signal timing specifications are according to the I²C bus specification. Maximum frequency is 400 kHz or 3.4 MHz if in High-Speed Mode.

I²C DATA VALIDITY
The data on SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, state of the data line can only be changed when CLK is LOW.

![Figure 24. I²C Signals: Data Validity](image)

I²C START AND STOP CONDITIONS
START and STOP bits classify the beginning and the end of the I²C session. START condition is defined as SDA signal transitioning from HIGH to LOW while SCL line is HIGH. STOP condition is defined as the SDA transitioning from LOW to HIGH while SCL is HIGH. The I²C master always generates START and STOP bits. The I²C bus is considered to be busy after START condition and free after STOP condition. During data transmission, I²C master can generate repeated START conditions. First START and repeated START conditions are equivalent, function-wise.

![Figure 25. START and STOP Conditions](image)

TRANSFERRING DATA
Every byte put on the SDA line must be eight bits long, with the most significant bit (MSB) being transferred first. Each byte of data has to be followed by an acknowledge bit. All clock pulses are generated by the master. The transmitter releases the SDA line (HIGH) during the acknowledge clock pulse. The receiver must pull down the SDA line during the ninth clock pulse, signifying an acknowledge. A receiver which has been addressed must generate an acknowledge after each byte has been received.

After the START condition, the I²C master sends a chip address. This address is seven bits long followed by an eighth bit which is a data direction bit (R/W). The LM8850 address is 0x60. The eighth bit, a “0” indicates a WRITE and a “1” indicates a READ. The second byte selects the register to which the data will be written. The third byte contains data to write to the selected register.
Chip address: 60h

Figure 26. I^2C Chip Address

Figure 27. I^2C Write Cycle

• w = write (SDA = “0”)
• r = read (SDA = “1”)
• ack = acknowledge (SDA pulled down by either master or slave)
• rs = repeated start
• id = chip address

When a READ function is to be accomplished, a WRITE function must precede the READ function as shown in the Read Cycle waveform.

Figure 28. I^2C Read Cycle

HIGH-SPEED, 3.4 MHZ MODE

High-speed mode is entered by:
1. Start condition;
2. Chip Address: 0000 1XXX (X = don’t care);
3. Wait a clock for the acknowledge;
4. Now everything is in HS mode...do a repeated start (do NOT do a “stop” then a “start” because a “stop” kicks the part out of HS mode);
5. Send read or writes in HS mode. (Remember to use “repeated starts” between commands.); then
6. When you are done with the last command send a “stop” condition to put the part back into regular 400 kHz mode.
I²C-COMPATIBLE CHIP ADDRESS

The device address for LM8850 is 60 (HEX).

Table 2. Register Information and Details

<table>
<thead>
<tr>
<th>Register name</th>
<th>Location</th>
<th>Type</th>
<th>Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL</td>
<td>0</td>
<td>R/W</td>
<td>Control Register 1</td>
</tr>
<tr>
<td>CONTROL</td>
<td>1</td>
<td>R/W</td>
<td>Control Register 2</td>
</tr>
</tbody>
</table>

Output Voltage Change

- 0 0 0 = 3.6V
- 0 0 1 = 3.9V
- 0 1 0 = 4.2V
- 0 1 1 = 4.5V
- 1 0 0 = 4.7V
- 1 0 1 = 5.0V (default)
- 1 1 0 = 5.3V
- 1 1 1 = 5.7V

PFM Voltage Ripple

- 0 0 = 50 mV
- 0 1 = 100 mV (default)
- 1 0 = 200 mV
- 1 1 = 250 mV

Balance Circuit

- 0 = OFF
- 1 = ON (default)
Effective when part is enabled

Mode

- 0 = AUTO (PFM/PWM ± default)
- 1 = FORCED PWM

Ton Time

- 0 0 = 5s (default)
- 0 1 = 7.5s
- 1 0 = 10s
- 1 1 = 12.5s
Switch Current Limit – (Max values)

- 111 = 1500 mA (default)
- 101 = 1025 mA
- 001 = 740 mA
- 000 = 530 mA

Balmode

- 0 = OFF (default)
- 1 = ON

Enable

- 0 = OFF (default)
- 1 = ON

Bit 5 used to determine output voltage

- 0 0 0 = 3.6V
- 0 0 1 = 3.9V
- 0 1 0 = 4.2V
- 0 1 1 = 4.5V
- 1 0 0 = 4.7V
- 1 0 1 = 5.0V (default)
- 1 1 0 = 5.3V
- 1 1 1 = 5.7V

PGOOD (Read only)
REVISION HISTORY

Changes from Revision B (May 2013) to Revision C

<table>
<thead>
<tr>
<th>Change Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changed layout of National Data Sheet to TI format</td>
<td>13</td>
</tr>
</tbody>
</table>
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM8850URE/NOPB</td>
<td>ACTIVE</td>
<td>DSBJA</td>
<td>YPD</td>
<td>9</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>SNAGCU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>SK</td>
<td></td>
</tr>
<tr>
<td>LM8850URX/NOPB</td>
<td>ACTIVE</td>
<td>DSBJA</td>
<td>YPD</td>
<td>9</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>SNAGCU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>SK</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) **RoHS**: TI defines “RoHS” to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, “RoHS” products are suitable for use in specified lead-free processes. TI may reference these types of products as ”Pb-Free”.
- **RoHS Exempt**: TI defines “RoHS Exempt” to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
- **Green**: TI defines “Green” to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a ”~” will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM8850URE/NOPB</td>
<td>DSBGA</td>
<td>YPD</td>
<td>9</td>
<td>250</td>
<td>178.0</td>
<td>8.4</td>
<td>1.7</td>
<td>1.75</td>
<td>0.56</td>
<td>4.0</td>
<td>8.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM8850URX/NOPB</td>
<td>DSBGA</td>
<td>YPD</td>
<td>9</td>
<td>3000</td>
<td>178.0</td>
<td>8.4</td>
<td>1.7</td>
<td>1.75</td>
<td>0.56</td>
<td>4.0</td>
<td>8.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

All dimensions are nominal.
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM8850URE/NOPB</td>
<td>DSBGA</td>
<td>YPD</td>
<td>9</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LM8850URX/NOPB</td>
<td>DSBGA</td>
<td>YPD</td>
<td>9</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
NOTES:
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and/or implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers’ applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource. Designers is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIGENIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designers may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.