

Stellaris[®] LM3S617 Microcontroller

DATA SHEET

DS-LM3S617-15852.2743 SPMS121I Copyright © 2007-2014 Texas Instruments Incorporated

Copyright

Copyright © 2007-2014 Texas Instruments Incorporated All rights reserved. Stellaris and StellarisWare[®] are registered trademarks of Texas Instruments Incorporated. ARM and Thumb are registered trademarks and Cortex is a trademark of ARM Limited. Other names and brands may be claimed as the property of others.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

A Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Texas Instruments Incorporated 108 Wild Basin, Suite 350 Austin, TX 78746 http://www.ti.com/stellaris http://www-k.ext.ti.com/sc/technical-support/product-information-centers.htm

Table of Contents

Revision His	story	20
About This [Document	24
Audience		24
About This Ma	anual	24
Related Docur	ments	
Documentatio	n Conventions	25
1	Architectural Overview	
1.1	Product Features	27
1.2	Target Applications	
1.3	High-Level Block Diagram	34
1.4	Functional Overview	
1.4.1	ARM Cortex™-M3	
1.4.2	Motor Control Peripherals	
1.4.3	Analog Peripherals	37
1.4.4	Serial Communications Peripherals	38
1.4.5	System Peripherals	39
1.4.6	Memory Peripherals	40
1.4.7	Additional Features	40
1.4.8	Hardware Details	40
1.4.9	System Block Diagram	42
2	The Cortex-M3 Processor	
2.1	Block Diagram	
2.2	Overview	
2.2.1	System-Level Interface	
2.2.2	Integrated Configurable Debug	
2.2.3	Trace Port Interface Unit (TPIU)	
2.2.4	Cortex-M3 System Component Details	
2.3	Programming Model	
2.3.1	Processor Mode and Privilege Levels for Software Execution	
2.3.2	Stacks	
2.3.3	Register Map	
2.3.4	Register Descriptions	
2.3.5	Exceptions and Interrupts	
2.3.6	Data Types	
2.4	Memory Model	
2.4.1	Memory Regions, Types and Attributes	
2.4.2	Memory System Ordering of Memory Accesses	
2.4.3	Behavior of Memory Accesses	
2.4.4	Software Ordering of Memory Accesses	
2.4.5	Bit-Banding	
2.4.6	Data Storage	
2.4.7	Synchronization Primitives	
2.5	Exception Model	
2.5.1	Exception States	
2.5.2	Exception Types	

2.5.3	Exception Handlers	74
2.5.4	Vector Table	
2.5.5	Exception Priorities	. 75
2.5.6	Interrupt Priority Grouping	
2.5.7	Exception Entry and Return	
2.6	Fault Handling	
2.6.1	Fault Types	
2.6.2	Fault Escalation and Hard Faults	
2.6.3	Fault Status Registers and Fault Address Registers	
2.6.4	Lockup	
2.7	Power Management	
2.7.1	Entering Sleep Modes	
2.7.2	Wake Up from Sleep Mode	
2.8	Instruction Set Summary	81
3	Cortex-M3 Peripherals	. 85
3.1	Functional Description	85
3.1.1	System Timer (SysTick)	
3.1.2	Nested Vectored Interrupt Controller (NVIC)	
3.1.3	System Control Block (SCB)	
3.1.4	Memory Protection Unit (MPU)	
3.2	Register Map	
3.3	System Timer (SysTick) Register Descriptions	
3.4	NVIC Register Descriptions	
3.5	System Control Block (SCB) Register Descriptions	106
3.6	Memory Protection Unit (MPU) Register Descriptions	
4	Memory Protection Unit (MPU) Register Descriptions	143
4 4.1	Memory Protection Unit (MPU) Register Descriptions JTAG Interface Block Diagram	143 144
4 4.1 4.2	Memory Protection Unit (MPU) Register Descriptions	143 144 144
4 4.1 4.2 4.3	Memory Protection Unit (MPU) Register Descriptions	143 144 144 145
4 4.1 4.2 4.3 4.3.1	Memory Protection Unit (MPU) Register Descriptions	143 144 144 145 145
4 4.1 4.2 4.3 4.3.1 4.3.2	Memory Protection Unit (MPU) Register Descriptions	143 144 144 145 145 145
4 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3	Memory Protection Unit (MPU) Register Descriptions	143 144 145 145 145 146 147
4 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4	Memory Protection Unit (MPU) Register Descriptions	143 144 145 145 145 146 147 147
4 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.4	Memory Protection Unit (MPU) Register Descriptions	143 144 145 145 145 146 147 147 149
4 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.4 4.5	Memory Protection Unit (MPU) Register Descriptions	143 144 145 145 146 147 147 149 149
4 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.4 4.5 4.5.1	Memory Protection Unit (MPU) Register Descriptions	143 144 145 145 146 147 147 149 149 149
4 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.4 4.5 4.5.1 4.5.2	Memory Protection Unit (MPU) Register Descriptions	143 144 145 145 146 147 147 149 149 149 151
4 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.4 4.5 4.5.1 4.5.2 5	Memory Protection Unit (MPU) Register Descriptions	143 144 145 145 146 147 147 149 149 149 151 153
4 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.4 4.5 4.5.1 4.5.2 5 5.1	Memory Protection Unit (MPU) Register Descriptions	143 144 145 145 145 146 147 149 149 149 151 153
4 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.4 4.5 4.5.1 4.5.2 5 5.1 5.2	Memory Protection Unit (MPU) Register Descriptions	143 144 145 145 145 146 147 147 149 149 149 151 153 153
4 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.4 4.5 4.5.1 4.5.2 5 5.1 5.2 5.2,1	Memory Protection Unit (MPU) Register Descriptions	143 144 145 145 146 147 147 149 149 149 151 153 153 153
4 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.4 4.5 4.5.1 4.5.2 5 5.1 5.2 5.2.1 5.2.1 5.2.2	Memory Protection Unit (MPU) Register Descriptions	143 144 145 145 145 146 147 147 149 149 151 153 153 153 153
4 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.5 4.5.1 4.5.2 5 5.1 5.2 5.2.1 5.2.2 5.2.3	Memory Protection Unit (MPU) Register Descriptions	143 144 145 145 145 146 147 147 149 149 151 153 153 153 153 153
4 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.4 4.5 4.5.1 4.5.2 5 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4	Memory Protection Unit (MPU) Register Descriptions JTAG Interface Block Diagram Signal Description Functional Description JTAG Interface Pins JTAG Interface Pins JTAG TAP Controller Shift Registers Operational Considerations Initialization and Configuration Register Descriptions Instruction Register (IR) Data Registers System Control Signal Description Functional Description Power Control Power Control Clock Control	143 144 145 145 146 147 147 149 149 149 151 153 153 153 153 153 153 153
4 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.4 4.5 4.5.1 4.5.2 5 5.1 5.2 5.2.1 5.2.2 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5	Memory Protection Unit (MPU) Register Descriptions JTAG Interface Block Diagram Signal Description Functional Description JTAG Interface Pins JTAG TAP Controller Shift Registers Operational Considerations Initialization and Configuration Register Descriptions Instruction Register (IR) Data Registers System Control Signal Description Functional Description Power Control Clock Control System Control Stignal Description State Control Signal Description System Control Signal Description System Control System Control System Control	143 144 145 145 146 147 147 149 149 149 151 153 153 153 153 153 153 158 158 158
4 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.4 4.5 4.5.1 4.5.2 5 5.1 5.2 5.2.1 5.2.2 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.3	Memory Protection Unit (MPU) Register Descriptions JTAG Interface Block Diagram Signal Description Functional Description JTAG Interface Pins JTAG TAP Controller Shift Registers Operational Considerations Initialization and Configuration Register Descriptions Instruction Register (IR) Data Registers System Control Signal Description Purctional Description Power Control Clock Control System Control Inductional Description Device Identification Reset Control Power Control Clock Control System Control Initialization and Configuration	143 144 145 145 145 146 147 147 149 149 151 153 153 153 153 153 153 158 161 162
4 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.4 4.5 4.5.1 4.5.2 5 5.1 5.2 5.2.1 5.2.2 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5	Memory Protection Unit (MPU) Register Descriptions JTAG Interface Block Diagram Signal Description Functional Description JTAG Interface Pins JTAG TAP Controller Shift Registers Operational Considerations Initialization and Configuration Register Descriptions Instruction Register (IR) Data Registers System Control Signal Description Functional Description Power Control Clock Control System Control Stignal Description State Control Signal Description System Control Signal Description System Control System Control System Control	143 144 145 145 145 146 147 149 149 149 151 153 153 153 153 153 153 153 153 153 153 153

6	Internal Memory	211
6.1	Block Diagram	211
6.2	Functional Description	211
6.2.1	SRAM Memory	. 211
6.2.2	Flash Memory	212
6.3	Flash Memory Initialization and Configuration	. 215
6.3.1	Changing Flash Protection Bits	215
6.3.2	Flash Programming	
6.4	Register Map	
6.5	Flash Register Descriptions (Flash Control Offset)	
6.6	Flash Register Descriptions (System Control Offset)	
7	General-Purpose Input/Outputs (GPIOs)	
7 .1	Block Diagram	
7.2	Signal Description	
7.3	Functional Description	
7.3.1	Data Control	
7.3.1	Interrupt Control	
7.3.2	Mode Control	
7.3.4	Pad Control	
7.3.4	Identification	
7.3.5 7.4	Initialization and Configuration	
7. 4 7.5		
	Register Map	
7.6	Register Descriptions	
8	General-Purpose Timers	
8.1	Block Diagram	271
	Block Diagram	
8.2	Signal Description	271
8.2 8.3	Signal Description Functional Description	271 272
8.2	Signal Description Functional Description GPTM Reset Conditions	271 272 272
8.2 8.3	Signal Description Functional Description GPTM Reset Conditions	271 272 272 272 272
8.2 8.3 8.3.1	Signal Description Functional Description GPTM Reset Conditions 32-Bit Timer Operating Modes 16-Bit Timer Operating Modes	271 272 272 272 272 272 274
8.2 8.3 8.3.1 8.3.2	Signal Description Functional Description GPTM Reset Conditions 32-Bit Timer Operating Modes 16-Bit Timer Operating Modes Initialization and Configuration	271 272 272 272 272 274 274
8.2 8.3 8.3.1 8.3.2 8.3.3	Signal Description Functional Description GPTM Reset Conditions 32-Bit Timer Operating Modes 16-Bit Timer Operating Modes Initialization and Configuration 32-Bit One-Shot/Periodic Timer Mode	271 272 272 272 272 272 274 277 277
8.2 8.3 8.3.1 8.3.2 8.3.3 8.4	Signal Description Functional Description GPTM Reset Conditions 32-Bit Timer Operating Modes 16-Bit Timer Operating Modes Initialization and Configuration 32-Bit One-Shot/Periodic Timer Mode 32-Bit Real-Time Clock (RTC) Mode	271 272 272 272 272 274 277 277 277
8.2 8.3 8.3.1 8.3.2 8.3.3 8.4 8.4.1	Signal Description Functional Description GPTM Reset Conditions 32-Bit Timer Operating Modes 16-Bit Timer Operating Modes Initialization and Configuration 32-Bit One-Shot/Periodic Timer Mode	271 272 272 272 272 274 277 277 277
8.2 8.3 8.3.1 8.3.2 8.3.3 8.4 8.4.1 8.4.2	Signal Description Functional Description GPTM Reset Conditions 32-Bit Timer Operating Modes 16-Bit Timer Operating Modes Initialization and Configuration 32-Bit One-Shot/Periodic Timer Mode 32-Bit Real-Time Clock (RTC) Mode	271 272 272 272 272 274 277 277 277 278 278
8.2 8.3 8.3.1 8.3.2 8.3.3 8.4 8.4.1 8.4.2 8.4.3	Signal Description Functional Description GPTM Reset Conditions 32-Bit Timer Operating Modes 16-Bit Timer Operating Modes Initialization and Configuration 32-Bit One-Shot/Periodic Timer Mode 32-Bit Real-Time Clock (RTC) Mode 16-Bit One-Shot/Periodic Timer Mode	271 272 272 272 274 277 277 277 278 278 278 278
8.2 8.3 8.3.1 8.3.2 8.3.3 8.4 8.4.1 8.4.2 8.4.3 8.4.4	Signal Description Functional Description GPTM Reset Conditions 32-Bit Timer Operating Modes 16-Bit Timer Operating Modes Initialization and Configuration 32-Bit One-Shot/Periodic Timer Mode 32-Bit Real-Time Clock (RTC) Mode 16-Bit One-Shot/Periodic Timer Mode 16-Bit Input Edge Count Mode	271 272 272 272 274 277 277 277 278 278 278 279 279
8.2 8.3 8.3.1 8.3.2 8.3.3 8.4 8.4.1 8.4.2 8.4.3 8.4.4 8.4.5	Signal Description Functional Description GPTM Reset Conditions 32-Bit Timer Operating Modes 16-Bit Timer Operating Modes Initialization and Configuration 32-Bit One-Shot/Periodic Timer Mode 32-Bit Real-Time Clock (RTC) Mode 16-Bit One-Shot/Periodic Timer Mode 16-Bit Input Edge Count Mode 16-Bit Input Edge Timing Mode	271 272 272 272 274 277 277 277 278 278 278 279 279 280
8.2 8.3 8.3.1 8.3.2 8.3.3 8.4 8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 8.4.6	Signal Description Functional Description GPTM Reset Conditions 32-Bit Timer Operating Modes 16-Bit Timer Operating Modes Initialization and Configuration 32-Bit One-Shot/Periodic Timer Mode 32-Bit Real-Time Clock (RTC) Mode 16-Bit Real-Time Clock (RTC) Mode 16-Bit Input Edge Count Mode 16-Bit Input Edge Timing Mode 16-Bit Input Edge Timing Mode	271 272 272 272 274 277 277 277 278 278 278 279 279 280 280
8.2 8.3 8.3.1 8.3.2 8.3.3 8.4 8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 8.4.6 8.5 8.6	Signal Description Functional Description GPTM Reset Conditions 32-Bit Timer Operating Modes 16-Bit Timer Operating Modes Initialization and Configuration 32-Bit One-Shot/Periodic Timer Mode 32-Bit Real-Time Clock (RTC) Mode 16-Bit One-Shot/Periodic Timer Mode 16-Bit Input Edge Count Mode 16-Bit Input Edge Count Mode 16-Bit Input Edge Timing Mode 16-Bit PWM Mode Register Map Register Descriptions	271 272 272 272 274 277 277 278 278 279 279 279 280 280 281
8.2 8.3 8.3.1 8.3.2 8.3.3 8.4 8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 8.4.6 8.5 8.6 9	Signal Description Functional Description GPTM Reset Conditions 32-Bit Timer Operating Modes 16-Bit Timer Operating Modes Initialization and Configuration 32-Bit One-Shot/Periodic Timer Mode 32-Bit Real-Time Clock (RTC) Mode 16-Bit One-Shot/Periodic Timer Mode 16-Bit Input Edge Count Mode 16-Bit Input Edge Timing Mode 16-Bit PWM Mode Register Map Register Descriptions	271 272 272 272 274 277 277 277 278 278 278 279 279 280 280 280 281 306
8.2 8.3 8.3.1 8.3.2 8.3.3 8.4 8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 8.4.6 8.5 8.6 9 9.1	Signal Description Functional Description GPTM Reset Conditions	271 272 272 272 274 277 277 278 278 279 279 279 280 280 280 281 306 307
8.2 8.3 8.3.1 8.3.2 8.3.3 8.4 8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 8.4.6 8.5 8.6 9	Signal Description Functional Description GPTM Reset Conditions 32-Bit Timer Operating Modes 16-Bit Timer Operating Modes Initialization and Configuration 32-Bit One-Shot/Periodic Timer Mode 32-Bit Real-Time Clock (RTC) Mode 16-Bit One-Shot/Periodic Timer Mode 16-Bit Input Edge Count Mode 16-Bit Input Edge Count Mode 16-Bit Input Edge Timing Mode 16-Bit PWM Mode Register Map Register Descriptions Watchdog Timer Block Diagram Functional Description	271 272 272 272 274 277 277 277 278 278 279 279 280 280 281 306 307 307
8.2 8.3 8.3.1 8.3.2 8.3.3 8.4 8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 8.4.6 8.5 8.6 9 9.1 9.2 9.3	Signal Description Functional Description GPTM Reset Conditions 32-Bit Timer Operating Modes 16-Bit Timer Operating Modes Initialization and Configuration 32-Bit One-Shot/Periodic Timer Mode 32-Bit Real-Time Clock (RTC) Mode 16-Bit Input Edge Count Mode 16-Bit Input Edge Timing Mode 16-Bit PWM Mode Register Map Register Descriptions Watchdog Timer Block Diagram Functional Description Initialization and Configuration	271 272 272 272 274 277 277 278 279 279 279 280 280 280 281 306 307 307
8.2 8.3 8.3.1 8.3.2 8.3.3 8.4 8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 8.4.6 8.5 8.6 9 9.1 9.2 9.3 9.4	Signal Description Functional Description GPTM Reset Conditions 32-Bit Timer Operating Modes 16-Bit Timer Operating Modes Initialization and Configuration 32-Bit One-Shot/Periodic Timer Mode 32-Bit Real-Time Clock (RTC) Mode 16-Bit One-Shot/Periodic Timer Mode 16-Bit Input Edge Count Mode 16-Bit Input Edge Count Mode 16-Bit Input Edge Timing Mode 16-Bit PWM Mode Register Map Register Descriptions Watchdog Timer Block Diagram Functional Description Initialization and Configuration Register Map	271 272 272 272 274 277 277 278 278 278 279 279 280 280 280 280 281 306 307 308 308
8.2 8.3 8.3.1 8.3.2 8.3.3 8.4 8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 8.4.6 8.5 8.6 9 9.1 9.2 9.3 9.4 9.5	Signal Description Functional Description GPTM Reset Conditions 32-Bit Timer Operating Modes 16-Bit Timer Operating Modes Initialization and Configuration 32-Bit One-Shot/Periodic Timer Mode 32-Bit Real-Time Clock (RTC) Mode 16-Bit Input Edge Count Mode 16-Bit Input Edge Count Mode 16-Bit PWM Mode Register Map Register Descriptions Watchdog Timer Block Diagram Functional Description Initialization and Configuration	271 272 272 272 274 277 277 278 279 279 279 280 280 280 281 306 307 307 308 308 309
8.2 8.3 8.3.1 8.3.2 8.3.3 8.4 8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 8.4.6 8.5 8.6 9 9.1 9.2 9.3 9.4	Signal Description Functional Description GPTM Reset Conditions 32-Bit Timer Operating Modes 16-Bit Timer Operating Modes Initialization and Configuration 32-Bit One-Shot/Periodic Timer Mode 32-Bit Real-Time Clock (RTC) Mode 16-Bit One-Shot/Periodic Timer Mode 16-Bit Input Edge Count Mode 16-Bit Input Edge Count Mode 16-Bit Input Edge Timing Mode 16-Bit PWM Mode Register Map Register Descriptions Watchdog Timer Block Diagram Functional Description Initialization and Configuration Register Map	271 272 272 272 274 277 277 278 279 279 279 280 280 280 280 281 306 307 307 308 308 309 330

10.2	Signal Description	331
10.3	Functional Description	331
10.3.1	Sample Sequencers	332
10.3.2	Module Control	332
10.3.3	Hardware Sample Averaging Circuit	333
10.3.4	Analog-to-Digital Converter	333
10.3.5	Differential Sampling	334
10.3.6	Test Modes	336
10.3.7	Internal Temperature Sensor	336
10.4	Initialization and Configuration	337
10.4.1	Module Initialization	
10.4.2	Sample Sequencer Configuration	
10.5	Register Map	
10.6	Register Descriptions	
11	Universal Asynchronous Receivers/Transmitters (UARTs)	
11.1	Block Diagram	
11.2	Signal Description	
11.3	Functional Description	
11.3.1	Transmit/Receive Logic	
11.3.2	Baud-Rate Generation	
11.3.3	Data Transmission	
11.3.4	FIFO Operation	
11.3.5	Interrupts	
11.3.6	Loopback Operation	
11.4	Initialization and Configuration	
11.5	Register Map	
11.6	Register Descriptions	
-		
12 12.1	Synchronous Serial Interface (SSI) Block Diagram	
12.1	Signal Description	
12.2	Functional Description	
12.3	Bit Rate Generation	
12.3.1	FIFO Operation	
12.3.2	Interrupts	
12.3.4	Frame Formats	
12.3.4	Initialization and Configuration	
12.4	Register Map	
12.5	Register Descriptions	
13	Analog Comparator	
13.1	Block Diagram	
13.2	Signal Description	
13.3	Functional Description	
13.3.1	Internal Reference Programming	
13.4	Initialization and Configuration	
13.5	Register Map	
13.6	Register Descriptions	449

14	Pulse Width Modulator (PWM)	. 457
14.1	Block Diagram	. 458
14.2	Signal Description	. 459
14.3	Functional Description	. 459
14.3.1	PWM Timer	
14.3.2	PWM Comparators	. 460
14.3.3	PWM Signal Generator	
14.3.4	Dead-Band Generator	
14.3.5	Interrupt/ADC-Trigger Selector	
14.3.6	Synchronization Methods	
14.3.7	Fault Conditions	
14.3.8	Output Control Block	
14.4	Initialization and Configuration	
14.5	Register Map	
14.6	Register Descriptions	. 466
15	Pin Diagram	. 496
16	Signal Tables	. 497
16.1	Signals by Pin Number	
16.2	Signals by Signal Name	. 499
16.3	Signals by Function, Except for GPIO	. 501
16.4	GPIO Pins and Alternate Functions	. 503
16.5	Connections for Unused Signals	. 503
17	Operating Characteristics	. 505
40	Floatning! Characteristics	F 00
18	Electrical Characteristics	. 506
18 18.1	DC Characteristics	
-		. 506
18.1	DC Characteristics	. 506 . 506
18.1 18.1.1 18.1.2 18.1.3	DC Characteristics Maximum Ratings Recommended DC Operating Conditions On-Chip Low Drop-Out (LDO) Regulator Characteristics	. 506 . 506 . 506 . 507
18.1 18.1.1 18.1.2 18.1.3	DC Characteristics Maximum Ratings Recommended DC Operating Conditions	. 506 . 506 . 506 . 507
18.1 18.1.1 18.1.2 18.1.3 18.1.4 18.1.5	DC Characteristics	506 506 506 507 507 507
18.1 18.1.1 18.1.2 18.1.3 18.1.4 18.1.5 18.1.6	DC Characteristics	506 506 506 507 507 507 507 508
18.1 18.1.1 18.1.2 18.1.3 18.1.4 18.1.5 18.1.6 18.2	DC Characteristics	. 506 . 506 . 506 . 507 . 507 . 507 . 508 . 508
18.1 18.1.1 18.1.2 18.1.3 18.1.4 18.1.5 18.1.6 18.2 18.2.1	DC Characteristics	. 506 . 506 . 506 . 507 . 507 . 507 . 508 . 508 . 508
18.1 18.1.1 18.1.2 18.1.3 18.1.4 18.1.5 18.1.6 18.2 18.2.1 18.2.2	DC Characteristics	. 506 . 506 . 506 . 507 . 507 . 507 . 508 . 508 . 508 . 508
18.1 18.1.1 18.1.2 18.1.3 18.1.4 18.1.5 18.1.6 18.2 18.2.1 18.2.2 18.2.3	DC Characteristics	. 506 . 506 . 507 . 507 . 507 . 508 . 508 . 508 . 508 . 509 . 509
18.1 18.1.1 18.1.2 18.1.3 18.1.4 18.1.5 18.1.6 18.2 18.2.1 18.2.2 18.2.3 18.2.4	DC Characteristics	. 506 . 506 . 507 . 507 . 507 . 508 . 508 . 508 . 508 . 509 . 509 . 509
18.1 18.1.1 18.1.2 18.1.3 18.1.4 18.1.5 18.1.6 18.2 18.2.1 18.2.2 18.2.3 18.2.4 18.2.5	DC Characteristics	. 506 . 506 . 507 . 507 . 507 . 508 . 508 . 508 . 508 . 508 . 509 . 509 . 511 . 513
$18.1 \\18.1.1 \\18.1.2 \\18.1.3 \\18.1.4 \\18.1.5 \\18.1.6 \\18.2 \\18.2.1 \\18.2.2 \\18.2.3 \\18.2.4 \\18.2.5 \\18.2.6 \\$	DC Characteristics	. 506 . 506 . 507 . 507 . 507 . 508 . 508 . 508 . 508 . 508 . 509 . 509 . 511 . 513 . 513
$18.1 \\18.1.1 \\18.1.2 \\18.1.3 \\18.1.4 \\18.1.5 \\18.1.6 \\18.2 \\18.2.1 \\18.2.2 \\18.2.3 \\18.2.4 \\18.2.5 \\18.2.6 \\18.2.7 \\$	DC Characteristics	. 506 . 506 . 507 . 507 . 507 . 508 . 508 . 508 . 508 . 508 . 509 . 509 . 511 . 513 . 513 . 514
18.1 18.1.1 18.1.2 18.1.3 18.1.4 18.1.5 18.1.6 18.2 18.2.1 18.2.2 18.2.3 18.2.4 18.2.5 18.2.6 18.2.7 18.2.8	DC Characteristics Maximum Ratings Recommended DC Operating Conditions On-Chip Low Drop-Out (LDO) Regulator Characteristics GPIO Module Characteristics Power Specifications Flash Memory Characteristics AC Characteristics Load Conditions Clocks JTAG and Boundary Scan Reset Sleep Modes General-Purpose I/O (GPIO) Analog-to-Digital Converter Synchronous Serial Interface (SSI)	. 506 . 506 . 507 . 507 . 507 . 508 . 508 . 508 . 508 . 508 . 509 . 509 . 509 . 511 . 513 . 513 . 514 . 515
$18.1 \\18.1.1 \\18.1.2 \\18.1.3 \\18.1.4 \\18.1.5 \\18.1.6 \\18.2 \\18.2.1 \\18.2.2 \\18.2.3 \\18.2.4 \\18.2.5 \\18.2.6 \\18.2.7 \\18.2.8 \\18.2.9 \\$	DC Characteristics Maximum Ratings Recommended DC Operating Conditions On-Chip Low Drop-Out (LDO) Regulator Characteristics GPIO Module Characteristics Power Specifications Flash Memory Characteristics AC Characteristics Load Conditions Clocks JTAG and Boundary Scan Reset Sleep Modes General-Purpose I/O (GPIO) Analog-to-Digital Converter Synchronous Serial Interface (SSI) Analog Comparator	. 506 . 506 . 507 . 507 . 507 . 508 . 508 . 508 . 508 . 508 . 508 . 509 . 511 . 513 . 513 . 514 . 515 . 517
18.1 18.1.1 18.1.2 18.1.3 18.1.4 18.1.5 18.1.6 18.2 18.2.1 18.2.2 18.2.3 18.2.4 18.2.5 18.2.6 18.2.7 18.2.8 18.2.9 A	DC Characteristics	. 506 . 506 . 507 . 507 . 507 . 507 . 508 . 508 . 508 . 508 . 509 . 509 . 511 . 513 . 513 . 513 . 514 . 515 . 517 . 518
18.1 18.1.1 18.1.2 18.1.3 18.1.4 18.1.5 18.1.6 18.2 18.2.1 18.2.2 18.2.3 18.2.4 18.2.5 18.2.6 18.2.7 18.2.8 18.2.9 A A.1	DC Characteristics Maximum Ratings Recommended DC Operating Conditions On-Chip Low Drop-Out (LDO) Regulator Characteristics GPIO Module Characteristics Power Specifications Flash Memory Characteristics AC Characteristics Load Conditions Clocks JTAG and Boundary Scan Reset Sleep Modes General-Purpose I/O (GPIO) Analog-to-Digital Converter Synchronous Serial Interface (SSI) Analog Comparator Serial Flash Loader	. 506 . 506 . 507 . 507 . 507 . 508 . 508 . 508 . 508 . 508 . 508 . 508 . 509 . 511 . 513 . 514 . 515 . 517 . 518 . 518
18.1 18.1.1 18.1.2 18.1.3 18.1.4 18.1.5 18.1.6 18.2 18.2.1 18.2.2 18.2.3 18.2.4 18.2.5 18.2.6 18.2.7 18.2.8 18.2.9 A A.1 A.2	DC Characteristics Maximum Ratings Recommended DC Operating Conditions On-Chip Low Drop-Out (LDO) Regulator Characteristics GPIO Module Characteristics Power Specifications Flash Memory Characteristics AC Characteristics Load Conditions Clocks JTAG and Boundary Scan Reset Sleep Modes General-Purpose I/O (GPIO) Analog-to-Digital Converter Synchronous Serial Interface (SSI) Analog Comparator Serial Flash Loader Interfaces	. 506 . 506 . 507 . 507 . 507 . 508 . 508 . 508 . 508 . 508 . 508 . 508 . 508 . 509 . 511 . 513 . 513 . 514 . 515 . 517 . 518 . 518 . 518
18.1 18.1.1 18.1.2 18.1.3 18.1.4 18.1.5 18.1.6 18.2 18.2.1 18.2.2 18.2.3 18.2.4 18.2.5 18.2.6 18.2.7 18.2.8 18.2.9 A A.1 A.2 A.2.1	DC Characteristics	. 506 . 506 . 507 . 507 . 507 . 508 . 509 . 511 . 513 . 514 . 515 . 517 . 518 . 518 . 518 . 518
18.1 18.1.1 18.1.2 18.1.3 18.1.4 18.1.5 18.1.6 18.2 18.2.1 18.2.2 18.2.3 18.2.4 18.2.5 18.2.6 18.2.7 18.2.8 18.2.9 A A.1 A.2	DC Characteristics Maximum Ratings Recommended DC Operating Conditions On-Chip Low Drop-Out (LDO) Regulator Characteristics GPIO Module Characteristics Power Specifications Flash Memory Characteristics AC Characteristics Load Conditions Clocks JTAG and Boundary Scan Reset Sleep Modes General-Purpose I/O (GPIO) Analog-to-Digital Converter Synchronous Serial Interface (SSI) Analog Comparator Serial Flash Loader Interfaces	. 506 . 506 . 507 . 507 . 507 . 507 . 508 . 508 . 508 . 508 . 508 . 509 . 509 . 509 . 509 . 509 . 511 . 513 . 513 . 514 . 515 . 517 . 518 . 518 . 518 . 518 . 518 . 518

A.3.1	Packet Format	519
A.3.2	Sending Packets	519
A.3.3	Receiving Packets	519
A.4	Commands	520
A.4.1	COMMAND_PING (0X20)	520
A.4.2	COMMAND_GET_STATUS (0x23)	520
A.4.3	COMMAND_DOWNLOAD (0x21)	520
A.4.4	COMMAND_SEND_DATA (0x24)	521
A.4.5	COMMAND_RUN (0x22)	
A.4.6	COMMAND_RESET (0x25)	521
В	Register Quick Reference	523
С	Ordering and Contact Information	542
C C.1	Ordering and Contact Information	
•		542
C.1	Ordering Information	542 542
C.1 C.2	Ordering Information Part Markings	542 542 542
C.1 C.2 C.3	Ordering Information Part Markings Kits Support Information	542 542 542 543
C.1 C.2 C.3 C.4	Ordering Information Part Markings Kits	542 542 542 543 544
C.1 C.2 C.3 C.4 D	Ordering Information Part Markings Kits Support Information Package Information	542 542 542 543 544 544
C.1 C.2 C.3 C.4 D D.1	Ordering Information Part Markings Kits Support Information Package Information 48-Pin LQFP Package	542 542 543 544 544 544
C.1 C.2 C.3 C.4 D.1 D.1.1	Ordering Information Part Markings Kits Support Information Package Information 48-Pin LQFP Package Package Dimensions	542 542 543 543 544 544 544 546

List of Figures

Figure 1-1.	Stellaris LM3S617 Microcontroller High-Level Block Diagram	35
Figure 1-2.	LM3S617 Controller System-Level Block Diagram	42
Figure 2-1.	CPU Block Diagram	45
Figure 2-2.	TPIU Block Diagram	46
Figure 2-3.	Cortex-M3 Register Set	48
Figure 2-4.	Bit-Band Mapping	68
Figure 2-5.	Data Storage	69
Figure 2-6.	Vector Table	74
Figure 2-7.	Exception Stack Frame	76
Figure 3-1.	SRD Use Example	91
Figure 4-1.	JTAG Module Block Diagram	144
Figure 4-2.	Test Access Port State Machine	147
Figure 4-3.	IDCODE Register Format	151
Figure 4-4.	BYPASS Register Format	152
Figure 4-5.	Boundary Scan Register Format	152
Figure 5-1.	Basic RST Configuration	155
Figure 5-2.	External Circuitry to Extend Power-On Reset	155
Figure 5-3.	Reset Circuit Controlled by Switch	156
Figure 5-4.	Main Clock Tree	159
Figure 6-1.	Flash Block Diagram	211
Figure 7-1.	GPIO Module Block Diagram	230
Figure 7-2.	GPIO Port Block Diagram	233
Figure 7-3.	GPIODATA Write Example	234
Figure 7-4.	GPIODATA Read Example	234
Figure 8-1.	GPTM Module Block Diagram	271
Figure 8-2.	16-Bit Input Edge Count Mode Example	275
Figure 8-3.	16-Bit Input Edge Time Mode Example	276
Figure 8-4.	16-Bit PWM Mode Example	277
Figure 9-1.	WDT Module Block Diagram	307
Figure 10-1.	ADC Module Block Diagram	331
Figure 10-2.	Differential Sampling Range, V _{IN ODD} = 1.5 V	335
Figure 10-3.	Differential Sampling Range, V _{IN_ODD} = 0.75 V	
Figure 10-4.	Differential Sampling Range, V _{IN_ODD} = 2.25 V	
Figure 10-5.	Internal Temperature Sensor Characteristic	
Figure 11-1.	UART Module Block Diagram	
Figure 11-2.	UART Character Frame	
Figure 12-1.	SSI Module Block Diagram	
Figure 12-2.	TI Synchronous Serial Frame Format (Single Transfer)	
Figure 12-3.	TI Synchronous Serial Frame Format (Continuous Transfer)	
Figure 12-4.	Freescale SPI Format (Single Transfer) with SPO=0 and SPH=0	
Figure 12-5.	Freescale SPI Format (Continuous Transfer) with SPO=0 and SPH=0	
Figure 12-6.	Freescale SPI Frame Format with SPO=0 and SPH=1	
Figure 12-7.	Freescale SPI Frame Format (Single Transfer) with SPO=1 and SPH=0	
Figure 12-8.	Freescale SPI Frame Format (Continuous Transfer) with SPO=1 and SPH=0	
Figure 12-9.	Freescale SPI Frame Format with SPO=1 and SPH=1	
-	. MICROWIRE Frame Format (Single Frame)	
-	· - /	

Figure 12-11.	MICROWIRE Frame Format (Continuous Transfer)	416
Figure 12-12.	MICROWIRE Frame Format, SSIFss Input Setup and Hold Requirements	. 417
Figure 13-1.	Analog Comparator Module Block Diagram	445
Figure 13-2.	Structure of Comparator Unit	446
Figure 13-3.	Comparator Internal Reference Structure	447
Figure 14-1.	PWM Unit Diagram	458
Figure 14-2.	PWM Module Block Diagram	459
Figure 14-3.	PWM Count-Down Mode	460
Figure 14-4.	PWM Count-Up/Down Mode	
Figure 14-5.	PWM Generation Example In Count-Up/Down Mode	. 461
Figure 14-6.	PWM Dead-Band Generator	462
Figure 15-1.	48-Pin QFP Package Pin Diagram	496
Figure 18-1.	Load Conditions	509
Figure 18-2.	JTAG Test Clock Input Timing	510
Figure 18-3.	JTAG Test Access Port (TAP) Timing	511
Figure 18-4.	JTAG TRST Timing	511
Figure 18-5.	External Reset Timing (RST)	512
Figure 18-6.	Power-On Reset Timing	512
Figure 18-7.	Brown-Out Reset Timing	512
Figure 18-8.	Software Reset Timing	513
Figure 18-9.	Watchdog Reset Timing	513
Figure 18-10.	LDO Reset Timing	513
Figure 18-11.	ADC Input Equivalency Diagram	515
Figure 18-12.	SSI Timing for TI Frame Format (FRF=01), Single Transfer Timing	
	Measurement	
-	SSI Timing for MICROWIRE Frame Format (FRF=10), Single Transfer	
-	SSI Timing for SPI Frame Format (FRF=00), with SPH=1	
Figure D-1.	Stellaris LM3S617 48-Pin LQFP Package	
Figure D-2.	48-Pin LQFP Tray Dimensions	546
Figure D-3.	48-Pin LQFP Tape and Reel Dimensions	. 548

List of Tables

Table 1.	Revision History	20
Table 2.	Documentation Conventions	25
Table 2-1.	Summary of Processor Mode, Privilege Level, and Stack Use	48
Table 2-2.	Processor Register Map	49
Table 2-3.	PSR Register Combinations	54
Table 2-4.	Memory Map	62
Table 2-5.	Memory Access Behavior	
Table 2-6.	SRAM Memory Bit-Banding Regions	66
Table 2-7.	Peripheral Memory Bit-Banding Regions	66
Table 2-8.	Exception Types	
Table 2-9.	Interrupts	73
Table 2-10.	Exception Return Behavior	77
Table 2-11.	Faults	
Table 2-12.	Fault Status and Fault Address Registers	
Table 2-13.	Cortex-M3 Instruction Summary	81
Table 3-1.	Core Peripheral Register Regions	85
Table 3-2.	Memory Attributes Summary	88
Table 3-3.	TEX, S, C, and B Bit Field Encoding	91
Table 3-4.	Cache Policy for Memory Attribute Encoding	92
Table 3-5.	AP Bit Field Encoding	
Table 3-6.	Memory Region Attributes for Stellaris Microcontrollers	92
Table 3-7.	Peripherals Register Map	93
Table 3-8.	Interrupt Priority Levels	112
Table 3-9.	Example SIZE Field Values	140
Table 4-1.	JTAG_SWD_SWO Signals (48QFP)	144
Table 4-2.	JTAG Port Pins Reset State	145
Table 4-3.	JTAG Instruction Register Commands	149
Table 5-1.	System Control & Clocks Signals (48QFP)	153
Table 5-2.	Reset Sources	154
Table 5-3.	Clock Source Options	158
Table 5-4.	Possible System Clock Frequencies Using the SYSDIV Field	159
Table 5-5.	System Control Register Map	163
Table 5-6.	PLL Mode Control	176
Table 6-1.	Flash Protection Policy Combinations	212
Table 6-2.	Flash Register Map	217
Table 7-1.	GPIO Pins With Non-Zero Reset Values	230
Table 7-2.	GPIO Pins and Alternate Functions (48QFP)	231
Table 7-3.	GPIO Signals (48QFP)	
Table 7-4.	GPIO Pad Configuration Examples	236
Table 7-5.	GPIO Interrupt Configuration Example	236
Table 7-6.	GPIO Register Map	237
Table 8-1.	Available CCP Pins	271
Table 8-2.	General-Purpose Timers Signals (48QFP)	272
Table 8-3.	16-Bit Timer With Prescaler Configurations	274
Table 8-4.	Timers Register Map	281
Table 9-1.	Watchdog Timer Register Map	308

Table 10-1.	ADC Signals (48QFP)	331
Table 10-2.	Samples and FIFO Depth of Sequencers	
Table 10-3.	Differential Sampling Pairs	334
Table 10-4.	ADC Register Map	338
Table 11-1.	UART Signals (48QFP)	368
Table 11-2.	UART Register Map	373
Table 12-1.	SSI Signals (48QFP)	408
Table 12-2.	SSI Register Map	418
Table 13-1.	Analog Comparators Signals (48QFP)	446
Table 13-2.	Comparator 0 Operating Modes	447
Table 13-3.	Internal Reference Voltage and ACREFCTL Field Values	447
Table 13-4.	Analog Comparators Register Map	449
Table 14-1.	PWM Signals (48QFP)	459
Table 14-2.	PWM Register Map	464
Table 16-1.	Signals by Pin Number	497
Table 16-2.	Signals by Signal Name	499
Table 16-3.	Signals by Function, Except for GPIO	501
Table 16-4.	GPIO Pins and Alternate Functions	503
Table 16-5.	Connections for Unused Signals	504
Table 17-1.	Temperature Characteristics	505
Table 17-2.	Thermal Characteristics	505
Table 17-3.	ESD Absolute Maximum Ratings	505
Table 18-1.	Maximum Ratings	506
Table 18-2.	Recommended DC Operating Conditions	506
Table 18-3.	LDO Regulator Characteristics	507
Table 18-4.	GPIO Module DC Characteristics	507
Table 18-5.	Detailed Power Specifications	508
Table 18-6.	Flash Memory Characteristics	508
Table 18-7.	Phase Locked Loop (PLL) Characteristics	509
Table 18-8.	Clock Characteristics	509
Table 18-9.	System Clock Characteristics with ADC Operation	509
Table 18-10.	JTAG Characteristics	509
Table 18-11.	Reset Characteristics	511
Table 18-12.	Sleep Modes AC Characteristics	
Table 18-13.	GPIO Characteristics	514
Table 18-14.	ADC Characteristics	514
Table 18-15.	ADC Module Internal Reference Characteristics	
Table 18-16.	SSI Characteristics	515
Table 18-17.	Analog Comparator Characteristics	
Table 18-18.	Analog Comparator Voltage Reference Characteristics	517

List of Registers

The Cortex-	M3 Processor	. 43
Register 1:	Cortex General-Purpose Register 0 (R0)	50
Register 2:	Cortex General-Purpose Register 1 (R1)	50
Register 3:	Cortex General-Purpose Register 2 (R2)	50
Register 4:	Cortex General-Purpose Register 3 (R3)	50
Register 5:	Cortex General-Purpose Register 4 (R4)	50
Register 6:	Cortex General-Purpose Register 5 (R5)	50
Register 7:	Cortex General-Purpose Register 6 (R6)	50
Register 8:	Cortex General-Purpose Register 7 (R7)	50
Register 9:	Cortex General-Purpose Register 8 (R8)	50
Register 10:	Cortex General-Purpose Register 9 (R9)	50
Register 11:	Cortex General-Purpose Register 10 (R10)	
Register 12:	Cortex General-Purpose Register 11 (R11)	50
Register 13:	Cortex General-Purpose Register 12 (R12)	
Register 14:	Stack Pointer (SP)	51
Register 15:	Link Register (LR)	52
Register 16:	Program Counter (PC)	
Register 17:	Program Status Register (PSR)	54
Register 18:	Priority Mask Register (PRIMASK)	58
Register 19:	Fault Mask Register (FAULTMASK)	
Register 20:	Base Priority Mask Register (BASEPRI)	60
Register 21:	Control Register (CONTROL)	61
Contox M2 D		05
Cortex-INIS P	eripherals	05
Register 1:	SysTick Control and Status Register (STCTRL), offset 0x010	
		95
Register 1:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018	95 97 98
Register 1: Register 2:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018 Interrupt 0-29 Set Enable (EN0), offset 0x100	95 97 98 99
Register 1: Register 2: Register 3:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018	95 97 98 99
Register 1: Register 2: Register 3: Register 4:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018 Interrupt 0-29 Set Enable (EN0), offset 0x100 Interrupt 0-29 Clear Enable (DIS0), offset 0x180 Interrupt 0-29 Set Pending (PEND0), offset 0x200	95 97 98 99 100 101
Register 1: Register 2: Register 3: Register 4: Register 5:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018 Interrupt 0-29 Set Enable (EN0), offset 0x100 Interrupt 0-29 Clear Enable (DIS0), offset 0x180 Interrupt 0-29 Set Pending (PEND0), offset 0x200 Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280	95 97 98 99 100 101 102
Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018 Interrupt 0-29 Set Enable (EN0), offset 0x100 Interrupt 0-29 Clear Enable (DIS0), offset 0x180 Interrupt 0-29 Set Pending (PEND0), offset 0x200 Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280 Interrupt 0-29 Active Bit (ACTIVE0), offset 0x300	95 97 98 99 100 101 102 103
Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8: Register 9:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018 Interrupt 0-29 Set Enable (EN0), offset 0x100 Interrupt 0-29 Clear Enable (DIS0), offset 0x180 Interrupt 0-29 Set Pending (PEND0), offset 0x200 Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280 Interrupt 0-29 Active Bit (ACTIVE0), offset 0x300 Interrupt 0-3 Priority (PRI0), offset 0x400	95 97 98 99 100 101 102 103 104
Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018 Interrupt 0-29 Set Enable (EN0), offset 0x100 Interrupt 0-29 Clear Enable (DIS0), offset 0x180 Interrupt 0-29 Set Pending (PEND0), offset 0x200 Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280 Interrupt 0-29 Active Bit (ACTIVE0), offset 0x300 Interrupt 0-3 Priority (PRI0), offset 0x404	95 97 98 99 100 101 102 103 104 104
Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018 Interrupt 0-29 Set Enable (EN0), offset 0x100 Interrupt 0-29 Clear Enable (DIS0), offset 0x180 Interrupt 0-29 Set Pending (PEND0), offset 0x200 Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280 Interrupt 0-29 Active Bit (ACTIVE0), offset 0x300 Interrupt 0-3 Priority (PRI0), offset 0x400 Interrupt 4-7 Priority (PRI1), offset 0x408	95 97 98 99 100 101 102 103 104 104 104
Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8: Register 8: Register 9: Register 10: Register 11: Register 12:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018 Interrupt 0-29 Set Enable (EN0), offset 0x100 Interrupt 0-29 Clear Enable (DIS0), offset 0x180 Interrupt 0-29 Set Pending (PEND0), offset 0x200 Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280 Interrupt 0-29 Active Bit (ACTIVE0), offset 0x300 Interrupt 0-3 Priority (PRI0), offset 0x400 Interrupt 4-7 Priority (PRI1), offset 0x404 Interrupt 8-11 Priority (PRI2), offset 0x408 Interrupt 12-15 Priority (PRI3), offset 0x40C	95 97 98 99 100 101 102 103 104 104 104 104
Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018 Interrupt 0-29 Set Enable (EN0), offset 0x100 Interrupt 0-29 Clear Enable (DIS0), offset 0x180 Interrupt 0-29 Set Pending (PEND0), offset 0x200 Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280 Interrupt 0-29 Active Bit (ACTIVE0), offset 0x300 Interrupt 0-3 Priority (PRI0), offset 0x400 Interrupt 4-7 Priority (PRI1), offset 0x404 Interrupt 8-11 Priority (PRI2), offset 0x408 Interrupt 12-15 Priority (PRI3), offset 0x400 Interrupt 16-19 Priority (PRI4), offset 0x410	95 97 98 99 100 101 102 103 104 104 104 104
Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018 Interrupt 0-29 Set Enable (EN0), offset 0x100 Interrupt 0-29 Clear Enable (DIS0), offset 0x180 Interrupt 0-29 Set Pending (PEND0), offset 0x200 Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280 Interrupt 0-29 Active Bit (ACTIVE0), offset 0x300 Interrupt 0-3 Priority (PRI0), offset 0x400 Interrupt 4-7 Priority (PRI1), offset 0x404 Interrupt 8-11 Priority (PRI2), offset 0x408 Interrupt 12-15 Priority (PRI3), offset 0x400 Interrupt 16-19 Priority (PRI4), offset 0x410 Interrupt 20-23 Priority (PRI5), offset 0x414	95 97 98 99 100 101 102 103 104 104 104 104 104
Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 6: Register 7: Register 8: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15:	SysTick Control and Status Register (STCTRL), offset 0x010	95 97 98 99 100 101 102 103 104 104 104 104 104 104
Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Register 16:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018 Interrupt 0-29 Set Enable (EN0), offset 0x100 Interrupt 0-29 Clear Enable (DIS0), offset 0x180 Interrupt 0-29 Set Pending (PEND0), offset 0x200 Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280 Interrupt 0-29 Active Bit (ACTIVE0), offset 0x300 Interrupt 0-29 Active Bit (ACTIVE0), offset 0x300 Interrupt 0-3 Priority (PRI0), offset 0x400 Interrupt 4-7 Priority (PRI1), offset 0x404 Interrupt 8-11 Priority (PRI2), offset 0x408 Interrupt 12-15 Priority (PRI3), offset 0x402 Interrupt 16-19 Priority (PRI4), offset 0x410 Interrupt 20-23 Priority (PRI5), offset 0x418 Interrupt 24-27 Priority (PRI6), offset 0x418 Interrupt 28-29 Priority (PRI7), offset 0x41C	95 97 98 99 100 101 102 103 104 104 104 104 104 104 104
Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Register 16: Register 17:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018 Interrupt 0-29 Set Enable (EN0), offset 0x100 Interrupt 0-29 Clear Enable (DIS0), offset 0x180 Interrupt 0-29 Set Pending (PEND0), offset 0x200 Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280 Interrupt 0-29 Active Bit (ACTIVE0), offset 0x300 Interrupt 0-3 Priority (PRI0), offset 0x400 Interrupt 4-7 Priority (PRI1), offset 0x404 Interrupt 8-11 Priority (PRI2), offset 0x408 Interrupt 12-15 Priority (PRI3), offset 0x40C Interrupt 16-19 Priority (PRI4), offset 0x410 Interrupt 20-23 Priority (PRI5), offset 0x414 Interrupt 24-27 Priority (PRI6), offset 0x418 Interrupt 28-29 Priority (PRI7), offset 0x41C Software Trigger Interrupt (SWTRIG), offset 0xF00	95 97 98 99 100 101 102 103 104 104 104 104 104 104 104 104
Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Register 15: Register 16: Register 17: Register 18:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018 Interrupt 0-29 Set Enable (EN0), offset 0x100 Interrupt 0-29 Clear Enable (DIS0), offset 0x180 Interrupt 0-29 Set Pending (PEND0), offset 0x200 Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280 Interrupt 0-29 Active Bit (ACTIVE0), offset 0x300 Interrupt 0-3 Priority (PRI0), offset 0x400 Interrupt 4-7 Priority (PRI1), offset 0x404 Interrupt 8-11 Priority (PRI2), offset 0x408 Interrupt 12-15 Priority (PRI3), offset 0x408 Interrupt 16-19 Priority (PRI3), offset 0x410 Interrupt 20-23 Priority (PRI5), offset 0x414 Interrupt 24-27 Priority (PRI6), offset 0x418 Interrupt 28-29 Priority (PRI7), offset 0x41C Software Trigger Interrupt (SWTRIG), offset 0xF00 CPU ID Base (CPUID), offset 0xD00	95 97 98 99 100 101 102 103 104 104 104 104 104 104 104 104 104
Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 6: Register 7: Register 8: Register 9: Register 10: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Register 15: Register 16: Register 17: Register 18: Register 19:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018 Interrupt 0-29 Set Enable (EN0), offset 0x100 Interrupt 0-29 Clear Enable (DIS0), offset 0x180 Interrupt 0-29 Set Pending (PEND0), offset 0x200 Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280 Interrupt 0-29 Active Bit (ACTIVE0), offset 0x300 Interrupt 0-3 Priority (PRI0), offset 0x400 Interrupt 4-7 Priority (PRI1), offset 0x404 Interrupt 8-11 Priority (PRI2), offset 0x408 Interrupt 12-15 Priority (PRI2), offset 0x408 Interrupt 16-19 Priority (PRI3), offset 0x410 Interrupt 20-23 Priority (PRI5), offset 0x414 Interrupt 24-27 Priority (PRI6), offset 0x418 Interrupt 28-29 Priority (PRI7), offset 0x41C Software Trigger Interrupt (SWTRIG), offset 0xF00 CPU ID Base (CPUID), offset 0xD00 Interrupt Control and State (INTCTRL), offset 0xD04	95 97 98 99 100 101 102 103 104 104 104 104 104 104 104 104 104 104
Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 7: Register 8: Register 9: Register 10: Register 10: Register 12: Register 13: Register 14: Register 14: Register 15: Register 16: Register 17: Register 18: Register 19: Register 19:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018 Interrupt 0-29 Set Enable (EN0), offset 0x100 Interrupt 0-29 Clear Enable (DIS0), offset 0x180 Interrupt 0-29 Set Pending (PEND0), offset 0x200 Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280 Interrupt 0-29 Active Bit (ACTIVE0), offset 0x200 Interrupt 0-3 Priority (PRI0), offset 0x400 Interrupt 4-7 Priority (PRI1), offset 0x400 Interrupt 8-11 Priority (PRI2), offset 0x408 Interrupt 12-15 Priority (PRI3), offset 0x40C Interrupt 16-19 Priority (PRI4), offset 0x410 Interrupt 20-23 Priority (PRI5), offset 0x414 Interrupt 24-27 Priority (PRI7), offset 0x418 Interrupt 28-29 Priority (PRI7), offset 0x41C Software Trigger Interrupt (SWTRIG), offset 0xF00 CPU ID Base (CPUID), offset 0xD00 Interrupt Control and State (INTCTRL), offset 0xD04 Vector Table Offset (VTABLE), offset 0xD08	95 97 98 99 100 101 102 103 104 104 104 104 104 104 104 104 104 104
Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 6: Register 7: Register 8: Register 9: Register 10: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Register 15: Register 16: Register 17: Register 18: Register 19:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018 Interrupt 0-29 Set Enable (EN0), offset 0x100 Interrupt 0-29 Clear Enable (DIS0), offset 0x180 Interrupt 0-29 Set Pending (PEND0), offset 0x200 Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280 Interrupt 0-29 Active Bit (ACTIVE0), offset 0x300 Interrupt 0-3 Priority (PRI0), offset 0x400 Interrupt 4-7 Priority (PRI1), offset 0x404 Interrupt 8-11 Priority (PRI2), offset 0x408 Interrupt 12-15 Priority (PRI2), offset 0x408 Interrupt 16-19 Priority (PRI3), offset 0x410 Interrupt 20-23 Priority (PRI5), offset 0x414 Interrupt 24-27 Priority (PRI6), offset 0x418 Interrupt 28-29 Priority (PRI7), offset 0x41C Software Trigger Interrupt (SWTRIG), offset 0xF00 CPU ID Base (CPUID), offset 0xD00 Interrupt Control and State (INTCTRL), offset 0xD04	95 97 98 99 100 101 102 103 104 104 104 104 104 104 104 104 104 104

Register 23:	Configuration and Control (CFGCTRL), offset 0xD14	116
Register 24:	System Handler Priority 1 (SYSPRI1), offset 0xD18	
Register 25:	System Handler Priority 2 (SYSPRI2), offset 0xD1C	
Register 26:	System Handler Priority 3 (SYSPRI3), offset 0xD20	
Register 27:	System Handler Control and State (SYSHNDCTRL), offset 0xD24	
Register 28:	Configurable Fault Status (FAULTSTAT), offset 0xD28	
Register 29:	Hard Fault Status (HFAULTSTAT), offset 0xD2C	
Register 30:	Memory Management Fault Address (MMADDR), offset 0xD34	
Register 31:	Bus Fault Address (FAULTADDR), offset 0xD38	
Register 32:	MPU Type (MPUTYPE), offset 0xD90	
Register 33:	MPU Control (MPUCTRL), offset 0xD94	
Register 34:	MPU Region Number (MPUNUMBER), offset 0xD98	
Register 35:	MPU Region Base Address (MPUBASE), offset 0xD9C	138
Register 36:	MPU Region Base Address Alias 1 (MPUBASE1), offset 0xDA4	138
Register 37:	MPU Region Base Address Alias 2 (MPUBASE2), offset 0xDAC	
Register 38:	MPU Region Base Address Alias 3 (MPUBASE3), offset 0xDB4	
Register 39:	MPU Region Attribute and Size (MPUATTR), offset 0xDA0	
Register 40:	MPU Region Attribute and Size Alias 1 (MPUATTR1), offset 0xDA8	
Register 41:	MPU Region Attribute and Size Alias 2 (MPUATTR2), offset 0xDB0	
Register 42:	MPU Region Attribute and Size Alias 3 (MPUATTR3), offset 0xDB8	
•	itrol	
Register 1:	Device Identification 0 (DID0), offset 0x000	
Register 2:	Power-On and Brown-Out Reset Control (PBORCTL), offset 0x030	
Register 3:	LDO Power Control (LDOPCTL), offset 0x034	
Register 4:	Raw Interrupt Status (RIS), offset 0x050	
Register 5:	Interrupt Mask Control (IMC), offset 0x054	
Register 6:	Masked Interrupt Status and Clear (MISC), offset 0x058	
Register 7:	Reset Cause (RESC), offset 0x05C	
Register 8:	Run-Mode Clock Configuration (RCC), offset 0x060	
Register 9:	XTAL to PLL Translation (PLLCFG), offset 0x064	
Register 10:	Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144	
Register 11:	Clock Verification Clear (CLKVCLR), offset 0x150	
Register 12:	Allow Unregulated LDO to Reset the Part (LDOARST), offset 0x160	
Register 13:	Device Identification 1 (DID1), offset 0x004	
Register 14:	Device Capabilities 0 (DC0), offset 0x008	
Register 15:	Device Capabilities 1 (DC1), offset 0x010	
Register 16:	Device Capabilities 2 (DC2), offset 0x014	
Register 17:	Device Capabilities 3 (DC3), offset 0x018	
Register 18:	Device Capabilities 4 (DC4), offset 0x01C	
Register 19:	Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100	
Register 20:	Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x110	
Register 21:	Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x120	
Register 22:	Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104	
Register 23:	Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114	
Register 24:	Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124	
Register 25:	Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108	
Register 26:	Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118	
Register 27:	Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128	

Register 28:	Software Reset Control 0 (SRCR0), offset 0x040	208
Register 29:	Software Reset Control 1 (SRCR1), offset 0x044	209
Register 30:	Software Reset Control 2 (SRCR2), offset 0x048	210
Internal Mer	nory	
Register 1:	Flash Memory Address (FMA), offset 0x000	218
Register 2:	Flash Memory Data (FMD), offset 0x004	219
Register 3:	Flash Memory Control (FMC), offset 0x008	
Register 4:	Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C	222
Register 5:	Flash Controller Interrupt Mask (FCIM), offset 0x010	223
Register 6:	Flash Controller Masked Interrupt Status and Clear (FCMISC), offset 0x014	224
Register 7:	USec Reload (USECRL), offset 0x140	
Register 8:	Flash Memory Protection Read Enable (FMPRE), offset 0x130	227
Register 9:	Flash Memory Protection Program Enable (FMPPE), offset 0x134	228
General-Pur	pose Input/Outputs (GPIOs)	229
Register 1:	GPIO Data (GPIODATA), offset 0x000	239
Register 2:	GPIO Direction (GPIODIR), offset 0x400	
Register 3:	GPIO Interrupt Sense (GPIOIS), offset 0x404	241
Register 4:	GPIO Interrupt Both Edges (GPIOIBE), offset 0x408	242
Register 5:	GPIO Interrupt Event (GPIOIEV), offset 0x40C	243
Register 6:	GPIO Interrupt Mask (GPIOIM), offset 0x410	244
Register 7:	GPIO Raw Interrupt Status (GPIORIS), offset 0x414	245
Register 8:	GPIO Masked Interrupt Status (GPIOMIS), offset 0x418	246
Register 9:	GPIO Interrupt Clear (GPIOICR), offset 0x41C	247
Register 10:	GPIO Alternate Function Select (GPIOAFSEL), offset 0x420	
Register 11:	GPIO 2-mA Drive Select (GPIODR2R), offset 0x500	250
Register 12:	GPIO 4-mA Drive Select (GPIODR4R), offset 0x504	251
Register 13:	GPIO 8-mA Drive Select (GPIODR8R), offset 0x508	252
Register 14:	GPIO Open Drain Select (GPIOODR), offset 0x50C	253
Register 15:	GPIO Pull-Up Select (GPIOPUR), offset 0x510	254
Register 16:	GPIO Pull-Down Select (GPIOPDR), offset 0x514	255
Register 17:	GPIO Slew Rate Control Select (GPIOSLR), offset 0x518	256
Register 18:	GPIO Digital Enable (GPIODEN), offset 0x51C	257
Register 19:	GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0	258
Register 20:	GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4	259
Register 21:	GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8	
Register 22:	GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC	261
Register 23:	GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0	262
Register 24:	GPIO Peripheral Identification 1 (GPIOPeriphID1), offset 0xFE4	263
Register 25:	GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8	
Register 26:	GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC	265
Register 27:	GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0	
Register 28:	GPIO PrimeCell Identification 1 (GPIOPCellID1), offset 0xFF4	
Register 29:	GPIO PrimeCell Identification 2 (GPIOPCellID2), offset 0xFF8	
Register 30:	GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC	269
	pose Timers	
Register 1:	GPTM Configuration (GPTMCFG), offset 0x000	
Register 2:	GPTM TimerA Mode (GPTMTAMR), offset 0x004	
Register 3:	GPTM TimerB Mode (GPTMTBMR), offset 0x008	285

Register 4:	GPTM Control (GPTMCTL), offset 0x00C	
Register 5:	GPTM Interrupt Mask (GPTMIMR), offset 0x018	
Register 6:	GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C	
Register 7:	GPTM Masked Interrupt Status (GPTMMIS), offset 0x020	
Register 8:	GPTM Interrupt Clear (GPTMICR), offset 0x024	
Register 9:	GPTM TimerA Interval Load (GPTMTAILR), offset 0x028	
Register 10:	GPTM TimerB Interval Load (GPTMTBILR), offset 0x02C	
Register 11:	GPTM TimerA Match (GPTMTAMATCHR), offset 0x030	
Register 12:	GPTM TimerB Match (GPTMTBMATCHR), offset 0x034	. 299
Register 13:	GPTM TimerA Prescale (GPTMTAPR), offset 0x038	. 300
Register 14:	GPTM TimerB Prescale (GPTMTBPR), offset 0x03C	. 301
Register 15:	GPTM TimerA Prescale Match (GPTMTAPMR), offset 0x040	. 302
Register 16:	GPTM TimerB Prescale Match (GPTMTBPMR), offset 0x044	. 303
Register 17:	GPTM TimerA (GPTMTAR), offset 0x048	. 304
Register 18:	GPTM TimerB (GPTMTBR), offset 0x04C	305
Watchdog T	ïmer	306
Register 1:	Watchdog Load (WDTLOAD), offset 0x000	
Register 2:	Watchdog Value (WDTVALUE), offset 0x004	
Register 3:	Watchdog Control (WDTCTL), offset 0x008	
Register 4:	Watchdog Interrupt Clear (WDTICR), offset 0x00C	
Register 5:	Watchdog Raw Interrupt Status (WDTRIS), offset 0x010	
Register 6:	Watchdog Masked Interrupt Status (WDTMIS), offset 0x014	
Register 7:	Watchdog Test (WDTTEST), offset 0x418	
Register 8:	Watchdog Lock (WDTLOCK), offset 0xC00	
Register 9:	Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0	
Register 10:	Watchdog Peripheral Identification 5 (WDTPeriphID5), offset 0xFD4	
Register 11:	Watchdog Peripheral Identification 6 (WDTPeriphID6), offset 0xFD8	
Register 12:	Watchdog Peripheral Identification 7 (WDTPeriphID7), offset 0xFDC	
Register 12:	Watchdog Peripheral Identification 0 (WDTPeriphID0), offset 0xFE0	
Register 14:	Watchdog Peripheral Identification 1 (WDTPeriphID0), offset 0xFE4	
Register 15:	Watchdog Peripheral Identification 2 (WDTPeriphID2), offset 0xFE8	
-	Watchdog Peripheral Identification 3 (WDTPeriphID2), offset 0xFEC	
Register 16:	Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFE0	
Register 17:	o	
Register 18:	Watchdog PrimeCell Identification 1 (WDTPCellID1), offset 0xFF4	
Register 19:	Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8	
Register 20:	Watchdog PrimeCell Identification 3 (WDTPCellID3), offset 0xFFC	
-	igital Converter (ADC)	
Register 1:	ADC Active Sample Sequencer (ADCACTSS), offset 0x000	
Register 2:	ADC Raw Interrupt Status (ADCRIS), offset 0x004	. 341
Register 3:	ADC Interrupt Mask (ADCIM), offset 0x008	
Register 4:	ADC Interrupt Status and Clear (ADCISC), offset 0x00C	. 343
Register 5:	ADC Overflow Status (ADCOSTAT), offset 0x010	. 344
Register 6:	ADC Event Multiplexer Select (ADCEMUX), offset 0x014	. 345
Register 7:	ADC Underflow Status (ADCUSTAT), offset 0x018	. 349
Register 8:	ADC Sample Sequencer Priority (ADCSSPRI), offset 0x020	. 350
Register 9:	ADC Processor Sample Sequence Initiate (ADCPSSI), offset 0x028	. 352
Register 10:	ADC Sample Averaging Control (ADCSAC), offset 0x030	
Register 11:	ADC Sample Sequence Input Multiplexer Select 0 (ADCSSMUX0), offset 0x040	. 354

Register 12:	ADC Sample Sequence Control 0 (ADCSSCTL0), offset 0x044	356
Register 13:	ADC Sample Sequence Result FIFO 0 (ADCSSFIFO0), offset 0x048	359
Register 14:	ADC Sample Sequence Result FIFO 1 (ADCSSFIFO1), offset 0x068	359
Register 15:	ADC Sample Sequence Result FIFO 2 (ADCSSFIFO2), offset 0x088	359
Register 16:	ADC Sample Sequence Result FIFO 3 (ADCSSFIFO3), offset 0x0A8	
Register 17:	ADC Sample Sequence FIFO 0 Status (ADCSSFSTAT0), offset 0x04C	
Register 18:	ADC Sample Sequence FIFO 1 Status (ADCSSFSTAT1), offset 0x06C	
Register 19:	ADC Sample Sequence FIFO 2 Status (ADCSSFSTAT2), offset 0x08C	
Register 20:	ADC Sample Sequence FIFO 3 Status (ADCSSFSTAT3), offset 0x0AC	360
Register 21:	ADC Sample Sequence Input Multiplexer Select 1 (ADCSSMUX1), offset 0x060	361
Register 22:	ADC Sample Sequence Input Multiplexer Select 2 (ADCSSMUX2), offset 0x080	361
Register 23:	ADC Sample Sequence Control 1 (ADCSSCTL1), offset 0x064	362
Register 24:	ADC Sample Sequence Control 2 (ADCSSCTL2), offset 0x084	362
Register 25:	ADC Sample Sequence Input Multiplexer Select 3 (ADCSSMUX3), offset 0x0A0	364
Register 26:	ADC Sample Sequence Control 3 (ADCSSCTL3), offset 0x0A4	365
Register 27:	ADC Test Mode Loopback (ADCTMLB), offset 0x100	366
Universal A	synchronous Receivers/Transmitters (UARTs)	367
Register 1:	UART Data (UARTDR), offset 0x000	
Register 2:	UART Receive Status/Error Clear (UARTRSR/UARTECR), offset 0x004	
Register 3:	UART Flag (UARTFR), offset 0x018	
Register 4:	UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024	
Register 5:	UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028	
Register 6:	UART Line Control (UARTLCRH), offset 0x02C	
Register 7:	UART Control (UARTCTL), offset 0x030	
Register 8:	UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034	
Register 9:	UART Interrupt Mask (UARTIM), offset 0x038	
Register 10:	UART Raw Interrupt Status (UARTRIS), offset 0x03C	
Register 11:	UART Masked Interrupt Status (UARTMIS), offset 0x040	
Register 12:	UART Interrupt Clear (UARTICR), offset 0x044	
Register 13:	UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0	395
Register 14:	UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4	396
Register 15:	UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8	397
Register 16:	UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC	398
Register 17:	UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0	399
Register 18:	UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4	400
Register 19:	UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8	401
Register 20:	UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC	402
Register 21:	UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0	403
Register 22:	UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4	404
Register 23:	UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8	405
Register 24:	UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC	406
Synchronou	ıs Serial Interface (SSI)	407
Register 1:	SSI Control 0 (SSICR0), offset 0x000	
Register 2:	SSI Control 1 (SSICR1), offset 0x004	
Register 3:	SSI Data (SSIDR), offset 0x008	
Register 4:	SSI Status (SSISR), offset 0x00C	
Register 5:	SSI Clock Prescale (SSICPSR), offset 0x010	
Register 6:	SSI Interrupt Mask (SSIIM), offset 0x014	

Register 7:	SSI Raw Interrupt Status (SSIRIS), offset 0x018	430
Register 8:	SSI Masked Interrupt Status (SSIMIS), offset 0x01C	
Register 9:	SSI Interrupt Clear (SSIICR), offset 0x020	
Register 10:	SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0	433
Register 11:	SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4	
Register 12:	SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8	
Register 13:	SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC	
Register 14:	SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0	
Register 15:	SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4	
Register 16:	SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8	
Register 17:	SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC	
Register 18:	SSI PrimeCell Identification 0 (SSIPCelIID0), offset 0xFF0	
Register 19:	SSI PrimeCell Identification 1 (SSIPCelIID1), offset 0xFF4	
Register 20:	SSI PrimeCell Identification 2 (SSIPCelIID2), offset 0xFF8	
Register 21:	SSI PrimeCell Identification 3 (SSIPCelIID3), offset 0xFFC	444
Analog Com	nparator	. 445
Register 1:	Analog Comparator Masked Interrupt Status (ACMIS), offset 0x000	
Register 2:	Analog Comparator Raw Interrupt Status (ACRIS), offset 0x004	451
Register 3:	Analog Comparator Interrupt Enable (ACINTEN), offset 0x008	452
Register 4:	Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x010	453
Register 5:	Analog Comparator Status 0 (ACSTAT0), offset 0x020	454
Register 6:	Analog Comparator Control 0 (ACCTL0), offset 0x024	455
Pulse Width	Modulator (PWM)	. 457
Register 1:	PWM Master Control (PWMCTL), offset 0x000	467
Register 1: Register 2:	PWM Master Control (PWMCTL), offset 0x000 PWM Time Base Sync (PWMSYNC), offset 0x004	
-	PWM Time Base Sync (PWMSYNC), offset 0x004	468
Register 2: Register 3:		468 469
Register 2: Register 3: Register 4:	PWM Time Base Sync (PWMSYNC), offset 0x004 PWM Output Enable (PWMENABLE), offset 0x008 PWM Output Inversion (PWMINVERT), offset 0x00C	468 469 470
Register 2: Register 3: Register 4: Register 5:	PWM Time Base Sync (PWMSYNC), offset 0x004 PWM Output Enable (PWMENABLE), offset 0x008 PWM Output Inversion (PWMINVERT), offset 0x00C PWM Output Fault (PWMFAULT), offset 0x010	468 469 470 471
Register 2: Register 3: Register 4:	PWM Time Base Sync (PWMSYNC), offset 0x004 PWM Output Enable (PWMENABLE), offset 0x008 PWM Output Inversion (PWMINVERT), offset 0x00C	468 469 470 471 472
Register 2: Register 3: Register 4: Register 5: Register 6: Register 7:	PWM Time Base Sync (PWMSYNC), offset 0x004 PWM Output Enable (PWMENABLE), offset 0x008 PWM Output Inversion (PWMINVERT), offset 0x00C PWM Output Fault (PWMFAULT), offset 0x010 PWM Interrupt Enable (PWMINTEN), offset 0x014 PWM Raw Interrupt Status (PWMRIS), offset 0x018	468 469 470 471 472 473
Register 2: Register 3: Register 4: Register 5: Register 6:	PWM Time Base Sync (PWMSYNC), offset 0x004 PWM Output Enable (PWMENABLE), offset 0x008 PWM Output Inversion (PWMINVERT), offset 0x00C PWM Output Fault (PWMFAULT), offset 0x010 PWM Interrupt Enable (PWMINTEN), offset 0x014	468 469 470 471 472 473 474
Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8:	PWM Time Base Sync (PWMSYNC), offset 0x004 PWM Output Enable (PWMENABLE), offset 0x008 PWM Output Inversion (PWMINVERT), offset 0x00C PWM Output Fault (PWMFAULT), offset 0x010 PWM Interrupt Enable (PWMINTEN), offset 0x014 PWM Raw Interrupt Status (PWMRIS), offset 0x018 PWM Interrupt Status and Clear (PWMISC), offset 0x01C	468 469 470 471 472 473 474 475
Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8: Register 9:	PWM Time Base Sync (PWMSYNC), offset 0x004 PWM Output Enable (PWMENABLE), offset 0x008 PWM Output Inversion (PWMINVERT), offset 0x00C PWM Output Fault (PWMFAULT), offset 0x010 PWM Interrupt Enable (PWMINTEN), offset 0x014 PWM Raw Interrupt Status (PWMRIS), offset 0x018 PWM Interrupt Status and Clear (PWMISC), offset 0x01C PWM Status (PWMSTATUS), offset 0x020 PWM0 Control (PWM0CTL), offset 0x040	468 469 470 471 472 473 474 475 476
Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10:	PWM Time Base Sync (PWMSYNC), offset 0x004 PWM Output Enable (PWMENABLE), offset 0x008 PWM Output Inversion (PWMINVERT), offset 0x00C PWM Output Fault (PWMFAULT), offset 0x010 PWM Interrupt Enable (PWMINTEN), offset 0x014 PWM Raw Interrupt Status (PWMRIS), offset 0x018 PWM Interrupt Status and Clear (PWMISC), offset 0x01C PWM Status (PWMSTATUS), offset 0x020 PWM1 Control (PWM1CTL), offset 0x080	468 469 470 471 472 473 474 475 476 476
Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11:	PWM Time Base Sync (PWMSYNC), offset 0x004 PWM Output Enable (PWMENABLE), offset 0x008 PWM Output Inversion (PWMINVERT), offset 0x00C PWM Output Fault (PWMFAULT), offset 0x010 PWM Interrupt Enable (PWMINTEN), offset 0x014 PWM Raw Interrupt Status (PWMRIS), offset 0x018 PWM Interrupt Status and Clear (PWMISC), offset 0x01C PWM Status (PWMSTATUS), offset 0x020 PWM0 Control (PWM0CTL), offset 0x040	468 469 470 471 472 473 474 475 476 476 476
Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8: Register 8: Register 9: Register 10: Register 11: Register 12:	PWM Time Base Sync (PWMSYNC), offset 0x004PWM Output Enable (PWMENABLE), offset 0x008PWM Output Inversion (PWMINVERT), offset 0x00CPWM Output Fault (PWMFAULT), offset 0x010PWM Interrupt Enable (PWMINTEN), offset 0x014PWM Raw Interrupt Status (PWMRIS), offset 0x018PWM Interrupt Status and Clear (PWMISC), offset 0x01CPWM Status (PWMSTATUS), offset 0x020PWM0 Control (PWM0CTL), offset 0x040PWM1 Control (PWM1CTL), offset 0x080PWM2 Control (PWM2CTL), offset 0x0C0	468 469 470 471 472 473 474 475 476 476 478
Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13:	PWM Time Base Sync (PWMSYNC), offset 0x004PWM Output Enable (PWMENABLE), offset 0x008PWM Output Inversion (PWMINVERT), offset 0x00CPWM Output Fault (PWMFAULT), offset 0x010PWM Interrupt Enable (PWMINTEN), offset 0x014PWM Raw Interrupt Status (PWMRIS), offset 0x018PWM Interrupt Status and Clear (PWMISC), offset 0x01CPWM Status (PWMSTATUS), offset 0x020PWM0 Control (PWM0CTL), offset 0x040PWM1 Control (PWM1CTL), offset 0x080PWM2 Control (PWM2CTL), offset 0x002PWM0 Interrupt and Trigger Enable (PWM0INTEN), offset 0x044PWM1 Interrupt and Trigger Enable (PWM1INTEN), offset 0x084	468 469 470 471 472 473 474 475 476 476 478 478 478
Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14:	PWM Time Base Sync (PWMSYNC), offset 0x004PWM Output Enable (PWMENABLE), offset 0x008PWM Output Inversion (PWMINVERT), offset 0x00CPWM Output Fault (PWMFAULT), offset 0x010PWM Interrupt Enable (PWMINTEN), offset 0x014PWM Raw Interrupt Status (PWMRIS), offset 0x018PWM Interrupt Status and Clear (PWMISC), offset 0x01CPWM Status (PWMSTATUS), offset 0x020PWM0 Control (PWM0CTL), offset 0x040PWM1 Control (PWM1CTL), offset 0x080PWM2 Control (PWM2CTL), offset 0x0020PWM0 Interrupt and Trigger Enable (PWM0INTEN), offset 0x044PWM0 Interrupt and Trigger Enable (PWM1INTEN), offset 0x084PWM1 Interrupt and Trigger Enable (PWM2INTEN), offset 0x024	468 469 470 471 472 473 474 475 476 476 476 478 478 478
Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15:	PWM Time Base Sync (PWMSYNC), offset 0x004PWM Output Enable (PWMENABLE), offset 0x008PWM Output Inversion (PWMINVERT), offset 0x00CPWM Output Fault (PWMFAULT), offset 0x010PWM Interrupt Enable (PWMINTEN), offset 0x014PWM Raw Interrupt Status (PWMRIS), offset 0x018PWM Interrupt Status and Clear (PWMISC), offset 0x017PWM Status (PWMSTATUS), offset 0x020PWM0 Control (PWM0CTL), offset 0x040PWM1 Control (PWM1CTL), offset 0x080PWM2 Control (PWM2CTL), offset 0x020PWM0 Interrupt and Trigger Enable (PWM0INTEN), offset 0x044PWM1 Interrupt and Trigger Enable (PWM1INTEN), offset 0x084PWM2 Interrupt and Trigger Enable (PWM2INTEN), offset 0x024PWM2 Interrupt Status (PWM0RIS), offset 0x048	468 469 470 471 472 473 474 475 476 476 476 478 478 478 481
Register 2: Register 3: Register 4: Register 5: Register 5: Register 7: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Register 16:	PWM Time Base Sync (PWMSYNC), offset 0x004PWM Output Enable (PWMENABLE), offset 0x008PWM Output Inversion (PWMINVERT), offset 0x00CPWM Output Fault (PWMFAULT), offset 0x010PWM Interrupt Enable (PWMINTEN), offset 0x014PWM Raw Interrupt Status (PWMRIS), offset 0x018PWM Interrupt Status and Clear (PWMISC), offset 0x01CPWM Status (PWMSTATUS), offset 0x020PWM0 Control (PWM0CTL), offset 0x040PWM1 Control (PWM1CTL), offset 0x080PWM2 Control (PWM2CTL), offset 0x0020PWM0 Interrupt and Trigger Enable (PWM0INTEN), offset 0x044PWM0 Interrupt and Trigger Enable (PWM1INTEN), offset 0x084PWM1 Interrupt and Trigger Enable (PWM2INTEN), offset 0x024	468 469 470 471 472 473 474 475 476 476 476 478 478 481 481
Register 2: Register 3: Register 3: Register 5: Register 6: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Register 16: Register 17:	PWM Time Base Sync (PWMSYNC), offset 0x004PWM Output Enable (PWMENABLE), offset 0x008PWM Output Inversion (PWMINVERT), offset 0x00CPWM Output Fault (PWMFAULT), offset 0x010PWM Interrupt Enable (PWMINTEN), offset 0x014PWM Raw Interrupt Status (PWMRIS), offset 0x018PWM Interrupt Status and Clear (PWMISC), offset 0x01CPWM Status (PWMSTATUS), offset 0x020PWM0 Control (PWM0CTL), offset 0x040PWM1 Control (PWM1CTL), offset 0x020PWM2 Control (PWM2CTL), offset 0x020PWM0 Interrupt and Trigger Enable (PWM0INTEN), offset 0x044PWM1 Interrupt and Trigger Enable (PWM1INTEN), offset 0x044PWM2 Interrupt and Trigger Enable (PWM2INTEN), offset 0x024PWM0 Raw Interrupt Status (PWM0RIS), offset 0x048PWM1 Raw Interrupt Status (PWM0RIS), offset 0x048PWM1 Raw Interrupt Status (PWM2RIS), offset 0x048PWM1 Raw Interrupt Status (PWM2RIS), offset 0x088PWM2 Raw Interrupt Status (PWM2RIS), offset 0x028	468 469 470 471 472 473 474 475 476 476 476 478 478 478 481 481 481
Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Register 16: Register 17: Register 18:	PWM Time Base Sync (PWMSYNC), offset 0x004 PWM Output Enable (PWMENABLE), offset 0x008 PWM Output Inversion (PWMINVERT), offset 0x00C PWM Output Fault (PWMFAULT), offset 0x010 PWM Interrupt Enable (PWMINTEN), offset 0x014 PWM Raw Interrupt Status (PWMRIS), offset 0x018 PWM Interrupt Status and Clear (PWMISC), offset 0x01C PWM Status (PWMSTATUS), offset 0x020 PWM0 Control (PWM0CTL), offset 0x040 PWM1 Control (PWM1CTL), offset 0x080 PWM2 Control (PWM2CTL), offset 0x00C PWM0 Interrupt and Trigger Enable (PWM0INTEN), offset 0x044 PWM1 Interrupt and Trigger Enable (PWM0INTEN), offset 0x084 PWM2 Interrupt and Trigger Enable (PWM2INTEN), offset 0x024 PWM0 Raw Interrupt Status (PWM0RIS), offset 0x048 PWM1 Raw Interrupt Status (PWM0RIS), offset 0x048 PWM1 Raw Interrupt Status (PWM0RIS), offset 0x048 PWM0 Raw Interrupt Status (PWM0RIS), offset 0x048 PWM1 Raw Interrupt Status (PWM0RIS), offset 0x048 PWM1 Raw Interrupt Status (PWM2RIS), offset 0x028 PWM1 Raw Interrupt Status (PWM2RIS), offset 0x0	468 469 470 471 472 473 474 475 476 476 476 476 478 478 481 481 482
Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Register 15: Register 16: Register 17: Register 18: Register 19:	PWM Time Base Sync (PWMSYNC), offset 0x004PWM Output Enable (PWMENABLE), offset 0x008PWM Output Inversion (PWMINVERT), offset 0x00CPWM Output Fault (PWMFAULT), offset 0x010PWM Interrupt Enable (PWMINTEN), offset 0x014PWM Raw Interrupt Status (PWMRIS), offset 0x018PWM Interrupt Status and Clear (PWMISC), offset 0x01CPWM Status (PWMSTATUS), offset 0x020PWM0 Control (PWM0CTL), offset 0x040PWM1 Control (PWM1CTL), offset 0x020PWM2 Control (PWM2CTL), offset 0x020PWM0 Interrupt and Trigger Enable (PWM0INTEN), offset 0x044PWM1 Interrupt and Trigger Enable (PWM1INTEN), offset 0x044PWM2 Interrupt and Trigger Enable (PWM2INTEN), offset 0x024PWM0 Raw Interrupt Status (PWM0RIS), offset 0x048PWM1 Raw Interrupt Status (PWM0RIS), offset 0x048PWM1 Raw Interrupt Status (PWM2RIS), offset 0x048PWM1 Raw Interrupt Status (PWM2RIS), offset 0x088PWM2 Raw Interrupt Status (PWM2RIS), offset 0x028	468 469 470 471 472 473 474 475 476 476 476 476 478 478 481 481 481 482 482 482
Register 2: Register 3: Register 4: Register 5: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 13: Register 14: Register 15: Register 15: Register 16: Register 17: Register 18: Register 19: Register 19:	PWM Time Base Sync (PWMSYNC), offset 0x004PWM Output Enable (PWMENABLE), offset 0x008PWM Output Inversion (PWMINVERT), offset 0x00CPWM Output Fault (PWMFAULT), offset 0x010PWM Interrupt Enable (PWMINTEN), offset 0x014PWM Raw Interrupt Status (PWMRIS), offset 0x018PWM Interrupt Status and Clear (PWMISC), offset 0x01CPWM Status (PWMSTATUS), offset 0x020PWM0 Control (PWM0CTL), offset 0x040PWM1 Control (PWM1CTL), offset 0x040PWM2 Control (PWM2CTL), offset 0x020PWM0 Interrupt and Trigger Enable (PWM0INTEN), offset 0x044PWM1 Interrupt and Trigger Enable (PWM0INTEN), offset 0x044PWM1 Interrupt and Trigger Enable (PWM2INTEN), offset 0x024PWM0 Raw Interrupt Status (PWM0RIS), offset 0x048PWM1 Raw Interrupt Status (PWM0RIS), offset 0x048PWM1 Raw Interrupt Status (PWM2RIS), offset 0x028PWM1 Raw Interrupt Status (PWM2RIS), offset 0x028PWM2 Raw Interrupt Status (PWM2RIS), offset 0x028PWM1 Interrupt Status and Clear (PWM0ISC), offset 0x04CPWM1 Interrupt Status and Clear (PWM1SC), offset 0x04CPWM1 Interrupt Status and Clear (PWM1SC), offset 0x04C	468 469 470 471 472 473 474 475 476 476 476 476 478 478 481 481 481 482 482 482 482
Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 10: Register 11: Register 12: Register 13: Register 14: Register 14: Register 15: Register 15: Register 16: Register 17: Register 18: Register 19: Register 19: Register 20: Register 21:	PWM Time Base Sync (PWMSYNC), offset 0x004PWM Output Enable (PWMENABLE), offset 0x008PWM Output Inversion (PWMINVERT), offset 0x00CPWM Output Fault (PWMFAULT), offset 0x010PWM Interrupt Enable (PWMINTEN), offset 0x014PWM Raw Interrupt Status (PWMRIS), offset 0x018PWM Interrupt Status and Clear (PWMISC), offset 0x01CPWM Status (PWMSTATUS), offset 0x020PWM0 Control (PWM0CTL), offset 0x040PWM1 Control (PWM0CTL), offset 0x040PWM2 Control (PWM2CTL), offset 0x020PWM0 Interrupt and Trigger Enable (PWM0INTEN), offset 0x044PWM1 Interrupt and Trigger Enable (PWM0INTEN), offset 0x044PWM2 Control (PWM2CTL), offset 0x020PWM0 Raw Interrupt and Trigger Enable (PWM0INTEN), offset 0x044PWM1 Interrupt and Trigger Enable (PWM0INTEN), offset 0x044PWM1 Interrupt and Trigger Enable (PWM2INTEN), offset 0x044PWM2 Interrupt and Trigger Enable (PWM2INTEN), offset 0x024PWM1 Raw Interrupt Status (PWM0RIS), offset 0x048PWM1 Raw Interrupt Status (PWM2RIS), offset 0x028PWM2 Raw Interrupt Status and Clear (PWM0ISC), offset 0x04CPWM1 Interrupt Status and Clear (PWM0ISC), offset 0x04CPWM1 Interrupt Status and Clear (PWM1ISC), offset 0x04CPWM2 Interrupt Status and Clear (PWM2ISC), offset 0x04C	468 469 470 471 472 473 474 475 476 476 476 476 476 478 481 481 481 482 482 482 483
Register 2: Register 3: Register 4: Register 5: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 10: Register 12: Register 12: Register 13: Register 14: Register 15: Register 15: Register 16: Register 17: Register 17: Register 18: Register 19: Register 19: Register 20: Register 21: Register 21:	PWM Time Base Sync (PWMSYNC), offset 0x004 PWM Output Enable (PWMENABLE), offset 0x008 PWM Output Inversion (PWMINVERT), offset 0x00C PWM Output Fault (PWMFAULT), offset 0x010 PWM Interrupt Enable (PWMINTEN), offset 0x014 PWM Raw Interrupt Status (PWMRIS), offset 0x018 PWM Interrupt Status and Clear (PWMISC), offset 0x01C PWM Status (PWMSTATUS), offset 0x020 PWM0 Control (PWM0CTL), offset 0x040 PWM1 Control (PWM1CTL), offset 0x040 PWM2 Control (PWM2CTL), offset 0x020 PWM0 Interrupt and Trigger Enable (PWM0INTEN), offset 0x044 PWM1 Interrupt and Trigger Enable (PWM0INTEN), offset 0x044 PWM2 Interrupt and Trigger Enable (PWM2INTEN), offset 0x024 PWM0 Raw Interrupt Status (PWM0RIS), offset 0x048 PWM1 Raw Interrupt Status (PWM0RIS), offset 0x048 PWM1 Raw Interrupt Status (PWM2RIS), offset 0x028 PWM2 Raw Interrupt Status and Clear (PWM0ISC), offset 0x04C PWM1 Interrupt Status and Clear (PWM1ISC), offset 0x04C PWM2 Interrupt Status and Clear (PWM2ISC), offset 0x02C P	468 469 470 471 472 473 474 475 476 476 476 476 476 478 481 481 481 482 482 482 483 483

Register 26:	PWM1 Counter (PWM1COUNT), offset 0x094	484
Register 27:	PWM2 Counter (PWM2COUNT), offset 0x0D4	484
Register 28:	PWM0 Compare A (PWM0CMPA), offset 0x058	485
Register 29:	PWM1 Compare A (PWM1CMPA), offset 0x098	485
Register 30:	PWM2 Compare A (PWM2CMPA), offset 0x0D8	485
Register 31:	PWM0 Compare B (PWM0CMPB), offset 0x05C	486
Register 32:	PWM1 Compare B (PWM1CMPB), offset 0x09C	486
Register 33:	PWM2 Compare B (PWM2CMPB), offset 0x0DC	
Register 34:	PWM0 Generator A Control (PWM0GENA), offset 0x060	487
Register 35:	PWM1 Generator A Control (PWM1GENA), offset 0x0A0	487
Register 36:	PWM2 Generator A Control (PWM2GENA), offset 0x0E0	
Register 37:	PWM0 Generator B Control (PWM0GENB), offset 0x064	490
Register 38:	PWM1 Generator B Control (PWM1GENB), offset 0x0A4	
Register 39:	PWM2 Generator B Control (PWM2GENB), offset 0x0E4	490
Register 40:	PWM0 Dead-Band Control (PWM0DBCTL), offset 0x068	493
Register 41:	PWM1 Dead-Band Control (PWM1DBCTL), offset 0x0A8	493
Register 42:	PWM2 Dead-Band Control (PWM2DBCTL), offset 0x0E8	
Register 43:	PWM0 Dead-Band Rising-Edge Delay (PWM0DBRISE), offset 0x06C	494
Register 44:	PWM1 Dead-Band Rising-Edge Delay (PWM1DBRISE), offset 0x0AC	
Register 45:	PWM2 Dead-Band Rising-Edge Delay (PWM2DBRISE), offset 0x0EC	494
Register 46:	PWM0 Dead-Band Falling-Edge-Delay (PWM0DBFALL), offset 0x070	495
Register 47:	PWM1 Dead-Band Falling-Edge-Delay (PWM1DBFALL), offset 0x0B0	495
Register 48:	PWM2 Dead-Band Falling-Edge-Delay (PWM2DBFALL), offset 0x0F0	495

Revision History

The revision history table notes changes made between the indicated revisions of the LM3S617 data sheet.

Table 1. Revision History

Date	Revision	Description
July 2014	15852.2743	 In Internal Memory chapter, added sections on Execute-Only Protection, Read-Only Protection, and Permanently Disabling Debug. In UART chapter: Clarified that the transmit interrupt is based on a transition through level. Corrected reset for UART Raw Interrupt Status (UARTRIS) register. In Ordering and Contact Information appendix, moved orderable part numbers table to addendum. Additional minor data sheet clarifications and corrections.
June 2012	12739.2515	 In Reset Characteristics table, changed values and units for Internal reset timeout after hardware reset (R7). Removed 48QFN package. Minor data sheet clarifications and corrections.
November 2011	11107	 Added module-specific pin tables to each chapter in the new Signal Description sections.
		 In Timer chapter, clarified that in 16-Bit Input Edge Time Mode, the timer is capable of capturing three types of events: rising edge, falling edge, or both.
		 In UART chapter, clarified interrupt behavior.
		In SSI chapter, corrected SSICIk in the figure "Synchronous Serial Frame Format (Single Transfer)".
		In Signal Tables chapter:
		 Corrected pin numbers in table "Connections for Unused Signals" (other pin tables were correct).
		 Corrected buffer type for PWMn signals in pin tables.
		 In Electrical Characteristics chapter:
		 Added parameter "Input voltage for a GPIO configured as an analog input" to the "Maximum Ratings" table.
		 Corrected Nom values for parameters "TCK clock Low time" and "TCK clock High time" in "JTAG Characteristics" table.
		 Additional minor data sheet clarifications and corrections.

Table 1. Revision History (continued)

Date	Revision	Description
January 2011	9102	 In Application Interrupt and Reset Control (APINT) register, changed bit name from SYSRESETREQ to SYSRESREQ.
		• Added DEBUG (Debug Priority) bit field to System Handler Priority 3 (SYSPRI3) register.
		 Added "Reset Sources" table to System Control chapter.
		Removed mention of false-start bit detection in the UART chapter. This feature is not supported.
		 Added note that specific module clocks must be enabled before that module's registers can be programmed. There must be a delay of 3 system clocks after the module clock is enabled before any of that module's registers are accessed.
		• Corrected nonlinearity and offset error parameters (E _L , E _D , and E _O) in ADC Characteristics table.
		 Added specification for maximum input voltage on a non-power pin when the microcontroller is unpowered (V_{NON} parameter in Maximum Ratings table).
		 Additional minor data sheet clarifications and corrections.
September 2010	7783	 Reorganized ARM Cortex-M3 Processor Core, Memory Map and Interrupts chapters, creating two new chapters, The Cortex-M3 Processor and Cortex-M3 Peripherals. Much additional content was added, including all the Cortex-M3 registers.
		 Changed register names to be consistent with StellarisWare[®] names: the Cortex-M3 Interrupt Control and Status (ICSR) register to the Interrupt Control and State (INTCTRL) register, and the Cortex-M3 Interrupt Set Enable (SETNA) register to the Interrupt 0-31 Set Enable (EN0) register.
		 Added clarification of instruction execution during Flash operations.
		 Modified Figure 7-2 on page 233 to clarify operation of the GPIO inputs when used as an alternate function.
		 Added caution not to apply a Low value to PB7 when debugging; a Low value on the pin causes the JTAG controller to be reset, resulting in a loss of JTAG communication.
		 In General-Purpose Timers chapter, clarified operation of the 32-bit RTC mode.
		 Added missing table "Connections for Unused Signals" (Table 16-5 on page 504).
		 In Electrical Characteristics chapter: Added I_{LKG} parameter (GPIO input leakage current) to Table 18-4 on page 507. Corrected values for t_{CLKRF} parameter (SSIClk rise/fall time) in Table 18-16 on page 515.
		 Added dimensions for Tray and Tape and Reel shipping mediums.
June 2010	7393	Corrected base address for SRAM in architectural overview chapter.
		 Clarified system clock operation, adding content to "Clock Control" on page 158.
		 In Signal Tables chapter, added table "Connections for Unused Signals."
		 In "Reset Characteristics" table, corrected value for supply voltage (VDD) rise time.
		 Additional minor data sheet clarifications and corrections.

Table 1. Revision History (continued)

Date	Revision	Description
April 2010	7004	 Added caution note to the I²C Master Timer Period (I2CMTPR) register description and changed field width to 7 bits.
		■ Added note about RST signal routing.
		• Clarified the function of the TnSTALL bit in the GPTMCTL register.
		 Additional minor data sheet clarifications and corrections.
January 2010	6712	In "System Control" section, clarified Debug Access Port operation after Sleep modes.
		 Clarified wording on Flash memory access errors.
		 Added section on Flash interrupts.
		 Changed the reset value of the ADC Sample Sequence Result FIFO n (ADCSSFIFOn) registers to be indeterminate.
		 Clarified operation of SSI transmit FIFO.
		 Made these changes to the Operating Characteristics chapter:
		 Added storage temperature ratings to "Temperature Characteristics" table
		 Added "ESD Absolute Maximum Ratings" table
		 Made these changes to the Electrical Characteristics chapter:
		 In "Flash Memory Characteristics" table, corrected Mass erase time
		 Added sleep and deep-sleep wake-up times ("Sleep Modes AC Characteristics" table)
		 In "Reset Characteristics" table, corrected supply voltage (VDD) rise time
October 2009	6438	The reset value for the DID1 register may change, depending on the package.
		Deleted MAXADCSPD bit field from DCGC0 register as it is not applicable in Deep-Sleep mode.
		 Deleted reset value for 16-bit mode from GPTMTAILR, GPTMTAMATCHR, and GPTMTAR registers because the module resets in 32-bit mode.
		 Made these changes to the Electrical Characteristics chapter:
		 Removed VSIH and VSIL parameters from Operating Conditions table.
		 Changed SSI set up and hold times to be expressed in system clocks, not ns.
		 Revised ADC electrical specifications to clarify, including reorganizing and adding new data.
		 Added 48QFN package.
		 Additional minor data sheet clarifications and corrections.
July 2009	5953	 Clarified Power-on reset and RST pin operation; added new diagrams.
		• Added DBG bits missing from FMPRE register. This changes register reset value.
		 In ADC characteristics table, changed Max value for GAIN parameter from ±1 to ±3 and added E_{IR} (Internal voltage reference error) parameter.
		Corrected ordering numbers.
		 Additional minor data sheet clarifications and corrections.

Table 1.	Revision	History	(continued)
----------	----------	---------	-------------

Date	Revision	Description
April 2009	5369	 Added JTAG/SWD clarification (see "Communication with JTAG/SWD" on page 148). Added "GPIO Module DC Characteristics" table (see Table 18-4 on page 507). Additional minor data sheet clarifications and corrections.
January 2009	4644	 Incorrect bit type for RELOAD bit field in SysTick Reload Value register; changed to R/W. Clarification added as to what happens when the SSI in slave mode is required to transmit but there is no data in the TX FIFO. Minor corrections to comparator operating mode tables. Additional minor data sheet clarifications and corrections.
November 2008	4283	 Revised High-Level Block Diagram. Corrected descriptions for UART1 signals. Additional minor data sheet clarifications and corrections were made.
October 2008	4149	 Added note on clearing interrupts to the Interrupts chapter: Note: It may take several processor cycles after a write to clear an interrupt source in order for NVIC to see the interrupt source de-assert. This means if the interrupt clear is done as the last action in an interrupt handler, it is possible for the interrupt handler to complete while NVIC sees the interrupt as still asserted, causing the interrupt handler to be re-entered errantly. This can be avoided by either clearing the interrupt source at the beginning of the interrupt handler or by performing a read or write after the write to clear the interrupt source (and flush the write buffer) Step 1 of the Initialization and Configuration procedure in the ADC chapter states the wrong register to use to enable the ADC clock. Sentence changed to: Enable the ADC clock by writing a value of 0x0001.0000 to the RCGC0 register. Additional minor data sheet clarifications and corrections were made.
June 2008	2972	Started tracking revision history.

About This Document

This data sheet provides reference information for the LM3S617 microcontroller, describing the functional blocks of the system-on-chip (SoC) device designed around the ARM® Cortex[™]-M3 core.

Audience

This manual is intended for system software developers, hardware designers, and application developers.

About This Manual

This document is organized into sections that correspond to each major feature.

Related Documents

The following related documents are available on the Stellaris[®] web site at www.ti.com/stellaris:

- Stellaris® Errata
- ARM® Cortex[™]-M3 Errata
- Cortex[™]-M3/M4 Instruction Set Technical User's Manual
- Stellaris® Graphics Library User's Guide
- Stellaris® Peripheral Driver Library User's Guide

The following related documents are also referenced:

- ARM® Debug Interface V5 Architecture Specification
- ARM® Embedded Trace Macrocell Architecture Specification
- IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture

This documentation list was current as of publication date. Please check the web site for additional documentation, including application notes and white papers.

Documentation Conventions

This document uses the conventions shown in Table 2 on page 25.

Table 2. Documentation Conventions

Notation	Meaning
General Register Not	ation
REGISTER	APB registers are indicated in uppercase bold. For example, PBORCTL is the Power-On and Brown-Out Reset Control register. If a register name contains a lowercase n, it represents more than one register. For example, SRCRn represents any (or all) of the three Software Reset Control registers: SRCR0, SRCR1 , and SRCR2 .
bit	A single bit in a register.
bit field	Two or more consecutive and related bits.
offset 0x <i>nnn</i>	A hexadecimal increment to a register's address, relative to that module's base address as specified in Table 2-4 on page 62.
Register N	Registers are numbered consecutively throughout the document to aid in referencing them. The register number has no meaning to software.
reserved	Register bits marked <i>reserved</i> are reserved for future use. In most cases, reserved bits are set to 0; however, user software should not rely on the value of a reserved bit. To provide software compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
уу:хх	The range of register bits inclusive from xx to yy. For example, 31:15 means bits 15 through 31 in that register.
Register Bit/Field Types	This value in the register bit diagram indicates whether software running on the controller can change the value of the bit field.
RC	Software can read this field. The bit or field is cleared by hardware after reading the bit/field.
RO	Software can read this field. Always write the chip reset value.
R/W	Software can read or write this field.
R/WC	Software can read or write this field. Writing to it with any value clears the register.
R/W1C	Software can read or write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged.
	This register type is primarily used for clearing interrupt status bits where the read operation provides the interrupt status and the write of the read value clears only the interrupts being reported at the time the register was read.
R/W1S	Software can read or write a 1 to this field. A write of a 0 to a R/W1S bit does not affect the bit value in the register.
W1C	Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged. A read of the register returns no meaningful data.
	This register is typically used to clear the corresponding bit in an interrupt register.
WO	Only a write by software is valid; a read of the register returns no meaningful data.
Register Bit/Field Reset Value	This value in the register bit diagram shows the bit/field value after any reset, unless noted.
0	Bit cleared to 0 on chip reset.
1	Bit set to 1 on chip reset.
-	Nondeterministic.
Pin/Signal Notation	
[]	Pin alternate function; a pin defaults to the signal without the brackets.
pin	Refers to the physical connection on the package.
signal	Refers to the electrical signal encoding of a pin.

Notation	Meaning
assert a signal	Change the value of the signal from the logically False state to the logically True state. For active High signals, the asserted signal value is 1 (High); for active Low signals, the asserted signal value is 0 (Low). The active polarity (High or Low) is defined by the signal name (see SIGNAL and SIGNAL below).
deassert a signal	Change the value of the signal from the logically True state to the logically False state.
SIGNAL	Signal names are in uppercase and in the Courier font. An overbar on a signal name indicates that it is active Low. To assert SIGNAL is to drive it Low; to deassert SIGNAL is to drive it High.
SIGNAL	Signal names are in uppercase and in the Courier font. An active High signal has no overbar. To assert SIGNAL is to drive it High; to deassert SIGNAL is to drive it Low.
Numbers	
X	An uppercase X indicates any of several values is allowed, where X can be any legal pattern. For example, a binary value of 0X00 can be either 0100 or 0000, a hex value of 0xX is 0x0 or 0x1, and so on.
0x	Hexadecimal numbers have a prefix of 0x. For example, 0x00FF is the hexadecimal number FF.
	All other numbers within register tables are assumed to be binary. Within conceptual information, binary numbers are indicated with a b suffix, for example, 1011b, and decimal numbers are written without a prefix or suffix.

Table 2. Documentation Conventions (continued)

1 Architectural Overview

The Stellaris[®] family of microcontrollers—the first ARM® Cortex[™]-M3 based controllers—brings high-performance 32-bit computing to cost-sensitive embedded microcontroller applications. These pioneering parts deliver customers 32-bit performance at a cost equivalent to legacy 8- and 16-bit devices, all in a package with a small footprint.

The LM3S617 microcontroller is targeted for industrial applications, including test and measurement equipment, factory automation, HVAC and building control, motion control, medical instrumentation, fire and security, and power/energy.

In addition, the LM3S617 microcontroller offers the advantages of ARM's widely available development tools, System-on-Chip (SoC) infrastructure IP applications, and a large user community. Additionally, the microcontroller uses ARM's Thumb®-compatible Thumb-2 instruction set to reduce memory requirements and, thereby, cost. Finally, the LM3S617 microcontroller is code-compatible to all members of the extensive Stellaris family; providing flexibility to fit our customers' precise needs.

Texas Instruments offers a complete solution to get to market quickly, with evaluation and development boards, white papers and application notes, an easy-to-use peripheral driver library, and a strong support, sales, and distributor network. See "Ordering and Contact Information" on page 542 for ordering information for Stellaris family devices.

1.1 **Product Features**

The LM3S617 microcontroller includes the following product features:

- 32-Bit RISC Performance
 - 32-bit ARM® Cortex[™]-M3 v7M architecture optimized for small-footprint embedded applications
 - System timer (SysTick), providing a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism
 - Thumb®-compatible Thumb-2-only instruction set processor core for high code density
 - 50-MHz operation
 - Hardware-division and single-cycle-multiplication
 - Integrated Nested Vectored Interrupt Controller (NVIC) providing deterministic interrupt handling
 - 25 interrupts with eight priority levels
 - Memory protection unit (MPU), providing a privileged mode for protected operating system functionality
 - Unaligned data access, enabling data to be efficiently packed into memory
 - Atomic bit manipulation (bit-banding), delivering maximum memory utilization and streamlined peripheral control
- ARM® Cortex[™]-M3 Processor Core

- Compact core.
- Thumb-2 instruction set, delivering the high-performance expected of an ARM core in the memory size usually associated with 8- and 16-bit devices; typically in the range of a few kilobytes of memory for microcontroller class applications.
- Rapid application execution through Harvard architecture characterized by separate buses for instruction and data.
- Exceptional interrupt handling, by implementing the register manipulations required for handling an interrupt in hardware.
- Deterministic, fast interrupt processing: always 12 cycles, or just 6 cycles with tail-chaining
- Memory protection unit (MPU) to provide a privileged mode of operation for complex applications.
- Migration from the ARM7[™] processor family for better performance and power efficiency.
- Full-featured debug solution
 - Serial Wire JTAG Debug Port (SWJ-DP)
 - Flash Patch and Breakpoint (FPB) unit for implementing breakpoints
 - Data Watchpoint and Trigger (DWT) unit for implementing watchpoints, trigger resources, and system profiling
 - Instrumentation Trace Macrocell (ITM) for support of printf style debugging
 - Trace Port Interface Unit (TPIU) for bridging to a Trace Port Analyzer
- Optimized for single-cycle flash usage
- Three sleep modes with clock gating for low power
- Single-cycle multiply instruction and hardware divide
- Atomic operations
- ARM Thumb2 mixed 16-/32-bit instruction set
- 1.25 DMIPS/MHz
- JTAG
 - IEEE 1149.1-1990 compatible Test Access Port (TAP) controller
 - Four-bit Instruction Register (IR) chain for storing JTAG instructions
 - IEEE standard instructions: BYPASS, IDCODE, SAMPLE/PRELOAD, EXTEST and INTEST
 - ARM additional instructions: APACC, DPACC and ABORT
 - Integrated ARM Serial Wire Debug (SWD)

- Internal Memory
 - 32 KB single-cycle flash
 - User-managed flash block protection on a 2-KB block basis
 - User-managed flash data programming
 - User-defined and managed flash-protection block
 - 8 KB single-cycle SRAM
- GPIOs
 - 1-30 GPIOs, depending on configuration
 - 5-V-tolerant in input configuration
 - Fast toggle capable of a change every two clock cycles
 - Programmable control for GPIO interrupts
 - Interrupt generation masking
 - Edge-triggered on rising, falling, or both
 - Level-sensitive on High or Low values
 - Bit masking in both read and write operations through address lines
 - Can initiate an ADC sample sequence
 - Pins configured as digital inputs are Schmitt-triggered.
 - Programmable control for GPIO pad configuration
 - Weak pull-up or pull-down resistors
 - 2-mA, 4-mA, and 8-mA pad drive for digital communication
 - Slew rate control for the 8-mA drive
 - Open drain enables
 - Digital input enables
- General-Purpose Timers
 - Three General-Purpose Timer Modules (GPTM), each of which provides two 16-bit timers/counters. Each GPTM can be configured to operate independently:
 - As a single 32-bit timer
 - As one 32-bit Real-Time Clock (RTC) to event capture
 - For Pulse Width Modulation (PWM)

- To trigger analog-to-digital conversions
- 32-bit Timer modes
 - Programmable one-shot timer
 - Programmable periodic timer
 - Real-Time Clock when using an external 32.768-KHz clock as the input
 - User-enabled stalling when the controller asserts CPU Halt flag during debug
 - ADC event trigger
- 16-bit Timer modes
 - General-purpose timer function with an 8-bit prescaler (for one-shot and periodic modes only)
 - Programmable one-shot timer
 - Programmable periodic timer
 - User-enabled stalling when the controller asserts CPU Halt flag during debug
 - ADC event trigger
- 16-bit Input Capture modes
 - Input edge count capture
 - Input edge time capture
- 16-bit PWM mode
 - Simple PWM mode with software-programmable output inversion of the PWM signal
- ARM FiRM-compliant Watchdog Timer
 - 32-bit down counter with a programmable load register
 - Separate watchdog clock with an enable
 - Programmable interrupt generation logic with interrupt masking
 - Lock register protection from runaway software
 - Reset generation logic with an enable/disable
 - User-enabled stalling when the controller asserts the CPU Halt flag during debug
- ADC
 - Six analog input channels
 - Single-ended and differential-input configurations

- On-chip internal temperature sensor
- Sample rate of 500 thousand samples/second
- Flexible, configurable analog-to-digital conversion
- Four programmable sample conversion sequences from one to eight entries long, with corresponding conversion result FIFOs
- Flexible trigger control
 - Controller (software)
 - Timers
 - Analog Comparators
 - PWM
 - GPIO
- Hardware averaging of up to 64 samples for improved accuracy
- Converter uses an internal 3-V reference
- UART
 - Two fully programmable 16C550-type UARTs
 - Separate 16x8 transmit (TX) and receive (RX) FIFOs to reduce CPU interrupt service loading
 - Programmable baud-rate generator allowing speeds up to 3.125 Mbps
 - Programmable FIFO length, including 1-byte deep operation providing conventional double-buffered interface
 - FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8
 - Standard asynchronous communication bits for start, stop, and parity
 - Line-break generation and detection
 - Fully programmable serial interface characteristics
 - 5, 6, 7, or 8 data bits
 - Even, odd, stick, or no-parity bit generation/detection
 - 1 or 2 stop bit generation
- Synchronous Serial Interface (SSI)
 - Master or slave operation
 - Programmable clock bit rate and prescale
 - Separate transmit and receive FIFOs, 16 bits wide, 8 locations deep

- Programmable interface operation for Freescale SPI, MICROWIRE, or Texas Instruments synchronous serial interfaces
- Programmable data frame size from 4 to 16 bits
- Internal loopback test mode for diagnostic/debug testing
- Analog Comparators
 - One integrated analog comparator
 - Configurable for output to drive an output pin, generate an interrupt, or initiate an ADC sample sequence
 - Compare external pin input to external pin input or to internal programmable voltage reference
 - Compare a test voltage against any one of these voltages
 - An individual external reference voltage
 - A shared single external reference voltage
 - A shared internal reference voltage
- PWM
 - Three PWM generator blocks, each with one 16-bit counter, two PWM comparators, a PWM signal generator, a dead-band generator, and an interrupt/ADC-trigger selector
 - One fault input in hardware to promote low-latency shutdown
 - One 16-bit counter
 - Runs in Down or Up/Down mode
 - Output frequency controlled by a 16-bit load value
 - Load value updates can be synchronized
 - Produces output signals at zero and load value
 - Two PWM comparators
 - Comparator value updates can be synchronized
 - Produces output signals on match
 - PWM generator
 - Output PWM signal is constructed based on actions taken as a result of the counter and PWM comparator output signals
 - Produces two independent PWM signals
 - Dead-band generator

- Produces two PWM signals with programmable dead-band delays suitable for driving a half-H bridge
- Can be bypassed, leaving input PWM signals unmodified
- Flexible output control block with PWM output enable of each PWM signal
 - PWM output enable of each PWM signal
 - Optional output inversion of each PWM signal (polarity control)
 - Optional fault handling for each PWM signal
 - Synchronization of timers in the PWM generator blocks
 - Interrupt status summary of the PWM generator blocks
- Can initiate an ADC sample sequence
- Power
 - On-chip Low Drop-Out (LDO) voltage regulator, with programmable output user-adjustable from 2.25 V to 2.75 V
 - Low-power options on controller: Sleep and Deep-sleep modes
 - Low-power options for peripherals: software controls shutdown of individual peripherals
 - User-enabled LDO unregulated voltage detection and automatic reset
 - 3.3-V supply brown-out detection and reporting via interrupt or reset
- Flexible Reset Sources
 - Power-on reset (POR)
 - Reset pin assertion
 - Brown-out (BOR) detector alerts to system power drops
 - Software reset
 - Watchdog timer reset
 - Internal low drop-out (LDO) regulator output goes unregulated
- Industrial and extended temperature 48-pin RoHS-compliant LQFP package

1.2 Target Applications

- Factory automation and control
- Industrial control power devices
- Building and home automation

- Stepper motors
- Brushless DC motors
- AC induction motors

1.3 High-Level Block Diagram

Figure 1-1 on page 35 depicts the features on the Stellaris LM3S617 microcontroller.

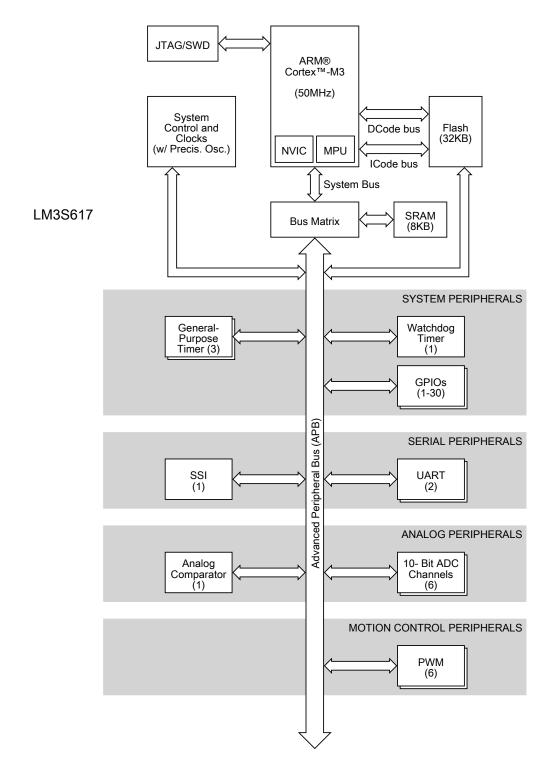


Figure 1-1. Stellaris LM3S617 Microcontroller High-Level Block Diagram

1.4 Functional Overview

The following sections provide an overview of the features of the LM3S617 microcontroller. The page number in parenthesis indicates where that feature is discussed in detail. Ordering and support information can be found in "Ordering and Contact Information" on page 542.

1.4.1 ARM Cortex[™]-M3

1.4.1.1 Processor Core (see page 43)

All members of the Stellaris product family, including the LM3S617 microcontroller, are designed around an ARM Cortex[™]-M3 processor core. The ARM Cortex-M3 processor provides the core for a high-performance, low-cost platform that meets the needs of minimal memory implementation, reduced pin count, and low-power consumption, while delivering outstanding computational performance and exceptional system response to interrupts.

1.4.1.2 Memory Map (see page 62)

A memory map lists the location of instructions and data in memory. The memory map for the LM3S617 controller can be found in Table 2-4 on page 62. Register addresses are given as a hexadecimal increment, relative to the module's base address as shown in the memory map.

1.4.1.3 System Timer (SysTick) (see page 85)

Cortex-M3 includes an integrated system timer, SysTick. SysTick provides a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used in several different ways, for example:

- An RTOS tick timer which fires at a programmable rate (for example, 100 Hz) and invokes a SysTick routine.
- A high-speed alarm timer using the system clock.
- A variable rate alarm or signal timer—the duration is range-dependent on the reference clock used and the dynamic range of the counter.
- A simple counter. Software can use this to measure time to completion and time used.
- An internal clock source control based on missing/meeting durations. The COUNTFLAG bit-field in the control and status register can be used to determine if an action completed within a set duration, as part of a dynamic clock management control loop.

1.4.1.4 Nested Vectored Interrupt Controller (NVIC) (see page 86)

The LM3S617 controller includes the ARM Nested Vectored Interrupt Controller (NVIC) on the ARM® Cortex[™]-M3 core. The NVIC and Cortex-M3 prioritize and handle all exceptions. All exceptions are handled in Handler Mode. The processor state is automatically stored to the stack on an exception, and automatically restored from the stack at the end of the Interrupt Service Routine (ISR). The vector is fetched in parallel to the state saving, which enables efficient interrupt entry. The processor supports tail-chaining, which enables back-to-back interrupts to be performed without the overhead of state saving and restoration. Software can set eight priority levels on 7 exceptions (system handlers) and 25 interrupts.

1.4.1.5 System Control Block (SCB) (see page 88)

The SCB provides system implementation information and system control, including configuration, control, and reporting of system exceptions.

1.4.1.6 Memory Protection Unit (MPU) (see page 88)

The MPU supports the standard ARMv7 Protected Memory System Architecture (PMSA) model. The MPU provides full support for protection regions, overlapping protection regions, access permissions, and exporting memory attributes to the system.

1.4.2 Motor Control Peripherals

To enhance motor control, the LM3S617 controller features Pulse Width Modulation (PWM) outputs.

1.4.2.1 PWM

Pulse width modulation (PWM) is a powerful technique for digitally encoding analog signal levels. High-resolution counters are used to generate a square wave, and the duty cycle of the square wave is modulated to encode an analog signal. Typical applications include switching power supplies and motor control.

On the LM3S617, PWM motion control functionality can be achieved through:

- Dedicated, flexible motion control hardware using the PWM pins
- The motion control features of the general-purpose timers using the CCP pins

PWM Pins (see page 457)

The LM3S617 PWM module consists of three PWM generator blocks and a control block. Each PWM generator block contains one timer (16-bit down or up/down counter), two comparators, a PWM signal generator, a dead-band generator, and an interrupt/ADC-trigger selector. The control block determines the polarity of the PWM signals, and which signals are passed through to the pins.

Each PWM generator block produces two PWM signals that can either be independent signals or a single pair of complementary signals with dead-band delays inserted. The output of the PWM generation blocks are managed by the output control block before being passed to the device pins.

CCP Pins (see page 276)

The General-Purpose Timer Module's CCP (Capture Compare PWM) pins are software programmable to support a simple PWM mode with a software-programmable output inversion of the PWM signal.

Fault Pin (see page 463)

The LM3S617 PWM module includes one fault-condition handling input to quickly provide low-latency shutdown and prevent damage to the motor being controlled.

1.4.3 Analog Peripherals

To handle analog signals, the LM3S617 microcontroller offers an Analog-to-Digital Converter (ADC).

For support of analog signals, the LM3S617 microcontroller offers one analog comparator.

1.4.3.1 ADC (see page 330)

An analog-to-digital converter (ADC) is a peripheral that converts a continuous analog voltage to a discrete digital number.

The LM3S617 ADC module features 10-bit conversion resolution and supports six input channels, plus an internal temperature sensor. Four buffered sample sequences allow rapid sampling of up to eight analog input sources without controller intervention. Each sample sequence provides flexible programming with fully configurable input source, trigger events, interrupt generation, and sequence priority.

1.4.3.2 Analog Comparators (see page 445)

An analog comparator is a peripheral that compares two analog voltages, and provides a logical output that signals the comparison result.

The LM3S617 microcontroller provides one analog comparator that can be configured to drive an output or generate an interrupt or ADC event.

A comparator can compare a test voltage against any one of these voltages:

- An individual external reference voltage
- A shared single external reference voltage
- A shared internal reference voltage

The comparator can provide its output to a device pin, acting as a replacement for an analog comparator on the board, or it can be used to signal the application via interrupts or triggers to the ADC to cause it to start capturing a sample sequence. The interrupt generation and ADC triggering logic is separate. This means, for example, that an interrupt can be generated on a rising edge and the ADC triggered on a falling edge.

1.4.4 Serial Communications Peripherals

The LM3S617 controller supports both asynchronous and synchronous serial communications with:

- Two fully programmable 16C550-type UARTs
- One SSI module

1.4.4.1 UART (see page 367)

A Universal Asynchronous Receiver/Transmitter (UART) is an integrated circuit used for RS-232C serial communications, containing a transmitter (parallel-to-serial converter) and a receiver (serial-to-parallel converter), each clocked separately.

The LM3S617 controller includes two fully programmable 16C550-type UARTs that support data transfer speeds up to 3.125 Mbps. (Although similar in functionality to a 16C550 UART, it is not register-compatible.)

Separate 16x8 transmit (TX) and receive (RX) FIFOs reduce CPU interrupt service loading. The UART can generate individually masked interrupts from the RX, TX, modem status, and error conditions. The module provides a single combined interrupt when any of the interrupts are asserted and are unmasked.

1.4.4.2 SSI (see page 407)

Synchronous Serial Interface (SSI) is a four-wire bi-directional full and low-speed communications interface.

The LM3S617 controller includes one SSI module that provides the functionality for synchronous serial communications with peripheral devices, and can be configured to use the Freescale SPI,

MICROWIRE, or TI synchronous serial interface frame formats. The size of the data frame is also configurable, and can be set between 4 and 16 bits, inclusive.

The SSI module performs serial-to-parallel conversion on data received from a peripheral device, and parallel-to-serial conversion on data transmitted to a peripheral device. The TX and RX paths are buffered with internal FIFOs, allowing up to eight 16-bit values to be stored independently.

The SSI module can be configured as either a master or slave device. As a slave device, the SSI module can also be configured to disable its output, which allows a master device to be coupled with multiple slave devices.

The SSI module also includes a programmable bit rate clock divider and prescaler to generate the output serial clock derived from the SSI module's input clock. Bit rates are generated based on the input clock and the maximum bit rate is determined by the connected peripheral.

1.4.5 System Peripherals

1.4.5.1 **Programmable GPIOs** (see page 229)

General-purpose input/output (GPIO) pins offer flexibility for a variety of connections.

The Stellaris GPIO module is comprised of five physical GPIO blocks, each corresponding to an individual GPIO port. The GPIO module is FiRM-compliant (compliant to the ARM Foundation IP for Real-Time Microcontrollers specification) and supports 1-30 programmable input/output pins. The number of GPIOs available depends on the peripherals being used (see "Signal Tables" on page 497 for the signals available to each GPIO pin).

The GPIO module features programmable interrupt generation as either edge-triggered or level-sensitive on all pins, programmable control for GPIO pad configuration, and bit masking in both read and write operations through address lines. Pins configured as digital inputs are Schmitt-triggered.

1.4.5.2 Three Programmable Timers (see page 270)

Programmable timers can be used to count or time external events that drive the Timer input pins.

The Stellaris General-Purpose Timer Module (GPTM) contains three GPTM blocks. Each GPTM block provides two 16-bit timers/counters that can be configured to operate independently as timers or event counters, or configured to operate as one 32-bit timer or one 32-bit Real-Time Clock (RTC). Timers can also be used to trigger analog-to-digital (ADC) conversions.

When configured in 32-bit mode, a timer can run as a Real-Time Clock (RTC), one-shot timer or periodic timer. When in 16-bit mode, a timer can run as a one-shot timer or periodic timer, and can extend its precision by using an 8-bit prescaler. A 16-bit timer can also be configured for event capture or Pulse Width Modulation (PWM) generation.

1.4.5.3 Watchdog Timer (see page 306)

A watchdog timer can generate an interrupt or a reset when a time-out value is reached. The watchdog timer is used to regain control when a system has failed due to a software error or to the failure of an external device to respond in the expected way.

The Stellaris Watchdog Timer module consists of a 32-bit down counter, a programmable load register, interrupt generation logic, and a locking register.

The Watchdog Timer can be configured to generate an interrupt to the controller on its first time-out, and to generate a reset signal on its second time-out. Once the Watchdog Timer has been configured, the lock register can be written to prevent the timer configuration from being inadvertently altered.

1.4.6 Memory Peripherals

The LM3S617 controller offers both single-cycle SRAM and single-cycle Flash memory.

1.4.6.1 SRAM (see page 211)

The LM3S617 static random access memory (SRAM) controller supports 8 KB SRAM. The internal SRAM of the Stellaris devices starts at base address 0x2000.0000 of the device memory map. To reduce the number of time-consuming read-modify-write (RMW) operations, ARM has introduced *bit-banding* technology in the new Cortex-M3 processor. With a bit-band-enabled processor, certain regions in the memory map (SRAM and peripheral space) can use address aliases to access individual bits in a single, atomic operation.

1.4.6.2 Flash (see page 212)

The LM3S617 Flash controller supports 32 KB of flash memory. The flash is organized as a set of 1-KB blocks that can be individually erased. Erasing a block causes the entire contents of the block to be reset to all 1s. These blocks are paired into a set of 2-KB blocks that can be individually protected. The blocks can be marked as read-only or execute-only, providing different levels of code protection. Read-only blocks cannot be erased or programmed, protecting the contents of those blocks from being modified. Execute-only blocks cannot be erased or programmed, and can only be read by the controller instruction fetch mechanism, protecting the contents of those blocks from being read by either the controller or by a debugger.

1.4.7 Additional Features

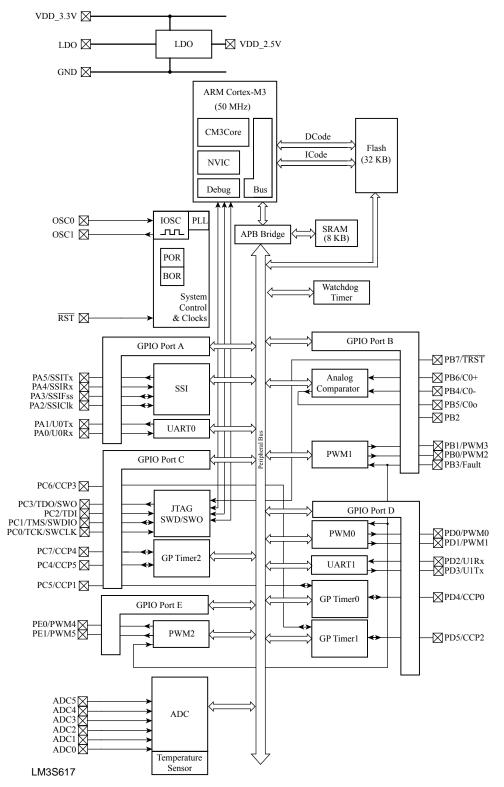
1.4.7.1 JTAG TAP Controller (see page 143)

The Joint Test Action Group (JTAG) port is an IEEE standard that defines a Test Access Port and Boundary Scan Architecture for digital integrated circuits and provides a standardized serial interface for controlling the associated test logic. The TAP, Instruction Register (IR), and Data Registers (DR) can be used to test the interconnections of assembled printed circuit boards and obtain manufacturing information on the components. The JTAG Port also provides a means of accessing and controlling design-for-test features such as I/O pin observation and control, scan testing, and debugging.

The JTAG port is composed of the standard five pins: TRST, TCK, TMS, TDI, and TDO. Data is transmitted serially into the controller on TDI and out of the controller on TDO. The interpretation of this data is dependent on the current state of the TAP controller. For detailed information on the operation of the JTAG port and TAP controller, please refer to the *IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture*.

The Stellaris JTAG controller works with the ARM JTAG controller built into the Cortex-M3 core. This is implemented by multiplexing the TDO outputs from both JTAG controllers. ARM JTAG instructions select the ARM TDO output while Stellaris JTAG instructions select the Stellaris TDO outputs. The multiplexer is controlled by the Stellaris JTAG controller, which has comprehensive programming for the ARM, Stellaris, and unimplemented JTAG instructions.

1.4.7.2 System Control and Clocks (see page 153)


System control determines the overall operation of the device. It provides information about the device, controls the clocking of the device and individual peripherals, and handles reset detection and reporting.

1.4.8 Hardware Details

Details on the pins and package can be found in the following sections:

- "Pin Diagram" on page 496
- "Signal Tables" on page 497
- "Operating Characteristics" on page 505
- "Electrical Characteristics" on page 506
- "Package Information" on page 544

1.4.9 System Block Diagram

Figure 1-2. LM3S617 Controller System-Level Block Diagram

2 The Cortex-M3 Processor

The ARM® Cortex[™]-M3 processor provides a high-performance, low-cost platform that meets the system requirements of minimal memory implementation, reduced pin count, and low power consumption, while delivering outstanding computational performance and exceptional system response to interrupts. Features include:

- Compact core.
- Thumb-2 instruction set, delivering the high-performance expected of an ARM core in the memory size usually associated with 8- and 16-bit devices; typically in the range of a few kilobytes of memory for microcontroller class applications.
- Rapid application execution through Harvard architecture characterized by separate buses for instruction and data.
- Exceptional interrupt handling, by implementing the register manipulations required for handling an interrupt in hardware.
- Deterministic, fast interrupt processing: always 12 cycles, or just 6 cycles with tail-chaining
- Memory protection unit (MPU) to provide a privileged mode of operation for complex applications.
- Migration from the ARM7[™] processor family for better performance and power efficiency.
- Full-featured debug solution
 - Serial Wire JTAG Debug Port (SWJ-DP)
 - Flash Patch and Breakpoint (FPB) unit for implementing breakpoints
 - Data Watchpoint and Trigger (DWT) unit for implementing watchpoints, trigger resources, and system profiling
 - Instrumentation Trace Macrocell (ITM) for support of printf style debugging
 - Trace Port Interface Unit (TPIU) for bridging to a Trace Port Analyzer
- Optimized for single-cycle flash usage
- Three sleep modes with clock gating for low power
- Single-cycle multiply instruction and hardware divide
- Atomic operations
- ARM Thumb2 mixed 16-/32-bit instruction set
- 1.25 DMIPS/MHz

The Stellaris[®] family of microcontrollers builds on this core to bring high-performance 32-bit computing to cost-sensitive embedded microcontroller applications, such as factory automation and control, industrial control power devices, building and home automation, and stepper motor control.

This chapter provides information on the Stellaris implementation of the Cortex-M3 processor, including the programming model, the memory model, the exception model, fault handling, and power management.

For technical details on the instruction set, see the Cortex[™]-M3/M4 Instruction Set Technical User's Manual.

2.1 Block Diagram

The Cortex-M3 processor is built on a high-performance processor core, with a 3-stage pipeline Harvard architecture, making it ideal for demanding embedded applications. The processor delivers exceptional power efficiency through an efficient instruction set and extensively optimized design, providing high-end processing hardware including a range of single-cycle and SIMD multiplication and multiply-with-accumulate capabilities, saturating arithmetic and dedicated hardware division.

To facilitate the design of cost-sensitive devices, the Cortex-M3 processor implements tightly coupled system components that reduce processor area while significantly improving interrupt handling and system debug capabilities. The Cortex-M3 processor implements a version of the Thumb® instruction set based on Thumb-2 technology, ensuring high code density and reduced program memory requirements. The Cortex-M3 instruction set provides the exceptional performance expected of a modern 32-bit architecture, with the high code density of 8-bit and 16-bit microcontrollers.

The Cortex-M3 processor closely integrates a nested interrupt controller (NVIC), to deliver industry-leading interrupt performance. The Stellaris NVIC includes a non-maskable interrupt (NMI) and provides eight interrupt priority levels. The tight integration of the processor core and NVIC provides fast execution of interrupt service routines (ISRs), dramatically reducing interrupt latency. The hardware stacking of registers and the ability to suspend load-multiple and store-multiple operations further reduce interrupt latency. Interrupt handlers do not require any assembler stubs which removes code overhead from the ISRs. Tail-chaining optimization also significantly reduces the overhead when switching from one ISR to another. To optimize low-power designs, the NVIC integrates with the sleep modes, including Deep-sleep mode, which enables the entire device to be rapidly powered down.

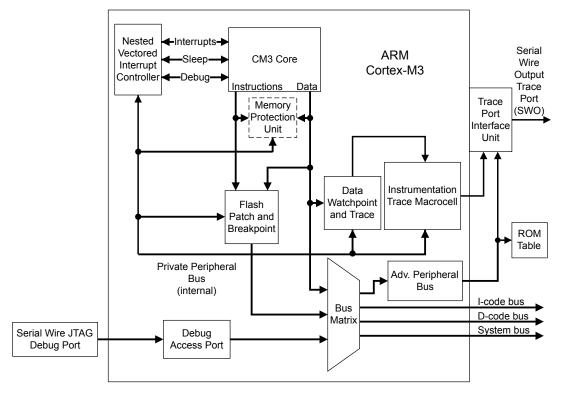


Figure 2-1. CPU Block Diagram

2.2 Overview

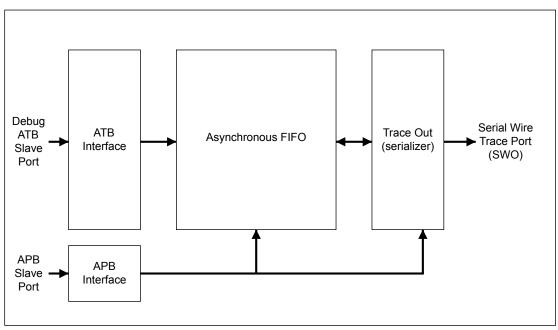
2.2.1 System-Level Interface

The Cortex-M3 processor provides multiple interfaces using AMBA® technology to provide high-speed, low-latency memory accesses. The core supports unaligned data accesses and implements atomic bit manipulation that enables faster peripheral controls, system spinlocks, and thread-safe Boolean data handling.

The Cortex-M3 processor has a memory protection unit (MPU) that provides fine-grain memory control, enabling applications to implement security privilege levels and separate code, data and stack on a task-by-task basis.

2.2.2 Integrated Configurable Debug

The Cortex-M3 processor implements a complete hardware debug solution, providing high system visibility of the processor and memory through either a traditional JTAG port or a 2-pin Serial Wire Debug (SWD) port that is ideal for microcontrollers and other small package devices. The Stellaris implementation replaces the ARM SW-DP and JTAG-DP with the ARM CoreSight[™]-compliant Serial Wire JTAG Debug Port (SWJ-DP) interface. The SWJ-DP interface combines the SWD and JTAG debug ports into one module. See the *ARM*® *Debug Interface V5 Architecture Specification* for details on SWJ-DP.


For system trace, the processor integrates an Instrumentation Trace Macrocell (ITM) alongside data watchpoints and a profiling unit. To enable simple and cost-effective profiling of the system trace events, a Serial Wire Viewer (SWV) can export a stream of software-generated messages, data trace, and profiling information through a single pin.

The Flash Patch and Breakpoint Unit (FPB) provides up to eight hardware breakpoint comparators that debuggers can use. The comparators in the FPB also provide remap functions of up to eight words in the program code in the CODE memory region. This enables applications stored in a read-only area of Flash memory to be patched in another area of on-chip SRAM or Flash memory. If a patch is required, the application programs the FPB to remap a number of addresses. When those addresses are accessed, the accesses are redirected to a remap table specified in the FPB configuration.

For more information on the Cortex-M3 debug capabilities, see the *ARM*® *Debug Interface V5 Architecture Specification*.

2.2.3 Trace Port Interface Unit (TPIU)

The TPIU acts as a bridge between the Cortex-M3 trace data from the ITM, and an off-chip Trace Port Analyzer, as shown in Figure 2-2 on page 46.

2.2.4 Cortex-M3 System Component Details

The Cortex-M3 includes the following system components:

SysTick

A 24-bit count-down timer that can be used as a Real-Time Operating System (RTOS) tick timer or as a simple counter (see "System Timer (SysTick)" on page 85).

Nested Vectored Interrupt Controller (NVIC)

An embedded interrupt controller that supports low latency interrupt processing (see "Nested Vectored Interrupt Controller (NVIC)" on page 86).

System Control Block (SCB)

The programming model interface to the processor. The SCB provides system implementation information and system control, including configuration, control, and reporting of system exceptions (see "System Control Block (SCB)" on page 88).

Memory Protection Unit (MPU)

Improves system reliability by defining the memory attributes for different memory regions. The MPU provides up to eight different regions and an optional predefined background region (see "Memory Protection Unit (MPU)" on page 88).

2.3 Programming Model

This section describes the Cortex-M3 programming model. In addition to the individual core register descriptions, information about the processor modes and privilege levels for software execution and stacks is included.

2.3.1 Processor Mode and Privilege Levels for Software Execution

The Cortex-M3 has two modes of operation:

Thread mode

Used to execute application software. The processor enters Thread mode when it comes out of reset.

Handler mode

Used to handle exceptions. When the processor has finished exception processing, it returns to Thread mode.

In addition, the Cortex-M3 has two privilege levels:

Unprivileged

In this mode, software has the following restrictions:

- Limited access to the MSR and MRS instructions and no use of the CPS instruction
- No access to the system timer, NVIC, or system control block
- Possibly restricted access to memory or peripherals
- Privileged

In this mode, software can use all the instructions and has access to all resources.

In Thread mode, the **CONTROL** register (see page 61) controls whether software execution is privileged or unprivileged. In Handler mode, software execution is always privileged.

Only privileged software can write to the **CONTROL** register to change the privilege level for software execution in Thread mode. Unprivileged software can use the SVC instruction to make a supervisor call to transfer control to privileged software.

2.3.2 Stacks

The processor uses a full descending stack, meaning that the stack pointer indicates the last stacked item on the memory. When the processor pushes a new item onto the stack, it decrements the stack pointer and then writes the item to the new memory location. The processor implements two stacks:

the main stack and the process stack, with a pointer for each held in independent registers (see the **SP** register on page 51).

In Thread mode, the **CONTROL** register (see page 61) controls whether the processor uses the main stack or the process stack. In Handler mode, the processor always uses the main stack. The options for processor operations are shown in Table 2-1 on page 48.

Table 2-1. Summary of Processor Mode, Privilege Level, and Stack Use

Processor Mode	Use	Privilege Level	Stack Used
Thread	Applications	Privileged or unprivileged ^a	Main stack or process stack ^a
Handler	Exception handlers	Always privileged	Main stack

a. See CONTROL (page 61).

2.3.3 Register Map

Figure 2-3 on page 48 shows the Cortex-M3 register set. Table 2-2 on page 49 lists the Core registers. The core registers are not memory mapped and are accessed by register name, so the base address is n/a (not applicable) and there is no offset.

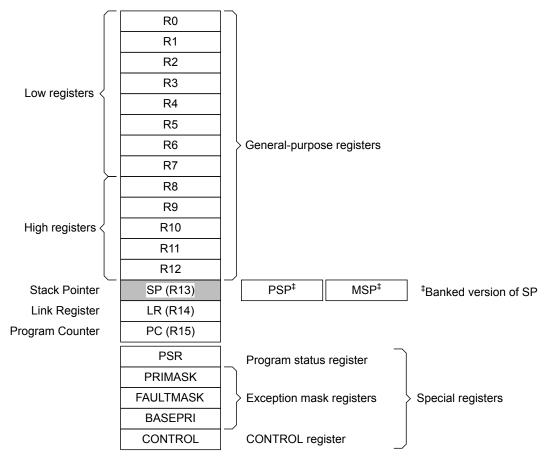


Figure 2-3. Cortex-M3 Register Set

Offset	Name	Туре	Reset	Description	See page
-	R0	R/W	-	Cortex General-Purpose Register 0	50
-	R1	R/W	-	Cortex General-Purpose Register 1	50
-	R2	R/W	-	Cortex General-Purpose Register 2	50
-	R3	R/W	-	Cortex General-Purpose Register 3	50
-	R4	R/W	-	Cortex General-Purpose Register 4	50
-	R5	R/W	-	Cortex General-Purpose Register 5	50
-	R6	R/W	-	Cortex General-Purpose Register 6	50
-	R7	R/W	-	Cortex General-Purpose Register 7	50
-	R8	R/W	-	Cortex General-Purpose Register 8	50
-	R9	R/W	-	Cortex General-Purpose Register 9	50
-	R10	R/W	-	Cortex General-Purpose Register 10	50
-	R11	R/W	-	Cortex General-Purpose Register 11	50
-	R12	R/W	-	Cortex General-Purpose Register 12	50
-	SP	R/W	-	Stack Pointer	51
-	LR	R/W	0xFFFF.FFFF	Link Register	52
-	PC	R/W	-	Program Counter	53
-	PSR	R/W	0x0100.0000	Program Status Register	54
-	PRIMASK	R/W	0x0000.0000	Priority Mask Register	58
-	FAULTMASK	R/W	0x0000.0000	Fault Mask Register	59
-	BASEPRI	R/W	0x0000.0000	Base Priority Mask Register	60
-	CONTROL	R/W	0x0000.0000	Control Register	61

Table 2-2. Processor Register Map

2.3.4 Register Descriptions

This section lists and describes the Cortex-M3 registers, in the order shown in Figure 2-3 on page 48. The core registers are not memory mapped and are accessed by register name rather than offset.

Note: The register type shown in the register descriptions refers to type during program execution in Thread mode and Handler mode. Debug access can differ.

Cortex General-Purpose Register 0 (R0)

Register 1: Cortex General-Purpose Register 0 (R0) Register 2: Cortex General-Purpose Register 1 (R1) Register 3: Cortex General-Purpose Register 2 (R2) Register 4: Cortex General-Purpose Register 3 (R3) Register 5: Cortex General-Purpose Register 4 (R4) Register 6: Cortex General-Purpose Register 5 (R5) Register 7: Cortex General-Purpose Register 6 (R6) Register 8: Cortex General-Purpose Register 7 (R7) Register 9: Cortex General-Purpose Register 7 (R7) Register 10: Cortex General-Purpose Register 9 (R9) Register 11: Cortex General-Purpose Register 10 (R10) Register 12: Cortex General-Purpose Register 11 (R11) Register 13: Cortex General-Purpose Register 12 (R12)

The **Rn** registers are 32-bit general-purpose registers for data operations and can be accessed from either privileged or unprivileged mode.

Type R/W, reset -31 25 30 29 28 27 26 24 16 23 22 21 20 19 18 17 DATA Туре R/W Reset 15 12 2 14 13 11 10 9 8 7 6 5 3 0 4 1 DATA Туре R/W Reset Bit/Field Name Description Туре Reset 31:0 DATA R/W Register data.

Register 14: Stack Pointer (SP)

The **Stack Pointer (SP)** is register R13. In Thread mode, the function of this register changes depending on the ASP bit in the **Control Register (CONTROL)** register. When the ASP bit is clear, this register is the **Main Stack Pointer (MSP)**. When the ASP bit is set, this register is the **Process Stack Pointer (PSP)**. On reset, the ASP bit is clear, and the processor loads the **MSP** with the value from address 0x0000.0000. The **MSP** can only be accessed in privileged mode; the **PSP** can be accessed in either privileged or unprivileged mode.


Type	R/W, res	et -														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	ſ	1	1 1	1	1 1	S	I I SP	[1			1	r	r
Type Reset	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				1	1	1		s	i i SP		1			1	1	1
Type Reset	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:0		SF)	R/	W	-	This	s field is t	he addro	ess of th	e stack p	ointer.			

Stack Pointer (SP)

Register 15: Link Register (LR)

The **Link Register (LR)** is register R14, and it stores the return information for subroutines, function calls, and exceptions. **LR** can be accessed from either privileged or unprivileged mode.

EXC_RETURN is loaded into **LR** on exception entry. See Table 2-10 on page 77 for the values and description.

July 14, 2014

Register 16: Program Counter (PC)

The **Program Counter (PC)** is register R15, and it contains the current program address. On reset, the processor loads the **PC** with the value of the reset vector, which is at address 0x0000.0004. Bit 0 of the reset vector is loaded into the THUMB bit of the **EPSR** at reset and must be 1. The **PC** register can be accessed in either privileged or unprivileged mode.

Туре	R/W, res	set -														
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		T	1	ſ	1	ſ	1 1	Р		ſ	I			r	I	1
Type Reset	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1		1		1 1	P						I	I	•
Type Reset	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -
E	Bit/Field		Nam	ne	Ту	pe	Reset	Des	cription							
	31:0		PC	;	R/	W	-	This	field is t	he curre	ent progra	am addre	ess.			

Program Counter (PC)

Register 17: Program Status Register (PSR)

Note: This register is also referred to as **xPSR**.

The **Program Status Register (PSR)** has three functions, and the register bits are assigned to the different functions:

- Application Program Status Register (APSR), bits 31:27,
- Execution Program Status Register (EPSR), bits 26:24, 15:10
- Interrupt Program Status Register (IPSR), bits 5:0

The **PSR**, **IPSR**, and **EPSR** registers can only be accessed in privileged mode; the **APSR** register can be accessed in either privileged or unprivileged mode.

APSR contains the current state of the condition flags from previous instruction executions.

EPSR contains the Thumb state bit and the execution state bits for the If-Then (IT) instruction or the Interruptible-Continuable Instruction (ICI) field for an interrupted load multiple or store multiple instruction. Attempts to read the **EPSR** directly through application software using the MSR instruction always return zero. Attempts to write the **EPSR** using the MSR instruction in application software are always ignored. Fault handlers can examine the **EPSR** value in the stacked **PSR** to determine the operation that faulted (see "Exception Entry and Return" on page 75).

IPSR contains the exception type number of the current Interrupt Service Routine (ISR).

These registers can be accessed individually or as a combination of any two or all three registers, using the register name as an argument to the MSR or MRS instructions. For example, all of the registers can be read using **PSR** with the MRS instruction, or **APSR** only can be written to using **APSR** with the MSR instruction. page 54 shows the possible register combinations for the **PSR**. See the MRS and MSR instruction descriptions in the *Cortex*[™]-*M3/M4 Instruction Set Technical User's Manual* for more information about how to access the program status registers.

Register	Туре	Combination	
PSR	R/W ^{a, b}	APSR, EPSR, and IPSR	
IEPSR	RO	EPSR and IPSR	
IAPSR	R/W ^a	APSR and IPSR	
EAPSR	R/W ^b	APSR and EPSR	

Table 2-3. PSR Register Combinations

a. The processor ignores writes to the IPSR bits.

b. Reads of the EPSR bits return zero, and the processor ignores writes to these bits.

Program Status Register (PSR)

Type R/W, reset 0x0100.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	N	Z	С	V	Q	ICI	/ IT	THUMB				rese	rved			
Туре	R/W	R/W	R/W	R/W	R/W	RO										
Reset	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•	ICI	/ IT				rese	rved				ISRN	NUM		
Type Reset	RO 0															

Bit/Field	Name	Туре	Reset	Description
31	Ν	R/W	0	APSR Negative or Less Flag
				Value Description
				1 The previous operation result was negative or less than.
				0 The previous operation result was positive, zero, greater than, or equal.
				The value of this bit is only meaningful when accessing PSR or APSR .
30	Z	R/W	0	APSR Zero Flag
				Value Description
				1 The previous operation result was zero.
				0 The previous operation result was non-zero.
				The value of this bit is only meaningful when accessing PSR or APSR .
29	С	R/W	0	APSR Carry or Borrow Flag
				Value Description
				1 The previous add operation resulted in a carry bit or the previous subtract operation did not result in a borrow bit.
				0 The previous add operation did not result in a carry bit or the previous subtract operation resulted in a borrow bit.
				The value of this bit is only meaningful when accessing PSR or APSR .
28	V	R/W	0	APSR Overflow Flag
				Value Description
				1 The previous operation resulted in an overflow.
				0 The previous operation did not result in an overflow.
				The value of this bit is only meaningful when accessing PSR or APSR .
27	Q	R/W	0	APSR DSP Overflow and Saturation Flag
				Value Description
				1 DSP Overflow or saturation has occurred.
				0 DSP overflow or saturation has not occurred since reset or since the bit was last cleared.
				The value of this bit is only meaningful when accessing PSR or APSR .
				This bit is cleared by software using an MRS instruction.

Bit/Field	Name	Туре	Reset	Description
26:25	ICI / IT	RO	0x0	EPSR ICI / IT status
				These bits, along with bits 15:10, contain the Interruptible-Continuable Instruction (ICI) field for an interrupted load multiple or store multiple instruction or the execution state bits of the IT instruction.
				When EPSR holds the ICI execution state, bits 26:25 are zero.
				The If-Then block contains up to four instructions following an IT instruction. Each instruction in the block is conditional. The conditions for the instructions are either all the same, or some can be the inverse of others. See the <i>Cortex</i> TM - <i>M3/M4 Instruction Set Technical User's Manual</i> for more information.
				The value of this field is only meaningful when accessing PSR or EPSR .
24	THUMB	RO	1	EPSR Thumb State This bit indicates the Thumb state and should always be set. The following can clear the THUMB bit:
				■ The BLX, BX and POP{PC} instructions
				 Restoration from the stacked xPSR value on an exception return
				 Bit 0 of the vector value on an exception entry or reset
				Attempting to execute instructions when this bit is clear results in a fault or lockup. See "Lockup" on page 79 for more information.
				The value of this bit is only meaningful when accessing PSR or EPSR .
23:16	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
15:10	ICI / IT	RO	0x0	EPSR ICI / IT status
				These bits, along with bits 26:25, contain the Interruptible-Continuable Instruction (ICI) field for an interrupted load multiple or store multiple instruction or the execution state bits of the IT instruction.
				When an interrupt occurs during the execution of an LDM, STM, PUSH or POP instruction, the processor stops the load multiple or store multiple instruction operation temporarily and stores the next register operand in the multiple operation to bits 15:12. After servicing the interrupt, the processor returns to the register pointed to by bits 15:12 and resumes execution of the multiple load or store instruction. When EPSR holds the ICI execution state, bits 11:10 are zero.
				The If-Then block contains up to four instructions following a 16-bit IT instruction. Each instruction in the block is conditional. The conditions for the instructions are either all the same, or some can be the inverse of others. See the <i>Cortex</i> TM - <i>M3/M4 Instruction Set Technical User's Manual</i> for more information.
				The value of this field is only meaningful when accessing PSR or EPSR .
9:6	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Bit/Field	Name	Туре	Reset	Description	
5:0	ISRNUM	RO	0x00	IPSR ISR N This field co Service Rou	ntains the exception type number of the current Interrupt
				Value	Description
				0x00	Thread mode
				0x01	Reserved
				0x02	NMI
				0x03	Hard fault
				0x04	Memory management fault
				0x05	Bus fault
				0x06	Usage fault
				0x07-0x0A	Reserved
				0x0B	SVCall
				0x0C	Reserved for Debug
				0x0D	Reserved
				0x0E	PendSV
				0x0F	SysTick
				0x10	Interrupt Vector 0
				0x11	Interrupt Vector 1
				0x2D	Interrupt Vector 29
				0x2E-0x3F	Reserved
				o "F	tion Tomos " an anna 74 fan man infanna tion

See "Exception Types" on page 71 for more information. The value of this field is only meaningful when accessing **PSR** or **IPSR**. Priority Mask Register (PRIMASK)

Register 18: Priority Mask Register (PRIMASK)

The **PRIMASK** register prevents activation of all exceptions with programmable priority. Reset, non-maskable interrupt (NMI), and hard fault are the only exceptions with fixed priority. Exceptions should be disabled when they might impact the timing of critical tasks. This register is only accessible in privileged mode. The MSR and MRS instructions are used to access the **PRIMASK** register, and the CPS instruction may be used to change the value of the **PRIMASK** register. See the *Cortex*[™]-*M3/M4 Instruction Set Technical User's Manual* for more information on these instructions. For more information on exception priority levels, see "Exception Types" on page 71.

Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 20 16 22 21 19 18 17 reserved Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 Δ 3 2 1 0 PRIMAS reserved RO RO RO RO RO RO RO 0 RO RO RO RO RO RO RO RO R/W Туре 0 0 0 0 0 0 0 0 0 0 0 0 Reset 0 0 0 **Bit/Field** Name Type Reset Description 31:1 RO 0x0000.000 Software should not rely on the value of a reserved bit. To provide reserved compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 0 PRIMASK 0 R/W Priority Mask Value Description 1 Prevents the activation of all exceptions with configurable priority. No effect. 0

Register 19: Fault Mask Register (FAULTMASK)

The **FAULTMASK** register prevents activation of all exceptions except for the Non-Maskable Interrupt (NMI). Exceptions should be disabled when they might impact the timing of critical tasks. This register is only accessible in privileged mode. The MSR and MRS instructions are used to access the **FAULTMASK** register, and the CPS instruction may be used to change the value of the **FAULTMASK** register. See the *Cortex*[™]-*M3/M4 Instruction Set Technical User's Manual* for more information on these instructions. For more information on exception priority levels, see "Exception Types" on page 71.

Fault Mask Register (FAULTMASK)

Туре	R/W, res	et 0x000	00.0000		,											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	, , , , , , , , , , , , , , , , , , ,		1 1	rese	rved	1	1	1	ı I	1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	1	· ·		1 1 r	reserved		1	1	1	1	1	1	FAULTMASK
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0
E	Bit/Field		Nar	ne	Ту	ре	Reset	Des	cription							
	31:1		reser	ved	R	С	0x0000.000	com	tware sho patibility served a	with fut	ure prod	ucts, the	value of	a reserv		vide hould be
	0		FAULTI	MASK	R/	W	0	Fau	lt Mask							
								Val	ue Desc	ription						
								1	Prev	ents the	activatio	on of all e	exceptior	ns excep	t for NN	11.
								0	No e	ffect.						
									process dler exce				t bit on e	exit from	any exc	eption

Register 20: Base Priority Mask Register (BASEPRI)

The **BASEPRI** register defines the minimum priority for exception processing. When **BASEPRI** is set to a nonzero value, it prevents the activation of all exceptions with the same or lower priority level as the **BASEPRI** value. Exceptions should be disabled when they might impact the timing of critical tasks. This register is only accessible in privileged mode. For more information on exception priority levels, see "Exception Types" on page 71.

Base Priority Mask Register (BASEPRI)

Type R/W, reset 0x0000.0000

Type	1011,100	0. 0.000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1			1	1 1	rese	rved	1 1						
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1		rved	I				BASEPRI				reserved		•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset	0	U	U	0	0	0	U	U	0	0	U	0	U	0	U	U
-	Bit/Field		Nam	20	TV	ре	Reset	Doc	cription							
L			Indii		i y	þe	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x0000.00			ould not i						
										with futu					ed bit sh	nould be
								pres	erved a	cross a re	ead-mod	dify-write	operation	on.		
	7:5		BASE	PRI	R/	W	0x0	Bas	e Priority	/						
								Any	exception	on that ha	as a pro	grammat	ole priori	ty level v	vith the s	same or
										as the v						0
										to mask					e priority	levels.
								пığı	ler priori	ty except	lions na	ve iowei	priority i	eveis.		
								Valu	ue Desc	ription						
								0x0	All e	xceptions	are uni	masked.				
								0x1	All e	xceptions	s with pr	iority leve	el 1-7 ar	e maske	d.	
								0x2	All e	xceptions	s with pr	iority leve	el 2-7 ar	e maske	d.	
								0x3	All e	xceptions	s with pr	iority leve	el 3-7 ar	e maske	d.	
								0x4	All e	xceptions	s with pr	iority leve	el 4-7 ar	e maske	d.	
								0x5	All e	xceptions	s with pr	iority leve	el 5-7 ar	e maske	d.	
								0x6	All e	ceptions	s with pr	iority leve	el 6-7 ar	e maske	d.	
								0x7	All e	xceptions	s with pr	iority leve	el 7 are i	masked.		
	4:0		reserv	ved	R	0	0x0	Soft	ware sh	ould not i	ely on t	he value	of a res	erved bit	. To prov	/ide
								com	patibility	with futu	ire prod	ucts, the	value of	a reserv	•	
								pres	erved a	cross a re	ead-mod	dify-write	operatio	on.		

Register 21: Control Register (CONTROL)

The **CONTROL** register controls the stack used and the privilege level for software execution when the processor is in Thread mode. This register is only accessible in privileged mode.

Handler mode always uses **MSP**, so the processor ignores explicit writes to the ASP bit of the **CONTROL** register when in Handler mode. The exception entry and return mechanisms automatically update the **CONTROL** register based on the EXC_RETURN value (see Table 2-10 on page 77). In an OS environment, threads running in Thread mode should use the process stack and the kernel and exception handlers should use the main stack. By default, Thread mode uses **MSP**. To switch the stack pointer used in Thread mode to **PSP**, either use the MSR instruction to set the ASP bit, as detailed in the *Cortex*TM-*M3/M4 Instruction Set Technical User's Manual*, or perform an exception return to Thread mode with the appropriate EXC_RETURN value, as shown in Table 2-10 on page 77.

Note: When changing the stack pointer, software must use an ISB instruction immediately after the MSR instruction, ensuring that instructions after the ISB execute use the new stack pointer. See the *Cortex™-M3/M4 Instruction Set Technical User's Manual*.

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ			1		1		1 1	rese	rved	1	1	1	r	r	1	1
pe set	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RC 0
sel	15	14	13	12	11	10		8	7	6	5	4	3	2	1	0
Г	15	14	13	12		10	9 reser	1	-	1		4		2	ASP	ТМР
pe L	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/V
set	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
в	lit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:2		reserv	/ed	R	0 (0x0000.00	com	patibility	ould not with futi cross a r	ure prod	ucts, the	value of	a reserv		
	31:2 1		reserv		R(0.0000x00	com pres	patibility erved a	with fut	ure prod	ucts, the	value of	a reserv		
								com pres Activ	patibility erved a	with futi cross a r Pointer	ure prod	ucts, the	value of	a reserv		
								com pres Activ	patibility erved a ve Stack ue Desc	with futi cross a r Pointer	ure produ ead-moo	ucts, the dify-write	value of operatio	a reserv		
								com pres Activ Valu	patibility served a ve Stack ue Desc PSP	with futu cross a r Pointer cription	ure produ ead-moo	ucts, the dify-write ack point	value of operation	a reserv		
								com pres Activ Valu 1 0 In H	patibility served av ve Stack ue Desc PSP MSP andler n	with futu cross a r Pointer cription is the cu	ure produ ead-moo urrent sta urrent sta s bit read	ucts, the dify-write ack point ack point ds as zei	value of operation er. ter ro and ig	a reservon.	rites. Th	hould
				5		W		com pres Activ Valu 1 0 In H Cort	patibility served a ve Stack ue Desc PSP MSP andler n tex-M3 u	with fut cross a r c Pointer cription is the cu is the cu onde, this	ure produ ead-moo urrent sta urrent sta s bit read his bit au	ucts, the dify-write ack point ack point ack point ds as zer utomatica	value of operation er. ter ro and ig	a reservon.	rites. Th	hould
	1		ASI	5	R/	W	0	com pres Activ Valu 1 0 In H Cort Thre	patibility served a ve Stack ue Desc PSP MSP andler n tex-M3 u	with futu cross a r cription is the cu is the cu is the cu node, this updates t e Privile	ure produ ead-moo urrent sta urrent sta s bit read his bit au	ucts, the dify-write ack point ack point ack point ds as zer utomatica	value of operation er. ter ro and ig	a reservon.	rites. Th	hould
	1		ASI	5	R/	W	0	com pres Activ Valu 1 0 In H Cort Thre	patibility served a ve Stack ue Desc PSP MSP andler n sex-M3 u ead Mod	with futu cross a r cription is the cu is the cu is the cu node, this updates t e Privile	ure produ ead-moo urrent sta urrent sta s bit read his bit au ge Level	ucts, the dify-write ack point ack point ds as zeu utomatica	value of operation er. der ro and ig ally on ex	a reservon.	ved bit sl	e

Control Register (CONTROL)

2.3.5 Exceptions and Interrupts

The Cortex-M3 processor supports interrupts and system exceptions. The processor and the Nested Vectored Interrupt Controller (NVIC) prioritize and handle all exceptions. An exception changes the normal flow of software control. The processor uses Handler mode to handle all exceptions except for reset. See "Exception Entry and Return" on page 75 for more information.

The NVIC registers control interrupt handling. See "Nested Vectored Interrupt Controller (NVIC)" on page 86 for more information.

2.3.6 Data Types

The Cortex-M3 supports 32-bit words, 16-bit halfwords, and 8-bit bytes. The processor also supports 64-bit data transfer instructions. All instruction and data memory accesses are little endian. See "Memory Regions, Types and Attributes" on page 63 for more information.

2.4 Memory Model

This section describes the processor memory map, the behavior of memory accesses, and the bit-banding features. The processor has a fixed memory map that provides up to 4 GB of addressable memory.

The memory map for the LM3S617 controller is provided in Table 2-4 on page 62. In this manual, register addresses are given as a hexadecimal increment, relative to the module's base address as shown in the memory map.

The regions for SRAM and peripherals include bit-band regions. Bit-banding provides atomic operations to bit data (see "Bit-Banding" on page 66).

The processor reserves regions of the Private peripheral bus (PPB) address range for core peripheral registers (see "Cortex-M3 Peripherals" on page 85).

Note: Within the memory map, all reserved space returns a bus fault when read or written.

Start	End	Description	For details, see page
Memory			
0x0000.0000	0x0000.7FFF	On-chip Flash	217
0x0000.8000	0x1FFF.FFFF	Reserved	-
0x2000.0000	0x2000.1FFF	Bit-banded on-chip SRAM	211
0x2000.2000	0x21FF.FFFF	Reserved	-
0x2200.0000	0x2203.FFFF	Bit-band alias of bit-banded on-chip SRAM starting at 0x2000.0000	211
0x2204.0000	0x3FFF.FFFF	Reserved	-
FiRM Peripherals			I
0x4000.0000	0x4000.0FFF	Watchdog timer 0	309
0x4000.1000	0x4000.3FFF	Reserved	-
0x4000.4000	0x4000.4FFF	GPIO Port A	238
0x4000.5000	0x4000.5FFF	GPIO Port B	238
0x4000.6000	0x4000.6FFF	GPIO Port C	238
0x4000.7000	0x4000.7FFF	GPIO Port D	238
0x4000.8000	0x4000.8FFF	SSI0	419

Table 2-4. Memory Map

Start	End	Description	For details, see page
0x4000.9000	0x4000.BFFF	Reserved	-
0x4000.C000	0x4000.CFFF	UART0	374
0x4000.D000	0x4000.DFFF	UART1	374
0x4000.E000	0x4001.FFFF	Reserved	-
Peripherals			1
0x4002.0000	0x4002.3FFF	Reserved	-
0x4002.4000	0x4002.4FFF	GPIO Port E	238
0x4002.5000	0x4002.7FFF	Reserved	-
0x4002.8000	0x4002.8FFF	PWM	466
0x4002.9000	0x4002.FFFF	Reserved	-
0x4003.0000	0x4003.0FFF	Timer 0	281
0x4003.1000	0x4003.1FFF	Timer 1	281
0x4003.2000	0x4003.2FFF	Timer 2	281
0x4003.3000	0x4003.7FFF	Reserved	-
0x4003.8000	0x4003.8FFF	ADC0	339
0x4003.9000	0x4003.BFFF	Reserved	-
0x4003.C000	0x4003.CFFF	Analog Comparators	445
0x4003.D000	0x400F.CFFF	Reserved	-
0x400F.D000	0x400F.DFFF	Flash memory control	217
0x400F.E000	0x400F.EFFF	System control	164
0x400F.F000	0x41FF.FFFF	Reserved	-
0x4200.0000	0x43FF.FFFF	Bit-banded alias of 0x4000.0000 through 0x400F.FFFF	-
0x4400.0000	0xDFFF.FFFF	Reserved	-
Private Peripheral B	us	·	
0xE000.0000	0xE000.0FFF	Instrumentation Trace Macrocell (ITM)	45
0xE000.1000	0xE000.1FFF	Data Watchpoint and Trace (DWT)	45
0xE000.2000	0xE000.2FFF	Flash Patch and Breakpoint (FPB)	45
0xE000.3000	0xE000.DFFF	Reserved	-
0xE000.E000	0xE000.EFFF	Cortex-M3 Peripherals (SysTick, NVIC, MPU and SCB)	93
0xE000.F000	0xE003.FFFF	Reserved	-
0xE004.0000	0xE004.0FFF	Trace Port Interface Unit (TPIU)	46
0xE004.1000	0xFFFF.FFFF	Reserved	-

Table 2-4. Memory Map (continued)

2.4.1 Memory Regions, Types and Attributes

The memory map and the programming of the MPU split the memory map into regions. Each region has a defined memory type, and some regions have additional memory attributes. The memory type and attributes determine the behavior of accesses to the region.

The memory types are:

• Normal: The processor can re-order transactions for efficiency and perform speculative reads.

- Device: The processor preserves transaction order relative to other transactions to Device or Strongly Ordered memory.
- Strongly Ordered: The processor preserves transaction order relative to all other transactions.

The different ordering requirements for Device and Strongly Ordered memory mean that the memory system can buffer a write to Device memory but must not buffer a write to Strongly Ordered memory.

An additional memory attribute is Execute Never (XN), which means the processor prevents instruction accesses. A fault exception is generated only on execution of an instruction executed from an XN region.

2.4.2 Memory System Ordering of Memory Accesses

For most memory accesses caused by explicit memory access instructions, the memory system does not guarantee that the order in which the accesses complete matches the program order of the instructions, providing the order does not affect the behavior of the instruction sequence. Normally, if correct program execution depends on two memory accesses completing in program order, software must insert a memory barrier instruction between the memory access instructions (see "Software Ordering of Memory Accesses" on page 65).

However, the memory system does guarantee ordering of accesses to Device and Strongly Ordered memory. For two memory access instructions A1 and A2, if both A1 and A2 are accesses to either Device or Strongly Ordered memory, and if A1 occurs before A2 in program order, A1 is always observed before A2.

2.4.3 Behavior of Memory Accesses

Table 2-5 on page 64 shows the behavior of accesses to each region in the memory map. See "Memory Regions, Types and Attributes" on page 63 for more information on memory types and the XN attribute. Stellaris devices may have reserved memory areas within the address ranges shown below (refer to Table 2-4 on page 62 for more information).

Address Range	Memory Region	Memory Type	Execute Never (XN)	Description
0x0000.0000 - 0x1FFF.FFFF	Code	Normal	-	This executable region is for program code. Data can also be stored here.
0x2000.0000 - 0x3FFF.FFFF	SRAM	Normal	-	This executable region is for data. Code can also be stored here. This region includes bit band and bit band alias areas (see Table 2-6 on page 66).
0x4000.0000 - 0x5FFF.FFFF	Peripheral	Device	XN	This region includes bit band and bit band alias areas (see Table 2-7 on page 66).
0x6000.0000 - 0x9FFF.FFF	External RAM	Normal	-	This executable region is for data.
0xA000.0000 - 0xDFFF.FFF	External device	Device	XN	This region is for external device memory.
0xE000.0000- 0xE00F.FFFF	Private peripheral bus	Strongly Ordered	XN	This region includes the NVIC, system timer, and system control block.
0xE010.0000- 0xFFFF.FFFF	Reserved	-	-	-

Table 2-5. Memory Access Behavior

The Code, SRAM, and external RAM regions can hold programs. However, it is recommended that programs always use the Code region because the Cortex-M3 has separate buses that can perform instruction fetches and data accesses simultaneously.

The MPU can override the default memory access behavior described in this section. For more information, see "Memory Protection Unit (MPU)" on page 88.

The Cortex-M3 prefetches instructions ahead of execution and speculatively prefetches from branch target addresses.

2.4.4 Software Ordering of Memory Accesses

The order of instructions in the program flow does not always guarantee the order of the corresponding memory transactions for the following reasons:

- The processor can reorder some memory accesses to improve efficiency, providing this does not affect the behavior of the instruction sequence.
- The processor has multiple bus interfaces.
- Memory or devices in the memory map have different wait states.
- Some memory accesses are buffered or speculative.

"Memory System Ordering of Memory Accesses" on page 64 describes the cases where the memory system guarantees the order of memory accesses. Otherwise, if the order of memory accesses is critical, software must include memory barrier instructions to force that ordering. The Cortex-M3 has the following memory barrier instructions:

- The Data Memory Barrier (DMB) instruction ensures that outstanding memory transactions complete before subsequent memory transactions.
- The Data Synchronization Barrier (DSB) instruction ensures that outstanding memory transactions complete before subsequent instructions execute.
- The Instruction Synchronization Barrier (ISB) instruction ensures that the effect of all completed memory transactions is recognizable by subsequent instructions.

Memory barrier instructions can be used in the following situations:

- MPU programming
 - If the MPU settings are changed and the change must be effective on the very next instruction, use a DSB instruction to ensure the effect of the MPU takes place immediately at the end of context switching.
 - Use an ISB instruction to ensure the new MPU setting takes effect immediately after programming the MPU region or regions, if the MPU configuration code was accessed using a branch or call. If the MPU configuration code is entered using exception mechanisms, then an ISB instruction is not required.
- Vector table

If the program changes an entry in the vector table and then enables the corresponding exception, use a DMB instruction between the operations. The DMB instruction ensures that if the exception is taken immediately after being enabled, the processor uses the new exception vector.

Self-modifying code

If a program contains self-modifying code, use an ISB instruction immediately after the code modification in the program. The ISB instruction ensures subsequent instruction execution uses the updated program.

Memory map switching

If the system contains a memory map switching mechanism, use a DSB instruction after switching the memory map in the program. The DSB instruction ensures subsequent instruction execution uses the updated memory map.

Dynamic exception priority change

When an exception priority has to change when the exception is pending or active, use DSB instructions after the change. The change then takes effect on completion of the DSB instruction.

Memory accesses to Strongly Ordered memory, such as the System Control Block, do not require the use of DMB instructions.

For more information on the memory barrier instructions, see the *Cortex*™-*M3/M4 Instruction Set Technical User's Manual*.

2.4.5 Bit-Banding

A bit-band region maps each word in a bit-band alias region to a single bit in the bit-band region. The bit-band regions occupy the lowest 1 MB of the SRAM and peripheral memory regions. Accesses to the 32-MB SRAM alias region map to the 1-MB SRAM bit-band region, as shown in Table 2-6 on page 66. Accesses to the 32-MB peripheral alias region map to the 1-MB peripheral bit-band region, as shown in Table 2-7 on page 66. For the specific address range of the bit-band regions, see Table 2-4 on page 62.

Note: A word access to the SRAM or the peripheral bit-band alias region maps to a single bit in the SRAM or peripheral bit-band region.

A word access to a bit band address results in a word access to the underlying memory, and similarly for halfword and byte accesses. This allows bit band accesses to match the access requirements of the underlying peripheral.

Address Range		Mamany Design	Instruction and Data Accesses	
Start	End	Memory Region		
0x2000.0000	0x2000.1FFF		Direct accesses to this memory range behave as SRAM memory accesses, but this region is also bit addressable through bit-band alias.	
0x2200.0000	0x2203.FFFF	SRAM bit-band alias	Data accesses to this region are remapped to bit band region. A write operation is performed as read-modify-write. Instruction accesses are not remapped.	

Table 2-6. SRAM Memory Bit-Banding Regions

Table 2-7. Peripheral Memory Bit-Banding Regions

Address Range		Memory Region	Instruction and Data Accesses	
Start	End	Memory Region		
0x4000.0000	0x400F.FFFF	region	Direct accesses to this memory range behave as peripheral memory accesses, but this region is also bit addressable through bit-band alias.	

Address Range		Memory Region	Instruction and Data Accesses	
Start	End	Memory Region		
0x4200.0000	0x43FF.FFFF		Data accesses to this region are remapped to bit band region. A write operation is performed as read-modify-write. Instruction accesses are not permitted.	

Table 2-7. Peripheral Memory Bit-Banding Regions (continued)

The following formula shows how the alias region maps onto the bit-band region:

```
bit_word_offset = (byte_offset x 32) + (bit_number x 4)
```

bit_word_addr = bit_band_base + bit_word_offset

where:

bit_word_offset

The position of the target bit in the bit-band memory region.

bit_word_addr

The address of the word in the alias memory region that maps to the targeted bit.

bit_band_base

The starting address of the alias region.

byte_offset

The number of the byte in the bit-band region that contains the targeted bit.

bit_number

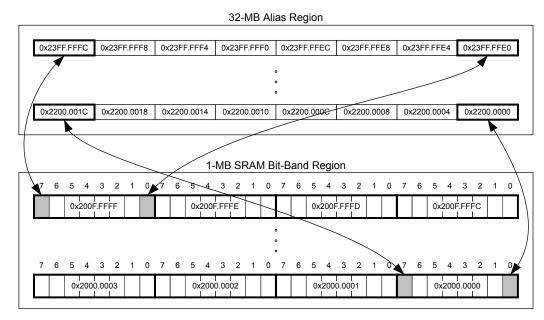
The bit position, 0-7, of the targeted bit.

Figure 2-4 on page 68 shows examples of bit-band mapping between the SRAM bit-band alias region and the SRAM bit-band region:

■ The alias word at 0x23FF.FFE0 maps to bit 0 of the bit-band byte at 0x200F.FFFF:

0x23FF.FFE0 = 0x2200.0000 + (0x000F.FFFF*32) + (0*4)

■ The alias word at 0x23FF.FFFC maps to bit 7 of the bit-band byte at 0x200F.FFFF:


0x23FF.FFFC = 0x2200.0000 + (0x000F.FFFF*32) + (7*4)

■ The alias word at 0x2200.0000 maps to bit 0 of the bit-band byte at 0x2000.0000:

0x2200.0000 = 0x2200.0000 + (0*32) + (0*4)

■ The alias word at 0x2200.001C maps to bit 7 of the bit-band byte at 0x2000.0000:

0x2200.001C = 0x2200.0000+ (0*32) + (7*4)

Figure 2-4. Bit-Band Mapping

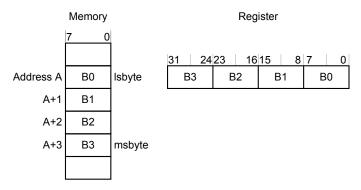
2.4.5.1 Directly Accessing an Alias Region

Writing to a word in the alias region updates a single bit in the bit-band region.

Bit 0 of the value written to a word in the alias region determines the value written to the targeted bit in the bit-band region. Writing a value with bit 0 set writes a 1 to the bit-band bit, and writing a value with bit 0 clear writes a 0 to the bit-band bit.

Bits 31:1 of the alias word have no effect on the bit-band bit. Writing 0x01 has the same effect as writing 0xFF. Writing 0x00 has the same effect as writing 0x0E.

When reading a word in the alias region, 0x0000.0000 indicates that the targeted bit in the bit-band region is clear and 0x0000.0001 indicates that the targeted bit in the bit-band region is set.


2.4.5.2 Directly Accessing a Bit-Band Region

"Behavior of Memory Accesses" on page 64 describes the behavior of direct byte, halfword, or word accesses to the bit-band regions.

2.4.6 Data Storage

The processor views memory as a linear collection of bytes numbered in ascending order from zero. For example, bytes 0-3 hold the first stored word, and bytes 4-7 hold the second stored word. Data is stored in little-endian format, with the least-significant byte (lsbyte) of a word stored at the lowest-numbered byte, and the most-significant byte (msbyte) stored at the highest-numbered byte. Figure 2-5 on page 69 illustrates how data is stored.

Figure 2-5. Data Storage

2.4.7 Synchronization Primitives

The Cortex-M3 instruction set includes pairs of synchronization primitives which provide a non-blocking mechanism that a thread or process can use to obtain exclusive access to a memory location. Software can use these primitives to perform a guaranteed read-modify-write memory update sequence or for a semaphore mechanism.

A pair of synchronization primitives consists of:

- A Load-Exclusive instruction, which is used to read the value of a memory location and requests exclusive access to that location.
- A Store-Exclusive instruction, which is used to attempt to write to the same memory location and returns a status bit to a register. If this status bit is clear, it indicates that the thread or process gained exclusive access to the memory and the write succeeds; if this status bit is set, it indicates that the thread or process did not gain exclusive access to the memory and no write was performed.

The pairs of Load-Exclusive and Store-Exclusive instructions are:

- The word instructions LDREX and STREX
- The halfword instructions LDREXH and STREXH
- The byte instructions LDREXB and STREXB

Software must use a Load-Exclusive instruction with the corresponding Store-Exclusive instruction.

To perform an exclusive read-modify-write of a memory location, software must:

- 1. Use a Load-Exclusive instruction to read the value of the location.
- 2. Modify the value, as required.
- 3. Use a Store-Exclusive instruction to attempt to write the new value back to the memory location.
- 4. Test the returned status bit.

If the status bit is clear, the read-modify-write completed successfully. If the status bit is set, no write was performed, which indicates that the value returned at step 1 might be out of date. The software must retry the entire read-modify-write sequence.

Software can use the synchronization primitives to implement a semaphore as follows:

- **1.** Use a Load-Exclusive instruction to read from the semaphore address to check whether the semaphore is free.
- **2.** If the semaphore is free, use a Store-Exclusive to write the claim value to the semaphore address.
- **3.** If the returned status bit from step 2 indicates that the Store-Exclusive succeeded, then the software has claimed the semaphore. However, if the Store-Exclusive failed, another process might have claimed the semaphore after the software performed step 1.

The Cortex-M3 includes an exclusive access monitor that tags the fact that the processor has executed a Load-Exclusive instruction. The processor removes its exclusive access tag if:

- It executes a CLREX instruction.
- It executes a Store-Exclusive instruction, regardless of whether the write succeeds.
- An exception occurs, which means the processor can resolve semaphore conflicts between different threads.

For more information about the synchronization primitive instructions, see the Cortex[™]-M3/M4 Instruction Set Technical User's Manual.

2.5 Exception Model

The ARM Cortex-M3 processor and the Nested Vectored Interrupt Controller (NVIC) prioritize and handle all exceptions in Handler Mode. The processor state is automatically stored to the stack on an exception and automatically restored from the stack at the end of the Interrupt Service Routine (ISR). The vector is fetched in parallel to the state saving, enabling efficient interrupt entry. The processor supports tail-chaining, which enables back-to-back interrupts to be performed without the overhead of state saving and restoration.

Table 2-8 on page 72 lists all exception types. Software can set eight priority levels on seven of these exceptions (system handlers) as well as on 25 interrupts (listed in Table 2-9 on page 73).

Priorities on the system handlers are set with the NVIC **System Handler Priority n (SYSPRIn)** registers. Interrupts are enabled through the NVIC **Interrupt Set Enable n (ENn)** register and prioritized with the NVIC **Interrupt Priority n (PRIn)** registers. Priorities can be grouped by splitting priority levels into preemption priorities and subpriorities. All the interrupt registers are described in "Nested Vectored Interrupt Controller (NVIC)" on page 86.

Internally, the highest user-programmable priority (0) is treated as fourth priority, after a Reset, Non-Maskable Interrupt (NMI), and a Hard Fault, in that order. Note that 0 is the default priority for all the programmable priorities.

Important: After a write to clear an interrupt source, it may take several processor cycles for the NVIC to see the interrupt source de-assert. Thus if the interrupt clear is done as the last action in an interrupt handler, it is possible for the interrupt handler to complete while the NVIC sees the interrupt as still asserted, causing the interrupt handler to be re-entered errantly. This situation can be avoided by either clearing the interrupt source at the beginning of the interrupt handler or by performing a read or write after the write to clear the interrupt source (and flush the write buffer).

See "Nested Vectored Interrupt Controller (NVIC)" on page 86 for more information on exceptions and interrupts.

2.5.1 Exception States

Each exception is in one of the following states:

- **Inactive.** The exception is not active and not pending.
- Pending. The exception is waiting to be serviced by the processor. An interrupt request from a peripheral or from software can change the state of the corresponding interrupt to pending.
- Active. An exception that is being serviced by the processor but has not completed.
 - **Note:** An exception handler can interrupt the execution of another exception handler. In this case, both exceptions are in the active state.
- Active and Pending. The exception is being serviced by the processor, and there is a pending exception from the same source.

2.5.2 Exception Types

The exception types are:

- Reset. Reset is invoked on power up or a warm reset. The exception model treats reset as a special form of exception. When reset is asserted, the operation of the processor stops, potentially at any point in an instruction. When reset is deasserted, execution restarts from the address provided by the reset entry in the vector table. Execution restarts as privileged execution in Thread mode.
- NMI. A non-maskable Interrupt (NMI) can be signaled using the NMI signal or triggered by software using the Interrupt Control and State (INTCTRL) register. This exception has the highest priority other than reset. NMI is permanently enabled and has a fixed priority of -2. NMIs cannot be masked or prevented from activation by any other exception or preempted by any exception other than reset.
- Hard Fault. A hard fault is an exception that occurs because of an error during exception processing, or because an exception cannot be managed by any other exception mechanism. Hard faults have a fixed priority of -1, meaning they have higher priority than any exception with configurable priority.
- Memory Management Fault. A memory management fault is an exception that occurs because of a memory protection related fault, including access violation and no match. The MPU or the fixed memory protection constraints determine this fault, for both instruction and data memory transactions. This fault is used to abort instruction accesses to Execute Never (XN) memory regions, even if the MPU is disabled.
- Bus Fault. A bus fault is an exception that occurs because of a memory-related fault for an
 instruction or data memory transaction such as a prefetch fault or a memory access fault. This
 fault can be enabled or disabled.
- Usage Fault. A usage fault is an exception that occurs because of a fault related to instruction execution, such as:
 - An undefined instruction
 - An illegal unaligned access
 - Invalid state on instruction execution

– An error on exception return

An unaligned address on a word or halfword memory access or division by zero can cause a usage fault when the core is properly configured.

- SVCall. A supervisor call (SVC) is an exception that is triggered by the SVC instruction. In an OS environment, applications can use SVC instructions to access OS kernel functions and device drivers.
- Debug Monitor. This exception is caused by the debug monitor (when not halting). This exception
 is only active when enabled. This exception does not activate if it is a lower priority than the
 current activation.
- PendSV. PendSV is a pendable, interrupt-driven request for system-level service. In an OS environment, use PendSV for context switching when no other exception is active. PendSV is triggered using the Interrupt Control and State (INTCTRL) register.
- SysTick. A SysTick exception is an exception that the system timer generates when it reaches zero when it is enabled to generate an interrupt. Software can also generate a SysTick exception using the Interrupt Control and State (INTCTRL) register. In an OS environment, the processor can use this exception as system tick.
- Interrupt (IRQ). An interrupt, or IRQ, is an exception signaled by a peripheral or generated by a software request and fed through the NVIC (prioritized). All interrupts are asynchronous to instruction execution. In the system, peripherals use interrupts to communicate with the processor. Table 2-9 on page 73 lists the interrupts on the LM3S617 controller.

For an asynchronous exception, other than reset, the processor can execute another instruction between when the exception is triggered and when the processor enters the exception handler.

Privileged software can disable the exceptions that Table 2-8 on page 72 shows as having configurable priority (see the **SYSHNDCTRL** register on page 121 and the **DISO** register on page 100).

For more information about hard faults, memory management faults, bus faults, and usage faults, see "Fault Handling" on page 77.

Exception Type	Vector Number	Priority ^a	Vector Address or Offset ^b	Activation
-	0	-	0x0000.0000	Stack top is loaded from the first entry of the vector table on reset.
Reset	1	-3 (highest)	0x0000.0004	Asynchronous
Non-Maskable Interrupt (NMI)	2	-2	0x0000.0008	Asynchronous
Hard Fault	3	-1	0x0000.000C	-
Memory Management	4	programmable ^c	0x0000.0010	Synchronous
Bus Fault	5	programmable ^c	0x0000.0014	Synchronous when precise and asynchronous when imprecise
Usage Fault	6	programmable ^c	0x0000.0018	Synchronous
-	7-10	-	-	Reserved
SVCall	11	programmable ^c	0x0000.002C	Synchronous
Debug Monitor	12	programmable ^c	0x0000.0030	Synchronous
-	13	-	-	Reserved

Table 2-8. Exception Types

Table 2-8. Exception Types (continued)

Exception Type	Vector Number	Priority ^a	Vector Address or Offset ^b	Activation
PendSV	14	programmable ^c	0x0000.0038	Asynchronous
SysTick	15	programmable ^c	0x0000.003C	Asynchronous
Interrupts	16 and above	programmable ^d	0x0000.0040 and above	Asynchronous

a. 0 is the default priority for all the programmable priorities.

b. See "Vector Table" on page 74.

c. See SYSPRI1 on page 118.

d. See **PRIn** registers on page 104.

Table 2-9. Interrupts

Vector Number	Interrupt Number (Bit in Interrupt Registers)	Vector Address or Offset	Description
0-15	-	0x0000.0000 - 0x0000.003C	Processor exceptions
16	0	0x0000.0040	GPIO Port A
17	1	0x0000.0044	GPIO Port B
18	2	0x0000.0048	GPIO Port C
19	3	0x0000.004C	GPIO Port D
20	4	0x0000.0050	GPIO Port E
21	5	0x0000.0054	UART0
22	6	0x0000.0058	UART1
23	7	0x0000.005C	SSIO
24-25	8-9	-	Reserved
26	10	0x0000.0068	PWM Generator 0
27	11	0x0000.006C	PWM Generator 1
28	12	0x0000.0070	PWM Generator 2
29	13	-	Reserved
30	14	0x0000.0078	ADC0 Sequence 0
31	15	0x0000.007C	ADC0 Sequence 1
32	16	0x0000.0080	ADC0 Sequence 2
33	17	0x0000.0084	ADC0 Sequence 3
34	18	0x0000.0088	Watchdog Timer 0
35	19	0x0000.008C	Timer 0A
36	20	0x0000.0090	Timer 0B
37	21	0x0000.0094	Timer 1A
38	22	0x0000.0098	Timer 1B
39	23	0x0000.009C	Timer 2A
40	24	0x0000.00A0	Timer 2B
41	25	0x0000.00A4	Analog Comparator 0
42-43	26-27	-	Reserved
44	28	0x0000.00B0	System Control
45	29	0x0000.00B4	Flash Memory Control

2.5.3 Exception Handlers

The processor handles exceptions using:

- Interrupt Service Routines (ISRs). Interrupts (IRQx) are the exceptions handled by ISRs.
- **Fault Handlers.** Hard fault, memory management fault, usage fault, and bus fault are fault exceptions handled by the fault handlers.
- System Handlers. NMI, PendSV, SVCall, SysTick, and the fault exceptions are all system exceptions that are handled by system handlers.

2.5.4 Vector Table

The vector table contains the reset value of the stack pointer and the start addresses, also called exception vectors, for all exception handlers. The vector table is constructed using the vector address or offset shown in Table 2-8 on page 72. Figure 2-6 on page 74 shows the order of the exception vectors in the vector table. The least-significant bit of each vector must be 1, indicating that the exception handler is Thumb code

Figure 2-6. Vector Table

Exception number	IRQ number	Offset	Vector
45	29	0x00B4	IRQ29
18 17 16 15 14 13 12 11 10 9 8 7	2 1 0 -1 -2 -5	0x0084 0x004C 0x0048 0x0044 0x0040 0x003C 0x0038 0x002C	IRQ2 IRQ1 IRQ0 Systick PendSV Reserved Reserved SVCall Reserved
6	-10	0x0018	Usage fault
5	-11	0x0010	Bus fault
4	-12	0x0014	Memory management fault
3	-13	0x000C	Hard fault
2	-14	0x0008	NMI
1		0x00004	Reset
		0x0000	Initial SP value

On system reset, the vector table is fixed at address 0x0000.0000. Privileged software can write to the **Vector Table Offset (VTABLE)** register to relocate the vector table start address to a different

memory location, in the range 0x0000.0100 to 0x3FFF.FF00 (see "Vector Table" on page 74). Note that when configuring the **VTABLE** register, the offset must be aligned on a 256-byte boundary.

2.5.5 Exception Priorities

As Table 2-8 on page 72 shows, all exceptions have an associated priority, with a lower priority value indicating a higher priority and configurable priorities for all exceptions except Reset, Hard fault, and NMI. If software does not configure any priorities, then all exceptions with a configurable priority have a priority of 0. For information about configuring exception priorities, see page 118 and page 104.

Note: Configurable priority values for the Stellaris implementation are in the range 0-7. This means that the Reset, Hard fault, and NMI exceptions, with fixed negative priority values, always have higher priority than any other exception.

For example, assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] means that IRQ[1] has higher priority than IRQ[0]. If both IRQ[1] and IRQ[0] are asserted, IRQ[1] is processed before IRQ[0].

If multiple pending exceptions have the same priority, the pending exception with the lowest exception number takes precedence. For example, if both IRQ[0] and IRQ[1] are pending and have the same priority, then IRQ[0] is processed before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted if a higher priority exception occurs. If an exception occurs with the same priority as the exception being handled, the handler is not preempted, irrespective of the exception number. However, the status of the new interrupt changes to pending.

2.5.6 Interrupt Priority Grouping

To increase priority control in systems with interrupts, the NVIC supports priority grouping. This grouping divides each interrupt priority register entry into two fields:

- An upper field that defines the group priority
- A lower field that defines a subpriority within the group

Only the group priority determines preemption of interrupt exceptions. When the processor is executing an interrupt exception handler, another interrupt with the same group priority as the interrupt being handled does not preempt the handler.

If multiple pending interrupts have the same group priority, the subpriority field determines the order in which they are processed. If multiple pending interrupts have the same group priority and subpriority, the interrupt with the lowest IRQ number is processed first.

For information about splitting the interrupt priority fields into group priority and subpriority, see page 112.

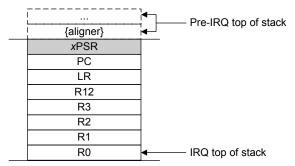
2.5.7 Exception Entry and Return

Descriptions of exception handling use the following terms:

Preemption. When the processor is executing an exception handler, an exception can preempt the exception handler if its priority is higher than the priority of the exception being handled. See "Interrupt Priority Grouping" on page 75 for more information about preemption by an interrupt. When one exception preempts another, the exceptions are called nested exceptions. See "Exception Entry" on page 76 more information.

- Return. Return occurs when the exception handler is completed, and there is no pending exception with sufficient priority to be serviced and the completed exception handler was not handling a late-arriving exception. The processor pops the stack and restores the processor state to the state it had before the interrupt occurred. See "Exception Return" on page 77 for more information.
- Tail-Chaining. This mechanism speeds up exception servicing. On completion of an exception handler, if there is a pending exception that meets the requirements for exception entry, the stack pop is skipped and control transfers to the new exception handler.
- Late-Arriving. This mechanism speeds up preemption. If a higher priority exception occurs during state saving for a previous exception, the processor switches to handle the higher priority exception and initiates the vector fetch for that exception. State saving is not affected by late arrival because the state saved is the same for both exceptions. Therefore, the state saving continues uninterrupted. The processor can accept a late arriving exception until the first instruction of the exception handler of the original exception enters the execute stage of the processor. On return from the exception handler of the late-arriving exception, the normal tail-chaining rules apply.

2.5.7.1 Exception Entry


Exception entry occurs when there is a pending exception with sufficient priority and either the processor is in Thread mode or the new exception is of higher priority than the exception being handled, in which case the new exception preempts the original exception.

When one exception preempts another, the exceptions are nested.

Sufficient priority means the exception has more priority than any limits set by the mask registers (see **PRIMASK** on page 58, **FAULTMASK** on page 59, and **BASEPRI** on page 60). An exception with less priority than this is pending but is not handled by the processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-arriving exception, the processor pushes information onto the current stack. This operation is referred to as *stacking* and the structure of eight data words is referred to as *stack frame*.

Immediately after stacking, the stack pointer indicates the lowest address in the stack frame. Unless stack alignment is disabled, the stack frame is aligned to a double-word address. If the STKALIGN bit of the **Configuration Control (CCR)** register is set, stack align adjustment is performed during stacking.

The stack frame includes the return address, which is the address of the next instruction in the interrupted program. This value is restored to the **PC** at exception return so that the interrupted program resumes.

In parallel to the stacking operation, the processor performs a vector fetch that reads the exception handler start address from the vector table. When stacking is complete, the processor starts executing the exception handler. At the same time, the processor writes an EXC_RETURN value to the LR, indicating which stack pointer corresponds to the stack frame and what operation mode the processor was in before the entry occurred.

If no higher-priority exception occurs during exception entry, the processor starts executing the exception handler and automatically changes the status of the corresponding pending interrupt to active.

If another higher-priority exception occurs during exception entry, known as late arrival, the processor starts executing the exception handler for this exception and does not change the pending status of the earlier exception.

2.5.7.2 Exception Return

Exception return occurs when the processor is in Handler mode and executes one of the following instructions to load the EXC_RETURN value into the **PC**:

- An LDM or POP instruction that loads the PC
- A BX instruction using any register
- An LDR instruction with the PC as the destination

EXC_RETURN is the value loaded into the **LR** on exception entry. The exception mechanism relies on this value to detect when the processor has completed an exception handler. The lowest four bits of this value provide information on the return stack and processor mode. Table 2-10 on page 77 shows the EXC_RETURN values with a description of the exception return behavior.

EXC_RETURN bits 31:4 are all set. When this value is loaded into the **PC**, it indicates to the processor that the exception is complete, and the processor initiates the appropriate exception return sequence.

EXC_RETURN[31:0]	Description
0xFFFF.FFF0	Reserved
0xFFFF.FFF1	Return to Handler mode.
	Exception return uses state from MSP.
	Execution uses MSP after return.
0xFFFF.FFF2 - 0xFFFF.FFF8	Reserved
0xFFFF.FFF9	Return to Thread mode.
	Exception return uses state from MSP.
	Execution uses MSP after return.
0xFFFF.FFFA - 0xFFFF.FFFC	Reserved
0xFFFF.FFFD	Return to Thread mode.
	Exception return uses state from PSP .
	Execution uses PSP after return.
0xFFFF.FFFE - 0xFFFF.FFFF	Reserved

Table 2-10. Exception Return Behavior

2.6 Fault Handling

Faults are a subset of the exceptions (see "Exception Model" on page 70). The following conditions generate a fault:

- A bus error on an instruction fetch or vector table load or a data access.
- An internally detected error such as an undefined instruction or an attempt to change state with a BX instruction.
- Attempting to execute an instruction from a memory region marked as Non-Executable (XN).
- An MPU fault because of a privilege violation or an attempt to access an unmanaged region.

2.6.1 Fault Types

Table 2-11 on page 78 shows the types of fault, the handler used for the fault, the corresponding fault status register, and the register bit that indicates the fault has occurred. See page 125 for more information about the fault status registers.

Fault	Handler	Fault Status Register	Bit Name
Bus error on a vector read	Hard fault	Hard Fault Status (HFAULTSTAT)	VECT
Fault escalated to a hard fault	Hard fault	Hard Fault Status (HFAULTSTAT)	FORCED
MPU or default memory mismatch on instruction access	Memory management fault	Memory Management Fault Status (MFAULTSTAT)	IERR ^a
MPU or default memory mismatch on data access	Memory management fault	Memory Management Fault Status (MFAULTSTAT)	DERR
MPU or default memory mismatch on exception stacking	Memory management fault	Memory Management Fault Status (MFAULTSTAT)	MSTKE
MPU or default memory mismatch on exception unstacking	Memory management fault	Memory Management Fault Status (MFAULTSTAT)	MUSTKE
Bus error during exception stacking	Bus fault	Bus Fault Status (BFAULTSTAT)	BSTKE
Bus error during exception unstacking	Bus fault	Bus Fault Status (BFAULTSTAT)	BUSTKE
Bus error during instruction prefetch	Bus fault	Bus Fault Status (BFAULTSTAT)	IBUS
Precise data bus error	Bus fault	Bus Fault Status (BFAULTSTAT)	PRECISE
Imprecise data bus error	Bus fault	Bus Fault Status (BFAULTSTAT)	IMPRE
Attempt to access a coprocessor	Usage fault	Usage Fault Status (UFAULTSTAT)	NOCP
Undefined instruction	Usage fault	Usage Fault Status (UFAULTSTAT)	UNDEF
Attempt to enter an invalid instruction set state ^b	Usage fault	Usage Fault Status (UFAULTSTAT)	INVSTAT
Invalid EXC_RETURN value	Usage fault	Usage Fault Status (UFAULTSTAT)	INVPC
Illegal unaligned load or store	Usage fault	Usage Fault Status (UFAULTSTAT)	UNALIGN
Divide by 0	Usage fault	Usage Fault Status (UFAULTSTAT)	DIV0

Table 2-11. Faults

a. Occurs on an access to an XN region even if the MPU is disabled.

b. Attempting to use an instruction set other than the Thumb instruction set, or returning to a non load-store-multiple instruction with ICI continuation.

2.6.2 Fault Escalation and Hard Faults

All fault exceptions except for hard fault have configurable exception priority (see **SYSPRI1** on page 118). Software can disable execution of the handlers for these faults (see **SYSHNDCTRL** on page 121).

Usually, the exception priority, together with the values of the exception mask registers, determines whether the processor enters the fault handler, and whether a fault handler can preempt another fault handler as described in "Exception Model" on page 70.

In some situations, a fault with configurable priority is treated as a hard fault. This process is called priority escalation, and the fault is described as *escalated to hard fault*. Escalation to hard fault occurs when:

- A fault handler causes the same kind of fault as the one it is servicing. This escalation to hard fault occurs because a fault handler cannot preempt itself because it must have the same priority as the current priority level.
- A fault handler causes a fault with the same or lower priority as the fault it is servicing. This situation happens because the handler for the new fault cannot preempt the currently executing fault handler.
- An exception handler causes a fault for which the priority is the same as or lower than the currently executing exception.
- A fault occurs and the handler for that fault is not enabled.

If a bus fault occurs during a stack push when entering a bus fault handler, the bus fault does not escalate to a hard fault. Thus if a corrupted stack causes a fault, the fault handler executes even though the stack push for the handler failed. The fault handler operates but the stack contents are corrupted.

Note: Only Reset and NMI can preempt the fixed priority hard fault. A hard fault can preempt any exception other than Reset, NMI, or another hard fault.

2.6.3 Fault Status Registers and Fault Address Registers

The fault status registers indicate the cause of a fault. For bus faults and memory management faults, the fault address register indicates the address accessed by the operation that caused the fault, as shown in Table 2-12 on page 79.

Handler	Status Register Name	Address Register Name	Register Description
Hard fault	Hard Fault Status (HFAULTSTAT)	-	page 131
Memory management	Memory Management Fault Status	Memory Management Fault	page 125
fault	(MFAULTSTAT)	Address (MMADDR)	page 132
Bus fault	Bus Fault Status (BFAULTSTAT)	Bus Fault Address	page 125
		(FAULTADDR)	page 133
Usage fault	Usage Fault Status (UFAULTSTAT)	-	page 125

Table 2-12. Fault Status and Fault Address Registers

2.6.4 Lockup

The processor enters a lockup state if a hard fault occurs when executing the NMI or hard fault handlers. When the processor is in the lockup state, it does not execute any instructions. The processor remains in lockup state until it is reset, an NMI occurs, or it is halted by a debugger.

Note: If the lockup state occurs from the NMI handler, a subsequent NMI does not cause the processor to leave the lockup state.

2.7 **Power Management**

The Cortex-M3 processor sleep modes reduce power consumption:

- Sleep mode stops the processor clock.
- Deep-sleep mode stops the system clock and switches off the PLL and Flash memory.

The SLEEPDEEP bit of the **System Control (SYSCTRL)** register selects which sleep mode is used (see page 114). For more information about the behavior of the sleep modes, see "System Control" on page 161.

This section describes the mechanisms for entering sleep mode and the conditions for waking up from sleep mode, both of which apply to Sleep mode and Deep-sleep mode.

2.7.1 Entering Sleep Modes

This section describes the mechanisms software can use to put the processor into one of the sleep modes.

The system can generate spurious wake-up events, for example a debug operation wakes up the processor. Therefore, software must be able to put the processor back into sleep mode after such an event. A program might have an idle loop to put the processor back to sleep mode.

2.7.1.1 Wait for Interrupt

The wait for interrupt instruction, WFI, causes immediate entry to sleep mode unless the wake-up condition is true (see "Wake Up from WFI or Sleep-on-Exit" on page 81). When the processor executes a WFI instruction, it stops executing instructions and enters sleep mode. See the *Cortex*[™]-*M*3/*M*4 *Instruction Set Technical User's Manual* for more information.

2.7.1.2 Wait for Event

The wait for event instruction, WFE, causes entry to sleep mode conditional on the value of a one-bit event register. When the processor executes a WFE instruction, it checks the event register. If the register is 0, the processor stops executing instructions and enters sleep mode. If the register is 1, the processor clears the register and continues executing instructions without entering sleep mode.

If the event register is 1, the processor must not enter sleep mode on execution of a WFE instruction. Typically, this situation occurs if an SEV instruction has been executed. Software cannot access this register directly.

See the Cortex[™]-M3/M4 Instruction Set Technical User's Manual for more information.

2.7.1.3 Sleep-on-Exit

If the SLEEPEXIT bit of the **SYSCTRL** register is set, when the processor completes the execution of all exception handlers, it returns to Thread mode and immediately enters sleep mode. This mechanism can be used in applications that only require the processor to run when an exception occurs.

2.7.2 Wake Up from Sleep Mode

The conditions for the processor to wake up depend on the mechanism that cause it to enter sleep mode.

2.7.2.1 Wake Up from WFI or Sleep-on-Exit

Normally, the processor wakes up only when the NVIC detects an exception with sufficient priority to cause exception entry. Some embedded systems might have to execute system restore tasks after the processor wakes up and before executing an interrupt handler. Entry to the interrupt handler can be delayed by setting the PRIMASK bit and clearing the FAULTMASK bit. If an interrupt arrives that is enabled and has a higher priority than current exception priority, the processor wakes up but does not execute the interrupt handler until the processor clears PRIMASK. For more information about **PRIMASK** and **FAULTMASK**, see page 58 and page 59.

2.7.2.2 Wake Up from WFE

The processor wakes up if it detects an exception with sufficient priority to cause exception entry.

In addition, if the SEVONPEND bit in the **SYSCTRL** register is set, any new pending interrupt triggers an event and wakes up the processor, even if the interrupt is disabled or has insufficient priority to cause exception entry. For more information about **SYSCTRL**, see page 114.

2.8 Instruction Set Summary

The processor implements a version of the Thumb instruction set. Table 2-13 on page 81 lists the supported instructions.

Note: In Table 2-13 on page 81:

- Angle brackets, <>, enclose alternative forms of the operand
- Braces, {}, enclose optional operands
- The Operands column is not exhaustive
- Op2 is a flexible second operand that can be either a register or a constant
- Most instructions can use an optional condition code suffix

For more information on the instructions and operands, see the instruction descriptions in the *Cortex*[™]-*M*3/*M*4 *Instruction Set Technical User's Manual*.

Mnemonic	Operands	Brief Description	Flags
ADC, ADCS	{Rd,} Rn, Op2	Add with carry	N,Z,C,V
ADD, ADDS	{Rd,} Rn, Op2	Add	N,Z,C,V
ADD, ADDW	{Rd,} Rn , #imm12	Add	N,Z,C,V
ADR	Rd, label	Load PC-relative address	-
AND, ANDS	{Rd,} Rn, Op2	Logical AND	N,Z,C
ASR, ASRS	Rd, Rm, <rs #n></rs #n>	Arithmetic shift right	N,Z,C
В	label	Branch	-
BFC	Rd, #lsb, #width	Bit field clear	-
BFI	Rd, Rn, #lsb, #width	Bit field insert	-
BIC, BICS	{Rd,} Rn, Op2	Bit clear	N,Z,C
ВКРТ	#imm	Breakpoint	-
BL	label	Branch with link	-
BLX	Rm	Branch indirect with link	-
BX	Rm	Branch indirect	-
CBNZ	Rn, label	Compare and branch if non-zero	-

Table 2-13. Cortex-M3	Instruction S	Summary
-----------------------	---------------	---------

Mnemonic	Operands	Brief Description	Flags
CBZ	Rn, label	Compare and branch if zero	-
CLREX	-	Clear exclusive	-
CLZ	Rd, Rm	Count leading zeros	-
CMN	Rn, Op2	Compare negative	N,Z,C,V
СМР	Rn, Op2	Compare	N,Z,C,V
CPSID	i	Change processor state, disable interrupts	-
CPSIE	i	Change processor state, enable interrupts	-
DMB	-	Data memory barrier	-
DSB	-	Data synchronization barrier	-
EOR, EORS	{Rd,} Rn, Op2	Exclusive OR	N,Z,C
ISB	-	Instruction synchronization barrier	-
IT	-	If-Then condition block	-
LDM	Rn{!}, reglist	Load multiple registers, increment after	-
LDMDB, LDMEA	Rn{!}, reglist	Load multiple registers, decrement before	-
LDMFD, LDMIA	Rn{!}, reglist	Load multiple registers, increment after	-
LDR	Rt, [Rn, #offset]	Load register with word	-
LDRB, LDRBT	Rt, [Rn, #offset]	Load register with byte	-
LDRD	Rt, Rt2, [Rn, #offset]	Load register with two bytes	-
LDREX	Rt, [Rn, #offset]	Load register exclusive	-
LDREXB	Rt, [Rn]	Load register exclusive with byte	-
LDREXH	Rt, [Rn]	Load register exclusive with halfword	-
LDRH, LDRHT	Rt, [Rn, #offset]	Load register with halfword -	
LDRSB, LDRSBT	Rt, [Rn, #offset]	Load register with signed byte	-
LDRSH, LDRSHT	Rt, [Rn, #offset]	Load register with signed halfword	-
LDRT	Rt, [Rn, #offset]	Load register with word	-
LSL, LSLS	Rd, Rm, <rs #n></rs #n>	Logical shift left	N,Z,C
LSR, LSRS	Rd, Rm, <rs #n></rs #n>	Logical shift right	N,Z,C
MLA	Rd, Rn, Rm, Ra	Multiply with accumulate, 32-bit result	-
MLS	Rd, Rn, Rm, Ra	Multiply and subtract, 32-bit result	-
MOV, MOVS	Rd, Op2	Move	N,Z,C
MOV, MOVW	Rd, #imm16	Move 16-bit constant	N,Z,C
MOVT	Rd, #imm16	Move top	-
MRS	Rd, spec_reg	Move from special register to general - register	
MSR	spec_reg, Rm	Move from general register to special N, z register	
MUL, MULS	{Rd,} Rn, Rm	Multiply, 32-bit result	N,Z
MVN, MVNS	Rd, Op2	Move NOT	N,Z,C
NOP	-	No operation	-
ORN, ORNS	{Rd,} Rn, Op2	Logical OR NOT	N,Z,C

Table 2-13. Cortex-M3 Instruction Summary (continued)

Mnemonic	Operands	Brief Description	Flags
ORR, ORRS	{Rd,} Rn, Op2	Logical OR	N,Z,C
POP	reglist	Pop registers from stack	-
PUSH	reglist	Push registers onto stack	-
RBIT	Rd, Rn	Reverse bits	-
REV	Rd, Rn	Reverse byte order in a word	-
REV16	Rd, Rn	Reverse byte order in each halfword	-
REVSH	Rd, Rn	Reverse byte order in bottom halfword and sign extend	-
ROR, RORS	Rd, Rm, <rs #n></rs #n>	Rotate right	N,Z,C
RRX, RRXS	Rd, Rm	Rotate right with extend	N,Z,C
RSB, RSBS	{Rd,} Rn, Op2	Reverse subtract	N,Z,C,V
SBC, SBCS	{Rd,} Rn, Op2	Subtract with carry	N,Z,C,V
SBFX	Rd, Rn, #lsb, #width	Signed bit field extract	-
SDIV	{Rd,} Rn, Rm	Signed divide	-
SEV	-	Send event	-
SMLAL	RdLo, RdHi, Rn, Rm	Signed multiply with accumulate (32x32+64), 64-bit result	-
SMULL	RdLo, RdHi, Rn, Rm	Signed multiply (32x32), 64-bit result	-
SSAT	Rd, #n, Rm {,shift #s}	Signed saturate	Q
STM	Rn{!}, reglist	Store multiple registers, increment after	-
STMDB, STMEA	Rn{!}, reglist	Store multiple registers, decrement before	-
STMFD, STMIA	Rn{!}, reglist	Store multiple registers, increment after	-
STR	Rt, [Rn {, #offset}]	Store register word	-
STRB, STRBT	Rt, [Rn {, #offset}]	Store register byte	-
STRD	Rt, Rt2, [Rn {, #offset}]	Store register two words	-
STREX	Rt, Rt, [Rn {, #offset}]	Store register exclusive	-
STREXB	Rd, Rt, [Rn]	Store register exclusive byte	-
STREXH	Rd, Rt, [Rn]	Store register exclusive halfword	-
STRH, STRHT	Rt, [Rn {, #offset}]	Store register halfword	-
STRSB, STRSBT	Rt, [Rn {, #offset}]	Store register signed byte	-
STRSH, STRSHT	Rt, [Rn {, #offset}]	Store register signed halfword	-
STRT	Rt, [Rn {, #offset}]	Store register word	-
SUB, SUBS	{Rd,} Rn, Op2	Subtract	N,Z,C,V
SUB, SUBW	{Rd,} Rn, #imm12	Subtract 12-bit constant	N,Z,C,V
SVC	#imm	Supervisor call	-
SXTB	{Rd,} Rm {,ROR #n}	Sign extend a byte	-
SXTH	{Rd,} Rm {,ROR #n}	Sign extend a halfword	-
ГВВ	[Rn, Rm]	Table branch byte	-
ГВН	[Rn, Rm, LSL #1]	Table branch halfword	-
TEQ	Rn, Op2	Test equivalence	N,Z,C
TST	Rn, Op2	Test	N,Z,C

Table 2-13. Cortex-M3 Instruction Summary (continued)

Mnemonic	Operands	Brief Description	Flags
UBFX	Rd, Rn, #lsb, #width	Unsigned bit field extract	-
UDIV	{Rd,} Rn, Rm	Unsigned divide	-
UMLAL	RdLo, RdHi, Rn, Rm	Unsigned multiply with accumulate (32x32+32+32), 64-bit result	-
UMULL	RdLo, RdHi, Rn, Rm	Unsigned multiply (32x 2), 64-bit result	-
USAT	Rd, #n, Rm {,shift #s}	Unsigned Saturate	Q
UXTB	{Rd,} Rm, {,ROR #n}	Zero extend a Byte	-
UXTH	{Rd,} Rm, {,ROR #n}	Zero extend a Halfword	-
WFE	-	Wait for event	-
WFI	-	Wait for interrupt	-

Table 2-13. Cortex-M3 Instruction Summary (continued)

3 Cortex-M3 Peripherals

This chapter provides information on the Stellaris[®] implementation of the Cortex-M3 processor peripherals, including:

SysTick (see page 85)

Provides a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism.

- Nested Vectored Interrupt Controller (NVIC) (see page 86)
 - Facilitates low-latency exception and interrupt handling
 - Controls power management
 - Implements system control registers
- System Control Block (SCB) (see page 88)

Provides system implementation information and system control, including configuration, control, and reporting of system exceptions.

Memory Protection Unit (MPU) (see page 88)

Supports the standard ARMv7 Protected Memory System Architecture (PMSA) model. The MPU provides full support for protection regions, overlapping protection regions, access permissions, and exporting memory attributes to the system.

Table 3-1 on page 85 shows the address map of the Private Peripheral Bus (PPB). Some peripheral register regions are split into two address regions, as indicated by two addresses listed.

Address	Core Peripheral	Description (see page)
0xE000.E010-0xE000.E01F	System Timer	85
0xE000.E100-0xE000.E4EF	Nested Vectored Interrupt Controller	86
0xE000.EF00-0xE000.EF03		
0xE000.ED00-0xE000.ED3F	System Control Block	88
0xE000.ED90-0xE000.EDB8	Memory Protection Unit	88

Table 3-1. Core Peripheral Register Regions

3.1 Functional Description

This chapter provides information on the Stellaris implementation of the Cortex-M3 processor peripherals: SysTick, NVIC, SCB and MPU.

3.1.1 System Timer (SysTick)

Cortex-M3 includes an integrated system timer, SysTick, which provides a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used in several different ways, for example as:

- An RTOS tick timer that fires at a programmable rate (for example, 100 Hz) and invokes a SysTick routine.
- A high-speed alarm timer using the system clock.

- A variable rate alarm or signal timer—the duration is range-dependent on the reference clock used and the dynamic range of the counter.
- A simple counter used to measure time to completion and time used.
- An internal clock source control based on missing/meeting durations. The COUNT bit in the STCTRL control and status register can be used to determine if an action completed within a set duration, as part of a dynamic clock management control loop.

The timer consists of three registers:

- SysTick Control and Status (STCTRL): A control and status counter to configure its clock, enable the counter, enable the SysTick interrupt, and determine counter status.
- SysTick Reload Value (STRELOAD): The reload value for the counter, used to provide the counter's wrap value.
- SysTick Current Value (STCURRENT): The current value of the counter.

When enabled, the timer counts down on each clock from the reload value to zero, reloads (wraps) to the value in the **STRELOAD** register on the next clock edge, then decrements on subsequent clocks. Clearing the **STRELOAD** register disables the counter on the next wrap. When the counter reaches zero, the COUNT status bit is set. The COUNT bit clears on reads.

Writing to the **STCURRENT** register clears the register and the COUNT status bit. The write does not trigger the SysTick exception logic. On a read, the current value is the value of the register at the time the register is accessed.

The SysTick counter runs on the system clock. If this clock signal is stopped for low power mode, the SysTick counter stops. Ensure software uses aligned word accesses to access the SysTick registers.

Note: When the processor is halted for debugging, the counter does not decrement.

3.1.2 Nested Vectored Interrupt Controller (NVIC)

This section describes the Nested Vectored Interrupt Controller (NVIC) and the registers it uses. The NVIC supports:

- 25 interrupts.
- A programmable priority level of 0-7 for each interrupt. A higher level corresponds to a lower priority, so level 0 is the highest interrupt priority.
- Low-latency exception and interrupt handling.
- Level and pulse detection of interrupt signals.
- Dynamic reprioritization of interrupts.
- Grouping of priority values into group priority and subpriority fields.
- Interrupt tail-chaining.
- An external Non-maskable interrupt (NMI).

The processor automatically stacks its state on exception entry and unstacks this state on exception exit, with no instruction overhead, providing low latency exception handling.

3.1.2.1 Level-Sensitive and Pulse Interrupts

The processor supports both level-sensitive and pulse interrupts. Pulse interrupts are also described as edge-triggered interrupts.

A level-sensitive interrupt is held asserted until the peripheral deasserts the interrupt signal. Typically this happens because the ISR accesses the peripheral, causing it to clear the interrupt request. A pulse interrupt is an interrupt signal sampled synchronously on the rising edge of the processor clock. To ensure the NVIC detects the interrupt, the peripheral must assert the interrupt signal for at least one clock cycle, during which the NVIC detects the pulse and latches the interrupt.

When the processor enters the ISR, it automatically removes the pending state from the interrupt (see "Hardware and Software Control of Interrupts" on page 87 for more information). For a level-sensitive interrupt, if the signal is not deasserted before the processor returns from the ISR, the interrupt becomes pending again, and the processor must execute its ISR again. As a result, the peripheral can hold the interrupt signal asserted until it no longer needs servicing.

3.1.2.2 Hardware and Software Control of Interrupts

The Cortex-M3 latches all interrupts. A peripheral interrupt becomes pending for one of the following reasons:

- The NVIC detects that the interrupt signal is High and the interrupt is not active.
- The NVIC detects a rising edge on the interrupt signal.
- Software writes to the corresponding interrupt set-pending register bit, or to the Software Trigger Interrupt (SWTRIG) register to make a Software-Generated Interrupt pending. See the INT bit in the PEND0 register on page 101 or SWTRIG on page 106.

A pending interrupt remains pending until one of the following:

- The processor enters the ISR for the interrupt, changing the state of the interrupt from pending to active. Then:
 - For a level-sensitive interrupt, when the processor returns from the ISR, the NVIC samples the interrupt signal. If the signal is asserted, the state of the interrupt changes to pending, which might cause the processor to immediately re-enter the ISR. Otherwise, the state of the interrupt changes to inactive.
 - For a pulse interrupt, the NVIC continues to monitor the interrupt signal, and if this is pulsed the state of the interrupt changes to pending and active. In this case, when the processor returns from the ISR the state of the interrupt changes to pending, which might cause the processor to immediately re-enter the ISR.

If the interrupt signal is not pulsed while the processor is in the ISR, when the processor returns from the ISR the state of the interrupt changes to inactive.

- Software writes to the corresponding interrupt clear-pending register bit
 - For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the interrupt does not change. Otherwise, the state of the interrupt changes to inactive.

- For a pulse interrupt, the state of the interrupt changes to inactive, if the state was pending or to active, if the state was active and pending.

3.1.3 System Control Block (SCB)

The System Control Block (SCB) provides system implementation information and system control, including configuration, control, and reporting of the system exceptions.

3.1.4 Memory Protection Unit (MPU)

This section describes the Memory protection unit (MPU). The MPU divides the memory map into a number of regions and defines the location, size, access permissions, and memory attributes of each region. The MPU supports independent attribute settings for each region, overlapping regions, and export of memory attributes to the system.

The memory attributes affect the behavior of memory accesses to the region. The Cortex-M3 MPU defines eight separate memory regions, 0-7, and a background region.

When memory regions overlap, a memory access is affected by the attributes of the region with the highest number. For example, the attributes for region 7 take precedence over the attributes of any region that overlaps region 7.

The background region has the same memory access attributes as the default memory map, but is accessible from privileged software only.

The Cortex-M3 MPU memory map is unified, meaning that instruction accesses and data accesses have the same region settings.

If a program accesses a memory location that is prohibited by the MPU, the processor generates a memory management fault, causing a fault exception and possibly causing termination of the process in an OS environment. In an OS environment, the kernel can update the MPU region setting dynamically based on the process to be executed. Typically, an embedded OS uses the MPU for memory protection.

Configuration of MPU regions is based on memory types (see "Memory Regions, Types and Attributes" on page 63 for more information).

Table 3-2 on page 88 shows the possible MPU region attributes. See the section called "MPU Configuration for a Stellaris Microcontroller" on page 92 for guidelines for programming a microcontroller implementation.

Memory Type	Description
Strongly Ordered	All accesses to Strongly Ordered memory occur in program order.
Device	Memory-mapped peripherals
Normal	Normal memory

Table 3-2. Memory Attributes Summary

To avoid unexpected behavior, disable the interrupts before updating the attributes of a region that the interrupt handlers might access.

Ensure software uses aligned accesses of the correct size to access MPU registers:

- Except for the MPU Region Attribute and Size (MPUATTR) register, all MPU registers must be accessed with aligned word accesses.
- The **MPUATTR** register can be accessed with byte or aligned halfword or word accesses.

The processor does not support unaligned accesses to MPU registers.

When setting up the MPU, and if the MPU has previously been programmed, disable unused regions to prevent any previous region settings from affecting the new MPU setup.

3.1.4.1 Updating an MPU Region

To update the attributes for an MPU region, the **MPU Region Number (MPUNUMBER)**, **MPU Region Base Address (MPUBASE)** and **MPUATTR** registers must be updated. Each register can be programmed separately or with a multiple-word write to program all of these registers. You can use the **MPUBASEx** and **MPUATTRx** aliases to program up to four regions simultaneously using an STM instruction.

Updating an MPU Region Using Separate Words

This example simple code configures one region:

```
; R1 = region number
; R2 = size/enable
; R3 = attributes
; R4 = address
LDR R0,=MPUNUMBER ; 0xE000ED98, MPU region number register
STR R1, [R0, #0x0] ; Region Number
STR R4, [R0, #0x4] ; Region Base Address
STRH R2, [R0, #0x8] ; Region Size and Enable
STRH R3, [R0, #0xA] ; Region Attribute
```

Disable a region before writing new region settings to the MPU if you have previously enabled the region being changed. For example:

```
; R1 = region number
; R2 = size/enable
; R3 = attributes
; R4 = address
                        ; 0xE000ED98, MPU region number register
; Region Number
LDR R0,=MPUNUMBER
STR R1, [R0, #0x0]
BIC R2, R2, #1
                          ; Disable
STRH R2, [R0, #0x8]
STR R4, [R0, #0x4]
                          ; Region Size and Enable
STR R4, [R0, #0x4]
                          ; Region Base Address
STRH R3, [R0, #0xA]
                          ; Region Attribute
ORR R2, #1
                           ; Enable
STRH R2, [R0, #0x8]
                           ; Region Size and Enable
```

Software must use memory barrier instructions:

- Before MPU setup, if there might be outstanding memory transfers, such as buffered writes, that might be affected by the change in MPU settings.
- After MPU setup, if it includes memory transfers that must use the new MPU settings.

However, memory barrier instructions are not required if the MPU setup process starts by entering an exception handler, or is followed by an exception return, because the exception entry and exception return mechanism cause memory barrier behavior.

Software does not need any memory barrier instructions during MPU setup, because it accesses the MPU through the Private Peripheral Bus (PPB), which is a Strongly Ordered memory region.

For example, if all of the memory access behavior is intended to take effect immediately after the programming sequence, then a DSB instruction and an ISB instruction should be used. A DSB is required after changing MPU settings, such as at the end of context switch. An ISB is required if the code that programs the MPU region or regions is entered using a branch or call. If the programming sequence is entered using a return from exception, or by taking an exception, then an ISB is not required.

Updating an MPU Region Using Multi-Word Writes

The MPU can be programmed directly using multi-word writes, depending how the information is divided. Consider the following reprogramming:

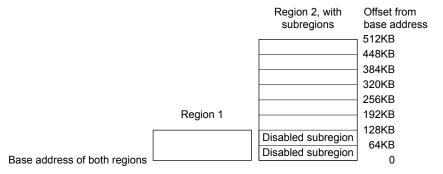
```
; R1 = region number
; R2 = address
; R3 = size, attributes in one
LDR R0, =MPUNUMBER ; 0xE000ED98, MPU region number register
STR R1, [R0, #0x0] ; Region Number
STR R2, [R0, #0x4] ; Region Base Address
STR R3, [R0, #0x8] ; Region Attribute, Size and Enable
```

An STM instruction can be used to optimize this:

```
; R1 = region number
; R2 = address
; R3 = size, attributes in one
LDR R0, =MPUNUMBER ; 0xE000ED98, MPU region number register
STM R0, {R1-R3} ; Region number, address, attribute, size and enable
```

This operation can be done in two words for pre-packed information, meaning that the **MPU Region Base Address (MPUBASE)** register (see page 138) contains the required region number and has the VALID bit set. This method can be used when the data is statically packed, for example in a boot loader:

Subregions


Regions of 256 bytes or more are divided into eight equal-sized subregions. Set the corresponding bit in the SRD field of the **MPU Region Attribute and Size (MPUATTR)** register (see page 140) to disable a subregion. The least-significant bit of the SRD field controls the first subregion, and the most-significant bit controls the last subregion. Disabling a subregion means another region overlapping the disabled range matches instead. If no other enabled region overlaps the disabled subregion, the MPU issues a fault.

Regions of 32, 64, and 128 bytes do not support subregions. With regions of these sizes, the SRD field must be configured to 0×00 , otherwise the MPU behavior is unpredictable.

Example of SRD Use

Two regions with the same base address overlap. Region one is 128 KB, and region two is 512 KB. To ensure the attributes from region one apply to the first 128 KB region, configure the SRD field for region two to 0x03 to disable the first two subregions, as Figure 3-1 on page 91 shows.

Figure 3-1. SRD Use Example

3.1.4.2 MPU Access Permission Attributes

The access permission bits, TEX, S, C, B, AP, and XN of the **MPUATTR** register, control access to the corresponding memory region. If an access is made to an area of memory without the required permissions, then the MPU generates a permission fault.

Table 3-3 on page 91 shows the encodings for the TEX, C, B, and S access permission bits. All encodings are shown for completeness, however the current implementation of the Cortex-M3 does not support the concept of cacheability or shareability. Refer to the section called "MPU Configuration for a Stellaris Microcontroller" on page 92 for information on programming the MPU for Stellaris implementations.

TEX	S	С	В	Memory Type	Shareability	Other Attributes
000b	x ^a	0	0	Strongly Ordered	Shareable	-
000	x ^a	0	1	Device	Device Shareable	
000	0	1	0	Normal	Normal Not shareable	
000	1	1	0	Normal	Shareable	Outer and inner
000	0	1	1	Normal	Not shareable	write-through. No write allocate.
000	1	1	1	Normal	Shareable	
001	0	0	0	Normal	Normal Not shareable	
001	1	0	0	Normal	Shareable	noncacheable.
001	x ^a	0	1	Reserved encoding	-	-
001	x ^a	1	0	Reserved encoding	-	-
001	0	1	1	Normal	Not shareable	Outer and inner
001	1	1	1	Normal	Shareable	write-back. Write and read allocate.
010	x ^a	0	0	Device	Not shareable	Nonshared Device.
010	x ^a	0	1	Reserved encoding	-	-
010	x ^a	1	x ^a	Reserved encoding	-	-

Table 3-3. TEX, S, C, and B Bit Field Encoding

TEX	S	С	В	Memory Type	Shareability	Other Attributes
1BB	0	A	А	Normal	Not shareable	Cached memory (BB =
1BB	1	A	A Normal		Shareable	outer policy, AA = inner policy).
						See Table 3-4 for the encoding of the AA and BB bits.

Table 3-3. TEX, S, C, and B Bit Field Encoding (continued)

a. The MPU ignores the value of this bit.

Table 3-4 on page 92 shows the cache policy for memory attribute encodings with a TEX value in the range of 0x4-0x7.

Table 3-4. Cache Policy for Memory Attribute Encoding

Encoding, AA or BB	Corresponding Cache Policy							
00	Non-cacheable							
01	Write back, write and read allocate							
10	Write through, no write allocate							
11	Write back, no write allocate							

Table 3-5 on page 92 shows the AP encodings in the **MPUATTR** register that define the access permissions for privileged and unprivileged software.

Table 3-5. AP Bit Field Encoding

AP Bit Field	Privileged Permissions	Unprivileged Permissions	Description
000	No access	No access	All accesses generate a permission fault.
001	R/W	No access	Access from privileged software only.
010	R/W	RO	Writes by unprivileged software generate a permission fault.
011	R/W	R/W	Full access.
100	Unpredictable	Unpredictable	Reserved.
101	RO	No access	Reads by privileged software only.
110	RO	RO	Read-only, by privileged or unprivileged software.
111	RO	RO	Read-only, by privileged or unprivileged software.

MPU Configuration for a Stellaris Microcontroller

Stellaris microcontrollers have only a single processor and no caches. As a result, the MPU should be programmed as shown in Table 3-6 on page 92.

Table 3-6. Memory Region Attributes for Stellaris Microcontrollers

Memory Region	TEX	S	С	В	Memory Type and Attributes
Flash memory	000b	0	1	0	Normal memory, non-shareable, write-through
Internal SRAM	000b	1	1	0	Normal memory, shareable, write-through
External SRAM	000b	1	1	1	Normal memory, shareable, write-back, write-allocate
Peripherals	000b	1	0	1	Device memory, shareable

In current Stellaris microcontroller implementations, the shareability and cache policy attributes do not affect the system behavior. However, using these settings for the MPU regions can make the application code more portable. The values given are for typical situations.

3.1.4.3 MPU Mismatch

When an access violates the MPU permissions, the processor generates a memory management fault (see "Exceptions and Interrupts" on page 62 for more information). The **MFAULTSTAT** register indicates the cause of the fault. See page 125 for more information.

3.2 Register Map

Table 3-7 on page 93 lists the Cortex-M3 Peripheral SysTick, NVIC, MPU and SCB registers. The offset listed is a hexadecimal increment to the register's address, relative to the Core Peripherals base address of 0xE000.E000.

Note: Register spaces that are not used are reserved for future or internal use. Software should not modify any reserved memory address.

Offset	Name	Туре	Reset	Description	See page
System T	imer (SysTick) Register	s		·	
0x010	STCTRL	R/W	0x0000.0000	SysTick Control and Status Register	95
0x014	STRELOAD	R/W	SysTick Reload Value Register	97	
0x018	STCURRENT	R/WC	0x0000.0000	SysTick Current Value Register	98
Nested V	ectored Interrupt Contro	oller (NVIC)	Registers		
0x100	EN0	R/W	0x0000.0000	Interrupt 0-29 Set Enable	99
0x180	DISO	R/W	0x0000.0000	Interrupt 0-29 Clear Enable	100
0x200	PEND0	R/W	Interrupt 0-29 Set Pending	101	
0x280	UNPEND0	R/W	0x0000.0000	Interrupt 0-29 Clear Pending	102
0x300	ACTIVE0	RO	0x0000.0000	Interrupt 0-29 Active Bit	103
0x400	PRI0	R/W	0x0000.0000	Interrupt 0-3 Priority	104
0x404	PRI1	R/W	0x0000.0000	Interrupt 4-7 Priority	104
0x408	PRI2	R/W	0x0000.0000	Interrupt 8-11 Priority	104
0x40C	PRI3	R/W	0x0000.0000	Interrupt 12-15 Priority	104
0x410	PRI4	R/W	0x0000.0000	Interrupt 16-19 Priority	104
0x414	PRI5	R/W	0x0000.0000	Interrupt 20-23 Priority	104
0x418	PRI6	R/W	0x0000.0000	Interrupt 24-27 Priority	104
0x41C	PRI7	R/W	0x0000.0000	Interrupt 28-29 Priority	104
0xF00	SWTRIG	Software Trigger Interrupt	106		

Table 3-7. Peripherals Register Map

Offset	Name	Туре	Reset	Description	See page				
System C	ontrol Block (SCB) Regi	sters			l				
0xD00	CPUID	RO	0x410F.C231	CPU ID Base	107				
0xD04	INTCTRL	R/W	0x0000.0000	Interrupt Control and State	108				
0xD08	VTABLE	R/W	0x0000.0000	Vector Table Offset	111				
0xD0C	APINT	R/W	0xFA05.0000	Application Interrupt and Reset Control	112				
0xD10	SYSCTRL	R/W	0x0000.0000	System Control	114				
0xD14	CFGCTRL	R/W	0x0000.0000	Configuration and Control	116				
0xD18	SYSPRI1	R/W	0x0000.0000	System Handler Priority 1	118				
0xD1C	SYSPRI2	R/W	0x0000.0000	System Handler Priority 2	119				
0xD20	SYSPRI3	R/W	0x0000.0000	System Handler Priority 3	120				
0xD24	SYSHNDCTRL	R/W	0x0000.0000	System Handler Control and State	121				
0xD28	FAULTSTAT	TSTAT R/W1C 0x0000.0000 Configurable Fault Status							
0xD2C	HFAULTSTAT	R/W1C	0x0000.0000	Hard Fault Status	131				
0xD34	MMADDR	R/W	-	Memory Management Fault Address	132				
0xD38	FAULTADDR	R/W	-	Bus Fault Address	133				
Memory F	Protection Unit (MPU) Re	gisters							
0xD90	MPUTYPE	RO	0x0000.0800	МРИ Туре	134				
0xD94	MPUCTRL	R/W	0x0000.0000	MPU Control	135				
0xD98	MPUNUMBER	R/W	0x0000.0000	MPU Region Number	137				
0xD9C	MPUBASE	R/W	0x0000.0000	MPU Region Base Address	138				
0xDA0	MPUATTR	R/W	0x0000.0000	MPU Region Attribute and Size	140				
0xDA4	MPUBASE1	R/W	0x0000.0000	MPU Region Base Address Alias 1	138				
0xDA8	MPUATTR1	R/W	0x0000.0000	MPU Region Attribute and Size Alias 1	140				
0xDAC	MPUBASE2	R/W	0x0000.0000	MPU Region Base Address Alias 2	138				
0xDB0	MPUATTR2	R/W	0x0000.0000	MPU Region Attribute and Size Alias 2	140				
0xDB4	MPUBASE3	R/W	0x0000.0000	MPU Region Base Address Alias 3	138				
0xDB8	MPUATTR3	R/W	0x0000.0000	MPU Region Attribute and Size Alias 3					

Table 3-7. Peripherals Register Map (continued)

3.3 System Timer (SysTick) Register Descriptions

This section lists and describes the System Timer registers, in numerical order by address offset.

Register 1: SysTick Control and Status Register (STCTRL), offset 0x010

Note: This register can only be accessed from privileged mode.

The SysTick **STCTRL** register enables the SysTick features.

SysTick Control and Status Register (STCTRL)

Base 0xE000.E000 Offset 0x010 Type R/W, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	•		•					reserved							I	COUNT
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Γ	r		1		Ì		reserved		1 	l.	ſ			CLK_SRC	INTEN	ENABLE
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0
В	Bit/Field Name Type Reset						Reset	Des	cription							
31:17 reserved RO 0x000 Software should not rely on the compatibility with future products preserved across a read-modify-										ucts, the	value o	f a reserv				
	16		COU	NT	R	0	0	Cou	int Flag							
								Valu	ue	Descrip	otion					
								0	0 The SysTick timer has no this bit was read.					ed to 0 sir	nce the I	ast time
								1			sTick tin was rea		ounted	to 0 since	e the las	t time
									s bit is cle ritten wit	-		the regis	ter or if	the STCU	RRENT	register
								If rea Mas the Deb	ad by the terTyp COUNT b	e debugg e bit in th it is not o face V5 /	ger using ne AHB- changed	AP Cont by the d	rol Reg ebugge	it is cleare jister is c r read. Se r for more	lear. Ot	herwise, <i>RM</i> ®
	15:3		reserv	ved	R	0	0x000	com	patibility	with futu	ure prod		value o	erved bit f a reserv on.		
	2		CLK_S	SRC	R/	W	0	Cloc	ck Sourc	е						
								Valu	ue Desc	ription						
								0		nal refei		ock. (Not	implem	ented for	most S	tellaris
								1	Syste	em clock						
											ce clock i operate.	s not in	plemente	ed, this l	oit must	

Bit/Field	Name	Туре	Reset	Descripti	on
1	INTEN	R/W	0	Interrupt	Enable
				Value	Description
				0	Interrupt generation is disabled. Software can use the COUNT bit to determine if the counter has ever reached 0.
				1	An interrupt is generated to the NVIC when SysTick counts to 0.
0	ENABLE	R/W	0	Enable	
				Value	Description
				0	The counter is disabled.
				1	Enables SysTick to operate in a multi-shot way. That is, the counter loads the RELOAD value and begins counting down. On reaching 0, the COUNT bit is set and an interrupt is generated if enabled by INTEN. The counter then loads the RELOAD value again and begins counting.

Register 2: SysTick Reload Value Register (STRELOAD), offset 0x014

Note: This register can only be accessed from privileged mode.

SysTick Reload Value Register (STRELOAD)

The **STRELOAD** register specifies the start value to load into the **SysTick Current Value** (**STCURRENT**) register when the counter reaches 0. The start value can be between 0x1 and 0x00FF.FFFF. A start value of 0 is possible but has no effect because the SysTick interrupt and the COUNT bit are activated when counting from 1 to 0.

SysTick can be configured as a multi-shot timer, repeated over and over, firing every N+1 clock pulses, where N is any value from 1 to 0x00FF.FFFF. For example, if a tick interrupt is required every 100 clock pulses, 99 must be written into the RELOAD field.

Base 0xE000.E000 Offset 0x014 Type R/W, reset 0x0000.0000 31 30 29 28 21 20 16 27 26 25 24 23 22 19 18 17 RELOAD reserved RO RO RO RO RO RO RO RO R/W R/W R/W R/W R/W R/W R/W R/W Туре 0 0 0 0 0 0 Reset 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 3 2 0 1 RELOAD R/W R/W R/W Туре R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Name Reset Description Туре 31:24 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 23:0 RELOAD R/W 0x00.0000 **Reload Value** Value to load into the SysTick Current Value (STCURRENT) register when the counter reaches 0.

Register 3: SysTick Current Value Register (STCURRENT), offset 0x018

Note: This register can only be accessed from privileged mode.

The **STCURRENT** register contains the current value of the SysTick counter.

SysTick Current Value Register (STCURRENT)

Base 0xE000.E000 Offset 0x018

Type R/WC, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		[1	rese	rved		т т			I	1	CUR	I RENT	1	[
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/WC	R/WC	R/WC	R/WC	R/WC	R/WC	R/WC	R/WC
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	I			1 1	RENT	1	I	1	1 1	1			
Туре	R/WC	R/WC	R/WC	R/WC	R/WC	R/WC	R/WC	R/WC	R/WC	R/WC	R/WC	R/WC	R/WC	R/WC	R/WC	R/WC
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/Field Name Type Reset					Des	cription										
	31:24 reserved RO 0x00						0x00	com	patibility	with futu	ure produ	ucts, the	of a resolution of a resolutio	a reserv	•	
	23:0 CURRENT R/WC 0x00.0000) Cur	rent Valu	e								
											the time	0				
									0			0	with any			•

3.4 NVIC Register Descriptions

This section lists and describes the NVIC registers, in numerical order by address offset.

The NVIC registers can only be fully accessed from privileged mode, but interrupts can be pended while in unprivileged mode by enabling the **Configuration and Control (CFGCTRL)** register. Any other unprivileged mode access causes a bus fault.

Ensure software uses correctly aligned register accesses. The processor does not support unaligned accesses to NVIC registers.

An interrupt can enter the pending state even if it is disabled.

Before programming the **VTABLE** register to relocate the vector table, ensure the vector table entries of the new vector table are set up for fault handlers, NMI, and all enabled exceptions such as interrupts. For more information, see page 111.

Register 4: Interrupt 0-29 Set Enable (EN0), offset 0x100

Note: This register can only be accessed from privileged mode.

The **EN0** register enables interrupts and shows which interrupts are enabled. Bit 0 corresponds to Interrupt 0; bit 29 corresponds to Interrupt 29.

See Table 2-9 on page 73 for interrupt assignments.

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an interrupt is not enabled, asserting its interrupt signal changes the interrupt state to pending, but the NVIC never activates the interrupt, regardless of its priority.

Base Offse	0xE000.I t 0x100		.0000														
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
ĺ	rese	rved			, ,		1 1		I I I I I I I I I I I I I I I I I I I								
Туре	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
												1	1				
Туре									R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	31:30 29:0		Nam reserv	/ed	Ty R' R/	0	Reset 0x0 0x000.0000	Soft com pres	patibility	ould not with futu cross a r	ure prod	ucts, the	value of	a reserv			
								Valu	ue	Descri	otion						
								0		On a re	ead, indi	cates the	e interrup	ot is disa	bled.		
										Onaw	rite, no e	effect.	•				
								1		On a re	ad indi	cates the	e interrup	nt is enat	aled		
													interrupt				
									t can on DISn reç	ly be clea gister.	ared by s	setting th	ne corres	ponding	INT[n]	bit in	

Interrupt 0-29 Set Enable (EN0)

Register 5: Interrupt 0-29 Clear Enable (DIS0), offset 0x180

Note: This register can only be accessed from privileged mode.

The DISO register disables interrupts. Bit 0 corresponds to Interrupt 0; bit 29 corresponds to Interrupt 29.

See Table 2-9 on page 73 for interrupt assignments.

Interrupt 0-29 Clear Enable (DIS0)

Base 0xE000.E000

Offset 0x180 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	rese	rved					1 1		II II	I IT		1	1	1	1	
Туре	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ		1	I	I I		1 1	IN	IT IT	1		1		1	I	'
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	pe	Reset	Des	cription							
	31:30		reserv	ved	R	0	0x0	com	patibility	with futu	ure prod	ucts, the	value of	a reserv	•	
	29:0		INT	Г	R/	W	0x000.0000	Inte	rrupt Dis	INT Import Import						
								Val	ue Desc	ription						
								0	On a	read, in	dicates t	he interr	upt is di	sabled.		
	0									write, no	o effect.					
								1	On a	read in	dicates t	he interr	unt is er	ahled		
								,					•			

On a write, clears the corresponding INT[n] bit in the EN0 register, disabling interrupt [n].

Register 6: Interrupt 0-29 Set Pending (PEND0), offset 0x200

Note: This register can only be accessed from privileged mode.

The **PEND0** register forces interrupts into the pending state and shows which interrupts are pending. Bit 0 corresponds to Interrupt 0; bit 29 corresponds to Interrupt 29.

See Table 2-9 on page 73 for interrupt assignments.

Base Offse	rupt 0-2 0xE000.8 t 0x200 R/W, rese	E000	Pending) (PENI	00)											
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	rese	rved					1 1		י י	I NT		I	1	1		1
Type Reset	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[ĺ		1				<u> </u>	II	I NT	1		I	1	1		·]
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
В	it/Field		Nam	ne	Ту	pe	Reset	Des	cription							
	31:30		reserv	ved	R	0	0x0	com	patibilit	y with futu	ure prod	ucts, the	value of	a reserv	•	
	29:0		INT	Г	R/	W	0x000.0000	Inte	rrupt Se	t Pending	9					
								Val	ue	Descript	ion					
								0		On a rea	id, indica	ates that	the inter	rupt is no	ot pendii	ng.
										On a wri	te, no ef	fect.				
								1		On a rea	id, indica	ates that	the inter	rupt is p	ending.	
													nding inte	R/W R/W R/W 0 0 0 3 2 1 R/W R/W R/W 0 0 0 R/W R/W R/W 0 0 0 a reserved bit. To prov lue of a reserved bit. To prov lue of a reserved bit. To prov e interrupt is not pending. e interrupt is pending. e interrupt is pending. end opending, setting a bit h for the pending a bit h	ending	
								If the		NT I I I RW RW RW RW RW RW 0 0 0 0 0 6 5 4 3 2 1 I I I I I RW R/W R/W R/W R/W R/W 0 0 0 0 0	ng a bit h	nas no				
												setting th	ne corres	ponding	INT[n]	bit in

Register 7: Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280

Note: This register can only be accessed from privileged mode.

The **UNPEND0** register shows which interrupts are pending and removes the pending state from interrupts. Bit 0 corresponds to Interrupt 0; bit 29 corresponds to Interrupt 29.

See Table 2-9 on page 73 for interrupt assignments.

Interrupt 0-29 Clear Pending (UNPEND0)

Base 0xE000.E000

Offset 0x280 Type R/W, reset 0x0000.0000

210.0	,															
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[rese	rved		1	т т 1		1 1		1	I IT		1	ı I	1	1	
Туре	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ	1		1	1	і і І		1 1	IN	IT I	I		1	ı I	1	I	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8it/Field 31:30 29:0		Nam resen INT	ved	Tyr R(R/	D	Reset 0x0 0x000.0000	Soft com pres	patibility erved a rrupt Cle	with futu cross a r ar Pendi	ure proc ead-mo	the value lucts, the dify-write	value of	a reserv	•	ovide hould be
								Valu	ue Desc	ription						
								0	On a	read, in	dicates	that the i	nterrupt	is not pe	nding.	
									On a	write, no	o effect.					
								1	On a	read, in	dicates	that the i	nterrupt	is pendir	ng.	
										,		e correspo rupt [n] is	0			PEND0
									Setti inter	0	oes not	affect the	e active s	tate of th	e corres	ponding

Register 8: Interrupt 0-29 Active Bit (ACTIVE0), offset 0x300

Note: This register can only be accessed from privileged mode.

The ACTIVE0 register indicates which interrupts are active. Bit 0 corresponds to Interrupt 0; bit 29 corresponds to Interrupt 29.

See Table 2-9 on page 73 for interrupt assignments.

Caution - Do not manually set or clear the bits in this register.

Interrupt 0-29 Active Bit (ACTIVE0)

Base 0xE000.E000 Offset 0x300 Type RO, reset 0x0000.0000

21	,															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	rese	rved		1			I 1	r	I IN	IT	r	I	r 1		[
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0						
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			•	•				IN IN	NT .							'
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0						

Bit/Field	Name	Туре	Reset	Description
31:30	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
29:0	INT	RO	0x000.0000	Interrupt Active

Value Description

0 The corresponding interrupt is not active.

1 The corresponding interrupt is active, or active and pending. Register 9: Interrupt 0-3 Priority (PRI0), offset 0x400

Register 10: Interrupt 4-7 Priority (PRI1), offset 0x404

Register 11: Interrupt 8-11 Priority (PRI2), offset 0x408

Register 12: Interrupt 12-15 Priority (PRI3), offset 0x40C

Register 13: Interrupt 16-19 Priority (PRI4), offset 0x410

Register 14: Interrupt 20-23 Priority (PRI5), offset 0x414

Register 15: Interrupt 24-27 Priority (PRI6), offset 0x418

Register 16: Interrupt 28-29 Priority (PRI7), offset 0x41C

Note: This register can only be accessed from privileged mode.

The **PRIn** registers provide 3-bit priority fields for each interrupt. These registers are byte accessible. Each register holds four priority fields that are assigned to interrupts as follows:

PRIn Register Bit Field	Interrupt
Bits 31:29	Interrupt [4n+3]
Bits 23:21	Interrupt [4n+2]
Bits 15:13	Interrupt [4n+1]
Bits 7:5	Interrupt [4n]

See Table 2-9 on page 73 for interrupt assignments.

Each priority level can be split into separate group priority and subpriority fields. The PRIGROUP field in the **Application Interrupt and Reset Control (APINT)** register (see page 112) indicates the position of the binary point that splits the priority and subpriority fields.

These registers can only be accessed from privileged mode.

Base Offse	Interrupt 0-3 Priority (PRI0) Base 0xE000.E000 Offset 0x400 Type R/W, reset 0x0000.0000															
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[INTD	1			reserved	r r			INTC				reserved		
Туре	R/W	R/W	R/W	RO	RO	RO	RO	RO	R/W	R/W	R/W	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ĺ	I I I I I I I I I I I I I I I I I I I						INTA			1	reserved					
Туре	R/W	R/W	R/W	RO	RO	RO	RO	RO	R/W	R/W	R/W	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	Reset 0 0 0 0 Bit/Field Name					ре	Reset	Des	cription							
	31:29 INTD R/W 0x0							Inter	rupt Pric	ority for I	nterrupt	[4n+3]				
							This [4n+ PRI 0	field hol 3], wher	ds a pric e n is the o on). Th	ority valu e number e lower t	e, 0-7, fo of the Ir	nterrupt	errupt wite Priority eater the	register	r (n=0 for	

Bit/Field	Name	Туре	Reset	Description
28:24	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
23:21	INTC	R/W	0x0	Interrupt Priority for Interrupt [4n+2]
				This field holds a priority value, 0-7, for the interrupt with the number [4n+2], where n is the number of the Interrupt Priority register (n=0 for PRI0 , and so on). The lower the value, the greater the priority of the corresponding interrupt.
20:16	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
15:13	INTB	R/W	0x0	Interrupt Priority for Interrupt [4n+1]
				This field holds a priority value, 0-7, for the interrupt with the number [4n+1], where n is the number of the Interrupt Priority register (n=0 for PRI0 , and so on). The lower the value, the greater the priority of the corresponding interrupt.
12:8	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:5	INTA	R/W	0x0	Interrupt Priority for Interrupt [4n]
				This field holds a priority value, 0-7, for the interrupt with the number [4n], where n is the number of the Interrupt Priority register (n=0 for PRI0 , and so on). The lower the value, the greater the priority of the corresponding interrupt.
4:0	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 17: Software Trigger Interrupt (SWTRIG), offset 0xF00

Note: Only privileged software can enable unprivileged access to the SWTRIG register.

Writing an interrupt number to the **SWTRIG** register generates a Software Generated Interrupt (SGI). See Table 2-9 on page 73 for interrupt assignments.

When the MAINPEND bit in the **Configuration and Control (CFGCTRL)** register (see page 116) is set, unprivileged software can access the **SWTRIG** register.

Software Trigger Interrupt (SWTRIG)

Base 0xE000.E000 Offset 0xF00

	WO, rese	et 0x000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	T	1 1	1	1 1	res	erved		T	1	1 1	1	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	1	1	reserve	d I		1 I		1		1	INTID	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	WO	WO	WO	WO	WO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Na	me	Ту	ype	Reset	Des	scription							
	31:5		rese	rved	F	RO	0x0000.00	con		with fut	ure prod	ucts, the	value of	a reserv		
	4:0		INT	ГID	V	VO	0x00	Inte	errupt ID							
									s field hol)x3 gener		•		•	GI. For	RO 0 1 WO	, a value

3.5 System Control Block (SCB) Register Descriptions

This section lists and describes the System Control Block (SCB) registers, in numerical order by address offset. The SCB registers can only be accessed from privileged mode.

All registers must be accessed with aligned word accesses except for the **FAULTSTAT** and **SYSPRI1-SYSPRI3** registers, which can be accessed with byte or aligned halfword or word accesses. The processor does not support unaligned accesses to system control block registers.

Register 18: CPU ID Base (CPUID), offset 0xD00

Note: This register can only be accessed from privileged mode.

The **CPUID** register contains the ARM® Cortex[™]-M3 processor part number, version, and implementation information.

Base Offse	J ID Bas 0xE000.E t 0xD00 RO, reset	E000														
г	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				IN	l						ĀR	-			NC	
Type Reset	RO 0	RO 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I					PAF	RTNO		1		1	1		R	EV	1
Type Reset	RO 1	RO 1	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0	RO 1	RO 1	RO 0	RO 0	RO 0	RO 1
B	8it/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:24		IMF	D	R	0	0x41	Imp	lementer	Code						
									ue Desc							
									1 ARM							
	23:20		VAF	ર	R	0	0x0	Vari	ant Num	ber						
								Val	ue Desc	ription						
								0x0		n value in r0p1		on produ	ct revisio	on identif	ier, for e	xample,
	19:16		CO	N	R	0	0xF	Con	stant							
								Val	ue Desc	ription						
								0xF			s as 0xF.					
	15:4		PART	NO	R	0	0xC23	Part	Numbe	r						
								Val	ue Des	cription						
											rocesso	r.				
	3:0		RE	V	R	0	0x1	Rev	ision Nu	mber						
								Val	ue Desc	ription						
								0x1	The			on produ	ict revisio	on identif	ier, for e	xample,

Register 19: Interrupt Control and State (INTCTRL), offset 0xD04

Note: This register can only be accessed from privileged mode.

The **INCTRL** register provides a set-pending bit for the NMI exception, and set-pending and clear-pending bits for the PendSV and SysTick exceptions. In addition, bits in this register indicate the exception number of the exception being processed, whether there are preempted active exceptions, the exception number of the highest priority pending exception, and whether any interrupts are pending.

When writing to **INCTRL**, the effect is unpredictable when writing a 1 to both the PENDSV and UNPENDSV bits, or writing a 1 to both the PENDSTSET and PENDSTCLR bits.

Base Offse	errupt Co e 0xE000.E et 0xD04 e R/W, rese	E000		e (INTC	TRL)																
1990	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16					
	NMISET	rese		r	UNPENDSV	PENDSTSET	PENDSTCLR	reserved	ISRPRE	ISRPEND		r	rved	1	VECF						
Туре	R/W	RO	RO	R/W	WO	R/W	WO	RO	RO	RO	RO	RO	RO	RO	RO	RO					
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0					
		VECF	PEND		RETBASE			reserved					VEC	ACT							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0					
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription						s not pending.						
	31		NMIS	SET	R/	W	0	NMI	Set Per	nding											
								Valu	ue Desc	cription											
								0	On a	read, ind	icates a	an NMI e	exceptior	is not p	ending.						
									On a	write, no	effect.										
								1	On a	read, ind	icates a	an NMI e	exception	is pend	ing.						
									On a	write, ch	anges t	he NMI e	exception	n state to	o pending	g.					
								ente this this	ers the N bit, and bit by the	I is the h MI excep clears this e NMI exc while the p	tion har s bit on ception	ndler as a entering handler	soon as the inte returns 1	it registe rrupt har I only if t	ndler. A r	etting of ead of					
	30:29		reser	ved	R	0	0x0	com	patibility	ould not r with futu cross a re	re prod	ucts, the	value of	a reserv	•						
	28		PEN	DSV	R/	W	0	Pen	dSV Set	Pending											
								Valu	ue Desc	ription											
								0	On a	read, ind	icates a	a PendS	V except	tion is no	ot pendin	g.					
									On a	write, no	effect.										
								1	On a	read, ind	icates a	a PendS	V except	tion is pe	ending.						
									On a	write, ch	anges t	he Pend	SV exce	ption sta	ate to per	nding.					
										oit is the c is bit is cle						te to					

Bit/Field	Name	Туре	Reset	Description
27	UNPENDSV	WO	0	PendSV Clear Pending
				 Value Description On a write, no effect. On a write, removes the pending state from the PendSV exception.
				This bit is write only; on a register read, its value is unknown.
26	PENDSTSET	R/W	0	SysTick Set Pending
				 Value Description On a read, indicates a SysTick exception is not pending. On a write, no effect. On a read, indicates a SysTick exception is pending. On a write, changes the SysTick exception state to pending. This bit is cleared by writing a 1 to the PENDSTCLR bit.
25	PENDSTCLR	WO	0	SysTick Clear Pending
				 Value Description On a write, no effect. On a write, removes the pending state from the SysTick exception.
				This bit is write only; on a register read, its value is unknown.
24	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
23	ISRPRE	RO	0	Debug Interrupt Handling
				 Value Description 0 The release from halt does not take an interrupt. 1 The release from halt takes an interrupt. This bit is only meaningful in Debug mode and reads as zero when the processor is not in Debug mode.
22	ISRPEND	RO	0	Interrupt Pending
				 Value Description No interrupt is pending. An interrupt is pending. This bit provides status for all interrupts excluding NMI and Faults.
21:18	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Bit/Field	Name	Туре	Reset	Description
17:12	VECPEND	RO	0x00	Interrupt Pending Vector Number This field contains the exception number of the highest priority pending enabled exception. The value indicated by this field includes the effect of the BASEPRI and FAULTMASK registers, but not any effect of the PRIMASK register.
				ValueDescription0x00No exceptions are pending0x01Reserved0x02NMI0x03Hard fault0x04Memory management fault0x05Bus fault0x06Usage fault0x07-0x0AReserved0x0DReserved for Debug0x0DReserved0x0EPendSV0x0FSysTick0x10Interrupt Vector 00x11Interrupt Vector 10x2DInterrupt Vector 29
11	RETBASE	RO	0	0x2E-0x3F Reserved Return to Base Value Description 0 There are preempted active exceptions to execute. 1 There are no active exceptions, or the currently executing exception is the only active exception.
10:6	reserved	RO	0x0	This bit provides status for all interrupts excluding NMI and Faults. This bit only has meaning if the processor is currently executing an ISR (the Interrupt Program Status (IPSR) register is non-zero). Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be
5:0	VECACT	RO	0x00	 Interrupt Pending Vector Number This field contains the active exception number. The exception numbers can be found in the description for the VECPEND field. If this field is clear, the processor is in Thread mode. This field contains the same value as the ISRNUM field in the IPSR register. Subtract 16 from this value to obtain the IRQ number required to index into the Interrupt Set Enable (ENn), Interrupt Clear Enable (DISn), Interrupt Set Pending (PENDn), Interrupt Clear Pending (UNPENDn), and Interrupt Priority (PRIn) registers (see page 54).

Register 20: Vector Table Offset (VTABLE), offset 0xD08

Note: This register can only be accessed from privileged mode.

The **VTABLE** register indicates the offset of the vector table base address from memory address 0x0000.0000.

Base Offse	0xE000.I t 0xD08 R/W, res	E000).0000)													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	rese	rved	BASE		r I	1	г I		1	OFFSET		1	1	[]]	ſ		
Type Reset	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	I			OFF	SET	1				•	•	rese	erved			'	
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription								
	31:30 reserved		ved	R	0	0x0	com	patibility	with futu	ure prod	ucts, the	of a resolution of a resolutio	a reserv				
	29		BAS	Ε	R/	W	0	Vec	tor Table	Base							
								Val	ue Desc	ription							
								0	The	vector ta	ble is in	the code	e memor	y region.			
								1	The	vector ta	ble is in	the SRA	M memo	ory regio	n.		
	28:8		OFFS	БЕТ	R/	w	0x000.00	Vec	tor Table	Offset							
								When configuring the OFFSET field, the offset must be aligned to the number of exception entries in the vector table. Because there are 29 interrupts, the offset must be aligned on a 256-byte boundary.									
	7:0		reserv	ved	R	0	0x00	com	patibility	with futu	ure prod	ucts, the	of a reso value of operatio	a reserv			

Vector Table Offset (VTABLE)

Register 21: Application Interrupt and Reset Control (APINT), offset 0xD0C

Note: This register can only be accessed from privileged mode.

The **APINT** register provides priority grouping control for the exception model, endian status for data accesses, and reset control of the system. To write to this register, 0x05FA must be written to the VECTKEY field, otherwise the write is ignored.

The PRIGROUP field indicates the position of the binary point that splits the INTx fields in the **Interrupt Priority (PRIx)** registers into separate group priority and subpriority fields. Table 3-8 on page 112 shows how the PRIGROUP value controls this split. The bit numbers in the Group Priority Field and Subpriority Field columns in the table refer to the bits in the INTA field. For the INTB field, the corresponding bits are 15:13; for INTC, 23:21; and for INTD, 31:29.

Note: Determining preemption of an exception uses only the group priority field.

PRIGROUP Bit Field	Binary Point ^a	Group Priority Field		Group Priorities	Subpriorities
0x0 - 0x4	bxxx.	[7:5]	None	8	1
0x5	bxx.y	[7:6]	[5]	4	2
0x6	bx.yy	[7]	[6:5]	2	4
0x7	b.ууу	None	[7:5]	1	8

Table 3-8. Interrupt Priority Levels

a. INTx field showing the binary point. An x denotes a group priority field bit, and a y denotes a subpriority field bit.

Application Interrupt and Reset Control (APINT)

Base 0xE000.E000 Offset 0xD0C

Type R/W, reset 0xFA05.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			I		r 1		1 1	VEC.	TKEY	ſ	1		1	1	I	
Type Reset	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 0	R/W 1	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 1	R/W 0	R/W 1
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ENDIANESS		rese	rved			PRIGROUP			ſ	reserved			SYSRESREQ	VECTCLRACT	VECTRESET
Туре	RO	RO	RO	RO	RO	R/W	R/W	R/W	RO	RO	RO	RO	RO	WO	WO	WO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit/Field	Name	Туре	Reset	Description
31:16	VECTKEY	R/W	0xFA05	Register Key This field is used to guard against accidental writes to this register. 0x05FA must be written to this field in order to change the bits in this register. On a read, 0xFA05 is returned.
15	ENDIANESS	RO	0	Data Endianess The Stellaris implementation uses only little-endian mode so this is cleared to 0.
14:11	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Bit/Field	Name	Туре	Reset	Description
10:8	PRIGROUP	R/W	0x0	Interrupt Priority Grouping This field determines the split of group priority from subpriority (see Table 3-8 on page 112 for more information).
7:3	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
2	SYSRESREQ	WO	0	System Reset Request
				Value Description
				0 No effect.
				 Resets the core and all on-chip peripherals except the Debug interface.
				This bit is automatically cleared during the reset of the core and reads as 0.
1	VECTCLRACT	WO	0	Clear Active NMI / Fault
				This bit is reserved for Debug use and reads as 0. This bit must be written as a 0, otherwise behavior is unpredictable.
0	VECTRESET	WO	0	System Reset This bit is reserved for Debug use and reads as 0. This bit must be written as a 0, otherwise behavior is unpredictable.

Register 22: System Control (SYSCTRL), offset 0xD10

Note: This register can only be accessed from privileged mode.

The **SYSCTRL** register controls features of entry to and exit from low-power state.

Base Offset	0xE000.E t 0xD10	E000	SYSCTR	L)												
туре	R/W, rese	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ	1		1	1				rese			1	1	1	1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Γ	r		1	r i		reserve	ed I	1			1	SEVONPEND	reserved	SLEEPDEEP	SLEEPEXIT	reserved
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	R/W 0	R/W 0	RO 0
В	it/Field		Nan	ne	Ту	pe	Reset	Des	cription							
	31:5		reser	ved	R	0	0x0000.00	com	patibility	with fut	ure prod	the value lucts, the dify-write	value of	a reserv		
	4		SEVON	PEND	R/	W	0	Wak	e Up on	Pendin	g					
								Valu	ue Desc	ription						
								0				ots or eve e exclud		wake up	the pro	cessor;
								1			nts and a the proc	all interru cessor.	pts, inclu	iding disa	abled int	errupts,
								wak	es up the	e proces	sor from	enters the wrre. If t d and affe	he proce	essor is r	not waitir	
									process rnal eve		wakes u	p on exe	cution of	a sev ir	nstruction	n or an
	3		reser	ved	R	0	0	com	patibility	with fut	ure prod	the value lucts, the dify-write	value of	a reserv		
	2		SLEEPI	DEEP	R/	W	0	Dee	p Sleep	Enable						
								Valu	ue Desc	ription						
								0	Use	Sleep m	iode as t	he low p	ower mo	de.		
								1	Use	Deep-sl	eep moo	le as the	low pow	er mode	-	

Bit/Field	Name	Туре	Reset	Description
1	SLEEPEXIT	R/W	0	Sleep on ISR Exit
				Value Description
				0 When returning from Handler mode to Thread mode, do not sleep when returning to Thread mode.
				1 When returning from Handler mode to Thread mode, enter sleep or deep sleep on return from an ISR.
				Setting this bit enables an interrupt-driven application to avoid returning to an empty main application.
0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 23: Configuration and Control (CFGCTRL), offset 0xD14

Note: This register can only be accessed from privileged mode.

The **CFGCTRL** register controls entry to Thread mode and enables: the handlers for NMI, hard fault and faults escalated by the **FAULTMASK** register to ignore bus faults; trapping of divide by zero and unaligned accesses; and access to the **SWTRIG** register by unprivileged software (see page 106).

Base Offse	0xE000.l t 0xD14	E000	Control	(CFGC	TRL)											
Туре	R/W, res	30 at 0x000	0.0000 29	28	27	26	25	24	23	22	21	20	19	18	17	16
[31	30	1	1	27	20			rved	1 1	21	1	19	10	1	
Г уре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
г	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			rese	erved	I	-	STKALIGN	BFHFNMIGN		reserved		DIV0	UNALIGNED	reserved	MAINPEND	BASETHR
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0
В	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:10		reser	ved	R	0	0x0000.0	com	patibility	ould not i with futu cross a re	ire prod	ucts, the	value of	a reserv		
	9		STKAL	IGN	R/	W	0	Stac	ck Aligni	ment on E	Exceptio	n Entry				
								Valu	ue Des	cription						
								0	The	stack is 4	-byte al	igned.				
								1	The	stack is 8	B-byte al	igned.				
								indio	cate the	on entry, ti stack alig to restore	gnment.	On retu	rn from t	he excep		
	8		BFHFN	MIGN	R/	W	0	Igno	ore Bus	Fault in N	MI and	Fault				
								caus	sed by l	bles hand bad and s ilt, NMI, a	store ins	tructions	. The se	tting of t	his bit ap	
								Valu	ue Des	cription						
								0	Data lock	a bus faul -up.	ts cause	ed by loa	d and st	ore instr	uctions o	ause a
								1		dlers runr sed by loa		-		-	ata bus f	aults
								men	nory. Th	only wher e normal etect con	use of t	his bit is	to probe	e system		
	7:5		reser	ved	R	0	0x0	com	patibility	ould not i with futu cross a re	ire prod	ucts, the	value of	a reserv		

Bit/Field	Name	Туре	Reset	Description
4	DIV0	R/W	0	Trap on Divide by 0 This bit enables faulting or halting when the processor executes an SDIV or UDIV instruction with a divisor of 0.
				Value Description
				0 Do not trap on divide by 0. A divide by zero returns a quotient of 0.
				1 Trap on divide by 0.
3	UNALIGNED	R/W	0	Trap on Unaligned Access
				Value Description
				0 Do not trap on unaligned halfword and word accesses.
				1 Trap on unaligned halfword and word accesses. An unaligned access generates a usage fault.
				Unaligned LDM, STM, LDRD, and STRD instructions always fault regardless of whether UNALIGNED is set.
2	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
1	MAINPEND	R/W	0	Allow Main Interrupt Trigger
				Value Description
				0 Disables unprivileged software access to the SWTRIG register.
				1 Enables unprivileged software access to the SWTRIG register (see page 106).
0	BASETHR	R/W	0	Thread State Control
				Value Description
				0 The processor can enter Thread mode only when no exception is active.
				1 The processor can enter Thread mode from any level under the control of an EXC_RETURN value (see "Exception Return" on page 77 for more information).

Register 24: System Handler Priority 1 (SYSPRI1), offset 0xD18

Note: This register can only be accessed from privileged mode.

The SYSPRI1 register configures the priority level, 0 to 7 of the usage fault, bus fault, and memory management fault exception handlers. This register is byte-accessible.

System Handler Priority 1 (SYSPRI1)

Base 0xE000.E000 Offset 0xD18 Type R/W, reset 0x0000.0000

71	31 30 29 28					26	25	24	23	22	21	20	19	18	17	16			
ſ	ľ		r	rese	rved	1	1 I			USAGE	r			reserved					
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
]	ĩ	BUS	r		F	reserved	1 r			MEM	r			reserved					
Type Reset	R/W 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0			
В	it/Field		Nam	ne	Ту	/pe	Reset	Des	scription										
:	31:24		reser	ved	R	20	0x00	com	npatibility	with futu	ure prod	ly on the value of a reserved bit. To provide e products, the value of a reserved bit should be ad-modify-write operation.							
	23:21		USA	GE	R	/W	0x0	Usa	ige Fault	Priority									
								This prio	This field configures the priority level of the usage fault. Configurable priority values are in the range 0-7, with lower values having higher priority.										
	20:16		reser	ved	R	8O	0x0	com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.										
	15:13		BU	S	R	/W	0x0	Bus	Fault Pi	iority									
														fault. Con having h					
	12:8		reser	ved	R	8O	0x0	com	npatibility	with futu	ure prod		value of	erved bit. a reserv on.					
	7:5		ME	М	R	/W	0x0	Memory Management Fault Priority											
								This field configures the priority level of the memory management Configurable priority values are in the range 0-7, with lower values having higher priority.											
4:0 reserved				R	80	0x0	Software should not rely on the value of a reserve compatibility with future products, the value of a re preserved across a read-modify-write operation.					a reserv							

Register 25: System Handler Priority 2 (SYSPRI2), offset 0xD1C

Note: This register can only be accessed from privileged mode.

The **SYSPRI2** register configures the priority level, 0 to 7 of the SVCall handler. This register is byte-accessible.

System Handler Priority 2 (SYSPRI2)

Base 0xE000.E000 Offset 0xD1C Type R/W, reset 0x0000.0000

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																	
-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
[ľ	SVC	1				1 1		1 I	reserved				1	1		
Туре	R/W	R/W	R/W	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
								rese	erved			1	L	1	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
E	Bit/Field Name Type Res				Reset	Des	cription										
	31:29		SV	С	R/	W	0x0	SVO	Call Prior	itv							
										0	•	ity level o with lowe				,	
28:0			reser	ved	R	0 ()x000.0000	com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								

Register 26: System Handler Priority 3 (SYSPRI3), offset 0xD20

Note: This register can only be accessed from privileged mode.

The SYSPRI3 register configures the priority level, 0 to 7 of the SysTick exception and PendSV handlers. This register is byte-accessible.

System Handler Priority 3 (SYSPRI3)

Base 0xE000.E000 Offset 0xD20 Type R/W, reset 0x0000.0000

21	,															
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		TICK				reserved	1 1			PENDSV				reserved		
Туре	R/W	R/W	R/W	RO	RO	RO	RO	RO	R/W	R/W	R/W	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved	1				DEBUG				reserved		•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	it/Field		Nam	ne	Ту	ре	Reset	Description								
	31:29		TICI	К	R/	W	0x0	Sys	Tick Exc	eption Pr	riority					
								This	field co	nfigures t	the prior	itv level (of the Sv	/sTick ex	ception	
										•	•			-7, with l	•	
										er priority				.,		
	28:24		reserv	ved	R	0	0x0							erved bit		
														a reserv	ed bit sh	nould be
								preserved across a read-modify-write operation.								
	23:21		PEND	SV	R/	W	0x0	PendSV Priority								
								This	field co	nfigures	the prior	ity level	of Pends	SV. Confi	qurable	priority
														having h		
					_	_										
	20:8		reserv	ved	R	0	0x000							erved bit		
										cross a re				a reserv	ed bit sr	iouid be
								prea	Serveu a	51035 a 10	cau-mot	any-write	operatio	лт.		
	7:5		DEBL	JG	R/	W/	0x0	Deb	ug Priori	ity						
								This field configures the priority level of Debug. Configurable priority								
								valu	es are ir	the rang	ge 0-7, v	vith lowe	r values	having h	igher pr	iority.
	4:0 reserved RO 0						0x0.0000	Soft	ware sh	ould not i	relv on t	he value	of a res	erved bit	To prov	/ide
	4:0 reserved					-	0.0000							a reserv		
										cross a re						

Register 27: System Handler Control and State (SYSHNDCTRL), offset 0xD24

Note: This register can only be accessed from privileged mode.

The **SYSHNDCTRL** register enables the system handlers, and indicates the pending status of the usage fault, bus fault, memory management fault, and SVC exceptions as well as the active status of the system handlers.

If a system handler is disabled and the corresponding fault occurs, the processor treats the fault as a hard fault.

This register can be modified to change the pending or active status of system exceptions. An OS kernel can write to the active bits to perform a context switch that changes the current exception type.

Caution – Software that changes the value of an active bit in this register without correct adjustment to the stacked content can cause the processor to generate a fault exception. Ensure software that writes to this register retains and subsequently restores the current active status.

If the value of a bit in this register must be modified after enabling the system handlers, a read-modify-write procedure must be used to ensure that only the required bit is modified.

System Handler Control and State (SYSHNDCTRL)

Base 0xE000.E000 Offset 0xD24

Type R/W, reset 0x0000.0000

	,																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
			1				reserved		r	1	<u>і і</u>		ı I	USAGE	BUS	MEM	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	SVC	BUSP	MEMP	USAGEP	TICK	PNDSV	reserved	MON	SVCA		reserved		USGA	reserved	BUSA	MEMA	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	RO	R/W	R/W	RO 0	RO	RO	R/W	RO	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription								
	31:19		reser	ved	R	0	0x000				rely on th				•		
											ure produ				ed bit sh	iould be	
								pres	served a	cross a r	ead-mod	ity-write	operation	on.			
	18		USA	GE	R/	w	0	Usa	ge Fault	Enable							
	10		00/1	02	10		Ũ	v									
								Valu	Value Description								
								0	0 Disables the usage fault exception.								
								1	Enat	les the i	usage fau	lt excer	otion				
											acuge lue						
	17 BUS R/					W	0	Bus	Fault Er	nable							
								\ /~!·									
									ue Desc	•							
								0	Disa	bles the	bus fault	excepti	on.				
								1	Enat	les the l	bus fault e	exceptio	on.				

Bit/Field	Name	Туре	Reset	Description
16	MEM	R/W	0	Memory Management Fault Enable
				 Value Description Disables the memory management fault exception. Enables the memory management fault exception.
15	SVC	R/W	0	 SVC Call Pending Value Description 0 An SVC call exception is not pending. 1 An SVC call exception is pending.
				This bit can be modified to change the pending status of the SVC call exception.
14	BUSP	R/W	0	Bus Fault Pending
				Value DescriptionA bus fault exception is not pending.A bus fault exception is pending.
				This bit can be modified to change the pending status of the bus fault exception.
13	MEMP	R/W	0	Memory Management Fault Pending
				 Value Description A memory management fault exception is not pending. A memory management fault exception is pending. This bit can be modified to change the pending status of the memory management fault exception.
12	USAGEP	R/W	0	Usage Fault Pending
				 Value Description A usage fault exception is not pending. A usage fault exception is pending. A usage fault exception is pending.
11	TICK	R/W	0	SysTick Exception Active Value Description 0 A SysTick exception is not active. 1 A SysTick exception is active. This bit can be modified to change the active status of the SysTick exception, however, see the Caution above before setting this bit.

Bit/Field	Name	Туре	Reset	Description
10	PNDSV	R/W	0	PendSV Exception Active
				 Value Description A PendSV exception is not active. A PendSV exception is active.
				This bit can be modified to change the active status of the PendSV exception, however, see the Caution above before setting this bit.
9	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
8	MON	R/W	0	Debug Monitor Active
				Value Description
				0 The Debug monitor is not active.
				1 The Debug monitor is active.
7	SVCA	R/W	0	SVC Call Active
				Value Description
				0 SVC call is not active.
				1 SVC call is active.
				This bit can be modified to change the active status of the SVC call exception, however, see the Caution above before setting this bit.
6:4	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
3	USGA	R/W	0	Usage Fault Active
				Value Description
				0 Usage fault is not active.
				1 Usage fault is active.
				This bit can be modified to change the active status of the usage fault exception, however, see the Caution above before setting this bit.
2	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
1	BUSA	R/W	0	Bus Fault Active
				Value Description
				0 Bus fault is not active.
				1 Bus fault is active.
				This bit can be modified to change the active status of the bus fault exception, however, see the Caution above before setting this bit.

Bit/Field	Name	Туре	Reset	Description
0	MEMA	R/W	0	Memory Management Fault Active
				Value Description
				0 Memory management fault is not active.
				1 Memory management fault is active.
				This bit can be modified to change the active status of the memory management fault exception, however, see the Caution above before setting this bit.

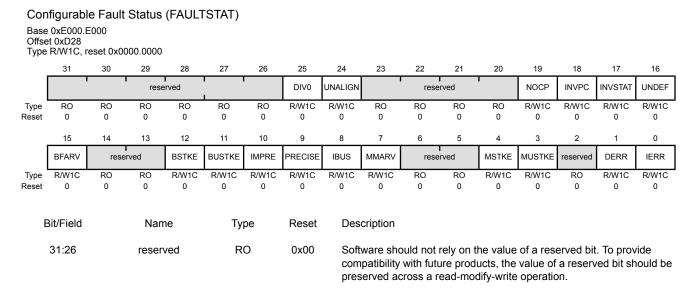
Register 28: Configurable Fault Status (FAULTSTAT), offset 0xD28

Note: This register can only be accessed from privileged mode.

The **FAULTSTAT** register indicates the cause of a memory management fault, bus fault, or usage fault. Each of these functions is assigned to a subregister as follows:

- Usage Fault Status (UFAULTSTAT), bits 31:16
- Bus Fault Status (BFAULTSTAT), bits 15:8
- Memory Management Fault Status (MFAULTSTAT), bits 7:0

FAULTSTAT is byte accessible. FAULTSTAT or its subregisters can be accessed as follows:


- The complete **FAULTSTAT** register, with a word access to offset 0xD28
- The MFAULTSTAT, with a byte access to offset 0xD28
- The MFAULTSTAT and BFAULTSTAT, with a halfword access to offset 0xD28
- The **BFAULTSTAT**, with a byte access to offset 0xD29
- The UFAULTSTAT, with a halfword access to offset 0xD2A

Bits are cleared by writing a 1 to them.

In a fault handler, the true faulting address can be determined by:

- 1. Read and save the Memory Management Fault Address (MMADDR) or Bus Fault Address (FAULTADDR) value.
- 2. Read the MMARV bit in MFAULTSTAT, or the BFARV bit in BFAULTSTAT to determine if the MMADDR or FAULTADDR contents are valid.

Software must follow this sequence because another higher priority exception might change the **MMADDR** or **FAULTADDR** value. For example, if a higher priority handler preempts the current fault handler, the other fault might change the **MMADDR** or **FAULTADDR** value.

Bit/Field	Name	Туре	Reset	Description
25	DIV0	R/W1C	0	Divide-by-Zero Usage Fault
				Value Description
				0 No divide-by-zero fault has occurred, or divide-by-zero trapping is not enabled.
				1 The processor has executed an SDIV or UDIV instruction with a divisor of 0.
				When this bit is set, the PC value stacked for the exception return points to the instruction that performed the divide by zero.
				Trapping on divide-by-zero is enabled by setting the DIV0 bit in the Configuration and Control (CFGCTRL) register (see page 116).
				This bit is cleared by writing a 1 to it.
24	UNALIGN	R/W1C	0	Unaligned Access Usage Fault
				Value Description
				0 No unaligned access fault has occurred, or unaligned access trapping is not enabled.
				1 The processor has made an unaligned memory access.
				Unaligned LDM, STM, LDRD, and STRD instructions always fault regardless of the configuration of this bit.
				Trapping on unaligned access is enabled by setting the UNALIGNED bit in the CFGCTRL register (see page 116).
				This bit is cleared by writing a 1 to it.
23:20	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
19	NOCP	R/W1C	0	No Coprocessor Usage Fault
				Value Description
				0 A usage fault has not been caused by attempting to access a coprocessor.
				1 The processor has attempted to access a coprocessor.
				This bit is cleared by writing a 1 to it.
18	INVPC	R/W1C	0	Invalid PC Load Usage Fault
				Value Description
				0 A usage fault has not been caused by attempting to load an invalid PC value.
				1 The processor has attempted an illegal load of EXC_RETURN to the PC as a result of an invalid context or an invalid EXC_RETURN value.
				When this bit is set, the PC value stacked for the exception return points to the instruction that tried to perform the illegal load of the PC .
				This bit is cleared by writing a 1 to it.

Bit/Field	Name	Туре	Reset	Description
17	INVSTAT	R/W1C	0	Invalid State Usage Fault
				 Value Description A usage fault has not been caused by an invalid state. The processor has attempted to execute an instruction that makes illegal use of the EPSR register. When this bit is set, the PC value stacked for the exception return points to the instruction that attempted the illegal use of the Execution Program Status Register (EPSR) register. This bit is not set if an undefined instruction uses the EPSR register. This bit is cleared by writing a 1 to it.
16	UNDEF	R/W1C	0	Undefined Instruction Usage Fault
				 Value Description A usage fault has not been caused by an undefined instruction. The processor has attempted to execute an undefined instruction. When this bit is set, the PC value stacked for the exception return points to the undefined instruction. An undefined instruction is an instruction that the processor cannot decode. This bit is cleared by writing a 1 to it.
15	BFARV	R/W1C	0	 Bus Fault Address Register Valid Value Description The value in the Bus Fault Address (FAULTADDR) register is not a valid fault address. The FAULTADDR register is holding a valid fault address. The FAULTADDR register is holding a valid fault address. This bit is set after a bus fault, where the address is known. Other faults can clear this bit, such as a memory management fault occurring later. If a bus fault occurs and is escalated to a hard fault because of priority, the hard fault handler must clear this bit. This action prevents problems if returning to a stacked active bus fault handler whose FAULTADDR register value has been overwritten. This bit is cleared by writing a 1 to it.
14:13	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Bit/Field	Name	Туре	Reset	Description
12	BSTKE	R/W1C	0	Stack Bus Fault
				Value Description
				0 No bus fault has occurred on stacking for exception entry.
				1 Stacking for an exception entry has caused one or more bus faults.
				When this bit is set, the SP is still adjusted but the values in the context area on the stack might be incorrect. A fault address is not written to the FAULTADDR register.
				This bit is cleared by writing a 1 to it.
11	BUSTKE	R/W1C	0	Unstack Bus Fault
				Value Description
				0 No bus fault has occurred on unstacking for a return from exception.
				 Unstacking for a return from exception has caused one or more bus faults.
				This fault is chained to the handler. Thus, when this bit is set, the original return stack is still present. The SP is not adjusted from the failing return, a new save is not performed, and a fault address is not written to the FAULTADDR register.
				This bit is cleared by writing a 1 to it.
10	IMPRE	R/W1C	0	Imprecise Data Bus Error
				Value Description
				0 An imprecise data bus error has not occurred.
				1 A data bus error has occurred, but the return address in the stack frame is not related to the instruction that caused the error.
				When this bit is set, a fault address is not written to the FAULTADDR register.
				This fault is asynchronous. Therefore, if the fault is detected when the priority of the current process is higher than the bus fault priority, the bus fault becomes pending and becomes active only when the processor returns from all higher-priority processes. If a precise fault occurs before the processor enters the handler for the imprecise bus fault, the handler detects that both the IMPRE bit is set and one of the precise fault status bits is set.
				This bit is cleared by writing a 1 to it.
9	PRECISE	R/W1C	0	Precise Data Bus Error
				Value Description
				0 A precise data bus error has not occurred.
				1 A data bus error has occurred, and the PC value stacked for the exception return points to the instruction that caused the fault.
				When this bit is set, the fault address is written to the FAULTADDR register. This bit is cleared by writing a 1 to it.
				The sit is occarda by whiting a 1 to it.

Bit/Field	Name	Туре	Reset	Description
8	IBUS	R/W1C	0	Instruction Bus Error
				Value Description
				0 An instruction bus error has not occurred.
				1 An instruction bus error has occurred.
				The processor detects the instruction bus error on prefetching an instruction, but sets this bit only if it attempts to issue the faulting instruction.
				When this bit is set, a fault address is not written to the FAULTADDR register.
				This bit is cleared by writing a 1 to it.
7	MMARV	R/W1C	0	Memory Management Fault Address Register Valid
				Value Description
				0 The value in the Memory Management Fault Address (MMADDR) register is not a valid fault address.
				1 The MMADDR register is holding a valid fault address.
				If a memory management fault occurs and is escalated to a hard fault because of priority, the hard fault handler must clear this bit. This action prevents problems if returning to a stacked active memory management fault handler whose MMADDR register value has been overwritten.
				This bit is cleared by writing a 1 to it.
6:5	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
4	MSTKE	R/W1C	0	Stack Access Violation
				Value Description
				0 No memory management fault has occurred on stacking for exception entry.
				1 Stacking for an exception entry has caused one or more access violations.
				When this bit is set, the SP is still adjusted but the values in the context area on the stack might be incorrect. A fault address is not written to the MMADDR register.
				This bit is cleared by writing a 1 to it.

Bit/Field	Name	Туре	Reset	Description
3	MUSTKE	R/W1C	0	Unstack Access Violation
				Value Description
				0 No memory management fault has occurred on unstacking for a return from exception.
				1 Unstacking for a return from exception has caused one or more access violations.
				This fault is chained to the handler. Thus, when this bit is set, the original return stack is still present. The SP is not adjusted from the failing return, a new save is not performed, and a fault address is not written to the MMADDR register.
				This bit is cleared by writing a 1 to it.
2	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
1	DERR	R/W1C	0	Data Access Violation
				Value Description
				0 A data access violation has not occurred.
				1 The processor attempted a load or store at a location that does not permit the operation.
				When this bit is set, the PC value stacked for the exception return points to the faulting instruction and the address of the attempted access is written to the MMADDR register.
				This bit is cleared by writing a 1 to it.
0	IERR	R/W1C	0	Instruction Access Violation
				Value Description
				0 An instruction access violation has not occurred.
				1 The processor attempted an instruction fetch from a location that does not permit execution.
				This fault occurs on any access to an XN region, even when the MPU is disabled or not present.
				When this bit is set, the PC value stacked for the exception return points to the faulting instruction and the address of the attempted access is not written to the MMADDR register.
				This bit is cleared by writing a 1 to it.

Register 29: Hard Fault Status (HFAULTSTAT), offset 0xD2C

Note: This register can only be accessed from privileged mode.

The **HFAULTSTAT** register gives information about events that activate the hard fault handler.

Bits are cleared by writing a 1 to them.

Hard Fault Status (HFAULTSTAT)

Base 0xE000.E000

Offset 0xD2C Type R/W1C, reset 0x0000.0000

iype	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	DBG	FORCED		1			1 1	[rese	rved	ı	r	1	r	1	•	
Type	R/W1C 0	R/W1C	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO	
Reset									7							0	
	15	14	13	12	11	10	9 rese	8 rved	1	6	5	4	3	2	1 VECT	reserved	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W1C	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription								
	31		DBO	G	R/M	/1C	0	Deb	Debug Event								
	01			0	101	10	Ū		bit is re		or Debug	g use. Th	nis bit mu	ist be wi	ritten as	a 0,	
									erwise be								
	30		FORC	ED	R/W	/1C	0	For	Forced Hard Fault								
								Val	Value Description								
								0	0 No forced hard fault has occurred.								
								1							alation o		
										•	•	ity that c it is disa		handled	l, either b	ecause	
									en this bi us regist	,				st read t	he other	fault	
								This	s bit is cle	eared by	writing a	a 1 to it.					
	29:2		reser	ved	R	0	0x00	com	This bit is cleared by writing a 1 to it. Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								
	1		VEC	т	R/M	/1C	0	Vec	Vector Table Read Fault								
								Val	ue Desc	ription							
								0	No b	us fault l	nas occu	rred on	a vector	table rea	ad.		
								1 A bus fault occurred on a vector table read.									
								This error is always handled by the hard fault handler.									
									en this bi ne instruc							n points	
								s bit is cle				,					
	0		reserv	ved	R	0	0	com	ware sho patibility served ac	with fut	ure prod	ucts, the	value of	a reserv	•		

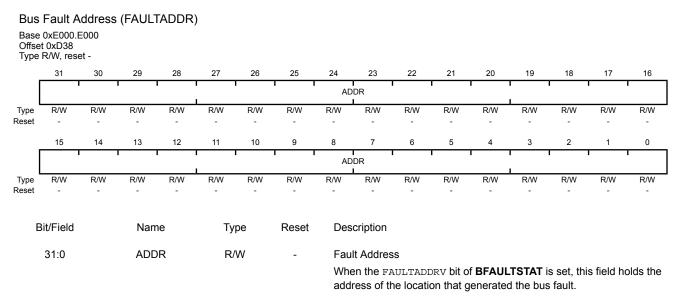
Memory Management Fault Address (MMADDR)

Register 30: Memory Management Fault Address (MMADDR), offset 0xD34

Note: This register can only be accessed from privileged mode.

The **MMADDR** register contains the address of the location that generated a memory management fault. When an unaligned access faults, the address in the **MMADDR** register is the actual address that faulted. Because a single read or write instruction can be split into multiple aligned accesses, the fault address can be any address in the range of the requested access size. Bits in the **Memory Management Fault Status (MFAULTSTAT)** register indicate the cause of the fault and whether the value in the **MMADDR** register is valid (see page 125).

of the location that generated the memory management fault.


Base 0xE000.E000 Offset 0xD34 Type R/W, reset -31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 ADDR Туре R/W Reset 15 14 13 12 10 9 8 6 3 2 11 7 5 4 1 0 ADDR R/W R/W R/W Туре R/W Reset **Bit/Field** Name Type Reset Description 31:0 ADDR R/W Fault Address When the MMARV bit of MFAULTSTAT is set, this field holds the address

July 14, 2014

Register 31: Bus Fault Address (FAULTADDR), offset 0xD38

Note: This register can only be accessed from privileged mode.

The **FAULTADDR** register contains the address of the location that generated a bus fault. When an unaligned access faults, the address in the **FAULTADDR** register is the one requested by the instruction, even if it is not the address of the fault. Bits in the **Bus Fault Status (BFAULTSTAT)** register indicate the cause of the fault and whether the value in the **FAULTADDR** register is valid (see page 125).

3.6 Memory Protection Unit (MPU) Register Descriptions

This section lists and describes the Memory Protection Unit (MPU) registers, in numerical order by address offset.

The MPU registers can only be accessed from privileged mode.

Register 32: MPU Type (MPUTYPE), offset 0xD90

Note: This register can only be accessed from privileged mode.

The **MPUTYPE** register indicates whether the MPU is present, and if so, how many regions it supports.

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1	rese	rved	1	1 1			1	1	IREC	GION	1	1	T
Type eset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I		1	DRE	GION	1	1 1			1	1	reserved		1	1	SEPARAT
īype eset	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
B	it/Field		Nam	ne	Ту	pe	Reset	Des	cription							
	31:24		reserv	ved	R	0	0x00	Soft	ware sho	ould not	relv on t	he value	of a res	erved bit	t. To pro	ovide
								com	patibility	with fut	ure prod	ucts, the dify-write	value of		ved bit s	should b
	23:16		IREGI	ION	R	0	0x00	com pres Num This This	patibility served a nber of I s field inc	with fut cross a r Regions licates th vays cor	ure prod read-moo ne numb ntains 0x	ucts, the dify-write er of sup 00. The I	value of operation	on. /IPU inst	ruction	regions.
	23:16 15:8		IREGI			0	0x00 0x08	com pres Num This This is de	patibility erved ac nber of I field inc field alv	with fut cross a r Regions licates th vays cor by the I	ne numb ntains 0x	ucts, the dify-write er of sup 00. The I	value of operation	on. /IPU inst	ruction	regions.
								com pres Num This This is de Num	patibility served ac ber of I field inc field alv escribed	with fut cross a r Regions licates th vays cor by the I Region	ne numb ntains 0x	ucts, the dify-write er of sup 00. The I	value of operation	on. /IPU inst	ruction	regions.
								com pres Num This This is de Num Valu	patibility served a ber of I field inc field alv escribed ber of D ue Desc	with fut cross a r Regions licates th vays cor by the I P Region ription	ure prod ead-mod ne numb ttains 0x DREGION S	ucts, the dify-write er of sup 00. The I	value of operation ported M MPU me	on. /IPU inst emory ma	ruction ap is un	regions. ified and
				ION	R			com pres Num This is de Num Valu 0x0 Soft	patibility served a her of I field inc field alv escribed her of C ue Desc 8 Indic ware sho patibility	with futures of the second sec	ure prod read-mod ne numb ttains 0x REGION s re are ei rely on t ure prod	ucts, the dify-write er of sup 00. The I r field.	value of operation ported N MPU me orted MI orted MI of a res value of	on. /IPU inst emory ma PU data erved bit	ruction ap is un regions t. To pro	regions. ified and
	15:8		DREG	ION	R	0	0x08	com pres Nurr This This is de Nurr Valu 0x0 Soft com pres	patibility served a her of I field inc field alv escribed her of C ue Desc 8 Indic ware sho patibility	with futures of the second sec	ure prod read-mod ne numb ttains 0x REGION s re are ei rely on t ure prod read-mod	ucts, the dify-write er of sup 00. The I field. ght supp he value ucts, the	value of operation ported N MPU me orted MI orted MI of a res value of	on. /IPU inst emory ma PU data erved bit	ruction ap is un regions t. To pro	regions ified an

0 Indicates the MPU is unified.

Register 33: MPU Control (MPUCTRL), offset 0xD94

Note: This register can only be accessed from privileged mode.

The **MPUCTRL** register enables the MPU, enables the default memory map background region, and enables use of the MPU when in the hard fault, Non-maskable Interrupt (NMI), and **Fault Mask Register (FAULTMASK)** escalated handlers.

When the ENABLE and PRIVDEFEN bits are both set:

- For privileged accesses, the default memory map is as described in "Memory Model" on page 62. Any access by privileged software that does not address an enabled memory region behaves as defined by the default memory map.
- Any access by unprivileged software that does not address an enabled memory region causes a memory management fault.

Execute Never (XN) and Strongly Ordered rules always apply to the System Control Space regardless of the value of the ENABLE bit.

When the ENABLE bit is set, at least one region of the memory map must be enabled for the system to function unless the PRIVDEFEN bit is set. If the PRIVDEFEN bit is set and no regions are enabled, then only privileged software can operate.

When the ENABLE bit is clear, the system uses the default memory map, which has the same memory attributes as if the MPU is not implemented (see Table 2-5 on page 64 for more information). The default memory map applies to accesses from both privileged and unprivileged software.

When the MPU is enabled, accesses to the System Control Space and vector table are always permitted. Other areas are accessible based on regions and whether PRIVDEFEN is set.

Unless HFNMIENA is set, the MPU is not enabled when the processor is executing the handler for an exception with priority -1 or -2. These priorities are only possible when handling a hard fault or NMI exception or when **FAULTMASK** is enabled. Setting the HFNMIENA bit enables the MPU when operating with these two priorities.

MPU Control (MPUCTRL)

Offse	0xE000 t 0xD94 R/W, res	.E000 set 0x000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	1	1	1 1	rese	rved	r	1	ì	1	ì	í	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	1	1	T	reserved	1	1	I	1	1	1 1	PRIVDEFEN	HFNMIENA	ENABLE
Туре	RO	RO	RO	RO	I RO	RO	reserved RO	RO	RO	RO	RO	RO	I RO	PRIVDEFEN R/W	HFNMIENA R/W	ENABLE R/W
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
Reset		0	0		0		RO	0						R/W	R/W	R/W

compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Bit/Field	Name	Туре	Reset	Description
2	PRIVDEFEN	R/W	0	MPU Default Region This bit enables privileged software access to the default memory map.
				Value Description
				0 If the MPU is enabled, this bit disables use of the default memory map. Any memory access to a location not covered by any enabled region causes a fault.
				1 If the MPU is enabled, this bit enables use of the default memory map as a background region for privileged software accesses.
				When this bit is set, the background region acts as if it is region number -1. Any region that is defined and enabled has priority over this default map.
				If the MPU is disabled, the processor ignores this bit.
1	HFNMIENA	R/W	0	MPU Enabled During Faults
				This bit controls the operation of the MPU during hard fault, NMI, and FAULTMASK handlers.
				Value Description
				0 The MPU is disabled during hard fault, NMI, and FAULTMASK handlers, regardless of the value of the ENABLE bit.
				1 The MPU is enabled during hard fault, NMI, and FAULTMASK handlers.
				When the MPU is disabled and this bit is set, the resulting behavior is unpredictable.
0	ENABLE	R/W	0	MPU Enable
				Value Description
				0 The MPU is disabled.
				1 The MPU is enabled.
				When the MPU is disabled and the HFNMIENA bit is set, the resulting behavior is unpredictable.

Register 34: MPU Region Number (MPUNUMBER), offset 0xD98

Note: This register can only be accessed from privileged mode.

The **MPUNUMBER** register selects which memory region is referenced by the **MPU Region Base Address (MPUBASE)** and **MPU Region Attribute and Size (MPUATTR)** registers. Normally, the required region number should be written to this register before accessing the **MPUBASE** or the **MPUATTR** register. However, the region number can be changed by writing to the **MPUBASE** register with the VALID bit set (see page 138). This write updates the value of the REGION field.

MPU Region Number (MPUNUMBER)

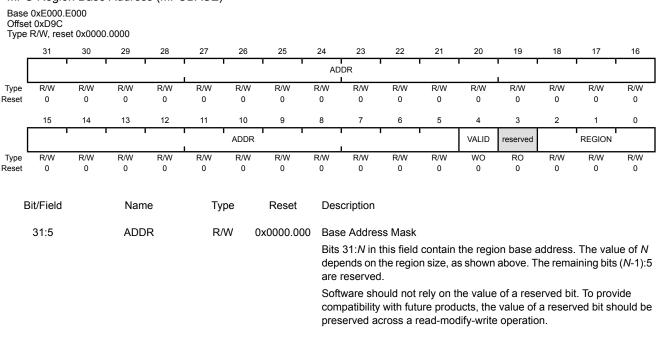
Base 0xE000.E000

Offset 0xD98 Type R/W, reset 0x0000.0000

Type	17/10, 165		0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[r	I		1		1 1	rese	erved		1	1	1	ſ	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[r	1		1		reserved		ı – – – –		1		1		NUMBER	'
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0
В	Bit/Field		Nam	ie	Ту	ре	Reset	Des	scription							
	31:3		reserv	/ed	R) С	0x0000.000	com	tware sho npatibility served ac	with fut	ure prod	ucts, the	value of	a reserv		
	2:0		NUME	BER	R/	W	0x0	MP	U Region	to Acce	ess					
									s field ind UATTR re			0				

Register 35: MPU Region Base Address (MPUBASE), offset 0xD9C Register 36: MPU Region Base Address Alias 1 (MPUBASE1), offset 0xDA4 Register 37: MPU Region Base Address Alias 2 (MPUBASE2), offset 0xDAC Register 38: MPU Region Base Address Alias 3 (MPUBASE3), offset 0xDB4

Note: This register can only be accessed from privileged mode.


The **MPUBASE** register defines the base address of the MPU region selected by the **MPU Region Number (MPUNUMBER)** register and can update the value of the **MPUNUMBER** register. To change the current region number and update the **MPUNUMBER** register, write the **MPUBASE** register with the VALID bit set.

The ADDR field is bits 31:*N* of the **MPUBASE** register. Bits (*N*-1):5 are reserved. The region size, as specified by the SIZE field in the **MPU Region Attribute and Size (MPUATTR)** register, defines the value of *N* where:

 $N = Log_2$ (Region size in bytes)

If the region size is configured to 4 GB in the **MPUATTR** register, there is no valid ADDR field. In this case, the region occupies the complete memory map, and the base address is 0x0000.0000.

The base address is aligned to the size of the region. For example, a 64-KB region must be aligned on a multiple of 64 KB, for example, at 0x0001.0000 or 0x0002.0000.

MPU Region Base Address (MPUBASE)

Bit/Field	Name	Туре	Reset	Description
4	VALID	WO	0	Region Number Valid
				Value Description
				0 The MPUNUMBER register is not changed and the processor updates the base address for the region specified in the MPUNUMBER register and ignores the value of the REGION field.
				1 The MPUNUMBER register is updated with the value of the REGION field and the base address is updated for the region specified in the REGION field.
				This bit is always read as 0.
3	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
2:0	REGION	R/W	0x0	Region Number
				On a write, contains the value to be written to the MPUNUMBER register. On a read, returns the current region number in the MPUNUMBER register.

Register 39: MPU Region Attribute and Size (MPUATTR), offset 0xDA0 Register 40: MPU Region Attribute and Size Alias 1 (MPUATTR1), offset 0xDA8 Register 41: MPU Region Attribute and Size Alias 2 (MPUATTR2), offset 0xDB0 Register 42: MPU Region Attribute and Size Alias 3 (MPUATTR3), offset 0xDB8

Note: This register can only be accessed from privileged mode.

The **MPUATTR** register defines the region size and memory attributes of the MPU region specified by the **MPU Region Number (MPUNUMBER)** register and enables that region and any subregions.

The **MPUATTR** register is accessible using word or halfword accesses with the most-significant halfword holding the region attributes and the least-significant halfword holds the region size and the region and subregion enable bits.

The MPU access permission attribute bits, XN, AP, TEX, S, C, and B, control access to the corresponding memory region. If an access is made to an area of memory without the required permissions, then the MPU generates a permission fault.

The SIZE field defines the size of the MPU memory region specified by the **MPUNUMBER** register as follows:

(Region size in bytes) = 2^(SIZE+1)

The smallest permitted region size is 32 bytes, corresponding to a SIZE value of 4. Table 3-9 on page 140 gives example SIZE values with the corresponding region size and value of N in the **MPU Region Base Address (MPUBASE)** register.

SIZE Encoding	Region Size	Value of N ^a	Note
00100b (0x4)	32 B	5	Minimum permitted size
01001b (0x9)	1 KB	10	-
10011b (0x13)	1 MB	20	-
11101b (0x1D)	1 GB	30	-
11111b (0x1F)		No valid ADDR field in MPUBASE ; the region occupies the complete memory map.	Maximum possible size

Table 3-9. Example SIZE Field Values

a. Refers to the N parameter in the MPUBASE register (see page 138).

MPU Region Attribute and Size (MPUATTR)

Base 0xE000.E000 Offset 0xDA0 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		reserved		XN	reserved		AP	1	rese	rved		TEX		S	С	В
Туре	RO	RO	RO	R/W	RO	R/W	R/W	R/W	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[1 1		SI	n n RD			1	rese	rved		1	SIZE		1	ENABLE
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

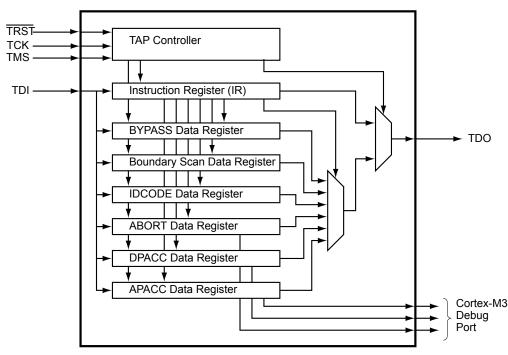
Bit/Field	Name	Туре	Reset	Description
31:29	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
28	XN	R/W	0	Instruction Access Disable
				Value Description
				0 Instruction fetches are enabled.
				1 Instruction fetches are disabled.
27	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
26:24	AP	R/W	0	Access Privilege
				For information on using this bit field, see Table 3-5 on page 92.
23:22	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
21:19	TEX	R/W	0x0	Type Extension Mask
				For information on using this bit field, see Table 3-3 on page 91.
18	S	R/W	0	Shareable For information on using this bit, see Table 3-3 on page 91.
17	С	R/W	0	Cacheable
				For information on using this bit, see Table 3-3 on page 91.
16	В	R/W	0	Bufferable
				For information on using this bit, see Table 3-3 on page 91.
15:8	SRD	R/W	0x00	Subregion Disable Bits
				Value Description
				0 The corresponding subregion is enabled.
				1 The corresponding subregion is disabled.
				Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, configure the SRD field as 0x00. See the section called "Subregions" on page 90 for more information.
7:6	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
5:1	SIZE	R/W	0x0	Region Size Mask
				The SIZE field defines the size of the MPU memory region specified by the MPUNUMBER register. Refer to Table 3-9 on page 140 for more information.

Bit/Field	Name	Туре	Reset	Description
0	ENABLE	R/W	0	Region Enable
				Value Description
				0 The region is disabled.
				1 The region is enabled.

4 JTAG Interface

The Joint Test Action Group (JTAG) port is an IEEE standard that defines a Test Access Port and Boundary Scan Architecture for digital integrated circuits and provides a standardized serial interface for controlling the associated test logic. The TAP, Instruction Register (IR), and Data Registers (DR) can be used to test the interconnections of assembled printed circuit boards and obtain manufacturing information on the components. The JTAG Port also provides a means of accessing and controlling design-for-test features such as I/O pin observation and control, scan testing, and debugging.

The JTAG port is comprised of five pins: TRST, TCK, TMS, TDI, and TDO. Data is transmitted serially into the controller on TDI and out of the controller on TDO. The interpretation of this data is dependent on the current state of the TAP controller. For detailed information on the operation of the JTAG port and TAP controller, please refer to the *IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture*.


The Stellaris[®] JTAG controller works with the ARM JTAG controller built into the Cortex-M3 core. This is implemented by multiplexing the TDO outputs from both JTAG controllers. ARM JTAG instructions select the ARM TDO output while Stellaris JTAG instructions select the Stellaris TDO outputs. The multiplexer is controlled by the Stellaris JTAG controller, which has comprehensive programming for the ARM, Stellaris, and unimplemented JTAG instructions.

The Stellaris JTAG module has the following features:

- IEEE 1149.1-1990 compatible Test Access Port (TAP) controller
- Four-bit Instruction Register (IR) chain for storing JTAG instructions
- IEEE standard instructions: BYPASS, IDCODE, SAMPLE/PRELOAD, EXTEST and INTEST
- ARM additional instructions: APACC, DPACC and ABORT
- Integrated ARM Serial Wire Debug (SWD)

See the *ARM*® *Debug Interface V5 Architecture Specification* for more information on the ARM JTAG controller.

4.1 Block Diagram

Figure 4-1. JTAG Module Block Diagram

4.2 Signal Description

Table 4-1 on page 144 lists the external signals of the JTAG/SWD controller and describes the function of each. The JTAG/SWD controller signals are alternate functions for some GPIO signals, however note that the reset state of the pins is for the JTAG/SWD function. The column in the table below titled "Pin Assignment" lists the GPIO pin placement for the JTAG/SWD controller signals. The AFSEL bit in the **GPIO Alternate Function Select (GPIOAFSEL)** register (page 248) is set to choose the JTAG/SWD function. For more information on configuring GPIOs, see "General-Purpose Input/Outputs (GPIOs)" on page 229.

Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description
SWCLK	40	I	TTL	JTAG/SWD CLK.
SWDIO	39	I/O	TTL	JTAG TMS and SWDIO.
SWO	37	0	TTL	JTAG TDO and SWO.
TCK	40	I	TTL	JTAG/SWD CLK.
TDI	38	I	TTL	JTAG TDI.
TDO	37	0	TTL	JTAG TDO and SWO.
TMS	39	I/O	TTL	JTAG TMS and SWDIO.
TRST	41	I	TTL	JTAG TRST.

Table 4-1. JTAG_SWD_SWO Signals (48QFP)

a. The TTL designation indicates the pin has TTL-compatible voltage levels.

4.3 Functional Description

A high-level conceptual drawing of the JTAG module is shown in Figure 4-1 on page 144. The JTAG module is composed of the Test Access Port (TAP) controller and serial shift chains with parallel update registers. The TAP controller is a simple state machine controlled by the TRST, TCK and TMS inputs. The current state of the TAP controller depends on the current value of TRST and the sequence of values captured on TMS at the rising edge of TCK. The TAP controller determines when the serial shift chains capture new data, shift data from TDI towards TDO, and update the parallel load registers. The current state of the TAP controller also determines whether the Instruction Register (IR) chain or one of the Data Register (DR) chains is being accessed.

The serial shift chains with parallel load registers are comprised of a single Instruction Register (IR) chain and multiple Data Register (DR) chains. The current instruction loaded in the parallel load register determines which DR chain is captured, shifted, or updated during the sequencing of the TAP controller.

Some instructions, like EXTEST and INTEST, operate on data currently in a DR chain and do not capture, shift, or update any of the chains. Instructions that are not implemented decode to the BYPASS instruction to ensure that the serial path between TDI and TDO is always connected (see Table 4-3 on page 149 for a list of implemented instructions).

See "JTAG and Boundary Scan" on page 509 for JTAG timing diagrams.

4.3.1 JTAG Interface Pins

The JTAG interface consists of five standard pins: TRST, TCK, TMS, TDI, and TDO. These pins and their associated reset state are given in Table 4-2 on page 145. Detailed information on each pin follows.

Pin Name	Data Direction	Internal Pull-Up	Internal Pull-Down	Drive Strength	Drive Value
TRST	Input	Enabled	Disabled	N/A	N/A
TCK	Input	Enabled	Disabled	N/A	N/A
TMS	Input	Enabled	Disabled	N/A	N/A
TDI	Input	Enabled	Disabled	N/A	N/A
TDO	Output	Enabled	Disabled	2-mA driver	High-Z

Table 4-2. JTAG Port Pins Reset State

4.3.1.1 Test Reset Input (TRST)

The TRST pin is an asynchronous active Low input signal for initializing and resetting the JTAG TAP controller and associated JTAG circuitry. When TRST is asserted, the TAP controller resets to the Test-Logic-Reset state and remains there while TRST is asserted. When the TAP controller enters the Test-Logic-Reset state, the JTAG Instruction Register (IR) resets to the default instruction, IDCODE.

By default, the internal pull-up resistor on the TRST pin is enabled after reset. Changes to the pull-up resistor settings on GPIO Port B should ensure that the internal pull-up resistor remains enabled on PB7/TRST; otherwise JTAG communication could be lost.

4.3.1.2 Test Clock Input (TCK)

The TCK pin is the clock for the JTAG module. This clock is provided so the test logic can operate independently of any other system clocks. In addition, it ensures that multiple JTAG TAP controllers that are daisy-chained together can synchronously communicate serial test data between

components. During normal operation, TCK is driven by a free-running clock with a nominal 50% duty cycle. When necessary, TCK can be stopped at 0 or 1 for extended periods of time. While TCK is stopped at 0 or 1, the state of the TAP controller does not change and data in the JTAG Instruction and Data Registers is not lost.

By default, the internal pull-up resistor on the TCK pin is enabled after reset. This assures that no clocking occurs if the pin is not driven from an external source. The internal pull-up and pull-down resistors can be turned off to save internal power as long as the TCK pin is constantly being driven by an external source.

4.3.1.3 Test Mode Select (TMS)

The TMS pin selects the next state of the JTAG TAP controller. TMS is sampled on the rising edge of TCK. Depending on the current TAP state and the sampled value of TMS, the next state is entered. Because the TMS pin is sampled on the rising edge of TCK, the *IEEE Standard 1149.1* expects the value on TMS to change on the falling edge of TCK.

Holding TMS high for five consecutive TCK cycles drives the TAP controller state machine to the Test-Logic-Reset state. When the TAP controller enters the Test-Logic-Reset state, the JTAG Instruction Register (IR) resets to the default instruction, IDCODE. Therefore, this sequence can be used as a reset mechanism, similar to asserting TRST. The JTAG Test Access Port state machine can be seen in its entirety in Figure 4-2 on page 147.

By default, the internal pull-up resistor on the TMS pin is enabled after reset. Changes to the pull-up resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains enabled on PC1/TMS; otherwise JTAG communication could be lost.

4.3.1.4 Test Data Input (TDI)

The TDI pin provides a stream of serial information to the IR chain and the DR chains. TDI is sampled on the rising edge of TCK and, depending on the current TAP state and the current instruction, presents this data to the proper shift register chain. Because the TDI pin is sampled on the rising edge of TCK, the *IEEE Standard 1149.1* expects the value on TDI to change on the falling edge of TCK.

By default, the internal pull-up resistor on the TDI pin is enabled after reset. Changes to the pull-up resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains enabled on PC2/TDI; otherwise JTAG communication could be lost.

4.3.1.5 Test Data Output (TDO)

The TDO pin provides an output stream of serial information from the IR chain or the DR chains. The value of TDO depends on the current TAP state, the current instruction, and the data in the chain being accessed. In order to save power when the JTAG port is not being used, the TDO pin is placed in an inactive drive state when not actively shifting out data. Because TDO can be connected to the TDI of another controller in a daisy-chain configuration, the *IEEE Standard 1149.1* expects the value on TDO to change on the falling edge of TCK.

By default, the internal pull-up resistor on the TDO pin is enabled after reset. This assures that the pin remains at a constant logic level when the JTAG port is not being used. The internal pull-up and pull-down resistors can be turned off to save internal power if a High-Z output value is acceptable during certain TAP controller states.

4.3.2 JTAG TAP Controller

The JTAG TAP controller state machine is shown in Figure 4-2 on page 147. The TAP controller state machine is reset to the Test-Logic-Reset state on the assertion of a Power-On-Reset (POR)

or the assertion of TRST. Asserting the correct sequence on the TMS pin allows the JTAG module to shift in new instructions, shift in data, or idle during extended testing sequences. For detailed information on the function of the TAP controller and the operations that occur in each state, please refer to *IEEE Standard 1149.1*.

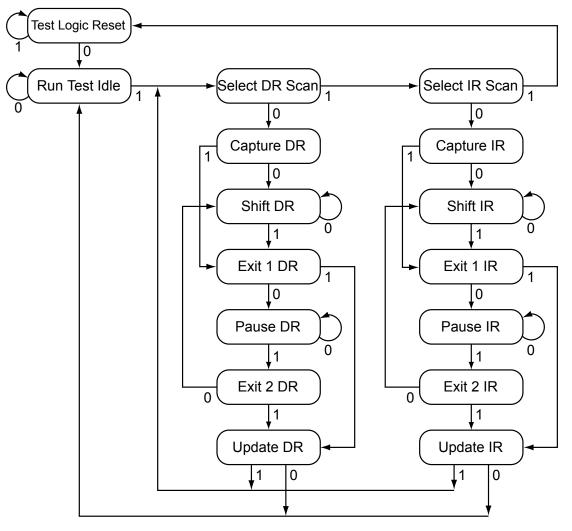


Figure 4-2. Test Access Port State Machine

4.3.3 Shift Registers

The Shift Registers consist of a serial shift register chain and a parallel load register. The serial shift register chain samples specific information during the TAP controller's CAPTURE states and allows this information to be shifted out of TDO during the TAP controller's SHIFT states. While the sampled data is being shifted out of the chain on TDO, new data is being shifted into the serial shift register on TDI. This new data is stored in the parallel load register during the TAP controller's UPDATE states. Each of the shift registers is discussed in detail in "Register Descriptions" on page 149.

4.3.4 Operational Considerations

There are certain operational considerations when using the JTAG module. Because the JTAG pins can be programmed to be GPIOs, board configuration and reset conditions on these pins must be

considered. In addition, because the JTAG module has integrated ARM Serial Wire Debug, the method for switching between these two operational modes is described below.

4.3.4.1 **GPIO** Functionality

When the microcontroller is reset with either a POR or \overline{RST} , the JTAG port pins default to their JTAG configurations. The default configuration includes enabling the pull-up resistors (setting **GPIOPUR** to 1 for PB7 and PC[3:0]) and enabling the alternate hardware function (setting **GPIOAFSEL** to 1 for PB7 and PC[3:0]) on the JTAG pins.

It is possible for software to configure these pins as GPIOs after reset by writing 0s to PB7 and PC[3:0] in the **GPIOAFSEL** register. If the user does not require the JTAG port for debugging or board-level testing, this provides five more GPIOs for use in the design.

Caution – If the JTAG pins are used as GPIOs in a design, PB7 and PC2 cannot have external pull-down resistors connected to both of them at the same time. If both pins are pulled Low during reset, the controller has unpredictable behavior. If this happens, remove one or both of the pull-down resistors, and apply $\overline{\text{RST}}$ or power-cycle the part.

It is possible to create a software sequence that prevents the debugger from connecting to the Stellaris microcontroller. If the program code loaded into flash immediately changes the JTAG pins to their GPIO functionality, the debugger may not have enough time to connect and halt the controller before the JTAG pin functionality switches. This may lock the debugger out of the part. This can be avoided with a software routine that restores JTAG functionality based on an external or software trigger.

4.3.4.2 Communication with JTAG/SWD

Because the debug clock and the system clock can be running at different frequencies, care must be taken to maintain reliable communication with the JTAG/SWD interface. In the Capture-DR state, the result of the previous transaction, if any, is returned, together with a 3-bit ACK response. Software should check the ACK response to see if the previous operation has completed before initiating a new transaction. Alternatively, if the system clock is at least 8 times faster than the debug clock (TCK or SWCLK), the previous operation has enough time to complete and the ACK bits do not have to be checked.

4.3.4.3 ARM Serial Wire Debug (SWD)

In order to seamlessly integrate the ARM Serial Wire Debug (SWD) functionality, a serial-wire debugger must be able to connect to the Cortex-M3 core without having to perform, or have any knowledge of, JTAG cycles. This is accomplished with a SWD preamble that is issued before the SWD session begins.

The switching preamble used to enable the SWD interface of the SWJ-DP module starts with the TAP controller in the Test-Logic-Reset state. From here, the preamble sequences the TAP controller through the following states: Run Test Idle, Select DR, Select IR, Capture IR, Exit1 IR, Update IR, Run Test Idle, Select DR, Select IR, Capture IR, Run Test Idle, Select DR, Select IR, and Test-Logic-Reset states.

Stepping through the JTAG TAP Instruction Register (IR) load sequences of the TAP state machine twice without shifting in a new instruction enables the SWD interface and disables the JTAG interface. For more information on this operation and the SWD interface, see the *ARM® Debug Interface V5 Architecture Specification*.

Because this sequence is a valid series of JTAG operations that could be issued, the ARM JTAG TAP controller is not fully compliant to the *IEEE Standard 1149.1*. This is the only instance where the ARM JTAG TAP controller does not meet full compliance with the specification. Due to the low

probability of this sequence occurring during normal operation of the TAP controller, it should not affect normal performance of the JTAG interface.

4.4 Initialization and Configuration

After a Power-On-Reset or an external reset (\mathbb{RST}), the JTAG pins are automatically configured for JTAG communication. No user-defined initialization or configuration is needed. However, if the user application changes these pins to their GPIO function, they must be configured back to their JTAG functionality before JTAG communication can be restored. This is done by enabling the five JTAG pins (PB7 and PC[3:0]) for their alternate function using the **GPIOAFSEL** register. In addition to enabling the alternate functions, any other changes to the GPIO pad configurations on the five JTAG pins (PB7 and PC[3:0]) should be reverted to their default settings.

4.5 Register Descriptions

There are no APB-accessible registers in the JTAG TAP Controller or Shift Register chains. The registers within the JTAG controller are all accessed serially through the TAP Controller. The registers can be broken down into two main categories: Instruction Registers and Data Registers.

4.5.1 Instruction Register (IR)

The JTAG TAP Instruction Register (IR) is a four-bit serial scan chain connected between the JTAG TDI and TDO pins with a parallel load register. When the TAP Controller is placed in the correct states, bits can be shifted into the Instruction Register. Once these bits have been shifted into the chain and updated, they are interpreted as the current instruction. The decode of the Instruction Register bits is shown in Table 4-3 on page 149. A detailed explanation of each instruction, along with its associated Data Register, follows.

IR[3:0]	Instruction	Description
0000	EXTEST	Drives the values preloaded into the Boundary Scan Chain by the SAMPLE/PRELOAD instruction onto the pads.
0001	INTEST	Drives the values preloaded into the Boundary Scan Chain by the SAMPLE/PRELOAD instruction into the controller.
0010	SAMPLE / PRELOAD	Captures the current I/O values and shifts the sampled values out of the Boundary Scan Chain while new preload data is shifted in.
1000	ABORT	Shifts data into the ARM Debug Port Abort Register.
1010	DPACC	Shifts data into and out of the ARM DP Access Register.
1011	APACC	Shifts data into and out of the ARM AC Access Register.
1110	IDCODE	Loads manufacturing information defined by the <i>IEEE Standard 1149.1</i> into the IDCODE chain and shifts it out.
1111	BYPASS	Connects TDI to TDO through a single Shift Register chain.
All Others	Reserved	Defaults to the BYPASS instruction to ensure that ${\tt TDI}$ is always connected to ${\tt TDO}.$

Table 4-3. JTAG Instruction Register Commands

4.5.1.1 EXTEST Instruction

The EXTEST instruction is not associated with its own Data Register chain. The EXTEST instruction uses the data that has been preloaded into the Boundary Scan Data Register using the SAMPLE/PRELOAD instruction. When the EXTEST instruction is present in the Instruction Register, the preloaded data in the Boundary Scan Data Register associated with the outputs and output enables are used to drive the GPIO pads rather than the signals coming from the core. This allows

tests to be developed that drive known values out of the controller, which can be used to verify connectivity. While the EXTEST instruction is present in the Instruction Register, the Boundary Scan Data Register can be accessed to sample and shift out the current data and load new data into the Boundary Scan Data Register.

4.5.1.2 INTEST Instruction

The INTEST instruction is not associated with its own Data Register chain. The INTEST instruction uses the data that has been preloaded into the Boundary Scan Data Register using the SAMPLE/PRELOAD instruction. When the INTEST instruction is present in the Instruction Register, the preloaded data in the Boundary Scan Data Register associated with the inputs are used to drive the signals going into the core rather than the signals coming from the GPIO pads. This allows tests to be developed that drive known values into the controller, which can be used for testing. It is important to note that although the RST input pin is on the Boundary Scan Data Register chain, it is only observable. While the INTEXT instruction is present in the Instruction Register, the Boundary Scan Data Register can be accessed to sample and shift out the current data and load new data into the Boundary Scan Data Register.

4.5.1.3 SAMPLE/PRELOAD Instruction

The SAMPLE/PRELOAD instruction connects the Boundary Scan Data Register chain between TDI and TDO. This instruction samples the current state of the pad pins for observation and preloads new test data. Each GPIO pad has an associated input, output, and output enable signal. When the TAP controller enters the Capture DR state during this instruction, the input, output, and output-enable signals to each of the GPIO pads are captured. These samples are serially shifted out of TDO while the TAP controller is in the Shift DR state and can be used for observation or comparison in various tests.

While these samples of the inputs, outputs, and output enables are being shifted out of the Boundary Scan Data Register, new data is being shifted into the Boundary Scan Data Register from TDI. Once the new data has been shifted into the Boundary Scan Data Register, the data is saved in the parallel load registers when the TAP controller enters the Update DR state. This update of the parallel load register preloads data into the Boundary Scan Data Register that is associated with each input, output, and output enable. This preloaded data can be used with the EXTEST and INTEST instructions to drive data into or out of the controller. Please see "Boundary Scan Data Register" on page 152 for more information.

4.5.1.4 ABORT Instruction

The ABORT instruction connects the associated ABORT Data Register chain between TDI and TDO. This instruction provides read and write access to the ABORT Register of the ARM Debug Access Port (DAP). Shifting the proper data into this Data Register clears various error bits or initiates a DAP abort of a previous request. Please see the "ABORT Data Register" on page 152 for more information.

4.5.1.5 DPACC Instruction

The DPACC instruction connects the associated DPACC Data Register chain between TDI and TDO. This instruction provides read and write access to the DPACC Register of the ARM Debug Access Port (DAP). Shifting the proper data into this register and reading the data output from this register allows read and write access to the ARM debug and status registers. Please see "DPACC Data Register" on page 152 for more information.

4.5.1.6 APACC Instruction

The APACC instruction connects the associated APACC Data Register chain between TDI and TDO. This instruction provides read and write access to the APACC Register of the ARM Debug Access Port (DAP). Shifting the proper data into this register and reading the data output from this register allows read and write access to internal components and buses through the Debug Port. Please see "APACC Data Register" on page 152 for more information.

4.5.1.7 IDCODE Instruction

The IDCODE instruction connects the associated IDCODE Data Register chain between TDI and TDO. This instruction provides information on the manufacturer, part number, and version of the ARM core. This information can be used by testing equipment and debuggers to automatically configure their input and output data streams. IDCODE is the default instruction that is loaded into the JTAG Instruction Register when a Power-On-Reset (POR) is asserted, TRST is asserted, or the Test-Logic-Reset state is entered. Please see "IDCODE Data Register" on page 151 for more information.

4.5.1.8 BYPASS Instruction

The BYPASS instruction connects the associated BYPASS Data Register chain between TDI and TDO. This instruction is used to create a minimum length serial path between the TDI and TDO ports. The BYPASS Data Register is a single-bit shift register. This instruction improves test efficiency by allowing components that are not needed for a specific test to be bypassed in the JTAG scan chain by loading them with the BYPASS instruction. Please see "BYPASS Data Register" on page 152 for more information.

4.5.2 Data Registers

The JTAG module contains six Data Registers. These include: IDCODE, BYPASS, Boundary Scan, APACC, DPACC, and ABORT serial Data Register chains. Each of these Data Registers is discussed in the following sections.

4.5.2.1 IDCODE Data Register

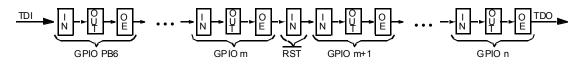
The format for the 32-bit IDCODE Data Register defined by the *IEEE Standard 1149.1* is shown in Figure 4-3 on page 151. The standard requires that every JTAG-compliant device implement either the IDCODE instruction or the BYPASS instruction as the default instruction. The LSB of the IDCODE Data Register is defined to be a 1 to distinguish it from the BYPASS instruction, which has an LSB of 0. This allows auto configuration test tools to determine which instruction is the default instruction.

The major uses of the JTAG port are for manufacturer testing of component assembly, and program development and debug. To facilitate the use of auto-configuration debug tools, the IDCODE instruction outputs a value of 0x1BA0.0477. This allows the debuggers to automatically configure themselves to work correctly with the Cortex-M3 during debug.

Figure 4-3. IDCODE Register Format

4.5.2.2 BYPASS Data Register

The format for the 1-bit BYPASS Data Register defined by the *IEEE Standard 1149.1* is shown in Figure 4-4 on page 152. The standard requires that every JTAG-compliant device implement either the BYPASS instruction or the IDCODE instruction as the default instruction. The LSB of the BYPASS Data Register is defined to be a 0 to distinguish it from the IDCODE instruction, which has an LSB of 1. This allows auto configuration test tools to determine which instruction is the default instruction.


Figure 4-4. BYPASS Register Format

4.5.2.3 Boundary Scan Data Register

The format of the Boundary Scan Data Register is shown in Figure 4-5 on page 152. Each GPIO pin, starting with a GPIO pin next to the JTAG port pins, is included in the Boundary Scan Data Register. Each GPIO pin has three associated digital signals that are included in the chain. These signals are input, output, and output enable, and are arranged in that order as can be seen in the figure.

When the Boundary Scan Data Register is accessed with the SAMPLE/PRELOAD instruction, the input, output, and output enable from each digital pad are sampled and then shifted out of the chain to be verified. The sampling of these values occurs on the rising edge of TCK in the Capture DR state of the TAP controller. While the sampled data is being shifted out of the Boundary Scan chain in the Shift DR state of the TAP controller, new data can be preloaded into the chain for use with the EXTEST and INTEST instructions. These instructions either force data out of the controller, with the EXTEST instruction, or into the controller, with the INTEST instruction.

Figure 4-5. Boundary Scan Register Format

4.5.2.4 APACC Data Register

The format for the 35-bit APACC Data Register defined by ARM is described in the *ARM® Debug Interface V5 Architecture Specification*.

4.5.2.5 DPACC Data Register

The format for the 35-bit DPACC Data Register defined by ARM is described in the *ARM® Debug Interface V5 Architecture Specification*.

4.5.2.6 ABORT Data Register

The format for the 35-bit ABORT Data Register defined by ARM is described in the *ARM*® *Debug Interface V5 Architecture Specification*.

5 System Control

System control determines the overall operation of the device. It provides information about the device, controls the clocking to the core and individual peripherals, and handles reset detection and reporting.

5.1 Signal Description

Table 5-1 on page 153 lists the external signals of the System Control module and describes the function of each. The NMI signal is the alternate function for and functions as a GPIO after reset. under commit protection and require a special process to be configured as any alternate function or to subsequently return to the GPIO function. The column in the table below titled "Pin Assignment" lists the GPIO pin placement for the NMI signal. The AFSEL bit in the **GPIO Alternate Function Select (GPIOAFSEL)** register (page 248) should be set to choose the NMI function. For more information on configuring GPIOs, see "General-Purpose Input/Outputs (GPIOs)" on page 229. The remaining signals (with the word "fixed" in the Pin Assignment column) have a fixed pin assignment and function.

Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description
OSC0	9	I	Analog	Main oscillator crystal input or an external clock reference input.
OSC1	10	0	, v	Main oscillator crystal output. Leave unconnected when using a single-ended clock source.
RST	5	I	TTL	System reset input.

Table 5-1. System Control & Clocks Signals (48QFP)

a. The TTL designation indicates the pin has TTL-compatible voltage levels.

5.2 Functional Description

The System Control module provides the following capabilities:

- Device identification (see "Device Identification" on page 153)
- Local control, such as reset (see "Reset Control" on page 153), power (see "Power Control" on page 158) and clock control (see "Clock Control" on page 158)
- System control (Run, Sleep, and Deep-Sleep modes); see "System Control" on page 161

5.2.1 Device Identification

Several read-only registers provide software with information on the microcontroller, such as version, part number, SRAM size, flash size, and other features. See the **DID0**, **DID1**, and **DC0-DC4** registers.

5.2.2 Reset Control

This section discusses aspects of hardware functions during reset as well as system software requirements following the reset sequence.

5.2.2.1 Reset Sources

The controller has six sources of reset:

1. External reset input pin (\overline{RST}) assertion; see "External \overline{RST} Pin" on page 155.

- 2. Power-on reset (POR); see "Power-On Reset (POR)" on page 154.
- 3. Internal brown-out (BOR) detector; see "Brown-Out Reset (BOR)" on page 156.
- 4. Software-initiated reset (with the software reset registers); see "Software Reset" on page 157.
- 5. A watchdog timer reset condition violation; see "Watchdog Timer Reset" on page 157.
- 6. Internal low drop-out (LDO) regulator output.

Table 5-2 provides a summary of results of the various reset operations.

Table 5-2. Reset Sources

Reset Source	Core Reset?	JTAG Reset?	On-Chip Peripherals Reset?
Power-On Reset	Yes	Yes	Yes
RST	Yes	Pin Config Only	Yes
Brown-Out Reset	Yes	No	Yes
Software System Request Reset ^a	Yes	No	Yes
Software Peripheral Reset	No	No	Yes ^b
Watchdog Reset	Yes	No	Yes
LDO Reset	Yes	No	Yes

a. By using the SYSRESREQ bit in the ARM Cortex-M3 **Application Interrupt and Reset Control (APINT)** register b. Programmable on a module-by-module basis using the Software Reset Control Registers.

After a reset, the **Reset Cause (RESC)** register is set with the reset cause. The bits in this register are sticky and maintain their state across multiple reset sequences, except when an external reset is the cause, and then all the other bits in the **RESC** register are cleared.

Note: The main oscillator is used for external resets and power-on resets; the internal oscillator is used during the internal process by internal reset and clock verification circuitry.

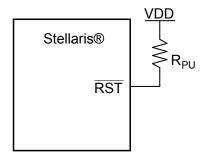
5.2.2.2 Power-On Reset (POR)

Note: The power-on reset also resets the JTAG controller. An external reset does not.

The internal Power-On Reset (POR) circuit monitors the power supply voltage (V_{DD}) and generates a reset signal to all of the internal logic including JTAG when the power supply ramp reaches a threshold value (V_{TH}). The microcontroller must be operating within the specified operating parameters when the on-chip power-on reset pulse is complete. The 3.3-V power supply to the microcontroller must reach 3.0 V within 10 msec of V_{DD} crossing 2.0 V to guarantee proper operation. For applications that require the use of an external reset signal to hold the microcontroller in reset longer than the internal POR, the RST input may be used as discussed in "External RST Pin" on page 155.

The Power-On Reset sequence is as follows:

- **1.** The microcontroller waits for internal POR to go inactive.
- 2. The internal reset is released and the core loads from memory the initial stack pointer, the initial program counter, and the first instruction designated by the program counter, and then begins execution.

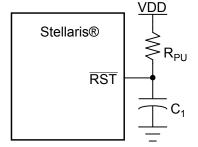

The internal POR is only active on the initial power-up of the microcontroller. The Power-On Reset timing is shown in Figure 18-6 on page 512.

5.2.2.3 External RST Pin

Note: It is recommended that the trace for the \overline{RST} signal must be kept as short as possible. Be sure to place any components connected to the \overline{RST} signal as close to the microcontroller as possible.

If the application only uses the internal POR circuit, the \overline{RST} input must be connected to the power supply (V_{DD}) through an optional pull-up resistor (0 to 100K Ω) as shown in Figure 5-1 on page 155.

Figure 5-1. Basic RST Configuration

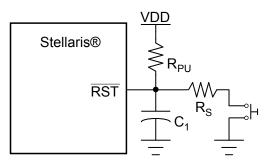

 R_{PU} = 0 to 100 k Ω

The external reset pin (\overline{RST}) resets the microcontroller including the core and all the on-chip peripherals except the JTAG TAP controller (see "JTAG Interface" on page 143). The external reset sequence is as follows:

- 1. The external reset pin (RST) is asserted for the duration specified by T_{MIN} and then de-asserted (see "Reset" on page 511).
- 2. The internal reset is released and the core loads from memory the initial stack pointer, the initial program counter, and the first instruction designated by the program counter, and then begins execution.

To improve noise immunity and/or to delay reset at power up, the \overline{RST} input may be connected to an RC network as shown in Figure 5-2 on page 155.

Figure 5-2. External Circuitry to Extend Power-On Reset



 R_{PU} = 1 k Ω to 100 k Ω

 $C_1 = 1 \text{ nF to } 10 \mu \text{F}$

If the application requires the use of an external reset switch, Figure 5-3 on page 156 shows the proper circuitry to use.

Figure 5-3. Reset Circuit Controlled by Switch

Typical R_{PU} = 10 kΩ

Typical R_S = 470 Ω

C₁ = 10 nF

The R_{PU} and C_1 components define the power-on delay.

The external reset timing is shown in Figure 18-5 on page 512.

5.2.2.4 Brown-Out Reset (BOR)

A drop in the input voltage resulting in the assertion of the internal brown-out detector can be used to reset the controller. This is initially disabled and may be enabled by software.

The system provides a brown-out detection circuit that triggers if the power supply (V_{DD}) drops below a brown-out threshold voltage (V_{BTH}) . The circuit is provided to guard against improper operation of logic and peripherals that operate off the power supply voltage (V_{DD}) and not the LDO voltage. If a brown-out condition is detected, the system may generate a controller interrupt or a system reset. The BOR circuit has a digital filter that protects against noise-related detection for the interrupt condition. This feature may be optionally enabled.

Brown-out resets are controlled with the **Power-On and Brown-Out Reset Control (PBORCTL)** register. The BORIOR bit in the **PBORCTL** register must be set for a brown-out condition to trigger a reset.

The brown-out reset sequence is as follows:

- 1. When V_{DD} drops below V_{BTH} , an internal BOR condition is set.
- 2. If the BORWT bit in the **PBORCTL** register is set and BORIOR is not set, the BOR condition is resampled, after a delay specified by BORTIM, to determine if the original condition was caused by noise. If the BOR condition is not met the second time, then no further action is taken.
- 3. If the BOR condition exists, an internal reset is asserted.
- 4. The internal reset is released and the controller fetches and loads the initial stack pointer, the initial program counter, the first instruction designated by the program counter, and begins execution.
- 5. The internal BOR condition is reset after 500 μ s to prevent another BOR condition from being set before software has a chance to investigate the original cause.

The internal Brown-Out Reset timing is shown in Figure 18-7 on page 512.

5.2.2.5 Software Reset

Software can reset a specific peripheral or generate a reset to the entire system .

Peripherals can be individually reset by software via three registers that control reset signals to each peripheral (see the **SRCRn** registers). If the bit position corresponding to a peripheral is set and subsequently cleared, the peripheral is reset. The encoding of the reset registers is consistent with the encoding of the clock gating control for peripherals and on-chip functions (see "System Control" on page 161). Note that all reset signals for all clocks of the specified unit are asserted as a result of a software-initiated reset.

The entire system can be reset by software by setting the SYSRESETREQ bit in the Cortex-M3 Application Interrupt and Reset Control register resets the entire system including the core. The software-initiated system reset sequence is as follows:

- 1. A software system reset is initiated by writing the SYSRESETREQ bit in the ARM Cortex-M3 Application Interrupt and Reset Control register.
- 2. An internal reset is asserted.
- **3.** The internal reset is deasserted and the controller loads from memory the initial stack pointer, the initial program counter, and the first instruction designated by the program counter, and then begins execution.

The software-initiated system reset timing is shown in Figure 18-8 on page 513.

5.2.2.6 Watchdog Timer Reset

The watchdog timer module's function is to prevent system hangs. The watchdog timer can be configured to generate an interrupt to the controller on its first time-out, and to generate a reset signal on its second time-out.

After the first time-out event, the 32-bit counter is reloaded with the value of the **Watchdog Timer Load (WDTLOAD)** register, and the timer resumes counting down from that value. If the timer counts down to its zero state again before the first time-out interrupt is cleared, and the reset signal has been enabled, the watchdog timer asserts its reset signal to the system. The watchdog timer reset sequence is as follows:

- 1. The watchdog timer times out for the second time without being serviced.
- 2. An internal reset is asserted.
- **3.** The internal reset is released and the controller loads from memory the initial stack pointer, the initial program counter, the first instruction designated by the program counter, and begins execution.

The watchdog reset timing is shown in Figure 18-9 on page 513.

5.2.2.7 Low Drop-Out (LDO)

A reset can be initiated when the internal low drop-out (LDO) regulator output goes unregulated. This is initially disabled and may be enabled by software. LDO is controlled with the **LDO Power Control (LDOPCTL)** register. The LDO reset sequence is as follows:

- 1. LDO goes unregulated and the LDOARST bit in the LDOARST register is set.
- 2. An internal reset is asserted.

3. The internal reset is released and the controller fetches and loads the initial stack pointer, the initial program counter, the first instruction designated by the program counter, and begins execution.

The LDO reset timing is shown in Figure 18-10 on page 513.

5.2.3 Power Control

The Stellaris[®] microcontroller provides an integrated LDO regulator that is used to provide power to the majority of the controller's internal logic. For power reduction, the LDO regulator provides software a mechanism to adjust the regulated value, in small increments (VSTEP), over the range of 2.25 V to 2.75 V (inclusive)—or 2.5 V \pm 10%. The adjustment is made by changing the value of the VADJ field in the **LDO Power Control (LDOPCTL)** register.

5.2.4 Clock Control

System control determines the control of clocks in this part.

5.2.4.1 Fundamental Clock Sources

There are multiple clock sources for use in the device:

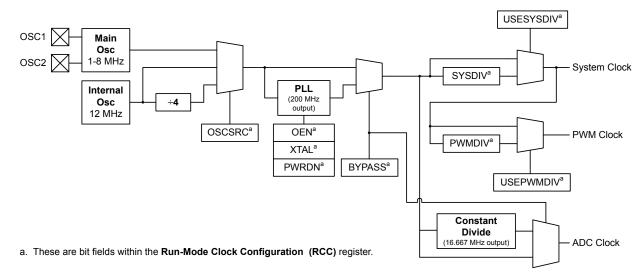
- Internal Oscillator (IOSC). The internal oscillator is an on-chip clock source. It does not require the use of any external components. The frequency of the internal oscillator is 12 MHz ± 30%.
- Main Oscillator (MOSC). The main oscillator provides a frequency-accurate clock source by one of two means: an external single-ended clock source is connected to the OSCO input pin, or an external crystal is connected across the OSCO input and OSC1 output pins. The crystal value allowed depends on whether the main oscillator is used as the clock reference source to the PLL. If so, the crystal must be one of the supported frequencies between 3.579545 MHz through 8.192 MHz (inclusive). If the PLL is not being used, the crystal may be any one of the supported frequencies between 1 MHz and 8.192 MHz. The single-ended clock source range is from DC through the specified speed of the device. The supported crystals are listed in the XTAL bit field in the RCC register (see page 173).

The internal system clock (SysClk), is derived from any of the above sources plus two others: the output of the main internal PLL, and the internal oscillator divided by four (3 MHz \pm 30%). The frequency of the PLL clock reference must be in the range of 3.579545 MHz to 8.192 MHz (inclusive). Table 5-3 on page 158 shows how the various clock sources can be used in a system.

Clock Source	Drive PLL?		Used as SysC	Sik?
Internal Oscillator (12 MHz)	Yes	BYPASS = 0, OSCSRC = 0x1	Yes	BYPASS = 1, OSCSRC = 0x1
Internal Oscillator divide by 4 (3 MHz)	Yes	BYPASS = 0, OSCSRC = 0x2	Yes	BYPASS = 1, OSCSRC = 0x2
Main Oscillator	Yes	BYPASS = 0, OSCSRC = 0x0	Yes	BYPASS = 1, OSCSRC = 0x0

Table 5-3. Clock Source Options

5.2.4.2 Clock Configuration


Nearly all of the control for the clocks is provided by the **Run-Mode Clock Configuration (RCC)** register. This register controls the following clock functionality:

• Source of clocks in sleep and deep-sleep modes

- System clock derived from PLL or other clock source
- Enabling/disabling of oscillators and PLL
- Clock divisors
- Crystal input selection

Figure 5-4 on page 159 shows the logic for the main clock tree. The peripheral blocks are driven by the system clock signal and can be individually enabled/disabled. The ADC clock signal is a automatically divided down to 16.67 MHz for proper ADC operation. The PWM clock signal is a synchronous divide of the system clock to provide the PWM circuit with more range (set with PWMDIV in **RCC**).

Note: When the ADC module is in operation, the system clock must be at least 16.667 MHz.

Figure 5-4. Main Clock Tree

In the **RCC** register, the SYSDIV field specifies which divisor is used to generate the system clock from either the PLL output or the oscillator source (depending on how the BYPASS bit in this register is configured). Table 5-4 shows how the SYSDIV encoding affects the system clock frequency, depending on whether the PLL is used (BYPASS=0) or another clock source is used (BYPASS=1). The divisor is equivalent to the SYSDIV encoding plus 1. For a list of possible clock sources, see Table 5-3 on page 158.

SYSDIV	Divisor	Frequency (BYPASS=0)	Frequency (BYPASS=1)	StellarisWare Parameter ^a
0x0	/1	reserved	Clock source frequency/2	SYSCTL_SYSDIV_1 ^b
0x1	/2	reserved	Clock source frequency/2	SYSCTL_SYSDIV_2
0x2	/3	reserved	Clock source frequency/3	SYSCTL_SYSDIV_3
0x3	/4	50 MHz	Clock source frequency/4	SYSCTL_SYSDIV_4
0x4	/5	40 MHz	Clock source frequency/5	SYSCTL_SYSDIV_5
0x5	/6	33.33 MHz	Clock source frequency/6	SYSCTL_SYSDIV_6
0x6	/7	28.57 MHz	Clock source frequency/7	SYSCTL_SYSDIV_7

SYSDIV	Divisor	Frequency (BYPASS=0)	Frequency (BYPASS=1)	StellarisWare Parameter ^a
0x7	/8	25 MHz	Clock source frequency/8	SYSCTL_SYSDIV_8
0x8	/9	22.22 MHz	Clock source frequency/9	SYSCTL_SYSDIV_9
0x9	/10	20 MHz	Clock source frequency/10	SYSCTL_SYSDIV_10
0xA	/11	18.18 MHz	Clock source frequency/11	SYSCTL_SYSDIV_11
0xB	/12	16.67 MHz	Clock source frequency/12	SYSCTL_SYSDIV_12
0xC	/13	15.38 MHz	Clock source frequency/13	SYSCTL_SYSDIV_13
0xD	/14	14.29 MHz	Clock source frequency/14	SYSCTL_SYSDIV_14
0xE	/15	13.33 MHz	Clock source frequency/15	SYSCTL_SYSDIV_15
0xF	/16	12.5 MHz (default)	Clock source frequency/16	SYSCTL_SYSDIV_16

a. This parameter is used in functions such as SysCtlClockSet() in the Stellaris Peripheral Driver Library.

b. SYSCTL_SYSDIV_1 does not set the USESYSDIV bit. As a result, using this parameter without enabling the PLL results in the system clock having the same frequency as the clock source.

5.2.4.3 Crystal Configuration for the Main Oscillator (MOSC)

The main oscillator supports the use of a select number of crystals. If the main oscillator is used by the PLL as a reference clock, the supported range of crystals is 3.579545 to 8.192 MHz, otherwise, the range of supported crystals is 1 to 8.192 MHz.

The XTAL bit in the **RCC** register (see page 173) describes the available crystal choices and default programming values.

Software configures the **RCC** register XTAL field with the crystal number. If the PLL is used in the design, the XTAL field value is internally translated to the PLL settings.

5.2.4.4 Main PLL Frequency Configuration

The main PLL is disabled by default during power-on reset and is enabled later by software if required. Software configures the main PLL input reference clock source, specifies the output divisor to set the system clock frequency, and enables the main PLL to drive the output.

If the main oscillator provides the clock reference to the main PLL, the translation provided by hardware and used to program the PLL is available for software in the **XTAL to PLL Translation** (**PLLCFG**) register (see page 177). The internal translation provides a translation within \pm 1% of the targeted PLL VCO frequency.

The Crystal Value field (XTAL) in the **Run-Mode Clock Configuration (RCC)** register (see page 173) describes the available crystal choices and default programming of the **PLLCFG** register. Any time the XTAL field changes, the new settings are translated and the internal PLL settings are updated.

5.2.4.5 PLL Modes

The PLL has two modes of operation: Normal and Power-Down

- Normal: The PLL multiplies the input clock reference and drives the output.
- Power-Down: Most of the PLL internal circuitry is disabled and the PLL does not drive the output.

The modes are programmed using the RCC register fields (see page 173).

5.2.4.6 PLL Operation

If a PLL configuration is changed, the PLL output frequency is unstable until it reconverges (relocks) to the new setting. The time between the configuration change and relock is T_{READY} (see Table 18-7 on page 509). During the relock time, the affected PLL is not usable as a clock reference.

PLL is changed by one of the following:

- Change to the XTAL value in the RCC register—writes of the same value do not cause a relock.
- Change in the PLL from Power-Down to Normal mode.

A counter is defined to measure the T_{READY} requirement. The counter is clocked by the main oscillator. The range of the main oscillator has been taken into account and the down counter is set to 0x1200 (that is, ~600 µs at an 8.192 MHz external oscillator clock). Hardware is provided to keep the PLL from being used as a system clock until the T_{READY} condition is met after one of the two changes above. It is the user's responsibility to have a stable clock source (like the main oscillator) before the **RCC** register is switched to use the PLL.

If the main PLL is enabled and the system clock is switched to use the PLL in one step, the system control hardware continues to clock the controller from the oscillator selected by the **RCC** register until the main PLL is stable (T_{READY} time met), after which it changes to the PLL. Software can use many methods to ensure that the system is clocked from the main PLL, including periodically polling the PLLLRIS bit in the **Raw Interrupt Status (RIS)** register, and enabling the PLL Lock interrupt.

5.2.4.7 Clock Verification Timers

There are three identical clock verification circuits that can be enabled though software. The circuit checks the faster clock by a slower clock using timers:

- The main oscillator checks the PLL.
- The main oscillator checks the internal oscillator.
- The internal oscillator divided by 64 checks the main oscillator.

If the verification timer function is enabled and a failure is detected, the main clock tree is immediately switched to a working clock and an interrupt is generated to the controller. Software can then determine the course of action to take. The actual failure indication and clock switching does not clear without a write to the **CLKVCLR** register, an external reset, or a POR reset. The clock verification timers are controlled by the PLLVER, IOSCVER, and MOSCVER bits in the **RCC** register.

5.2.5 System Control

For power-savings purposes, the **RCGCn**, **SCGCn**, and **DCGCn** registers control the clock gating logic for each peripheral or block in the system while the controller is in Run, Sleep, and Deep-Sleep mode, respectively. The **DC1**, **DC2** and **DC4** registers act as a write mask for the **RCGCn**, **SCGCn**, and **DCGCn** registers.

There are three levels of operation for the device defined as:

- Run Mode. In Run mode, the controller actively executes code. Run mode provides normal operation of the processor and all of the peripherals that are currently enabled by the RCGCn registers. The system clock can be any of the available clock sources including the PLL.
- Sleep Mode. In Sleep mode, the clock frequency of the active peripherals is unchanged, but the processor and the memory subsystem are not clocked and therefore no longer execute code.

Sleep mode is entered by the Cortex-M3 core executing a WFI(Wait for Interrupt) instruction. Any properly configured interrupt event in the system will bring the processor back into Run mode. See "Power Management" on page 80 for more details.

Peripherals are clocked that are enabled in the **SCGCn** register when auto-clock gating is enabled (see the **RCC** register) or the **RCGCn** register when the auto-clock gating is disabled. The system clock has the same source and frequency as that during Run mode.

Deep-Sleep Mode. In Deep-Sleep mode, the clock frequency of the active peripherals may change (depending on the Run mode clock configuration) in addition to the processor clock being stopped. An interrupt returns the device to Run mode from one of the sleep modes. Deep-Sleep mode is entered by first writing the Deep Sleep Enable bit in the ARM Cortex-M3 NVIC system control register and then executing a WFI instruction. Any properly configured interrupt event in the system will bring the processor back into Run mode. See "Power Management" on page 80 for more details.

The Cortex-M3 processor core and the memory subsystem are not clocked. Peripherals are clocked that are enabled in the **DCGCn** register when auto-clock gating is enabled (see the **RCC** register) or the **RCGCn** register when auto-clock gating is disabled. The system clock source is the main oscillator by default or the internal oscillator specified in the **DSLPCLKCFG** register if one is enabled. When the **DSLPCLKCFG** register is used, the internal oscillator is powered up, if necessary, and the main oscillator is powered down. If the PLL is running at the time of the WFI instruction, hardware will power the PLL down. When the Deep-Sleep exit event occurs, hardware brings the system clock back to the source and frequency it had at the onset of Deep-Sleep mode before enabling the clocks that had been stopped during the Deep-Sleep duration.

Caution – If the Cortex-M3 Debug Access Port (DAP) has been enabled, and the device wakes from a low power sleep or deep-sleep mode, the core may start executing code before all clocks to peripherals have been restored to their run mode configuration. The DAP is usually enabled by software tools accessing the JTAG or SWD interface when debugging or flash programming. If this condition occurs, a Hard Fault is triggered when software accesses a peripheral with an invalid clock.

A software delay loop can be used at the beginning of the interrupt routine that is used to wake up a system from a WFI (Wait For Interrupt) instruction. This stalls the execution of any code that accesses a peripheral register that might cause a fault. This loop can be removed for production software as the DAP is most likely not enabled during normal execution.

Because the DAP is disabled by default (power on reset), the user can also power-cycle the device. The DAP is not enabled unless it is enabled through the JTAG or SWD interface.

5.3 Initialization and Configuration

The PLL is configured using direct register writes to the **RCC** register. The steps required to successfully change the PLL-based system clock are:

- 1. Bypass the PLL and system clock divider by setting the BYPASS bit and clearing the USESYS bit in the RCC register. This configures the system to run off a "raw" clock source and allows for the new PLL configuration to be validated before switching the system clock to the PLL.
- 2. Select the crystal value (XTAL) and oscillator source (OSCSRC), and clear the PWRDN and OEN bits in RCC. Setting the XTAL field automatically pulls valid PLL configuration data for the appropriate crystal, and clearing the PWRDN and OEN bits powers and enables the PLL and its output.

- 3. Select the desired system divider (SYSDIV) in RCC and set the USESYS bit in RCC. The SYSDIV field determines the system frequency for the microcontroller.
- 4. Wait for the PLL to lock by polling the PLLLRIS bit in the Raw Interrupt Status (RIS) register.
- 5. Enable use of the PLL by clearing the BYPASS bit in RCC.

Note: If the BYPASS bit is cleared before the PLL locks, it is possible to render the device unusable.

5.4 Register Map

Table 5-5 on page 163 lists the System Control registers, grouped by function. The offset listed is a hexadecimal increment to the register's address, relative to the System Control base address of 0x400F.E000.

Note: Spaces in the System Control register space that are not used are reserved for future or internal use. Software should not modify any reserved memory address.

Table 5-5. System Control Register Map

Offset	Name	Туре	Reset	Description	See page
0x000	DID0	RO	-	Device Identification 0	165
0x004	DID1	RO	-	Device Identification 1	181
0x008	DC0	RO	0x001F.000F	Device Capabilities 0	183
0x010	DC1	RO	0x0011.32BF	Device Capabilities 1	184
0x014	DC2	RO	0x0107.0013	Device Capabilities 2	186
0x018	DC3	RO	0xBF3F.01FF	Device Capabilities 3	188
0x01C	DC4	RO	0x0000.001F	Device Capabilities 4	190
0x030	PBORCTL	R/W	0x0000.7FFD	Power-On and Brown-Out Reset Control	167
0x034	LDOPCTL	R/W	0x0000.0000	LDO Power Control	168
0x040	SRCR0	R/W	0x0000000	Software Reset Control 0	208
0x044	SRCR1	R/W	0x0000000	Software Reset Control 1	209
0x048	SRCR2	R/W	0x0000000	Software Reset Control 2	210
0x050	RIS	RO	0x0000.0000	Raw Interrupt Status	169
0x054	IMC	R/W	0x0000.0000	Interrupt Mask Control	170
0x058	MISC	R/W1C	0x0000.0000	Masked Interrupt Status and Clear	171
0x05C	RESC	R/W	-	Reset Cause	172
0x060	RCC	R/W	0x078E.3AC0	Run-Mode Clock Configuration	173
0x064	PLLCFG	RO	-	XTAL to PLL Translation	177
0x100	RCGC0	R/W	0x0000040	Run Mode Clock Gating Control Register 0	191
0x104	RCGC1	R/W	0x00000000	Run Mode Clock Gating Control Register 1	197
0x108	RCGC2	R/W	0x00000000	Run Mode Clock Gating Control Register 2	203

Offset	Name	Туре	Reset	Description	See page
0x110	SCGC0	R/W	0x00000040	Sleep Mode Clock Gating Control Register 0	193
0x114	SCGC1	R/W	0x0000000	Sleep Mode Clock Gating Control Register 1	199
0x118	SCGC2	R/W	0x0000000	Sleep Mode Clock Gating Control Register 2	204
0x120	DCGC0	R/W	0x00000040	Deep Sleep Mode Clock Gating Control Register 0	195
0x124	DCGC1	R/W	0x0000000	Deep Sleep Mode Clock Gating Control Register 1	201
0x128	DCGC2	R/W	0x0000000	Deep Sleep Mode Clock Gating Control Register 2	206
0x144	DSLPCLKCFG	R/W	0x0780.0000	Deep Sleep Clock Configuration	178
0x150	CLKVCLR	R/W	0x0000.0000	Clock Verification Clear	179
0x160	LDOARST	R/W	0x0000.0000	Allow Unregulated LDO to Reset the Part	180

Table 5-5. System Control Register Map (continued)

5.5 Register Descriptions

All addresses given are relative to the System Control base address of 0x400F.E000.

Register 1: Device Identification 0 (DID0), offset 0x000

This register identifies the version of the microcontroller. Each microcontroller is uniquely identified by the combined values of the CLASS field in the **DID0** register and the PARTNO field in the **DID1** register.

	RO, reset		00	00	07	00	05	0.4	00	00	04	00	10	40	47	10
ſ	31 reserved	30	29 VER	28	27	26	25	24	23	22	21 Irved	20	19	18	17	16 1
[Гуре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
eset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•			MA	JOR							MIN	NOR		•	
Type eset	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -
F	Bit/Field		Nam		Ту	ne	Reset	Des	cription							
L			Null						•							
	31		reserv	ved	R	0	0	com	patibility	with fut	ure prod	ucts, the		erved bit a reserv on.		
	30:28		VEF	२	R	0	0x0	DID	0 Versio	า						
								This	field dot	inco tho		aistor for	mat ver	sion The	version	numh
														ded as fo		namo
								is nu		he value						namb
								is nu	umeric. T ue Desc Initia	The value ription	e of the v egister fo	VER field	is enco		ollows:	namb
								is nu Valu	umeric. T ue Desc Initia	The value ription	e of the v	VER field	is enco	ded as fo	ollows:	namb
	27:16		reserv	ved	R	0	0x0	is nu Valu 0x0 Softv com	umeric. T ue Desc Initia Sanc ware sho patibility	The value ription DID0 re Istorm-cl puld not with fut	e of the s egister fo ass devi rely on t ure produ	VER field ormat de ices. he value ucts, the	is encoo finition fo of a res	ded as fo or Stellar erved bit f a reserv	ollows: is® To prov	vide
	27:16 15:8		reserv		R		0x0 -	is nu Valu 0x0 Soft com pres	umeric. T ue Desc Initia Sanc ware sho patibility	The value ription DID0 re Istorm-cl build not with fut cross a r	e of the s egister fo ass devi rely on t ure produ	VER field ormat de ices. he value ucts, the	is encod finition fo of a res value of	ded as fo or Stellar erved bit f a reserv	ollows: is® To prov	vide
							0x0 -	is nu Valu 0x0 Softv com pres Majo This revis num	umeric. 1 ue Desc Initia Sanc ware sho patibility erved ac or Revisi field spo sion refle ber is in	The value ription I DID0 re Istorm-cl build not with futu cross a r on ecifies th cts chan dicated i	e of the s egister fo lass devi rely on t ure produ ead-mod ne major ges to ba n the pa	VER field ormat de- ices. he value ucts, the dify-write revision ase layer rt numbe	is encod finition for of a res value of operation number s of the c er as a le	ded as fo or Stellar erved bit f a reserv	ollows: is® :. To prov red bit sh evice. Th ne major r first rev	vide nould b ne maj
							0x0 -	is nu Valu 0x0 Softv com pres Majo This revis num for s	umeric. 1 ue Desc Initia Sanc ware sho patibility erved ac or Revisi field spo sion refle ber is in	The value ription DID0 re- lstorm-cl build not with futu cross a r on ecifies th cts chan dicated i and so o	e of the s egister fo lass devi rely on t ure produ ead-mod ne major ges to ba n the pa	VER field ormat de- ices. he value ucts, the dify-write revision ase layer rt numbe	is encod finition for of a res value of operation number s of the c er as a le	ded as fo or Stellar erved bil f a reserv on. of the da lesign. Ti tter (A fo	ollows: is® :. To prov red bit sh evice. Th ne major r first rev	vide nould b ne maj
							0x0 -	is nu Valu 0x0 Softv com pres Majo This revis num for s	umeric. 1 ue Desc Initia Sanc ware sho patibility served ac or Revisi field spo sion refle ber is in second, a ue Desc	The value ription I DID0 re storm-cl build not with futue cross a r on ecifies the cts chan dicated i and so o	e of the s egister fo lass devi rely on t ure produ ead-mod ne major ges to ba n the pa	VER field ormat de- ices. he value ucts, the dify-write revision ase layer rt numbe field is e	is encod finition for of a res value of operation number s of the c er as a le	ded as fo or Stellar erved bil f a reserv on. of the da lesign. Ti tter (A fo	ollows: is® :. To prov red bit sh evice. Th ne major r first rev	vide nould b ne maj revisio
							0x0 -	is nu Valu 0x0 Soft com pres Majo This revis num for s Valu	umeric. 1 ue Desc Initia Sanc ware sho patibility erved ac or Revisi field spo sion refle ber is in econd, a ue Desc Revis	The value ription DID0 rest storm-cl buld not with futu cross a r on ecifies th cts chan dicated i and so o ription sion A (ii	e of the s egister fo lass devi rely on t ure produ ead-moo ne major ges to ba n the pa n). This	VER field ormat de- ices. he value ucts, the dify-write revision ase layer rt numbe field is e	is encod finition for of a res value of operation number s of the c er as a le ncoded a	ded as fo or Stellar erved bil f a reserv on. of the da lesign. Ti tter (A fo	ollows: is® :. To prov red bit sh evice. Th ne major r first rev	vide nould l ne maj

Bit/Field	Name	Туре	Reset	Description
7:0	MINOR	RO	-	Minor Revision This field specifies the minor revision number of the device. The minor revision reflects changes to the metal layers of the design. The MINOR field value is reset when the MAJOR field is changed. This field is numeric and is encoded as follows: Value Description 0x0 Initial device, or a major revision update. 0x1 First metal layer change. 0x2 Second metal layer change.
				and so on.

Register 2: Power-On and Brown-Out Reset Control (PBORCTL), offset 0x030

This register is responsible for controlling reset conditions after initial power-on reset.

Power-On and Brown-Out Reset Control (F	PBORCTL)
---	----------

Base 0x400F.E000 Offset 0x030 Type R/W, reset 0x0000.7FFD

	21	30	29	20	27	26	25	24	23	22	21	20	10	10	17	16
Г	31	30	29	28	27	26	20	24	23	22	21	20	19	18	17	10
					[rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			•				BOR	TIM					•		BORIOR	BORWT
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
B	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:16		reserv	ved	R	0	0x0	Soft	ware sho	uld not i	relv on ti	ne value	of a rese	erved bi	t. To prov	vide
	01110		10001	, ou		0	0,10								ved bit sh	
								pres	served ac	ross a r	ead-mod	lify-write	operatio	n.		
	15:2		BOR	ГІМ	R/	M	0x1FFF	BOP	R Time D	ماعر						
	10.2		DOIN		10	••	0,1111				numbor	ofintern	al oscilla	tor clock	ks delaye	d before
									BOR out						to delaye	
								The	width of	this field	l is deriv	ed by the	et _{BOR} w	idth of 5	500 µs ar	nd the
								inter	mal oscil	lator (IO	SC) freq	uency of			At +30%	
								coui	nter value	e has to	exceed	7,800.				
	1		BORI	OR	R/	W	0	BOF	R Interrup	ot or Res	set					
								This	bit contr	ols how	a BOR e	event is s	ignaled	to the c	ontroller.	lf set, a
								rese	et is signa	aled. Oth	nerwise,	an interr	upt is sig	naled.		
	0		BOR	ΝT	R/	W	1	BOF	R Wait ar	d Check	c for Nois	se				
								This	bit speci	fies the r	esponse	e to a bro	wn-out si	ignal as	sertion if	BORIOR
									ot set.		•			0		
														-	ontroller v	
										•		•		•	t. If still a	
									JR Interr Ippresse				ler asser	iea, ine	initial as	senion
									••	•		,	resample	e the ou	tput and	anv
									dition is r							

Register 3: LDO Power Control (LDOPCTL), offset 0x034

The <code>VADJ</code> field in this register adjusts the on-chip output voltage (V $_{OUT}$).

	0x400F.E t 0x034	E000														
		et 0x0000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						•	•	reser	ved	•		•		•	•	
oe et	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RC 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1		rese	l erved	1 1	r		1		1	۱ VA	/DJ	1	T
pe Je	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/V
set	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Desc	cription							
	31:6		reserv	ved	R	0	0				rely on t					
											ure prod				ed bit sl	hould
								pres	erved a	cross a r	read-moo	dify-write	e operatio	on.		
	5:0		VAD	J	R/	W	0x0			cross a r Voltage		dify-write	e operatio	on.		
	5:0		VAD)J	R	W	0x0	LDO This	Output field se	Voltage ts the on	n-chip ou	tput volta			nming va	alues
	5:0		VAD)J	R/	w	0x0	LDO This	Output field se	Voltage ts the on		tput volta			nming va	alues
	5:0		VAE)1	R	W	0x0	LDO This	Output field se /ADJ fie	Voltage ts the on	n-chip ou rovided b	tput volta			nming va	alues
	5:0		VAC)J	R/	W	0x0	LDO This the V	Output field se /ADJ fie	Voltage ts the on Id are pr	n-chip ou rovided b	tput volta			nming va	alues
	5:0		VAE	91	R	w	0x0	LDO This the t	Output field se /ADJ fie le	Voltage ts the on Id are pr V _{OUT} (V	n-chip ou rovided b	tput volta			nming va	alues
	5:0		VAC)1	R	W	0x0	LDO This the t Valu	Output field se /ADJ fie /e 0	Voltage ts the on Id are pr V _{OUT} (V 2.50	n-chip ou rovided b	tput volta			nming va	alues
	5:0		VAE	ſſ	R	W	0x0	LDO This the V Valu 0x00	Output field se /ADJ fie le 0 1 2	Voltage ts the on Id are pr V _{OUT} (V 2.50 2.45	n-chip ou rovided b	tput volta			nming va	alues
	5:0		VAC)J	R	W	0x0	LDO This the v Valu 0x00 0x02	Output field se /ADJ fie le 0 1 2 3	Voltage ts the on Id are pr V _{OUT} (V 2.50 2.45 2.40	n-chip ou rovided b	tput volta			nming va	alues
	5:0		VAC	Ŋ	R	W	0x0	LDO This the v Valu 0x00 0x02 0x02	Output field se /ADJ fie le 0 1 2 3 4	Voltage ts the on Id are pr V _{OUT} (V 2.50 2.45 2.40 2.35	n-chip ou rovided b	tput volta			nming va	alues
	5:0		VAE	ſſ	R	W	0x0	LDO This the v Valu 0x00 0x00 0x00 0x00 0x00 0x00	Output field se /ADJ fie 0 1 2 3 4 5	Voltage ts the on Id are pr V _{OUT} (V 2.50 2.45 2.40 2.35 2.30	n-chip ou ovided b	tput volta			nming va	alues
	5:0		VAC	Ŋ	R	W	0x0	LDO This the v Valu 0x00 0x00 0x00 0x00 0x00 0x00	Output field se /ADJ fie le 0 1 2 3 4 5 6-0x3F	Voltage ts the on Id are pr V _{OUT} (V 2.50 2.45 2.40 2.35 2.30 2.25	n-chip ou ovided b	tput volta			nming va	alues
	5:0		VAE	ſ	R	W	0x0	LDO This the v Valu 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x	Output field se /ADJ fie 0 1 2 3 4 5 6-0x3F B	Voltage ts the on Id are pr V _{OUT} (V 2.50 2.45 2.40 2.35 2.30 2.25 Reserve	n-chip ou ovided b	tput volta			nming va	alues 1
	5:0		VAE	'n	R	W	0x0	LDO This the v Valu 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x	Output field se /ADJ fie 0 1 2 3 4 5 6-0x3F B C	Voltage ts the on Id are pr V _{OUT} (V 2.50 2.45 2.40 2.35 2.30 2.25 Reserve 2.75	n-chip ou ovided b	tput volta			nming va	alues
	5:0		VAC	ນ	R	W	0x0	LDO This the v Valu 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x	Output field se /ADJ fie 0 1 2 3 4 5 6-0x3F B C D	Voltage ts the on Id are pr V _{OUT} (V 2.50 2.45 2.40 2.35 2.30 2.25 Reserve 2.75 2.70	n-chip ou ovided b	tput volta			nming va	alues

Register 4: Raw Interrupt Status (RIS), offset 0x050

Central location for system control raw interrupts. These are set and cleared by hardware.

Base Offse	v Interru 0x400F.E et 0x050 RO, reset	000	us (RIS)												
71	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		T	I I	r r		1 I	rese	rved	r 1		r	1	I	I	r I
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	•	reserved					PLLLRIS	CLRIS	IOFRIS	MOFRIS	LDORIS	BORRIS	PLLFRIS
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset	U	0	U	0	U	U	0	0	U	0	0	0	U	0	0	0
E	Bit/Field		Nam	ne	Тур	be	Reset	Des	cription							
	31:7		reserv	ved	R	C	0	•								
	6		PLLLI	RIS	R	C	0	PLL	Lock Ra	aw Interru	upt Statu	IS				
								This	s bit is se	t when th	ne PLL 1	READY T	imer ass	serts.		
	5		CLR	IS	R	C	0	Cur	rent Limi	t Raw Inf	errupt S	tatus				
								This	s bit is se	t if the Ll	DO's CL	E outpu	t asserts			
	4		IOFF	RIS	R	C	0	Inte	rnal Osc	illator Fa	ult Raw	Interrup	t Status			
								This	s bit is se	t if an int	ernal os	cillator f	ault is de	etected.		
	3		MOF	RIS	R	C	0	Mai	n Oscilla	tor Fault	Raw Int	errupt S	tatus			
								This	s bit is se	t if a mai	n oscilla	tor fault	is detect	ted.		
	2		LDOF	RIS	R	C	0	LDC) Power	Unregula	ated Rav	v Interru	pt Status	;		
								This	s bit is se	t if a LD0	O voltage	e is unre	egulated.			
	1		BORF	RIS	R	C	0	Brow	wn-Out F	Reset Ra	w Interru	upt Statu	IS			
								This bit is the raw interrupt status for any brown-out conditions. If set, a brown-out condition is currently active. This is an unregistered signal from the brown-out detection circuit. An interrupt is reported if the BORIM bit in the IMC register is set and the BORIOR bit in the PBORCTL register is cleared.								
	0		PLLFI	RIS	R	C	0	PLL	Fault R	aw Interr	upt Stati	JS				
								This	s bit is se	t if a PLL	fault is	detecte	d (stops	oscillatin	g).	

Register 5: Interrupt Mask Control (IMC), offset 0x054

Central location for system control interrupt masks.

Interrupt Mask Control	(IMC)
Base 0x400F E000	

Base 0x400F.E000 Offset 0x054 Type R/W, reset 0x0000.0000

туре	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	20		20	1 1		rved		- 1		1	10	· · ·	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					reserved				1	PLLLIM	CLIM	IOFIM	MOFIM	LDOIM	BORIM	PLLFIM
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nam	ne	Тур	be	Reset	Des	cription							
	31:7		reserv	ved	R	D	0	com	patibility	ould not i with futu cross a re	ire prodi	ucts, the	value of	a reserv		
	6		PLLL	IM	RΛ	N	0	PLL	Lock Int	errupt M	ask					
								This inter	bit spec rrupt. If s	ifies whe et, an int n interrup	ther a PL errupt is	genera	ted if PLI			
	5		CLI	М	R۸	N	0	Cur	rent Limi	t Interrup	ot Mask					
								 Current Limit Interrupt Mask This bit specifies whether a current limit detection is promoted to controller interrupt. If set, an interrupt is generated if CLRIS is se otherwise, an interrupt is not generated. 								
	4		IOFI	М	R۸	N	0	Inte	rnal Osc	illator Fa	ult Interr	upt Mas	k			
								to a	controlle	ifies whet er interrup n interrup	ot. If set,	an interi	rupt is ge			
	3		MOF	IM	R۸	N	0	Mai	n Oscilla	tor Fault	Interrup	t Mask				
								to a	controlle	cifies whe er interrup n interrup	ot. If set,	an interi	rupt is ge			
	2		LDO	IM	R۸	N	0	LDC) Power	Unregula	ated Inte	rrupt Ma	isk			
								pror	noted to	cifies whe a contro et; other	ller inter	rupt. If s	et, an int	errupt is	generat	
	1		BOR	IM	R/\	N	0	Brov	wn-Out F	Reset Inte	errupt M	ask				
								con	troller int	cifies whe errupt. If n interrup	set, an	interrupt	is gener			
	0		PLLF	IM	R۸	N	0	PLL	Fault In	terrupt M	ask					
								inte	rrupt. If s	ifies whet et, an inf is not ger	errupt is	genera				

Register 6: Masked Interrupt Status and Clear (MISC), offset 0x058

On a read, this register gives the current masked status value of the corresponding interrupt. All of the bits are R/W1C and this action also clears the corresponding raw interrupt bit in the RIS register (see page 169).

Masked Interrupt Status and Clear (MISC)

Base 0x400F.E000 Offset 0x058 Type R/W1C, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	I							rese	rved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	•			reserved				1	PLLLMIS	CLMIS	IOFMIS	MOFMIS	LDOMIS	BORMIS	reserved
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W1C 0	R/W1C 0	R/W1C 0	R/W1C 0	R/W1C 0	R/W1C 0	RO 0
в	it/Field		Nam	1e	Тур)e	Reset	Des	cription							
D									•						_	
	31:7		reserv	/ed	R	J	0	com	patibility	ould not i with futu cross a re	ire produ	ucts, the	value of	a reserv	•	
	6		PLLL	NIS	R/W	1C	0	PLL	Lock M	asked Int	errupt S	tatus				
										t when the 1 to this I		READY tim	er assert	s. The in	terrupt is	cleared
	5		CLM	IS	R/W	'1C	0	Curr	ent Lim	it Masked	l Interrup	ot Status	3			
										et if the Ll 1 to this l		E output	t asserts.	. The inte	errupt is	cleared
	4		IOFM	IIS	R/W	1C	0			illator Fa			•			
										et if an int vriting a 1			ault is de	etected.	The inter	rupt is
	3		MOF	ЛIS	R/W	'1C	0			tor Fault		•				
										t if a mair 1 to this I		or fault is	s detected	d. The int	terrupt is	cleared
	2		LDOM	/IS	R/W	1C	0	LDC	Power	Unregula	ated Mas	sked Inte	errupt Sta	atus		
										et if LDO o this bit.	power is	unregu	lated. Th	e interru	pt is clea	ared by
	1		BORN	<i>I</i> IS	R/W	1C	0	BOF	R Maske	d Interru	ot Status	3				
								set , BOR	a brown ⊥M bit in	e masked -out cond the IMC r eared. Th	dition wa egister i	is detect s set and	ted. An ir	nterrupt i LIOR bit i	s reporte n the PB	ed if the ORCTL
	0		reserv	/ed	R	C	0	com	patibility	ould not i with futu cross a re	ire produ	ucts, the	value of	a reserv		

Reset Cause (RESC)

Register 7: Reset Cause (RESC), offset 0x05C

This field specifies the cause of the reset event to software. The reset value is determined by the cause of the reset. When an external reset is the cause (EXT is set), all other reset bits are cleared. However, if the reset is due to any other cause, the remaining bits are sticky, allowing software to see all causes.

Base Offse	0x400F.E t 0x05C R/W, rese	000														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						•	• •	rese	rved			•		•	•	
Туре	RO	RO	RO 0	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	U	0	0	0	0	0	0	0	0	0	0	0	0	0
г	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-		-		rese	rved					LDO	SW	WDT	BOR	POR	EXT
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	-	-	-	-	-	-
В	it/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:6		reserv	ved	R	0	0	com		with futu	ire prodi	ucts, the	value of	a reserv	t. To prov ved bit sh	
	5		LDC	r	R/	Ŵ	_) Reset							
	Ū		LDC		10			Whe				circuit h	as lost re	egulatior	and has	3
	4		SW	/	R/	W	-	Soft	ware Re	set						
								Whe	en set, in	dicates a	a softwa	re reset	is the ca	use of th	ie reset e	event.
	3		WD.	Т	R/	W	-	Wat	chdog Ti	mer Res	et					
								Whe	en set, in	dicates a	a watcho	log reset	is the c	ause of t	the reset	event.
	2		BOF	२	R/	W	-	Brow	wn-Out F	Reset						
								Whe	en set, in	dicates a	a brown-	out rese	t is the c	ause of	the reset	event.
	1		POF	२	R/	W	-		er-On R							
								Whe	en set, in	dicates a	a power-	on reset	is the ca	ause of t	he reset	event.
	0		EXT	Г	R/	W	-	Exte	ernal Res	set						
									en set, in reset eve		an exteri	nal reset	(RST as	sertion)	is the ca	use of

Register 8: Run-Mode Clock Configuration (RCC), offset 0x060

This register is defined to provide source control and frequency speed.

Run-Mode Clock Configuration (RCC)

Base 0x400F.E000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		res	erved		ACG	I	SYS	DIV		USESYSDIV	reserved	USEPWMDIV	1	PWMDIV		reserved
ype eset	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 1	R/W 1	R/W 1	R/W 1	R/W 0	RO 0	R/W 0	R/W 1	R/W 1	R/W 1	RO 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	rese	erved	PWRDN	OEN	BYPASS	PLLVER		X	TAL.	1	OSC	SRC	IOSCVER	MOSCVER	IOSCDIS	MOSCE
ype eset	RO 0	RO 0	R/W 1	R/W 1	R/W 1	R/W 0	R/W 1	R/W 0	R/W 1	R/W 1	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
В	it/Field		Nam	е	Ty	be	Reset	Des	cription							
:	31:28		reserv	ed	R	С	0x0	com	patibilit		ure prod	ucts, the	value of	erved bit. f a reserv on.		
	27		ACG	3	R/	W	0	Auto	Clock	Gating						
								Gat Gat Dee are con Cor mod The mod	ing Cor ing Cor p-Sleep used to troller is ntrol (RC de. RCGCi de. s allows	ntrol (SC ntrol (DC mode (re control th in a slee CGCn) re n register	GCn) reg GCn) reg espective ne clocks p mode. gisters a s are alw als to cou	gisters a gisters if ely). If se s distribu Otherwi re used vays use	nd Deep the con t, the SC uted to the se, the I when the ed to cor	e Sleep-M D-Sleep-M troller ent GCn or D troller ent GCn or D trolle Cun-Mod e controlle ntrol the c er when th	Iode CI ers a SI OCGCn r erals wh e Clock er enters locks in	ock leep or registe en the c Gatin s a slee Run
:	26:23		SYSD	IV	R/	W	0xF	Spe the bit i enc The If th PLL If th	cifies wi PLL out n this re odings. PLL VC e SYSD	put or the gister is c CO freque tv value i g used, th s not being	or is use oscillate configure ency is 2 is less th ien the M	or source ed). See 00 MHz. nan MINS 11NSYSI	e (depen Table 5- SYSDIV	e system o nding on h 4 on page (see page e is used le can be	now the e 159 fo e 184), a as the c	BYPAS or bit and the divisor.
	22		USESYSDIV		R/	W	0	Use syst the If th in th	e the sys sem cloc source. e USERC e RCC2	k divider	c divider is forcec the RC(is used a	as the s d to be u C2 regist	sed whe ter is set	or the syst on the PLI of, then the ock divide	is sele SYSDI	cted as

Bit/Field	Name	Туре	Reset	Description
21	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
20	USEPWMDIV	R/W	0	Enable PWM Clock Divisor
				Use the PWM clock divider as the source for the PWM clock.
19:17	PWMDIV	R/W	0x7	PWM Unit Clock Divisor
				This field specifies the binary divisor used to predivide the system clock down for use as the timing reference for the PWM module. This clock is only power 2 divide and rising edge is synchronous without phase shift from the system clock.
				Value Divisor
				0x0 /2
				0x1 /4
				0x2 /8
				0x3 /16
				0x4 /32
				0x5 /64
				0x6 /64
				0x7 /64 (default)
16:14	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
13	PWRDN	R/W	1	PLL Power Down
				This bit connects to the PLL PWRDN input. The reset value of 1 powers down the PLL. See Table 5-6 on page 176 for PLL mode control.
12	OEN	R/W	1	PLL Output Enable
				This bit specifies whether the PLL output driver is enabled. If cleared, the driver transmits the PLL clock to the output. Otherwise, the PLL clock does not oscillate outside the PLL module.
				Note: Both PWRDN and OEN must be cleared to run the PLL.
11	BYPASS	R/W	1	PLL Bypass
	2			Chooses whether the system clock is derived from the PLL output or the OSC source. If set, the clock that drives the system is the OSC source. Otherwise, the clock that drives the system is the PLL output clock divided by the system divider.
				See Table 5-4 on page 159 for programming guidelines.
				Note: The ADC must be clocked from the PLL or directly from a 14-MHz to 18-MHz clock source to operate properly.
10	PLLVER	R/W	0	PLL Verification
				This bit controls the PLL verification timer function. If set, the verification timer is enabled and an interrupt is generated if the PLL becomes inoperative. Otherwise, the verification timer is not enabled.

Bit/Field	Name	Туре	Reset	Description	
9:6	XTAL	R/W	0xB	Crystal Value	
				This field specifies the crystal value a encoding for this field is provided be	
				Value Crystal Frequency (MHz) No Using the PLL	Crystal Frequency (MHz) Using the PLL
				0x0 1.000	reserved
				0x1 1.8432	reserved
				0x2 2.000	reserved
				0x3 2.4576	reserved
				0x4 3.579	545 MHz
				0x5 3.68	64 MHz
				0x6 4	MHz
				0x7 4.0	96 MHz
				0x8 4.91	52 MHz
				0x9 5	MHz
				0xA 5.1	2 MHz
				0xB 6 MHz (reset value)
				0xC 6.1	44 MHz
				0xD 7.37	28 MHz
				0xE 8	MHz
				0xF 8.1	92 MHz
5:4	OSCSRC	R/W	0x0	Dscillator Source	
				Selects the input source for the OSC	. The values are:
				Value Input Source	
				0x0 MOSC	
				Main oscillator (default)	
				0x1 IOSC	
				Internal oscillator	
				0x2 IOSC/4	
				Internal oscillator / 4 (this is r	ecessary if used as input to PLL)
				0x3 reserved	
3	IOSCVER	R/W	0	nternal Oscillator Verification Timer	
				This bit controls the internal oscillato he verification timer is enabled and a becomes inoperative. Otherwise, the	n interrupt is generated if the timer
2	MOSCVER	R/W	0	Main Oscillator Verification Timer	
				This bit controls the main oscillator verification timer is enabled and an i becomes inoperative. Otherwise, the	nterrupt is generated if the timer

Bit/Field	Name	Туре	Reset	Description
1	IOSCDIS	R/W	0	Internal Oscillator Disable 0: Internal oscillator (IOSC) is enabled. 1: Internal oscillator is disabled.
0	MOSCDIS	R/W	0	Main Oscillator Disable 0: Main oscillator is enabled (default).

1: Main oscillator is disabled .

Table 5-6. PLL Mode Control

PWRDN	OEN	Mode
1	Х	Power down
0	0	Normal

Register 9: XTAL to PLL Translation (PLLCFG), offset 0x064

This register provides a means of translating external crystal frequencies into the appropriate PLL settings. This register is initialized during the reset sequence and updated anytime that the XTAL field changes in the **Run-Mode Clock Configuration (RCC)** register (see page 173).

The PLL frequency is calculated using the PLLCFG field values, as follows:

PLLFreq = OSCFreq * (F + 2) / (R + 2)

XTAL to PLL Translation (PLLCFG)

Base 0x400F.E000

Offset 0x064

Type RO, reset -

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
			1 1				1	rese	rved		1	1			1	1			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
	0	D					F	1			I			R	I				
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
E	Bit/Field		Nam	ie	Ту	be	Reset	Des	cription										
31:16 reserved				ved	R	C	0x0	com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.										
	15:14		OD	1	R	С	-		OD Valu										
								This	field spe	ecifies th	ie value	supplied	to the P	LL's OD	input.				
								Valu	ue Desc	ription									
								0x0		e by 1									
								0x1		e by 2									
								0x2		e by 4									
								0x3											
								0.0	Rese	i veu									
	10.5		-			~													
13:5 F RO - PLL F Value This field specifies the value su																			
								Inis	tield spe	ecifies th	ie value	supplied	to the P	LL'S F IN	put.				
	4:0		R		R	С	-	PLL	R Value										
								This	field sp	ecifies th	ie value	supplied	to the P	LL's R ir	nput.				

Register 10: Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144

This register is used to automatically switch from the main oscillator to the internal oscillator when entering Deep-Sleep mode. The system clock source is the main oscillator by default. When this register is set, the internal oscillator is powered up and the main oscillator is powered down. When the Deep-Sleep exit event occurs, hardware brings the system clock back to the source and frequency it had at the onset of Deep-Sleep mode.

Offset	0x400F.t t 0x144 R/W, res	=000 et 0x0780	0.0000													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ	reserved															
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ		1	1	1		1	1 1	reserved	ı – – – – –		1	1			1	IOSC
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W
Reset	et 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									Ū	0					
31:1 reserved			RO 0>			Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.										
0 IOSC			С	R/W 0			Whe	IOSC Clock Source When set, forces IOSC to be clock source during Deep-Sleep (overrides DSOSCSRC field if set)								

Deep Sleep Clock Configuration (DSLPCLKCFG) Base 0x400F.E000 Offset 0x144 Type R/W, reset 0x0780.0000

Register 11: Clock Verification Clear (CLKVCLR), offset 0x150

This register is provided as a means of clearing the clock verification circuits by software. Since the clock verification circuits force a known good clock to control the process, the controller is allowed the opportunity to solve the problem and clear the verification fault. This register clears all clock verification faults. To clear a clock verification fault, the VERCLR bit must be set and then cleared by software. This bit is not self-clearing.

Offse	0x400F.E t 0x150 R/W, rese		0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Ĩ	ſ	1	1	r r 1		î î	rese	rved	Ĩ		1	1	Ì	Ì	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1		1 I		T T	reserved				1			I	VERCLR
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	Bit/Field		Nan	Тур	be	Reset	Des	cription								
	31:1		reserved		RO 0		Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.									
	0		VERCLR R/W			0		Clock Verification Clear Clears clock verification faults.								

Clock Verification Clear (CLKVCLR)

Register 12: Allow Unregulated LDO to Reset the Part (LDOARST), offset 0x160

This register is provided as a means of allowing the LDO to reset the part if the voltage goes unregulated. Use this register to choose whether to automatically reset the part if the LDO goes unregulated, based on the design tolerance for LDO fluctuation.

Offse	0x400F.E t 0x160 R/W, res		00.0000			·											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
			I	I	 		1	rese	rved			1		Ì	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
			1	1	 		1 1	reserved	1			1		1	1	LDOARST	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
E	Bit/Field		Nan	ne	Туре		Reset	Des	Description								
31:1			reserved		RO		0	com	patibility	with futu	ure prod	he value ucts, the dify-write	value of	a reserv	•	ovide should be	
0			LDOARST		R/	W	V 0		LDO Reset When set, allows unregulated LDO output to reset the part.								

Allow Unregulated LDO to Reset the Part (LDOARST)

180

Register 13: Device Identification 1 (DID1), offset 0x004

This register identifies the device family, part number, temperature range, pin count, and package type. Each microcontroller is uniquely identified by the combined values of the CLASS field in the **DID0** register and the PARTNO field in the **DID1** register.

Base Offset	ice Iden 0x400F.E t 0x004 RO, reset	000	on 1 (Dll	D1)												
г	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		V	ĒR			F	AM					PAR	TNO			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 1	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•			rese	rved					TEMP		Pł	κG	ROHS	QL	JAL
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO -	RO -	RO -	RO -	RO -	RO 1	RO -	RO -
В	8it/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:28		VEF	२	R	0	0x0	DID	1 Versio	n						
								is n	umeric. 7		e of the v	•		sion. The ded as fo		
								Val	ue Desc	ription						
								0x0		l DID1 re Snnn dev	0	ormat def	înition, i	ndicating	a Stella	ris
	27:24		FAN	Л	R	0	0x0	Fam	nilv							
								This field provides the family identification of the device within the Luminary Micro product portfolio. The value is encoded as follows (al other encodings are reserved):								
								Val	ue Desc	rintion						
								0x0		•	v of mic	rocontoll	ers. that	t is, all de	vices wi	th
										nal part						
	23:16		PART	NO	R	0	0x28	Part Number								
									•		•			rice within ngs are re		
								Val	ue Desc	ription						
								0x2	8 LM3	S617						
15:8 reserved RO 0 Software should not rely on the value of a reserved compatibility with future products, the value of a reserved across a read-modify-write operation.					f a reserv	•										

Bit/Field	Name	Туре	Reset	Description
7:5	TEMP	RO	-	Temperature Range This field specifies the temperature rating of the device. The value is encoded as follows (all other encodings are reserved): Value Description
				0x0 Commercial temperature range (0°C to 70°C)
				0x1 Industrial temperature range (-40°C to 85°C)
				0x2 Extended temperature range (-40°C to 105°C)
4:3	PKG	RO	-	Package Type
				This field specifies the package type. The value is encoded as follows (all other encodings are reserved):
				Value Description
				0x0 28-pin SOIC package
				0x1 48-pin LQFP package
				0x3 48-pin QFN package
2	ROHS	RO	1	RoHS-Compliance
				This bit specifies whether the device is RoHS-compliant. A 1 indicates the part is RoHS-compliant.
1:0	QUAL	RO	-	Qualification Status
				This field specifies the qualification status of the device. The value is encoded as follows (all other encodings are reserved):
				Value Description
				0x0 Engineering Sample (unqualified)
				0x1 Pilot Production (unqualified)

0x2 Fully Qualified

Register 14: Device Capabilities 0 (DC0), offset 0x008

This register is predefined by the part and can be used to verify features.

туре	t 0x008 RO, rese			00	07	00	05		00	00	04	00	10	40	47	10
Г	31	30	29	28	27	26	25	24	23	22	21	20	19 I	18	17 I	16
L					I				MSZ							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1	RO 1
116361															1	
г	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			•	•		•		FLAS	SHSZ	•	•			•	•	•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
В	it/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:16		SRAM	197	D	0	0x001F	9D/	AM Size							
	51.10		SNAN	/152		.0	0,00011	-		aiza of	the en e		Mmomo			
								inai	cates the	e size oi	the on-c	пір эка	w memo	лy.		
								Val	ue De	scription	1					
								0x0	01F 8 k	•						
								U/C								
	15:0		FLAS	HSZ	R	0	0x000F	Flas	sh Size							
								Indi	cates the	e size of	the on-c	hip flash	memory	/.		
								Val	ue De	scription	1					
									00F 32							

Device Capabilities 1 (DC1)

Register 15: Device Capabilities 1 (DC1), offset 0x010

This register provides a list of features available in the system. The Stellaris family uses this register format to indicate the availability of the following family features in the specific device: PWM, ADC, Watchdog timer, and debug capabilities. This register also indicates the maximum clock frequency and maximum ADC sample rate. The format of this register is consistent with the **RCGC0**, **SCGC0**, and **DCGC0** clock control registers and the **SRCR0** software reset control register.

Offset	0x400F.E t 0x010 RO, reset		32BF	,												
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	•		reserved			1		•	PWM		reserved		ADC
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0	RO 1
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		MINS	YSDIV	•	rese	rved	MAXAE	CSPD	MPU	reserved	TEMPSNS	PLL	WDT	SWO	SWD	JTAG
Type Reset	RO 0	RO 0	RO 1	RO 1	RO 0	RO 0	RO 1	RO 0	RO 1	RO 0	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1
В	it/Field		Nan	ne	Ту	ре	Reset	Des	cription							
comp prese					patibility	with fut		icts, the	value of	erved bit a reserv on.						
	20		PW	Μ	R	0	1		M Modul en set, in		nt that the F	PWM mc	dule is j	oresent.		
	19:17		reser	ved	R	0	0	Software should not rely on the value of a reserved bit. To pr compatibility with future products, the value of a reserved bit preserved across a read-modify-write operation.							•	
	16		AD	С	R	0	1	ADO	C Module	Presen	t					
								Whe	en set, in	dicates	that the A	ADC mo	dule is p	resent.		
	15:12		MINSY	SDIV	R	0	0x3	Sys	tem Cloc	k Divide	r					
								hard	lware-de	pendent		e RČC re	egister fo	The rese or how to		
								Val	ue Desc	ription						
								0x3	Spec	ifies a 5	0-MHz C	PU cloc	k with a	PLL divid	der of 4.	
	11:10		reser	ved	R	0	0	0 Software should not rely on the value of a reserved bit. To compatibility with future products, the value of a reserved preserved across a read-modify-write operation.					•			
	9:8		MAXAD	CSPD	R	0	0x2		Max ADC Speed Indicates the maximum rate at which the ADC samples data.							
								Val 0x2	ue Desc 500k	•	s/second	I				

Bit/Field	Name	Туре	Reset	Description
7	MPU	RO	1	MPU Present When set, indicates that the Cortex-M3 Memory Protection Unit (MPU) module is present. See the "Cortex-M3 Peripherals" chapter in the Stellaris Data Sheet for details on the MPU.
6	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
5	TEMPSNS	RO	1	Temp Sensor Present When set, indicates that the on-chip temperature sensor is present.
4	PLL	RO	1	PLL Present When set, indicates that the on-chip Phase Locked Loop (PLL) is present.
3	WDT	RO	1	Watchdog Timer Present When set, indicates that a watchdog timer is present.
2	SWO	RO	1	SWO Trace Port Present When set, indicates that the Serial Wire Output (SWO) trace port is present.
1	SWD	RO	1	SWD Present When set, indicates that the Serial Wire Debugger (SWD) is present.
0	JTAG	RO	1	JTAG Present When set, indicates that the JTAG debugger interface is present.

Device Capabilities 2 (DC2)

Register 16: Device Capabilities 2 (DC2), offset 0x014

This register provides a list of features available in the system. The Stellaris family uses this register format to indicate the availability of the following family features in the specific device: Analog Comparators, General-Purpose Timers, I2Cs, QEIs, SSIs, and UARTs. The format of this register is consistent with the **RCGC1**, **SCGC1**, and **DCGC1** clock control registers and the **SRCR1** software reset control register.

Offse	0x400F.E t 0x014 RO, rese		7.0013																
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
			1	reserved				COMP0			reserved	1		TIMER2	TIMER1	TIMER0			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
			1	· ·		reserved					•	SSI0	rese	erved	UART1	UART0			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 1	RO 1			
В	lit/Field		Nan	ne	Ty	pe	Reset	Des	cription										
COL			com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.															
	24		CON	IP0	R	0	1	1 Analog Comparator 0 Present When set, indicates that analog comparator 0 is						is prese	esent.				
	23:19		reser	ved	R	0	0	Software should not rely on the value of a reserved bit. To compatibility with future products, the value of a reserved be preserved across a read-modify-write operation.						•					
	18		TIME	R2	R	0	1		er 2 Pres en set, in		that Gen	eral-Pur	pose Tin	ner modu	ıle 2 is p	resent.			
	17		TIME	R1	R	0	1		er 1 Pres en set, in		that Gen	eral-Pur	pose Tin	ner modu	ıle 1 is p	resent.			
	16		TIME	R0	R	0	1		er 0 Pres en set, in		that Gen	eral-Pur	pose Tin	ner modu	ıle 0 is p	resent.			
	15:5		reser	ved	R	0	0	 When set, indicates that General-Purpo Software should not rely on the value of compatibility with future products, the varpreserved across a read-modify-write op 				value of	a reserv						
	4		SS	0	R	0	1		SSI0 Present When set, indicates that SSI module 0 is present.										
	3:2		reser	ved	R	0	0	com	patibility	with fut	rely on ti ure produ read-mod	ucts, the	value of	a reserv					
	1 UART1 RO				0	1		RT1 Pres en set, in		that UAF	RT modu	le 1 is pr	esent.						

Bit/Field	Name	Туре	Reset	Description
0	UART0	RO	1	UART0 Present When set, indicates that UART module 0 is present.

Device Capabilities 3 (DC3)

Register 17: Device Capabilities 3 (DC3), offset 0x018

This register provides a list of features available in the system. The Stellaris family uses this register format to indicate the availability of the following family features in the specific device: Analog Comparator I/Os, CCP I/Os, ADC I/Os, and PWM I/Os.

Base Offse	0x400F.I t 0x018	E000 et 0xBF3F.	·	5)														
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	32KHZ	reserved	CCP5	CCP4	CCP3	CCP2	CCP1	CCP0	rese	rved	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0		
Type Reset	RO 1	RO 0	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
				reserved			•	C0O	COPLUS	C0MINUS	PWM5	PWM4	PWM3	PWM2	PWM1	PWM0		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1		
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription									
	31		32KH	ΗZ	R	0	1	Whe	en set, ir	Clock A dicates t as a 32-	he 32KH			CCP pi	n is pres	ent and		
	30		reserv	ved	R	0	0	compatibility with future p preserved across a read-				ly on the value of a reserved bit. To provide e products, the value of a reserved bit should be ad-modify-write operation.						
	29		CCF	°5	R	0	1		P5 Pin P en set, ir	resent dicates t	hat Cap	ture/Con	npare/PV	VM pin 5	is prese	ent.		
	28		CCF	24	R	0	1	1 CCP4 Pin Presen When set, indicat			hat Cap	ture/Con	npare/PV	VM pin 4	is prese	ent.		
	27		CCF	23	R	0	1		P3 Pin P en set, in		hat Cap	Capture/Compare/PWM pin 3 is present.						
	26		CCF	2	R	0	1		P2 Pin P en set, in		ent ates that Capture/Compare/PWM pin 2 is present.							
	25		CCF	21	R	0	1		P1 Pin P en set, ir	resent idicates t	hat Cap	ture/Con	npare/PV	VM pin 1	is prese	ent.		
	24		CCF	20	R	0	1		P0 Pin P en set, ir	resent idicates t	hat Cap	ture/Con	npare/PV	VM pin C	is prese	ent.		
	23:22		reserv	ved	R	0	0	Software should not rely on the value o compatibility with future products, the va preserved across a read-modify-write o		value of	a reserv							
	21		ADC	25	R	0	1		C5 Pin P en set, ir	resent idicates t	hat ADC) pin 5 is	present					
	20		ADC	24	R	0	1	ADC4 Pin Present When set, indicates that ADC pin 4 is present.										

Bit/Field	Name	Туре	Reset	Description
19	ADC3	RO	1	ADC3 Pin Present When set, indicates that ADC pin 3 is present.
18	ADC2	RO	1	ADC2 Pin Present When set, indicates that ADC pin 2 is present.
17	ADC1	RO	1	ADC1 Pin Present When set, indicates that ADC pin 1 is present.
16	ADC0	RO	1	ADC0 Pin Present When set, indicates that ADC pin 0 is present.
15:9	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
8	C0O	RO	1	C0o Pin Present When set, indicates that the analog comparator 0 output pin is present.
7	COPLUS	RO	1	C0+ Pin Present When set, indicates that the analog comparator 0 (+) input pin is present.
6	COMINUS	RO	1	C0- Pin Present When set, indicates that the analog comparator 0 (-) input pin is present.
5	PWM5	RO	1	PWM5 Pin Present When set, indicates that the PWM pin 5 is present.
4	PWM4	RO	1	PWM4 Pin Present When set, indicates that the PWM pin 4 is present.
3	PWM3	RO	1	PWM3 Pin Present When set, indicates that the PWM pin 3 is present.
2	PWM2	RO	1	PWM2 Pin Present When set, indicates that the PWM pin 2 is present.
1	PWM1	RO	1	PWM1 Pin Present When set, indicates that the PWM pin 1 is present.
0	PWM0	RO	1	PWM0 Pin Present When set, indicates that the PWM pin 0 is present.

Device Capabilities 4 (DC4)

Register 18: Device Capabilities 4 (DC4), offset 0x01C

This register provides a list of features available in the system. The Stellaris family uses this register format to indicate the availability of GPIOs in the specific device. The format of this register is consistent with the **RCGC2**, **SCGC2**, and **DCGC2** clock control registers and the **SRCR2** software reset control register.

Base Offse	0x400F. t 0x01C		.001F	')												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1			r r	rese	rved	I	1	1	1	1	ı	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ſ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		-	•	-		reserved						GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1	RO 1
E	Bit/Field 31:5		Name reserved		Type F RO		Reset 0	Soft corr	patibility	with fut	ure prod	the value lucts, the dify-write	value of	a reserv		
	4		GPIC	DE	R	0	1	GPIO Port E Present When set, indicates that GPIO Port E is present.								
	3		GPIC	DC	R	0	1	GPIO Port D Present When set, indicates that GPIO Port D is present.								
	2		GPIC	C	R	0	1	1 GPIO Port C Present When set, indicates that			-	IO Port C	is prese	ent.		
	1		GPIC	OB	R	0	1 GPIO Port B Present When set, indicates that GPIO Port B is prese				is prese	ent.				
	0 GPIOA RO 1			1	GPIO Port A Present When set, indicates that GPIO Port A is present.											

July 14, 2014

Register 19: Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC0** is the clock configuration register for running operation, **SCGC0** for Sleep operation, and **DCGC0** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

	t 0x100 R/W, rese	et 0x0000	00040													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[r		1			reserved	1 I	r	1 1		ſ	PWM		reserved	T	ADC
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	R/W 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ	ſ		rese	rved		1	MAXAI	I DCSPD		rese	rved	1	WDT		reserved	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0
В	lit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
:	31:21		reserv	ved	R	0	0	com	npatibility	with futu	ure prod		value of	f a reserv	t. To prov ved bit sh	
	20 PWM R/W 0		PW	M Clock	Gating C	Control										
								rece disa	eives a c	lock and	function	s. Other	wise, the	e unit is i	. If set, th unclocke e unit ger	d and
	19:17		reserv	ved	R	O	0	com	npatibility	with futu	ure prod		value of	f a reserv	t. To prov ved bit sh	
	16		ADO	0	R	W	0	ADO	C0 Clock	Gating (Control					
								rece disa	eives a c	lock and	functior	s. Other	wise, the	e unit is i	0. If set, unclocke e unit ger	d and
	15:10		reserv	ved	R	0	0	com	npatibility	with futu	ure prod		value of	f a reserv	t. To prov ved bit sh	

Run Mode Clock Gating Control Register 0 (RCGC0)

Base 0x400F.E000

Bit/Field	Name	Туре	Reset	Description
9:8	MAXADCSPD	R/W	0	ADC Sample Speed This field sets the rate at which the ADC samples data. You cannot set the rate higher than the maximum rate. You can set the sample rate by setting the MAXADCSPD bit as follows:
				Value Description
				0x2 500K samples/second
				0x1 250K samples/second
				0x0 125K samples/second
7:4	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
3	WDT	R/W	0	WDT Clock Gating Control
				This bit controls the clock gating for the WDT module. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, a read or write to the unit generates a bus fault.
2:0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 20: Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x110

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC0** is the clock configuration register for running operation, **SCGC0** for Sleep operation, and **DCGC0** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		•				reserved						PWM		reserved		ADC
ype eset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	R/W 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[1	r	rese	rved			MAXAD	CSPD		rese	rved	1	WDT		reserved	
ype eset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0
В	it/Field		Nam	ie	Ту	pe	Reset	Des	cription							
	31:21		reserv	/ed	R	0	0	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv	•	
	20		PWI	И	R/	w	0	This rece disa	ives a cl	rols the o ock and	clock ga functior	ting for th is. Othen ked, a rea	wise, the	e unit is ι	Inclocke	d and
	19:17		reserv	/ed	R	0	0	com	• •	with fut	ure prod	he value ucts, the dify-write	value of	a reserv	•	
	19:17 16		reserv AD(R R/		0	com pres	patibility	with futi cross a r	ure prod ead-mo	ucts, the	value of	a reserv	•	
								com pres ADC This rece disa	patibility erved ac C0 Clock bit contr ives a cl	with futu cross a r Gating o rols the o ock and	ure prod ead-mod Control clock gat functior	ucts, the	value of operation AR ADC wise, the	a reserv on. module e unit is u	ed bit sh 0. If set, inclocked	ould b the un d and

Sleep Mode Clock Gating Control Register 0 (SCGC0)

Bit/Field	Name	Туре	Reset	Description
9:8	MAXADCSPD	R/W	0	ADC Sample Speed This field sets the rate at which the ADC samples data. You cannot set the rate higher than the maximum rate. You can set the sample rate by setting the MAXADCSPD bit as follows:
				Value Description
				0x2 500K samples/second
				0x1 250K samples/second
				0x0 125K samples/second
7:4	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
3	WDT	R/W	0	WDT Clock Gating Control
				This bit controls the clock gating for the WDT module. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, a read or write to the unit generates a bus fault.
2:0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 21: Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x120

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC0** is the clock configuration register for running operation, **SCGC0** for Sleep operation, and **DCGC0** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Offse	0x400F.E t 0x120 R/W, rese		00040	Junig C		log.ord		,								
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ĺ			1	1		reserved	т т				1	PWM		reserved		ADC
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		1	1		rese	erved		1 I		1	1	WDT		reserved	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	it/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:21		reserved			0	0	0 Software should not rely on the value of a compatibility with future products, the valu preserved across a read-modify-write ope						a reserv		
	20		PW	М	R/	W	0	PW	M Clock	Gating C	Control					
								rece disa	bit contr eives a cl bled. If thus fault.	ock and	function	is. Other	wise, the	e unit is u	inclocke	d and
	19:17 reserved RO 0 Software should not rely of compatibility with future p preserved across a read-								ure prod	ucts, the	value of	a reserv	•			
	16		AD	С	R/	W	0	ADO	C0 Clock	Gating	Control					
								This bit controls the clock gating for SAR ADC module 0. If set, th receives a clock and functions. Otherwise, the unit is unclocked a disabled. If the unit is unclocked, a read or write to the unit genera bus fault.								d and
	15:4		reserv	ved	R	0	0	com	ware sho patibility served ac	with futu	ure prod	ucts, the	value of	a reserv		

Deep Sleep Mode Clock Gating Control Register 0 (DCGC0)

Bit/Field	Name	Туре	Reset	Description
3	WDT	R/W	0	WDT Clock Gating Control This bit controls the clock gating for the WDT module. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, a read or write to the unit generates a bus fault.
2:0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 22: Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC1** is the clock configuration register for running operation, **SCGC1** for Sleep operation, and **DCGC1** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

	t 0x104 R/W, rese	et 0x000	00000															
r	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
				reserved			•	COMP0		•	reserved			TIMER2	TIMER1	TIMER0		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0		
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	1		1			reserved	1		l	1	1	SSI0	rese	rved	UART1	UART0		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	R/W 0	R/W 0		
В	it/Field		Nam	ne	Ту	ре	Reset	Desc	cription									
	31:25		reser	ved	R	0	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should b preserved across a read-modify-write operation.										
	24 COMP0 R/W 0 Analog Comparator 0 Clock Gating This bit controls the clock gating for a receives a clock and functions. Othe disabled. If the unit is unclocked, read a bus fault.										ng for an s. Othen	wise, the	e unit is u	inclocke	d and			
	23:19		reser	ved	R	0	0	com	patibility	with fut	ure produ	ucts, the	value of	f a reserved bit. To provide alue of a reserved bit should be peration.				
	18		TIME	R2	R/	W	0	Time	er 2 Cloc	k Gating	g Control							
	This bit controls the clock gating for General-Purpose If set, the unit receives a clock and functions. Otherw unclocked and disabled. If the unit is unclocked, read unit will generate a bus fault.									Otherwis	se, the u	nit is						
	17		TIME	R1	R/	W	0	Time	er 1 Cloc	k Gating	g Control							
							 Timer 1 Clock Gating Control This bit controls the clock gating for General-Purpose Timer module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault. 											

Run Mode Clock Gating Control Register 1 (RCGC1)

Base 0x400F.E000 Offset 0x104

Bit/Field	Name	Туре	Reset	Description
16	TIMER0	R/W	0	Timer 0 Clock Gating Control This bit controls the clock gating for General-Purpose Timer module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
15:5	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
4	SSIO	R/W	0	SSI0 Clock Gating Control This bit controls the clock gating for SSI module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
3:2	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
1	UART1	R/W	0	UART1 Clock Gating Control This bit controls the clock gating for UART module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
0	UART0	R/W	0	UART0 Clock Gating Control This bit controls the clock gating for UART module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.

Register 23: Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC1** is the clock configuration register for running operation, **SCGC1** for Sleep operation, and **DCGC1** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				reserved			•	COMP0		•	reserved			TIMER2	TIMER1	TIMER0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ	r		I	ı ı		reserved	1	1 1		1	1	SSI0	rese	erved	UART1	UART0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	R/W 0	R/W 0
В	it/Field		Nan	ne	Ту	ре	Reset	Des	cription							
:	31:25		reser	ved	R	0	0	com	patibility	with fut		ucts, the	value o	erved bit f a reserv on.		
	24		COM	IP0	R/	W	0	This rece disa	bit contrives a c	rols the o lock and	function	ng for ar s. Other	wise, the	mparator e unit is u es to the u	inclocke	d and
	23:19		reser	ved	R	0	0	com	patibility	with fut		ucts, the	value o	erved bit f a reserv on.		
	18		TIME	R2	R/	W	0	Time	er 2 Cloo	ck Gating	g Control					
								lf se uncl	t, the un ocked a	it receiv nd disab	es a cloc	k and fu	nctions.	Purpose Otherwis ed, reads	se, the u	nit is
	17		TIME	R1	R/	W	0	This If se uncl	bit cont t, the un	rols the it receiv nd disab	es a cloc led. If th	ing for G k and fu	nctions.	Purpose Otherwis ed, reads	se, the u	nit is

Sleep Mode Clock Gating Control Register 1 (SCGC1)

Bit/Field	Name	Туре	Reset	Description
16	TIMER0	R/W	0	Timer 0 Clock Gating Control This bit controls the clock gating for General-Purpose Timer module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
15:5	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
4	SSIO	R/W	0	SSI0 Clock Gating Control This bit controls the clock gating for SSI module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
3:2	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
1	UART1	R/W	0	UART1 Clock Gating Control This bit controls the clock gating for UART module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
0	UART0	R/W	0	UART0 Clock Gating Control This bit controls the clock gating for UART module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.

Register 24: Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC1** is the clock configuration register for running operation, **SCGC1** for Sleep operation, and **DCGC1** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	I	l	1	reserved		1	•	COMP0		1	reserved	•		TIMER2	TIMER1	TIMER
ype eset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I		1			reserved	•			1	1	SSI0	res	erved	UART1	UART
ype eset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	R/W 0	R/W 0
В	it/Field		N	ame	Ту	ре	Reset	Des	cription							
	31:25		res	erved	R	0	0	com	patibility	with fut		ucts, the	value o	erved bit f a reserv on.	•	
	24		СС	DMP0	R/	W	0	This rece disa	bit cont ives a c	rols the o lock and	I function	ing for an s. Other	wise, the	mparator e unit is u es to the u	unclocke	d and
	23:19		res	erved	R	0	0	com	patibility	with fut		ucts, the	value o	erved bit f a reserv on.		
	18		TIN	/IER2	R	W	0	Time	er 2 Cloo	k Gating	g Contro					
								lf se uncl	t, the un ocked a	it receiv nd disab	es a cloo	k and fu	nctions.	Purpose Otherwis ed, reads	se, the u	nit is
	17		TIN	IER1	R	W	0	This If se	bit cont t, the un	rols the it receiv	es a cloc	ting for G k and fu	nctions.	Purpose Otherwis	se, the u	nit is

Deep Sleep Mode Clock Gating Control Register 1 (DCGC1)

Base 0x400F.E000

Bit/Field	Name	Туре	Reset	Description
16	TIMER0	R/W	0	Timer 0 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
15:5	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
4	SSI0	R/W	0	SSI0 Clock Gating Control
				This bit controls the clock gating for SSI module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
3:2	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
1	UART1	R/W	0	UART1 Clock Gating Control
				This bit controls the clock gating for UART module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
0	UART0	R/W	0	UART0 Clock Gating Control
				This bit controls the clock gating for UART module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.

Register 25: Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC2** is the clock configuration register for running operation, **SCGC2** for Sleep operation, and **DCGC2** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Offset	0x400F.E t 0x108 R/W, rese		00000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ	r		1	1	1	1	1 I	rese	erved	1	1	1			1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reber	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ	10	14	1	12	1	reserved		0	,			GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	it/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:5		reser	ved	R	0	0	com	patibility	with futu	ure prod	he value ucts, the dify-write	value of	a reserv		
	4		GPIC	DE	R	w	0	Por	t E Clock	Gating	Control					
								cloc	k and fu	nctions.	Otherwis	ting for P se, the u r writes to	nit is unc	locked a	and disat	oled. If
	3		GPIC	DD	R	W	0	Por	t D Clock	Gating	Control					
								cloc	k and fu	nctions.	Otherwis	ting for P se, the u r writes to	nit is und	locked a	and disat	oled. If
	2		GPIC	C	R	W	0	Por	t C Clock	Gating	Control					
								cloc	k and fu	nctions.	Otherwis	ting for P se, the ui r writes to	nit is und	locked a	and disat	oled. If
	1		GPIC	DВ	R	W	0	Por	t B Clock	Gating	Control					
								cloc	k and fu	nctions.	Otherwis	ting for P se, the u r writes to	nit is und	locked a	and disat	oled. If
	0		GPIC	DA	R	W	0	Por	t A Clock	Gating	Control					
								cloc	k and fu	nctions.	Otherwis	ting for P se, the ui r writes to	nit is unc	locked a	and disat	oled. If

Run Mode Clock Gating Control Register 2 (RCGC2)

Base 0x400F.E000

Register 26: Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC2** is the clock configuration register for running operation, **SCGC2** for Sleep operation, and **DCGC2** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Offse	0x400F. t 0x118 R/W, res		0000	000		-	·	·										
_	31	30		29	28	27	26	25	24	23	22	21	20	19	18	17	16	
[1	1		1	1	1	т т 	rese			1	1	1		ſ		
Type Reset	RO 0	RO 0		RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
Reset																0		
г	15	14	_	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		-				1	reserved			<u> </u>		-	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA	
Type Reset	RO 0	RO 0		RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	
		Ū		0	0	Ū	0	Ũ	Ŭ	°,	Ū		0	0	Ŭ	Ū	Ū	
B	Bit/Field			Nar	ne	Ту	ре	Reset	Des	cription								
	31:5			reser	ved	R	0	0	com	patibility	with futu	ure prod	ucts, the	of a resolution of a resolutio	a reserv	•		
	4			GPI	OE	R/	W	0	Port	E Clock	Gating	Control						
									cloc	k and fui	nctions.	Otherwis	se, the u	Port E. If nit is und o the unit	locked a	nd disat	oled. If	
	3			GPI	OD	R/	W	0	Port	D Clock	Gating	Control						
									cloc	k and fui	Port D. If nit is unc o the unif	locked a	and disat	oled. If				
	2			GPI	OC	R/	W	0	Port	C Clock	Gating	Control						
									cloc	k and fui	nctions.	the clock gating for Port C. If set, the unit receives a ons. Otherwise, the unit is unclocked and disabled. If ked, reads or writes to the unit will generate a bus fault.						
	1			GPI	ОВ	R/	W	0	Port	B Clock	Gating	Control						
									This bit controls the clock gating for Port B. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault								oled. If	

Sleep Mode Clock Gating Control Register 2 (SCGC2)

Bit/Field	Name	Туре	Reset	Description
0	GPIOA	R/W	0	Port A Clock Gating Control
				This bit controls the clock gating for Port A. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.

Register 27: Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC2** is the clock configuration register for running operation, **SCGC2** for Sleep operation, and **DCGC2** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Offset	0x400F.E t 0x128 R/W, rese		00000	Juling C		log.ord		, ,										
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
			•	•			• •	rese	erved						•	•		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
Reber																		
ſ	15	14	13 I	12	11	10	9	8	7	6	5	4 GPIOE	3 GPIOD	2 GPIOC	1 GPIOB	0 GPIOA		
Туре	RO	RO	RO	RO	RO	reserved RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
			New		т.		Deast	Dee										
В	lit/Field		Nam	ie	Ту	pe	Reset	Des	cription									
	31:5		reser	ved	R	0	0	com	tware sho npatibility served ac	with futu	ure prod	ucts, the	value of	a reserv				
	4		GPIC	DE	R/	W	0	0 Port E Clock Gating Control										
								cloc	k and fu	nctions.	Otherwi	se, the u	nit is unc	If set, the unit receives a inclocked and disabled. If init will generate a bus fault.				
	3		GPIC	DD	R/	W	0	Por	t D Clock	Gating	Control							
								cloc	s bit cont k and fui unit is un	nctions.	Otherwi	se, the u	nit is unc	locked a	and disat	oled. If		
	2		GPIC	C	R/	W	0	Por	t C Clock	Gating	Control							
								cloc	s bit cont k and fui unit is un	nctions.	Otherwi	se, the u	nit is unc	locked a	and disat	oled. If		
	1		GPIC	ОВ	R/	W	0	Por	t B Clock	Gating	Control							
								cloc	s bit cont k and fui unit is un	nctions.	Otherwi	se, the u	nit is unc	locked a	and disat	oled. If		

Deep Sleep Mode Clock Gating Control Register 2 (DCGC2)

Bit/Field	Name	Туре	Reset	Description
0	GPIOA	R/W	0	Port A Clock Gating Control
				This bit controls the clock gating for Port A. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.

Register 28: Software Reset Control 0 (SRCR0), offset 0x040

Writes to this register are masked by the bits in the **Device Capabilities 1 (DC1)** register.

Software Reset Control 0 (SRCR0) Base 0x400F.E000 Offset 0x040 Type R/W, reset 0x00000000

71	,																	
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
						reserved			· ·			PWM		reserved		ADC		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	RO	RO	RO	R/W		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
						rese	erved	l				1	WDT		reserved			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
В	it/Field		Nam	ne	Ту	ре	Reset	Des	cription									
	31:21		reserv	ved	R	0	0	com		with futu	ure prod	ucts, the	value o	erved bit f a reserv on.				
	20		PWI	м	R/	W	0	PW/	M Reset	Control								
	20				10		Ū		Reset control for PWM module.									
	19:17		reserv	ved	R	0	0	com		with futu	ure prod	ucts, the	value o	erved bit f a reserv on.	•			
	16		AD	0	R/	w	0		C0 Reset	Control								
			,	~	10	••	Ũ		et contro			nodule 0						
								162		I IOI SAI	V ADU I		•					
	15:4		reserv	ved	R	0	0	com		with futu	ure prod	ucts, the	value o	erved bit f a reserv on.				
	3		WD	т	R/	W	0	WD.	T Reset	Control								
	U		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	10	••	Ŭ		et contro		tchdog i	unit						
								162			ionuoy t							
	2:0		reserv	ved	R	0	0	com		with futu	ure prod	ucts, the	value o	erved bit f a reserv on.				

Register 29: Software Reset Control 1 (SRCR1), offset 0x044

Writes to this register are masked by the bits in the Device Capabilities 2 (DC2) register.

Software Reset Control 1 (SRCR1) Base 0x400F.E000 Offset 0x044 Type R/W, reset 0x00000000

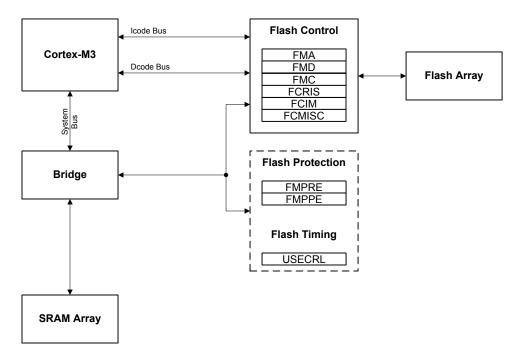
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16				
	ľ	1		reserved	ï		1	COMP0	r		reserved			TIMER2	TIMER1	TIMER0				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0				
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
	1		ſ	· · ·	1	reserved	I	1				SSI0	rese	erved	UART1	UART0				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	R/W 0	R/W 0				
E	Bit/Field		Nam	ne	Ту	pe	Reset	Des	cription											
	31:25		reser	ved	R	0	0	com	ware sho patibility erved ac	with futu	ure produ	ucts, the	value of	f a reserv						
	24 COMP0				R/	W	0		log Comp et contro				tor 0.							
	23:19	3:19 reserved				0	0	com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.											
	18		TIME	R2	R/	W	0		Timer 2 Reset Control Reset control for General-Purpose Timer module											
	17		TIME	R1	R/	W	0		er 1 Rese et contro			rpose Tir	ner moo	dule 1.						
	16		TIME	R0	R/	W	0		Timer 0 Reset Control Reset control for General-Purpose Timer module 0.											
	15:5		reser	ved	R	0	0	com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.											
	4		SSI	0	R/	W	0) Reset (et contro	Control I for SSI unit 0.										
	3:2		reser	ved	R	0	0	com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit shoul preserved across a read-modify-write operation.											
	1		UAR	T1	R/	W	0		RT1 Rese et contro			l.								
	0		UAR	ТО	R/	W	0		UART0 Reset Control Reset control for UART unit 0.											

Register 30: Software Reset Control 2 (SRCR2), offset 0x048

Writes to this register are masked by the bits in the Device Capabilities 4 (DC4) register.

Software Reset Control 2 (SRCR2) Base 0x400F.E000 Offset 0x048 Type R/W, reset 0x00000000

	,																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
			1	1			1 1	rese	rved		1	1		1	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		r	1	1		reserved	1 1		ı ı	I	1	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription								
						•			•								
	31:5		reser	ved	R	0	0	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv			
	4		GPIC	DE	R/	W	0	0 Port E Reset Control									
								Res	et contro	l for GP	IO Port I	Ε.					
	3		GPIC	DD	R/	W	0	Port D Reset Control									
								Res	et contro	l for GP	IO Port I	D.					
	2		GPIC	C	R/	W	0	Port	C Rese	t Contro	I						
								Res	et contro	l for GP	IO Port	C.					
	1		GPIC	ОВ	R/	W	0	Port	B Reset	t Control							
								Res	et contro	ol for GP	IO Port I	З.					
	0		GPIC	DA	R/	W	0	Port	A Reset	t Control							
	•		0.10				č		et contro			۹.					


6 Internal Memory

The LM3S617 microcontroller comes with 8 KB of bit-banded SRAM and 32 KB of flash memory. The flash controller provides a user-friendly interface, making flash programming a simple task. Flash protection can be applied to the flash memory on a 2-KB block basis.

6.1 Block Diagram

Figure 6-1 on page 211 illustrates the Flash functions. The dashed boxes in the figure indicate registers residing in the System Control module rather than the Flash Control module.

Figure 6-1. Flash Block Diagram

6.2 Functional Description

This section describes the functionality of the SRAM and Flash memories.

6.2.1 SRAM Memory

The internal SRAM of the Stellaris[®] devices is located at address 0x2000.0000 of the device memory map. To reduce the number of time consuming read-modify-write (RMW) operations, ARM has introduced *bit-banding* technology in the Cortex-M3 processor. With a bit-band-enabled processor, certain regions in the memory map (SRAM and peripheral space) can use address aliases to access individual bits in a single, atomic operation.

The bit-band alias is calculated by using the formula:

bit-band alias = bit-band base + (byte offset * 32) + (bit number * 4)

For example, if bit 3 at address 0x2000.1000 is to be modified, the bit-band alias is calculated as:

0x2200.0000 + (0x1000 * 32) + (3 * 4) = 0x2202.000C

With the alias address calculated, an instruction performing a read/write to address 0x2202.000C allows direct access to only bit 3 of the byte at address 0x2000.1000.

For details about bit-banding, see "Bit-Banding" on page 66.

6.2.2 Flash Memory

The flash is organized as a set of 1-KB blocks that can be individually erased. Erasing a block causes the entire contents of the block to be reset to all 1s. An individual 32-bit word can be programmed to change bits that are currently 1 to a 0. These blocks are paired into a set of 2-KB blocks that can be individually protected. The protection allows blocks to be marked as read-only or execute-only, providing different levels of code protection. Read-only blocks cannot be erased or programmed, protecting the contents of those blocks from being modified. Execute-only blocks cannot be erased or programmed, and can only be read by the controller instruction fetch mechanism, protecting the contents of those blocks from being read by either the controller or by a debugger.

See also "Serial Flash Loader" on page 518 for a preprogrammed flash-resident utility used to download code to the flash memory of a device without the use of a debug interface.

6.2.2.1 Flash Memory Timing

The timing for the flash is automatically handled by the flash controller. However, in order to do so, it must know the clock rate of the system in order to time its internal signals properly. The number of clock cycles per microsecond must be provided to the flash controller for it to accomplish this timing. It is software's responsibility to keep the flash controller updated with this information via the **USec Reload (USECRL)** register.

On reset, the **USECRL** register is loaded with a value that configures the flash timing so that it works with the maximum clock rate of the part. If software changes the system operating frequency, the new operating frequency minus 1 (in MHz) must be loaded into **USECRL** before any flash modifications are attempted. For example, if the device is operating at a speed of 20 MHz, a value of 0x13 (20-1) must be written to the **USECRL** register.

6.2.2.2 Flash Memory Protection

The user is provided two forms of flash protection per 2-KB flash blocks in two 32-bit wide registers. The protection policy for each form is controlled by individual bits (per policy per block) in the **FMPPEn** and **FMPREn** registers.

- Flash Memory Protection Program Enable (FMPPEn): If set, the block may be programmed (written) or erased. If cleared, the block may not be changed.
- Flash Memory Protection Read Enable (FMPREn): If a bit is set, the corresponding block may be executed or read by software or debuggers. If a bit is cleared, the corresponding block may only be executed, and contents of the memory block are prohibited from being read as data.

The policies may be combined as shown in Table 6-1 on page 212.

y not be written or erased.
y not be v

Table 6-1. Flash Protection Policy Combinations

FMPPEn	FMPREn	Protection
1	0	The block may be written, erased or executed, but not read. This combination is unlikely to be used.
0	1	Read-only protection. The block may be read or executed but may not be written or erased. This mode is used to lock the block from further modification while allowing any read or execute access.
1	1	No protection. The block may be written, erased, executed or read.

A Flash memory access that attempts to read a read-protected block (**FMPREn** bit is set) is prohibited and generates a bus fault. A Flash memory access that attempts to program or erase a program-protected block (**FMPPEn** bit is set) is prohibited and can optionally generate an interrupt (by setting the AMASK bit in the **Flash Controller Interrupt Mask (FCIM)** register) to alert software developers of poorly behaving software during the development and debug phases.

The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. These settings create a policy of open access and programmability. The register bits may be changed by clearing the specific register bit. The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. The changes are committed using the **Flash Memory Control (FMC)** register.

6.2.2.3 Execute-Only Protection

Execute-only protection prevents both modification and visibility to a protected flash block. This mode is intended to be used in situations where a device requires debug capability, yet portions of the application space must be protected from external access. An example of this is a company who wishes to sell Stellaris devices with their proprietary software pre-programmed, yet allow the end user to add custom code to an unprotected region of the flash (such as a motor control module with a customizable motor configuration section in flash).

Literal data introduces a complication to the protection mechanism. When C code is compiled and linked, literal data (constants, and so on) is typically placed in the text section, between functions, by the compiler. The literal data is accessed at run time through the use of the LDR instruction, which loads the data from memory using a PC-relative memory address. The execution of the LDR instruction generates a read transaction across the Cortex-M3's DCode bus, which is subject to the execute-only protection mechanism. If the accessed block is marked as execute only, the transaction is blocked, and the processor is prevented from loading the constant data and, therefore, inhibiting correct execution. Therefore, using execute-only protection requires that literal data be handled differently. There are three ways to address this:

- Use a compiler that allows literal data to be collected into a separate section that is put into one or more read-enabled flash blocks. Note that the LDR instruction may use a PC-relative address—in which case the literal pool cannot be located outside the span of the offset—or the software may reserve a register to point to the base address of the literal pool and the LDR offset is relative to the beginning of the pool.
- **2.** Use a compiler that generates literal data from arithmetic instruction immediate data and subsequent computation.
- **3.** Use method 1 or 2, but in assembly language, if the compiler does not support either method.

6.2.2.4 Read-Only Protection

Read-only protection prevents the contents of the flash block from being re-programmed, while still allowing the content to be read by processor or the debug interface. Note that if a **FMPREn** bit is cleared, all read accesses to the Flash memory block are disallowed, including any data accesses. Care must be taken not to store required data in a Flash memory block that has the associated **FMPREn** bit cleared.

The read-only mode does not prevent read access to the stored program, but it does provide protection against accidental (or malicious) erasure or programming. Read-only is especially useful for utilities like the boot loader when the debug interface is permanently disabled. In such combinations, the boot loader, which provides access control to the Flash memory, is protected from being erased or modified.

6.2.2.5 Permanently Disabling Debug

For extremely sensitive applications, the debug interface to the processor and peripherals can be permanently disabled, blocking all accesses to the device through the JTAG or SWD interfaces. With the debug interface disabled, it is still possible to perform standard IEEE instructions (such as boundary scan operations), but access to the processor and peripherals is blocked.

The two most-significant bits of the **FMPRE** register are the DBG bits, and control whether or not the debug interface is turned on or off. Since the DBG bits are part of the **FMPRE** register, the user loses the capability to mark the upper two flash blocks in a 64 KB flash device as execute-only.

The debug interface should not be permanently disabled without providing some mechanism—such as the boot loader—to provide customer-installable updates or bug fixes. Disabling the debug interface is permanent and cannot be reversed.

6.2.2.6 Interrupts

The Flash memory controller can generate interrupts when the following conditions are observed:

- Programming Interrupt signals when a program or erase action is complete.
- Access Interrupt signals when a program or erase action has been attempted on a 2-kB block of memory that is protected by its corresponding FMPPEn bit.

The interrupt events that can trigger a controller-level interrupt are defined in the **Flash Controller Masked Interrupt Status (FCMIS)** register (see page 223) by setting the corresponding MASK bits. If interrupts are not used, the raw interrupt status is always visible via the **Flash Controller Raw Interrupt Status (FCRIS)** register (see page 222).

Interrupts are always cleared (for both the **FCMIS** and **FCRIS** registers) by writing a 1 to the corresponding bit in the **Flash Controller Masked Interrupt Status and Clear (FCMISC)** register (see page 224).

6.2.2.7 Flash Memory Protection by Disabling Debug Access

Flash memory may also be protected by permanently disabling access to the Debug Access Port (DAP) through the JTAG and SWD interfaces. Access is disabled by clearing the DBG field of the **FMPRE** register.

If the DBG field in the **Flash Memory Protection Read Enable (FMPRE)** register is programmed to 0x2, access to the DAP is enabled through the JTAG and SWD interfaces. If clear, access to the DAP is disabled. The DBG field programming becomes permanent and irreversible after a commit sequence is performed.

In the initial state provided from the factory, access is enabled in order to facilitate code development and debug. Access to the DAP may be disabled at the end of the manufacturing flow, once all tests have passed and software has been loaded. This change does not take effect until the next power-up of the device. Note that it is recommended that disabling access to the DAP be combined with a mechanism for providing end-user installable updates (if necessary) such as the Stellaris boot loader.

Important: Once the DBG field is cleared and committed, this field can never be restored to the factory-programmed value—which means the JTAG/SWD interface to the debug module can never be re-enabled. This sequence does NOT disable the JTAG controller, it only disables the access of the DAP through the JTAG or SWD interfaces. The JTAG interface remains functional and access to the Test Access Port remains enabled, allowing the user to execute the IEEE JTAG-defined instructions (for example, to perform boundary scan operations).

When using the **FMPRE** bits to protect Flash memory from being read as data (to mark sets of 2-KB blocks of Flash memory as execute-only), these one-time-programmable bits should be written at the same time that the debug disable bits are programmed. Mechanisms to execute the one-time code sequence to disable all debug access include:

- Selecting the debug disable option in the Stellaris boot loader
- Loading the debug disable sequence into SRAM and running it once from SRAM after programming the final end application code into Flash memory

6.3 Flash Memory Initialization and Configuration

This section shows examples for using the flash controller to perform various operations on the contents of the flash memory.

6.3.1 Changing Flash Protection Bits

As discussed in "Flash Memory Protection" on page 212, changes to the protection bits must be committed before they take effect. The sequence below is used change and commit a block protection bit in the **FMPRE** or **FMPPE** registers. The sequence to change and commit a bit in software is as follows:

- 1. The Flash Memory Protection Read Enable (FMPRE) and Flash Memory Protection Program Enable (FMPPE) registers are written, changing the intended bit(s). The action of these changes can be tested by software while in this state.
- 2. The Flash Memory Address (FMA) register (see page 218) bit 0 is set to 1 if the FMPPE register is to be committed; otherwise, a 0 commits the FMPRE register.
- **3.** The **Flash Memory Control (FMC)** register (see page 220) is written with the COMT bit set. This initiates a write sequence and commits the changes.

There is a special sequence to change and commit the DBG bits in the **Flash Memory Protection Read Enable (FMPRE)** register. This sequence also sets and commits any changes from 1 to 0 in the block protection bits (for execute-only) in the **FMPRE** register.

- 1. The Flash Memory Protection Read Enable (FMPRE) register is written, changing the intended bit(s). The action of these changes can be tested by software while in this state.
- 2. The Flash Memory Address (FMA) register (see page 218) is written with a value of 0x900.

3. The Flash Memory Control (FMC) register (see page 220) is written with the COMT bit set. This initiates a write sequence and commits the changes.

Below is an example code sequence to permanently disable the JTAG and SWD interface to the debug module using DriverLib:

```
#include "hw types.h"
#include "hw flash.h"
void
permanently_disable_jtag_swd(void)
{
     11
     // Clear the DBG field of the FMPRE register. Note that the value
     // used in this instance does not affect the state of the BlockN
     // bits, but were the value different, all bits in the FMPRE are
     // affected by this function!
     11
     HWREG(FLASH FMPRE) &= 0x3ffffff;
     11
     // The following sequence activates the one-time
     // programming of the FMPRE register.
     11
     HWREG(FLASH FMA) = 0 \times 900;
     HWREG(FLASH FMC) = (FLASH FMC WRKEY | FLASH FMC COMT);
     11
     // Wait until the operation is complete.
     11
     while (HWREG(FLASH FMC) & FLASH FMC COMT)
     {
     }
}
```

6.3.2 Flash Programming

The Stellaris devices provide a user-friendly interface for flash programming. All erase/program operations are handled via three registers: **FMA**, **FMD**, and **FMC**.

During a Flash memory operation (write, page erase, or mass erase) access to the Flash memory is inhibited. As a result, instruction and literal fetches are held off until the Flash memory operation is complete. If instruction execution is required during a Flash memory operation, the code that is executing must be placed in SRAM and executed from there while the flash operation is in progress.

6.3.2.1 To program a 32-bit word

- 1. Write source data to the FMD register.
- 2. Write the target address to the FMA register.
- 3. Write the flash write key and the WRITE bit (a value of 0xA442.0001) to the FMC register.
- 4. Poll the FMC register until the WRITE bit is cleared.

6.3.2.2 To perform an erase of a 1-KB page

1. Write the page address to the **FMA** register.

- 2. Write the flash write key and the ERASE bit (a value of 0xA442.0002) to the FMC register.
- 3. Poll the FMC register until the ERASE bit is cleared.

6.3.2.3 To perform a mass erase of the flash

- 1. Write the flash write key and the MERASE bit (a value of 0xA442.0004) to the FMC register.
- 2. Poll the FMC register until the MERASE bit is cleared.

6.4 Register Map

Table 6-2 on page 217 lists the Flash memory and control registers. The offset listed is a hexadecimal increment to the register's address. The **FMA**, **FMD**, **FMC**, **FCRIS**, **FCIM**, and **FCMISC** register offsets are relative to the Flash memory control base address of 0x400F.D000. The Flash memory protection register offsets are relative to the System Control base address of 0x400F.E000.

Offset	Name	Туре	Reset	Description	See page
Flash Me	mory Control Registers (Flash Con	trol Offset)		
0x000	FMA	R/W	0x0000.0000	Flash Memory Address	218
0x004	FMD	R/W	0x0000.0000	Flash Memory Data	219
0x008	FMC	R/W	0x0000.0000	Flash Memory Control	220
0x00C	FCRIS	RO	0x0000.0000	Flash Controller Raw Interrupt Status	222
0x010	FCIM	R/W	0x0000.0000	Flash Controller Interrupt Mask	223
0x014	FCMISC	R/W1C	0x0000.0000	Flash Controller Masked Interrupt Status and Clear	224
Flash Me	mory Protection Register	rs (System	Control Offset)		
0x130	FMPRE	R/W	0x8000.FFFF	Flash Memory Protection Read Enable	227
0x134	FMPPE	R/W	0x0000.FFFF	Flash Memory Protection Program Enable	228
0x140	USECRL	R/W	0x31	USec Reload	226

Table 6-2. Flash Register Map

6.5 Flash Register Descriptions (Flash Control Offset)

This section lists and describes the Flash Memory registers, in numerical order by address offset. Registers in this section are relative to the Flash control base address of 0x400F.D000.

Register 1: Flash Memory Address (FMA), offset 0x000

During a write operation, this register contains a 4-byte-aligned address and specifies where the data is written. During erase operations, this register contains a 1 KB-aligned address and specifies which page is erased. Note that the alignment requirements must be met by software or the results of the operation are unpredictable.

Offse	et 0x4001.E et 0x000 R/W, rese		0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Γ		1				1 1	rese	rved		1	I	1	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reserved		I		· · · · ·		1 1		OFFSET		I	I	1 1	I	1	
Туре	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:15		reserv	ved	R	0	0x0	con	tware sho npatibility served ac	with futu	ure prod	ucts, the	value of	a reserv	•	
	14:0		OFFS	ΕT	R/	W	0x0		lress Offs Iress offs		sh where	operatio	on is perf	formed.		

Flash Memory Address (FMA) Base 0x400F.D000

Register 2: Flash Memory Data (FMD), offset 0x004

This register contains the data to be written during the programming cycle or read during the read cycle. Note that the contents of this register are undefined for a read access of an execute-only block. This register is not used during the erase cycles.

Flas	h Mem	ory Dat	a (FMD)												
Offse	0x400F.E t 0x004 R/W, rese		0.0000													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1		1		г г	DA	ATA					1	1	
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		1	ſ	1	1	т т	DA	ATA	[r 1		1	1	1	
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:0		DAT	A	R/	W	0x0		a Value a value fe	or write o	operation	I.				

Register 3: Flash Memory Control (FMC), offset 0x008

When this register is written, the flash controller initiates the appropriate access cycle for the location specified by the **Flash Memory Address (FMA)** register (see page 218). If the access is a write access, the data contained in the **Flash Memory Data (FMD)** register (see page 219) is written.

This is the final register written and initiates the memory operation. There are four control bits in the lower byte of this register that, when set, initiate the memory operation. The most used of these register bits are the ERASE and WRITE bits.

It is a programming error to write multiple control bits and the results of such an operation are unpredictable.

Base Offset	0x400F.E t 0x008	•	ntrol (FN	/IC)												
F	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				•	· ·			WR	KEY		•	•		•		·
Type Reset	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					· ·	res	erved				•	•	COMT	MERASE	ERASE	WRITE
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
В	it/Field		Nam	ne	Туј	be	Reset	Des	cription							
:	31:16		WRK	EY	W	0	0x0	Flas	sh Write I	Key						
								of a field	ccidenta I for a wr	flash w ite to oc	rites. The cur. Write	e value (es to the)xA442 F MC re	to minimiz must be v gister wit the value	vritten in hout this	to this
	15:4		reserv	ved	R	C	0x0	com		with fut	ure prod	ucts, the	value o	erved bit f a reserv on.		
	3		CON	1T	R/	W	0	Cor	nmit Reg	ister Val	ue					
									nmit (wrif effect on				nvolatile	storage.	A write	of 0 has
								prev		nmit acc	ess is co	omplete,	a 0 is re	ss is prov eturned; o ed.		
								This	s can tak	e up to 5	50 µs.					
	2		MERA	SE	R/	W	0	Mas	ss Erase	Flash M	emory					
									is bit is s e of 0 ha	-				device is	all eras	ed. A
								prev	vious ma	ss erase	access	is comp	lete, a 0	access is is returne ete, a 1 is	ed; othe	rwise, if
								This	s can tak	e up to 2	250 ms.					

Bit/Field	Name	Туре	Reset	Description
1	ERASE	R/W	0	Erase a Page of Flash Memory
				If this bit is set, the page of flash main memory as specified by the contents of FMA is erased. A write of 0 has no effect on the state of this bit.
				If read, the state of the previous erase access is provided. If the previous erase access is complete, a 0 is returned; otherwise, if the previous erase access is not complete, a 1 is returned.
				This can take up to 25 ms.
0	WRITE	R/W	0	Write a Word into Flash Memory
				If this bit is set, the data stored in FMD is written into the location as specified by the contents of FMA . A write of 0 has no effect on the state of this bit.
				If read, the state of the previous write update is provided. If the previous write access is complete, a 0 is returned; otherwise, if the write access is not complete, a 1 is returned.

This can take up to 50 µs.

Register 4: Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C

This register indicates that the flash controller has an interrupt condition. An interrupt is only signaled if the corresponding **FCIM** register bit is set.

Flash Controller Raw Interrupt Status (FCRIS)

Base 0x400F.D000 Offset 0x00C Type RO, reset 0x0000.0000

• •																
r	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Resei																
ſ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					1		rese		1				I		PRIS	ARIS
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
B	sit/Field		Nan	ne	Ту	/pe	Reset	Des	cription							
					_										_	
	31:2		reser	ved	R	80	0x0								t. To prov ved bit sł	
									served a		•	-				
	4		וחח	0	-		0	Dee				Chatura				
	1		PRI	5	R	0	0		grammin	•	•			o which a	ara urita	
															are write page 220	
									U		0		0	,		,
									ue Desc					ما		
								1		-	ming cyo					
								0	Ine	orogram	ming cyo	cie nas n	ot comp	leted.		
									status is M registe		the inte	rrupt cor	ntroller w	hen the	PMASK b	it in the
									•		writing a	1 to the	PMISC b	it in the I	CMISC	register.
					_					-	-					•
	0		ARI	S	R	0	0	Acc	ess Raw	Interrup	ot Status					
								Val	ue Desc	ription						
								1							block of	
												•	rotectior	n policy f	or that b	ock as
								0			PPEn re	-				
								0	No a mem		as tried t	o improp	eny pro	gram or	erase the	e riasn
											the inte	rrupt cor	ntroller w	hen the	AMASK b	it in the
									M registe			4 4 - 11		14 ha 11 -		
								Inis	DIT IS CLE	ared by	writing a	i to the	AMISCD	it in the F	-CMISC	reaiste

This bit is cleared by writing a 1 to the AMISC bit in the FCMISC register.

Register 5: Flash Controller Interrupt Mask (FCIM), offset 0x010

Flash Controller Interrupt Mask (FCIM)

This register controls whether the flash controller generates interrupts to the controller.

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[, i		1	Í	1	í	т т	rese	rved	1	Í			I	1	î.
ype L	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
eset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			•	•		•	reser	ved		•	•				PMASK	AMAS
ype eset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0
301	Ū	0	0	Ū	0	0	Ū	0	0	0	0	0	0	0	Ū	0
В	it/Field		Nan	ne	Ту	ре	Reset	Des	cription							
					_											
	31:2		reserv	ved	R	0	0x0								it. To prov ved bit sł	
											ead-mod				ved bit of	louid
	1		PMA	ov.	R/	.	0	Drog	rommin	a Intorn	nt Mook					
	1		FINA	SK	R/	vv	0	-	-	y mienu	pt Mask					
								Thic	hit cont	role the	roportino	of the n	roaramn	nina rau	intorrun	t etatu
									bit cont ie interru			of the p	rogramn	ning rav	/ interrup	t statu
								to th		ipt contr		of the p	rogramn	ning rav	/ interrup	t statu
								to th	ue interru ue Desc	upt contro cription aterrupt is	oller.		0	C	/ interrup hen the ፤	
								to th Valu	ue interru ue Desc An ir is se The :	upt contr cription Iterrupt is t.	oller. s sent to	the inter	rupt con	troller w		PRIS b
	0		АМА	SK	R/	W	0	to th Valu 1 0	ue interru ue Desc An ir is se The :	ipt contr cription iterrupt is t. PRIS int roller.	oller. s sent to errupt is	the inter	rupt con	troller w	hen the I	PRIS b
	0		AMA	SK	R/	W	0	to th Valu 1 0 Acce This	e interru ue Desc An in is se The contr ess Inter	upt contri- cription aterrupt is t. PRIS int roller. rupt Ma: rols the	oller. s sent to errupt is sk	the inter suppres	rupt con	troller w not ser	hen the I	PRIS b
	0		AMA	SK	R/	w	0	to th Valu 1 0 Acce This inter	ue interru ue Desc An iri is se The contri ess Inter bit cont	upt contro cription iterrupt is t. PRIS int roller. rupt Mas rols the itroller.	oller. s sent to errupt is sk	the inter suppres	rupt con	troller w not ser	hen the I	PRIS b
	0		AMA	SK	R/	W	0	to th Valu 1 0 Acce This inter	ue interru ue Desc An ir is se The contr ess Inter bit cont rupt cor ue Desc	upt contri- cription iterrupt is t. PRIS int roller. rrupt Mai rols the itroller. cription iterrupt is	oller. s sent to errupt is sk reporting	the inter suppres of the a	rupt con sed and ccess ra	troller w not ser	hen the I	PRIS b nterrup s to th

Flash Controller Masked Interrupt Status and Clear (FCMISC)

Register 6: Flash Controller Masked Interrupt Status and Clear (FCMISC), offset 0x014

This register provides two functions. First, it reports the cause of an interrupt by indicating which interrupt source or sources are signalling the interrupt. Second, it serves as the method to clear the interrupt reporting.

	31	3)	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ		1	1		1	1	1	<u>т</u> т	rese	rved	l	1	1	i i	r	1	1
ype L	RO	R		RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
eset	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
Г	15	14	1 T	13	12	11	10	9	8	7	6	5	4	3	2	1 PMISC	0 AMIS
ype [RO	R	<u>ר</u>	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W1C	R/W1
set	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	lit/Field			Na	me	Ту	/pe	Reset	Des	cription							
	31:2			rese	rved	F	20	0x0	Soft	ware sho	ould not	relv on t	he value	of a res	erved bi	it. To prov	vide
									com	patibility	with fut	•	ucts, the	value of	a reser	ved bit sl	
	1			PM	ISC	RΛ	V1C	0	Prog	grammin	g Maske	ed Interru	ipt Statu	s and Cl	ear		
									Valu	ue Desc	ription						
									1			a 1 indica ause a p				nterrupt w leted.	/as
											0	this bit o er (see p			d also th	e pris b	oit in th
									0			a 0 indica not occu		a progra	amming	cycle cor	mplete
										A wri	te of 0 h	as no ef	fect on tl	ne state	of this b	it.	
	0			AM	ISC	RΛ	V1C	0	Acce	ess Mas	ked Inter	rrupt Sta	tus and	Clear			
									Valu	ue Desc	ription						
									1	signa a blo	aled beca ck of Fla	ause a p	rogram o ory that	or erase contradi	action w cts the p	nterrupt w as attem protectior	pted c
											-	this bit o er (see p			d also th	e ARIS b	oit in th
									0	Whe occu	-	a 0 indica	ates that	no impre	oper acc	cesses ha	ave
										A wri	te of 0 h	as no ef	fect on th	ne state	of this b	it	

6.6 Flash Register Descriptions (System Control Offset)

The remainder of this section lists and describes the Flash Memory registers, in numerical order by address offset. Registers in this section are relative to the System Control base address of 0x400F.E000.

Register 7: USec Reload (USECRL), offset 0x140

Note: Offset is relative to System Control base address of 0x400F.E000

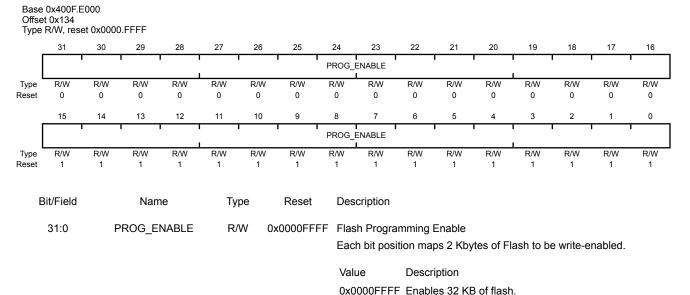
This register is provided as a means of creating a 1-µs tick divider reload value for the flash controller. The internal flash has specific minimum and maximum requirements on the length of time the high voltage write pulse can be applied. It is required that this register contain the operating frequency (in MHz -1) whenever the flash is being erased or programmed. The user is required to change this value if the clocking conditions are changed for a flash erase/program operation.

Base Offse	ec Reloa 0x400F.f t 0x140 R/W, res		ECRL)													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[I	T	I	I 1		1 1	rese	rved	1	I	1	1 I		I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		r	T	rese	rved	r	т т			I	r	US	EC	r – – – – – – – – – – – – – – – – – – –	r	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1
E	8it/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x0	com	patibility	ould not with futu cross a r	ure produ	ucts, the	value of	a reserv		
	7:0		USE	C	R/	W	0x31	Micr	rosecono	d Reload	Value					
									z -1 of th grammed	ie control d.	ller clock	when th	ne flash i	s being e	erased o	r
										um syste Hz) when	•	5	0	-		

Register 8: Flash Memory Protection Read Enable (FMPRE), offset 0x130

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (see the **FMPPE** registers for the execute-only protection bits). This register is loaded during the power-on reset sequence. The factory settingsare a value of 1 for all implemented banks. This implements a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.


Offse	0x400F.t t 0x130 R/W, res	=000 et 0x8000).FFFF													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ĺ	DI	I BG					1 1		READ_I	ENABLE	1	1	1	T	1	T
Type Reset	R/W 1	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		I	I	1			1 1	READ_E	NABLE		1	I	1	I	1	1
Type Reset	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1
B	Bit/Field		Nan	ne	Ту	ре	Reset	Desc	ription							
	31:30		DB	G	R/	W	0x2				ug Enab ps 2 Kby		ash to b	e read-e	nabled.	
								Valu	e Desc	ription						
								0x2	Debu	ig acces	s allowe	d				
	29:0	F	READ_E	NABLE	R/	W 0:	x0000FFFF	F Flash	n Read	Enable						
								Each	ı bit pos	ition ma	ps 2 Kby	tes of Fl	ash to b	e read-e	nabled.	
								Valu	е	Descr	iption					
								0x00	000FFF	F Enabl	es 32 KE	3 of flash	ı.			

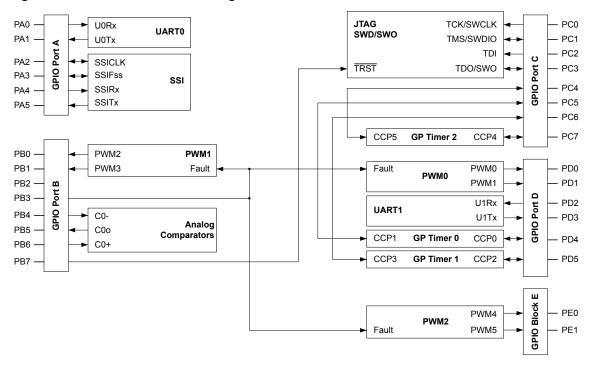
Flash Memory Protection Read Enable (FMPRE) Base 0x400F.E000

Register 9: Flash Memory Protection Program Enable (FMPPE), offset 0x134

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the execute-only protection bits for each 2-KB flash block (see the **FMPRE** registers for the read-only protection bits). This register is loaded during the power-on reset sequence. The factory settings are a value of 1 for all implemented banks. This implements a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

Flash Memory Protection Program Enable (FMPPE)


7 General-Purpose Input/Outputs (GPIOs)

The GPIO module is composed of five physical GPIO blocks, each corresponding to an individual GPIO port (Port A, Port B, Port C, Port D, Port E). The GPIO module supports 1-30 programmable input/output pins, depending on the peripherals being used.

The GPIO module has the following features:

- 1-30 GPIOs, depending on configuration
- 5-V-tolerant in input configuration
- Fast toggle capable of a change every two clock cycles
- Programmable control for GPIO interrupts
 - Interrupt generation masking
 - Edge-triggered on rising, falling, or both
 - Level-sensitive on High or Low values
- Bit masking in both read and write operations through address lines
- Can initiate an ADC sample sequence
- Pins configured as digital inputs are Schmitt-triggered.
- Programmable control for GPIO pad configuration
 - Weak pull-up or pull-down resistors
 - 2-mA, 4-mA, and 8-mA pad drive for digital communication
 - Slew rate control for the 8-mA drive
 - Open drain enables
 - Digital input enables

7.1 Block Diagram

Figure 7-1. GPIO Module Block Diagram

LM3S617

7.2 Signal Description

GPIO signals have alternate hardware functions. Table 7-3 on page 231 lists the GPIO pins and their analog and digital alternate functions. The AINx analog signals are not 5-V tolerant and go through an isolation circuit before reaching their circuitry. These signals are configured by clearing the corresponding DEN bit in the **GPIO Digital Enable (GPIODEN)** register. Other analog signals are 5-V tolerant and are connected directly to their circuitry (CO-, CO+). These signals are configured by clearing the DEN bit in the **GPIO Digital Enable (GPIODEN)** register. The digital alternate hardware functions are enabled by setting the appropriate bit in the **GPIO Alternate Function Select** (**GPIOAFSEL**) and **GPIODEN** registers and configuring the PMCx bit field in the **GPIO Port Control** (**GPIOPCTL**) register to the numeric enoding shown in the table below. Note that each pin must be programmed individually; no type of grouping is implied by the columns in the table.

Important: All GPIO pins are configured as GPIOs and tri-stated by default (GPIOAFSEL=0, GPIODEN=0, GPIOPDR=0, GPIOPUR=0, and GPIOPCTL=0, with the exception of the four JTAG/SWD pins (shown in the table below). A Power-On-Reset (POR) or asserting RST puts the pins back to their default state.

Table 7-1. GPIO Pins With Non-Zero Reset Values

GPIO Pins	Default State	GPIOAFSEL	GPIODEN	GPIOPDR	GPIOPUR	GPIOPCTL
PA[1:0]	UART0	1	1	0	0	0x1

GPIO Pins	Default State	GPIOAFSEL	GPIODEN	GPIOPDR	GPIOPUR	GPIOPCTL
PA[5:2]	SSI0	1	1	0	0	0x1
PC[3:0]	JTAG/SWD	1	1	0	1	0x3

Table 7-1. GPIO Pins With Non-Zero Reset Values (continued)

Table 7-2. GPIO Pins and Alternate Functions (48QFP)

Ю	Pin Number	Multiplexed Function	Multiplexed Function
PAO	17	UORx	
PA1	18	UOTx	
PA2	19	SSIClk	
PA3	20	SSIFss	
PA4	21	SSIRx	
PA5	22	SSITx	
PB0	29	PWM2	
PB1	30	PWM3	
PB2	33		
PB3	34	Fault	
PB4	44	C0-	
PB5	43	COo	
PB6	42	C0+	
PB7	41	TRST	
PC0	40	TCK	SWCLK
PC1	39	TMS	SWDIO
PC2	38	TDI	
PC3	37	TDO	SWO
PC4	14	CCP5	
PC5	13	CCP1	
PC6	12	CCP3	
PC7	11	CCP4	
PD0	25	PWM0	
PD1	26	PWM1	
PD2	27	UlRx	
PD3	28	UlTx	
PD4	45	CCP0	
PD5	46	CCP2	
PEO	35	PWM4	
PE1	36	PWM5	

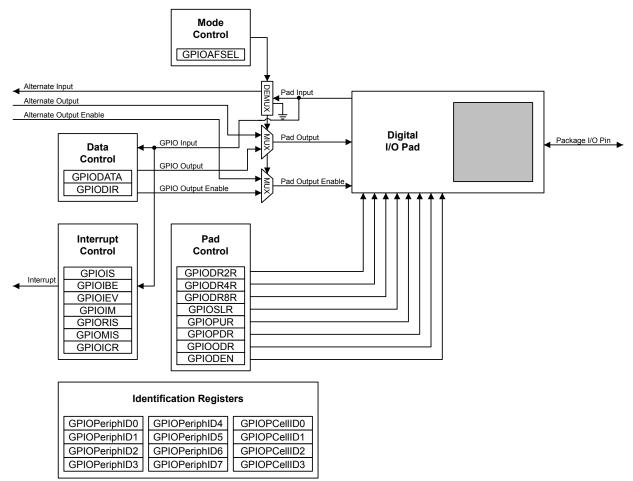
Table 7-3. GPIO Signals (48QFP)

Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description
PAO	17	I/O	TTL	GPIO port A bit 0.
PA1	18	I/O	TTL	GPIO port A bit 1.

Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description					
PA2	19	I/O	TTL	GPIO port A bit 2.					
PA3	20	I/O	TTL	GPIO port A bit 3.					
PA4	21	I/O	TTL	GPIO port A bit 4.					
PA5	22	I/O	TTL	GPIO port A bit 5.					
PB0	29	I/O	TTL	GPIO port B bit 0.					
PB1	30	I/O	TTL	GPIO port B bit 1.					
PB2	33	I/O	TTL	GPIO port B bit 2.					
PB3	34	I/O	TTL	GPIO port B bit 3.					
PB4	44	I/O	TTL	GPIO port B bit 4.					
PB5	43	I/O	TTL	GPIO port B bit 5.					
PB6	42	I/O	TTL	GPIO port B bit 6.					
PB7	41	I/O	TTL	GPIO port B bit 7.					
PC0	40	I/O	TTL	GPIO port C bit 0.					
PC1	39	I/O	TTL	GPIO port C bit 1.					
PC2	38	I/O	TTL	GPIO port C bit 2.					
PC3	37	I/O	TTL	GPIO port C bit 3.					
PC4	14	I/O	TTL	GPIO port C bit 4.					
PC5	13	I/O	TTL	GPIO port C bit 5.					
PC6	12	I/O	TTL	GPIO port C bit 6.					
PC7	11	I/O	TTL	GPIO port C bit 7.					
PDO	25	I/O	TTL	GPIO port D bit 0.					
PD1	26	I/O	TTL	GPIO port D bit 1.					
PD2	27	I/O	TTL	GPIO port D bit 2.					
PD3	28	I/O	TTL	GPIO port D bit 3.					
PD4	45	I/O	TTL	GPIO port D bit 4.					
PD5	46	I/O	TTL	GPIO port D bit 5.					
PE0	35	I/O	TTL	GPIO port E bit 0.					
PE1	36	I/O	TTL	GPIO port E bit 1.					

Table 7-3. GPIO Signals (48QFP) (continued)

a. The TTL designation indicates the pin has TTL-compatible voltage levels.


7.3 Functional Description

Important: All GPIO pins are inputs by default (GPIODIR=0 and GPIOAFSEL=0), with the exception of the five JTAG pins (PB7 and PC[3:0]). The JTAG pins default to their JTAG functionality (GPIOAFSEL=1). A Power-On-Reset (POR) or asserting an external reset (RST) puts both groups of pins back to their default state.

While debugging systems where PB7 is being used as a GPIO, care must be taken to ensure that a Low value is not applied to the pin when the part is reset. Because PB7 reverts to the $\overline{\text{TRST}}$ function after reset, a Low value on the pin causes the JTAG controller to be reset, resulting in a loss of JTAG communication.

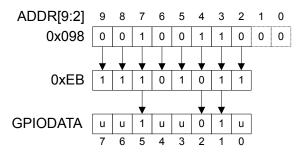
Each GPIO port is a separate hardware instantiation of the same physical block (see Figure 7-2 on page 233). The LM3S617 microcontroller contains five ports and thus five of these physical GPIO blocks.

7.3.1 Data Control

The data control registers allow software to configure the operational modes of the GPIOs. The data direction register configures the GPIO as an input or an output while the data register either captures incoming data or drives it out to the pads.

7.3.1.1 Data Direction Operation

The **GPIO Direction (GPIODIR)** register (see page 240) is used to configure each individual pin as an input or output. When the data direction bit is set to 0, the GPIO is configured as an input and the corresponding data register bit will capture and store the value on the GPIO port. When the data direction bit is set to 1, the GPIO is configured as an output and the corresponding data register bit will be driven out on the GPIO port.


7.3.1.2 Data Register Operation

To aid in the efficiency of software, the GPIO ports allow for the modification of individual bits in the **GPIO Data (GPIODATA)** register (see page 239) by using bits [9:2] of the address bus as a mask. This allows software drivers to modify individual GPIO pins in a single instruction, without affecting the state of the other pins. This is in contrast to the "typical" method of doing a read-modify-write operation to set or clear an individual GPIO pin. To accommodate this feature, the **GPIODATA** register covers 256 locations in the memory map.

During a write, if the address bit associated with that data bit is set to 1, the value of the **GPIODATA** register is altered. If it is cleared to 0, it is left unchanged.

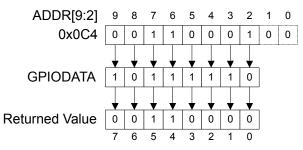

For example, writing a value of 0xEB to the address GPIODATA + 0x098 would yield as shown in Figure 7-3 on page 234, where u is data unchanged by the write.

Figure 7-3. GPIODATA Write Example

During a read, if the address bit associated with the data bit is set to 1, the value is read. If the address bit associated with the data bit is set to 0, it is read as a zero, regardless of its actual value. For example, reading address GPIODATA + 0x0C4 yields as shown in Figure 7-4 on page 234.

Figure 7-4. GPIODATA Read Example

7.3.2 Interrupt Control

The interrupt capabilities of each GPIO port are controlled by a set of seven registers. With these registers, it is possible to select the source of the interrupt, its polarity, and the edge properties. When one or more GPIO inputs cause an interrupt, a single interrupt output is sent to the interrupt controller for the entire GPIO port. For edge-triggered interrupts, software must clear the interrupt to enable any further interrupts. For a level-sensitive interrupt, it is assumed that the external source holds the level constant for the interrupt to be recognized by the controller.

Three registers are required to define the edge or sense that causes interrupts:

- GPIO Interrupt Sense (GPIOIS) register (see page 241)
- **GPIO Interrupt Both Edges (GPIOIBE)** register (see page 242)
- **GPIO Interrupt Event (GPIOIEV)** register (see page 243)

Interrupts are enabled/disabled via the GPIO Interrupt Mask (GPIOIM) register (see page 244).

When an interrupt condition occurs, the state of the interrupt signal can be viewed in two locations: the **GPIO Raw Interrupt Status (GPIORIS)** and **GPIO Masked Interrupt Status (GPIOMIS)** registers (see page 245 and page 246). As the name implies, the **GPIOMIS** register only shows interrupt

conditions that are allowed to be passed to the controller. The **GPIORIS** register indicates that a GPIO pin meets the conditions for an interrupt, but has not necessarily been sent to the controller.

In addition to providing GPIO functionality, PB4 can also be used as an external trigger for the ADC. If PB4 is configured as a non-masked interrupt pin (the appropriate bit of GPIOIM is set to 1), not only is an interrupt for PortB generated, but an external trigger signal is sent to the ADC. If the **ADC Event Multiplexer Select (ADCEMUX)** register is configured to use the external trigger, an ADC conversion is initiated.

If no other PortB pins are being used to generate interrupts, the **Interrupt 0-31 Set Enable (EN0)** register can disable the PortB interrupts, and the ADC interrupt can be used to read back the converted data. Otherwise, the PortB interrupt handler needs to ignore and clear interrupts on PB4, and wait for the ADC interrupt or the ADC interrupt must be disabled in the **EN0** register and the PortB interrupt handler must poll the ADC registers until the conversion is completed. See page 99 for more information.

Interrupts are cleared by writing a 1 to the appropriate bit of the **GPIO Interrupt Clear (GPIOICR)** register (see page 247).

When programming the following interrupt control registers, the interrupts should be masked (**GPIOIM** set to 0). Writing any value to an interrupt control register (**GPIOIS**, **GPIOIBE**, or **GPIOIEV**) can generate a spurious interrupt if the corresponding bits are enabled.

7.3.3 Mode Control

The GPIO pins can be controlled by either hardware or software. When hardware control is enabled via the **GPIO Alternate Function Select (GPIOAFSEL)** register (see page 248), the pin state is controlled by its alternate function (that is, the peripheral). Software control corresponds to GPIO mode, where the **GPIODATA** register is used to read/write the corresponding pins.

7.3.4 Pad Control

The pad control registers allow for GPIO pad configuration by software based on the application requirements. The pad control registers include the **GPIODR2R**, **GPIODR4R**, **GPIODR8R**, **GPIOODR**, **GPIOPUR**, **GPIOPDR**, **GPIOSLR**, and **GPIODEN** registers. These registers control drive strength, open-drain configuration, pull-up and pull-down resistors, slew-rate control and digital enable.

7.3.5 Identification

The identification registers configured at reset allow software to detect and identify the module as a GPIO block. The identification registers include the **GPIOPeriphID0-GPIOPeriphID7** registers as well as the **GPIOPCeIIID0-GPIOPCeIIID3** registers.

7.4 Initialization and Configuration

To use the GPIO, the peripheral clock must be enabled by setting the appropriate GPIO Port bit field (GPIOn) in the **RCGC2** register.

On reset, all GPIO pins (except for the five JTAG pins) default to general-purpose input mode (**GPIODIR=**0 and **GPIOAFSEL=**0). Table 7-4 on page 236 shows all possible configurations of the GPIO pads and the control register settings required to achieve them. Table 7-5 on page 236 shows how a rising edge interrupt would be configured for pin 2 of a GPIO port.

Configuration	GPIO Reg	GPIO Register Bit Value ^a														
Configuration	AFSEL	DIR	ODR	DEN	PUR	PDR	DR2R	DR4R	DR8R	SLR						
Digital Input (GPIO)	0	0	0	1	?	?	Х	X	X	Х						
Digital Output (GPIO)	0	1	0	1	?	?	?	?	?	?						
Open Drain Output (GPIO)	0	1	1	1	X	X	?	?	?	?						
Digital Input (Timer CCP)	1	X	0	1	?	?	X	X	X	X						
Digital Output (PWM)	1	Х	0	1	?	?	?	?	?	?						
Digital Output (Timer PWM)	1	X	0	1	?	?	?	?	?	?						
Digital Input/Output (SSI)	1	X	0	1	?	?	?	?	?	?						
Digital Input/Output (UART)	1	X	0	1	?	?	?	?	?	?						
Analog Input (Comparator)	0	0	0	0	0	0	X	X	X	X						
Digital Output (Comparator)	1	X	0	1	?	?	?	?	?	?						

Table 7-4. GPIO Pad Configuration Examples

a. X=Ignored (don't care bit)

?=Can be either 0 or 1, depending on the configuration

Table 7-5. GPIO Interrupt Configuration Example

	Desired	Pin 2 Bit Va	alue ^a						
Register	Interrupt Event Trigger	7	6	5	4	3	2	1	0
GPIOIS	0=edge 1=level	X	X	X	X	X	0	Х	Х
GPIOIBE	0=single edge 1=both edges	X	X	X	X	X	0	Х	X
GPIOIEV	0=Low level, or negative edge 1=High level, or positive edge		x	×	x	×	1	X	X
GPIOIM	0=masked 1=not masked	0	0	0	0	0	1	0	0

a. X=Ignored (don't care bit)

7.5 Register Map

Table 7-6 on page 237 lists the GPIO registers. The offset listed is a hexadecimal increment to the register's address, relative to that GPIO port's base address:

■ GPIO Port A: 0x4000.4000

- GPIO Port B: 0x4000.5000
- GPIO Port C: 0x4000.6000
- GPIO Port D: 0x4000.7000
- GPIO Port E: 0x4002.4000

Note that the GPIO module clock must be enabled before the registers can be programmed (see page 203). There must be a delay of 3 system clocks after the GPIO module clock is enabled before any GPIO module registers are accessed.

- **Important:** The GPIO registers in this chapter are duplicated in each GPIO block; however, depending on the block, all eight bits may not be connected to a GPIO pad. In those cases, writing to those unconnected bits has no effect, and reading those unconnected bits returns no meaningful data.
- **Note:** The default reset value for the **GPIOAFSEL** register is 0x0000.0000 for all GPIO pins, with the exception of the five JTAG pins (PB7 and PC[3:0]). These five pins default to JTAG functionality. Because of this, the default reset value of **GPIOAFSEL** for GPIO Port B is 0x0000.0080 while the default reset value for Port C is 0x0000.000F.

Offset	Name	Туре	Reset	Description	See page
0x000	GPIODATA	R/W	0x0000.0000	GPIO Data	239
0x400	GPIODIR	R/W	0x0000.0000	GPIO Direction	240
0x404	GPIOIS	R/W	0x0000.0000	GPIO Interrupt Sense	241
0x408	GPIOIBE	R/W	0x0000.0000	GPIO Interrupt Both Edges	242
0x40C	GPIOIEV	R/W	0x0000.0000	GPIO Interrupt Event	243
0x410	GPIOIM	R/W	0x0000.0000	GPIO Interrupt Mask	244
0x414	GPIORIS	RO	0x0000.0000	GPIO Raw Interrupt Status	245
0x418	GPIOMIS	RO	0x0000.0000	GPIO Masked Interrupt Status	246
0x41C	GPIOICR	W1C	0x0000.0000	GPIO Interrupt Clear	247
0x420	GPIOAFSEL	R/W	-	GPIO Alternate Function Select	248
0x500	GPIODR2R	R/W	0x0000.00FF	GPIO 2-mA Drive Select	250
0x504	GPIODR4R	R/W	0x0000.0000	GPIO 4-mA Drive Select	251
0x508	GPIODR8R	R/W	0x0000.0000	GPIO 8-mA Drive Select	252
0x50C	GPIOODR	R/W	0x0000.0000	GPIO Open Drain Select	253
0x510	GPIOPUR	R/W	0x0000.00FF	GPIO Pull-Up Select	254
0x514	GPIOPDR	R/W	0x0000.0000	GPIO Pull-Down Select	255
0x518	GPIOSLR	R/W	0x0000.0000	GPIO Slew Rate Control Select	256
0x51C	GPIODEN	R/W	0x0000.00FF	GPIO Digital Enable	257
0xFD0	GPIOPeriphID4	RO	0x0000.0000	GPIO Peripheral Identification 4	258
0xFD4	GPIOPeriphID5	RO	0x0000.0000	GPIO Peripheral Identification 5	259

Table 7-6. GPIO Register Map

Offset	Name	Туре	Reset	Description	See page
0xFD8	GPIOPeriphID6	RO	0x0000.0000	GPIO Peripheral Identification 6	260
0xFDC	GPIOPeriphID7	RO	0x0000.0000	GPIO Peripheral Identification 7	261
0xFE0	GPIOPeriphID0	RO	0x0000.0061	GPIO Peripheral Identification 0	262
0xFE4	GPIOPeriphID1	RO	0x0000.0000	GPIO Peripheral Identification 1	263
0xFE8	GPIOPeriphID2	RO	0x0000.0018	GPIO Peripheral Identification 2	264
0xFEC	GPIOPeriphID3	RO	0x0000.0001	GPIO Peripheral Identification 3	265
0xFF0	GPIOPCellID0	RO	0x0000.000D	GPIO PrimeCell Identification 0	266
0xFF4	GPIOPCellID1	RO	0x0000.00F0	GPIO PrimeCell Identification 1	267
0xFF8	GPIOPCellID2	RO	0x0000.0005	GPIO PrimeCell Identification 2	268
0xFFC	GPIOPCellID3	RO	0x0000.00B1	GPIO PrimeCell Identification 3	269

Table 7-6. GPIO Register Map (continued)

7.6 Register Descriptions

The remainder of this section lists and describes the GPIO registers, in numerical order by address offset.

Register 1: GPIO Data (GPIODATA), offset 0x000

The **GPIODATA** register is the data register. In software control mode, values written in the **GPIODATA** register are transferred onto the GPIO port pins if the respective pins have been configured as outputs through the **GPIO Direction (GPIODIR)** register (see page 240).

In order to write to **GPIODATA**, the corresponding bits in the mask, resulting from the address bus bits [9:2], must be High. Otherwise, the bit values remain unchanged by the write.

Similarly, the values read from this register are determined for each bit by the mask bit derived from the address used to access the data register, bits [9:2]. Bits that are 1 in the address mask cause the corresponding bits in **GPIODATA** to be read, and bits that are 0 in the address mask cause the corresponding bits in **GPIODATA** to be read as 0, regardless of their value.

A read from **GPIODATA** returns the last bit value written if the respective pins are configured as outputs, or it returns the value on the corresponding input pin when these are configured as inputs. All bits are cleared by a reset.

GPIO Data (GPIODATA)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x000

Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1			1 1	rese	erved	1	1	1	1		1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	erved		1 1			I	1	DA	ATA		I	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field Name 31:8 reserved					pe O	Reset 0x00	Soft com	patibility	with futu	ure prod	ucts, the	of a reso value of operatio	a reserv	•	vide nould be
	7:0		DAT	TA	R/	W	0x00	GPI	O Data							
								To fa inde regi	acilitate t ependent sters are	the readi drivers, masked	ng and v the data I by the e	writing of a read fro eight add		these re he data s ipado	gisters b written to ar[9:2]	y .

reads and writes.

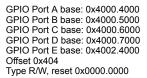
bits that are not masked by ipaddr[9:2] and are configured as outputs. See "Data Register Operation" on page 233 for examples of

Register 2: GPIO Direction (GPIODIR), offset 0x400

The **GPIODIR** register is the data direction register. Bits set to 1 in the **GPIODIR** register configure the corresponding pin to be an output, while bits set to 0 configure the pins to be inputs. All bits are cleared by a reset, meaning all GPIO pins are inputs by default.

GPIO Direction (GPIODIR)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x400 Type R/W, reset 0x0000.0000


	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ				· ·			rese	rved			•		1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
100001	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	10	17	, is		rved		ر آر	0				, D		1	, I	г <u> </u>
				1636	I							U	l.			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserved		RO		0x00	com	Software should not rely on the value of a reserved bit. To compatibility with future products, the value of a reserved preserved across a read-modify-write operation.					•		
	7:0		DIF	8	R/	W	0x00		O Data I DIR valı			as follow	s:			

- 0 Pins are inputs.
- 1 Pins are outputs.

Register 3: GPIO Interrupt Sense (GPIOIS), offset 0x404

The **GPIOIS** register is the interrupt sense register. Bits set to 1 in **GPIOIS** configure the corresponding pins to detect levels, while bits set to 0 configure the pins to detect edges. All bits are cleared by a reset.

GPIO Interrupt Sense (GPIOIS)

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	r			r 1	rese	rved	1				1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		r	1	rese	rved		1 1			1	r	1	S I	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
F	Bit/Field		Nam		Ту	ne	Reset	Des	cription							
			inan		i y	pc	Reset	DC3	cription							
	31:8		reserv	ved	R	0	0x00	com	patibility	with futu	ure prod	he value ucts, the dify-write	value of	a reserv	•	
	7:0		IS		R/	W	0x00	GPI	O Interre	upt Sens	е					
								The	IS valu	es are de	efined as	s follows:				

- 0 Edge on corresponding pin is detected (edge-sensitive).
- 1 Level on corresponding pin is detected (level-sensitive).

Register 4: GPIO Interrupt Both Edges (GPIOIBE), offset 0x408

The **GPIOIBE** register is the interrupt both-edges register. When the corresponding bit in the **GPIO Interrupt Sense (GPIOIS)** register (see page 241) is set to detect edges, bits set to High in **GPIOIBE** configure the corresponding pin to detect both rising and falling edges, regardless of the corresponding bit in the **GPIO Interrupt Event (GPIOIEV)** register (see page 243). Clearing a bit configures the pin to be controlled by **GPIOIEV**. All bits are cleared by a reset.

GPIO Interrupt Both Edges (GPIOIBE)

-		· · ·		
GPIO	Port /	A base:	0x4000	.4000
GPIO	Port I	B base:	0x4000	.5000
GPIO	Port (C base	0x4000	.6000
GPIO	Port I	D base	0x4000	.7000
GPIO	Port I	E base:	0x4002	.4000
Offset	0x40	8		
Туре	R/W, r	reset 0x	<0000.00	00

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved						1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved							IB	E	ſ	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit/Field	Name	Туре	Reset	Description
31:8	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:0	IBE	R/W	0x00	GPIO Interrupt Both Edges The IBE values are defined as follows:

- 0 Interrupt generation is controlled by the **GPIO Interrupt Event** (**GPIOIEV**) register (see page 243).
- 1 Both edges on the corresponding pin trigger an interrupt.
 - Note: Single edge is determined by the corresponding bit in **GPIOIEV**.

Register 5: GPIO Interrupt Event (GPIOIEV), offset 0x40C

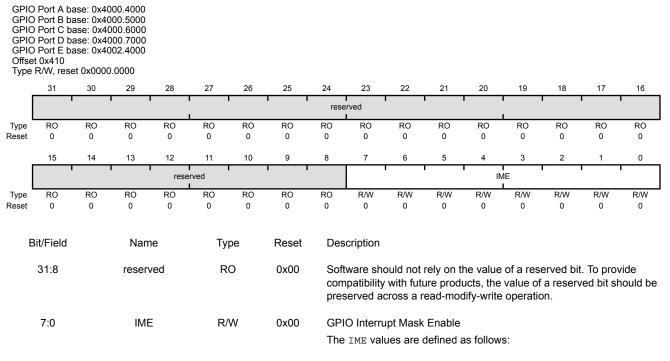
The GPIOIEV register is the interrupt event register. Bits set to High in GPIOIEV configure the corresponding pin to detect rising edges or high levels, depending on the corresponding bit value in the GPIO Interrupt Sense (GPIOIS) register (see page 241). Clearing a bit configures the pin to detect falling edges or low levels, depending on the corresponding bit value in GPIOIS. All bits are cleared by a reset.

GPIO Interrupt Event (GPIOIEV)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x40C Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	reserved															•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1		rese	rved				ſ		I	V	ſ	ſ		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit/Field	Name	Туре	Reset	Description
31:8	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:0	IEV	R/W	0x00	GPIO Interrupt Event


The IEV values are defined as follows:

- 0 Falling edge or Low levels on corresponding pins trigger interrupts.
- Rising edge or High levels on corresponding pins trigger 1 interrupts.

Register 6: GPIO Interrupt Mask (GPIOIM), offset 0x410

The **GPIOIM** register is the interrupt mask register. Bits set to High in **GPIOIM** allow the corresponding pins to trigger their individual interrupts and the combined **GPIOINTR** line. Clearing a bit disables interrupt triggering on that pin. All bits are cleared by a reset.

GPIO Interrupt Mask (GPIOIM)

- 0 Corresponding pin interrupt is masked.
- 1 Corresponding pin interrupt is not masked.

Register 7: GPIO Raw Interrupt Status (GPIORIS), offset 0x414

The **GPIORIS** register is the raw interrupt status register. Bits read High in **GPIORIS** reflect the status of interrupt trigger conditions detected (raw, prior to masking), indicating that all the requirements have been met, before they are finally allowed to trigger by the **GPIO Interrupt Mask** (**GPIOIM**) register (see page 244). Bits read as zero indicate that corresponding input pins have not initiated an interrupt. All bits are cleared by a reset.

GPIO Raw Interrupt Status (GPIORIS)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x414 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	reserved															1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved			RIS							'	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit/Field	Name	Туре	Reset	Description
31:8	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:0	RIS	RO	0x00	GPIO Interrupt Raw Status Reflects the status of interrupt trigger condition detection on pins (raw,

prior to masking).

The RIS values are defined as follows:

- 0 Corresponding pin interrupt requirements not met.
- 1 Corresponding pin interrupt has met requirements.

Register 8: GPIO Masked Interrupt Status (GPIOMIS), offset 0x418

The **GPIOMIS** register is the masked interrupt status register. Bits read High in **GPIOMIS** reflect the status of input lines triggering an interrupt. Bits read as Low indicate that either no interrupt has been generated, or the interrupt is masked.

In addition to providing GPIO functionality, PB4 can also be used as an external trigger for the ADC. If PB4 is configured as a non-masked interrupt pin (the appropriate bit of GPIOIM is set to 1), not only is an interrupt for PortB generated, but an external trigger signal is sent to the ADC. If the **ADC Event Multiplexer Select (ADCEMUX)** register is configured to use the external trigger, an ADC conversion is initiated.

If no other PortB pins are being used to generate interrupts, the **Interrupt 0-31 Set Enable (EN0)** register can disable the PortB interrupts, and the ADC interrupt can be used to read back the converted data. Otherwise, the PortB interrupt handler needs to ignore and clear interrupts on PB4, and wait for the ADC interrupt or the ADC interrupt must be disabled in the **EN0** register and the PortB interrupt handler must poll the ADC registers until the conversion is completed. See page 99 for more information.

GPIOMIS is the state of the interrupt after masking.

GPIO Masked Interrupt Status (GPIOMIS)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x418 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1	1	I	1 1	rese	rved		I	I	1	1		1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ		1	rese	rved	r	т т			1	r	M	I IIS I	1	ľ	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field Name				Ту	ре	Reset	Des	cription							
	31:8		reser	ved	R	0	0x00	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv	•	vide hould be
	7:0		MIS	S	R	0	0x00	GPI	O Maske	ed Interru	upt Statu	IS				
								Mas	ked valu	e of inte	rrupt due	e to corre	espondir	ng pin.		
									MIS val		•		•			
								Val	ue Desc	ription						

0 Corresponding GPIO line interrupt not active.

1 Corresponding GPIO line asserting interrupt.

Register 9: GPIO Interrupt Clear (GPIOICR), offset 0x41C

The **GPIOICR** register is the interrupt clear register. Writing a 1 to a bit in this register clears the corresponding interrupt edge detection logic register. Writing a 0 has no effect.

GPIO Interrupt Clear (GPIOICR) GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x41C Type W1C, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved Туре RO 0 Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 3 2 0 Δ 1 ic reserved RO RO RO RO RO RO RO RO W1C W1C W1C W1C W1C W1C W1C W1C Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Name Туре Reset Description RO 0x00 Software should not rely on the value of a reserved bit. To provide 31:8 reserved compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. IC W1C 0x00 **GPIO** Interrupt Clear 7:0 The IC values are defined as follows: Value Description

0 Corresponding interrupt is unaffected.

1 Corresponding interrupt is cleared.

Register 10: GPIO Alternate Function Select (GPIOAFSEL), offset 0x420

The **GPIOAFSEL** register is the mode control select register. Writing a 1 to any bit in this register selects the hardware control for the corresponding GPIO line. All bits are cleared by a reset, therefore no GPIO line is set to hardware control by default.

Important: All GPIO pins are inputs by default (GPIODIR=0 and GPIOAFSEL=0), with the exception of the five JTAG pins (PB7 and PC[3:0]). The JTAG pins default to their JTAG functionality (GPIOAFSEL=1). A Power-On-Reset (POR) or asserting an external reset (RST) puts both groups of pins back to their default state.

While debugging systems where PB7 is being used as a GPIO, care must be taken to ensure that a Low value is not applied to the pin when the part is reset. Because PB7 reverts to the $\overline{\text{TRST}}$ function after reset, a Low value on the pin causes the JTAG controller to be reset, resulting in a loss of JTAG communication.

Caution – If the JTAG pins are used as GPIOs in a design, PB7 and PC2 cannot have external pull-down resistors connected to both of them at the same time. If both pins are pulled Low during reset, the controller has unpredictable behavior. If this happens, remove one or both of the pull-down resistors, and apply RST or power-cycle the part.

It is possible to create a software sequence that prevents the debugger from connecting to the Stellaris[®] microcontroller. If the program code loaded into flash immediately changes the JTAG pins to their GPIO functionality, the debugger may not have enough time to connect and halt the controller before the JTAG pin functionality switches. This may lock the debugger out of the part. This can be avoided with a software routine that restores JTAG functionality based on an external or software trigger.

GPIO Alternate Function Select (GPIOAFSEL)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x420 Type R/W, reset -

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
			1					rese	served								
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		1	1	rese	rved							AFS	SEL				
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	-	-	-	-	-	-	-	-	
_					-		Reset	_									
E	sit/Field	t/Field Name Type R						Des	cription								
	со					com	patibility	with futu	ure produ	he value ucts, the lify-write	value of	a reserv	•				

B is 0x0000.0080 while the default reset value for

Port C is 0x0000.000F.

Bit/Field	Name	Туре	Reset	Description								
7:0	AFSEL	R/W	-	GPIO Alternate Function Select								
				The AFSEL values are defined as follows:								
				Value Description								
				0 Software control of corresponding GPIO line (GPIO mode).								
				 Hardware control of corresponding GPIO line (alternate hardware function). 								
				Note: The default reset value for the GPIOAFSEL register is 0x0000.0000 for all GPIO pins, with the exception of the five JTAG pins (PB7 and PC[3:0]). These five pins default to JTAG functionality. Because of this, the default reset value of GPIOAFSEL for GPIO Port								

Register 11: GPIO 2-mA Drive Select (GPIODR2R), offset 0x500

The **GPIODR2R** register is the 2-mA drive control register. It allows for each GPIO signal in the port to be individually configured without affecting the other pads. When writing a DRV2 bit for a GPIO signal, the corresponding DRV4 bit in the **GPIODR4R** register and the DRV8 bit in the **GPIODR8R** register are automatically cleared by hardware.

GPIO 2-mA Drive Select (GPIODR2R)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x500 Type R/W, reset 0x0000.00FF

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
			1			I		rese	reserved								
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
			1	rese	rved	1	1 1			1	1	DF	RV2	1	1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	
E	Bit/Field Name			Ту	ре	Reset	Des	cription									
	Bit/Field Name				R	0	0x00	com	Software should not rely on the value of a reserved bit. To provi compatibility with future products, the value of a reserved bit sho preserved across a read-modify-write operation.								
	7:0 DRV2			/2	R/	W	0xFF	Aw	put Pad 2 rite of 1 f	to either	GPIODF	R4[n] or				second	

A write of 1 to either GPIODR4[n] or GPIODR8[n] clears the corresponding 2-mA enable bit. The change is effective on the second clock cycle after the write.

Register 12: GPIO 4-mA Drive Select (GPIODR4R), offset 0x504

The **GPIODR4R** register is the 4-mA drive control register. It allows for each GPIO signal in the port to be individually configured without affecting the other pads. When writing the DRV4 bit for a GPIO signal, the corresponding DRV2 bit in the **GPIODR2R** register and the DRV8 bit in the **GPIODR8R** register are automatically cleared by hardware.

GPIO 4-mA Drive Select (GPIODR4R)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x504 Type R/W, reset 0x0000.0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 17 reserved RO Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 13 12 9 8 14 11 10 7 6 5 4 3 2 1 0 DRV4 reserved RO RO RO RO RO RO RO R/W R/W R/W R/W R/W R/W R/W Туре RO R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Description Name Туре Reset RO 0x00 Software should not rely on the value of a reserved bit. To provide 31:8 reserved compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. DRV4 7:0 R/W 0x00 Output Pad 4-mA Drive Enable A write of 1 to either GPIODR2[n] or GPIODR8[n] clears the

A write of 1 to either **GPIODR2[n]** or **GPIODR8[n]** clears the corresponding 4-mA enable bit. The change is effective on the second clock cycle after the write.

Register 13: GPIO 8-mA Drive Select (GPIODR8R), offset 0x508

The **GPIODR8R** register is the 8-mA drive control register. It allows for each GPIO signal in the port to be individually configured without affecting the other pads. When writing the DRV8 bit for a GPIO signal, the corresponding DRV2 bit in the **GPIODR2R** register and the DRV4 bit in the **GPIODR4R** register are automatically cleared by hardware.

GPIO 8-mA Drive Select (GPIODR8R)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x508 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1			1		rese	erved	1	1	1	1	1	I	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	rved	1	1 1			1	1	DF	RV8	1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field Name				Ту	ре	Reset	Des	cription							
	31:8 reserved				R	0	0x00	com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit shou preserved across a read-modify-write operation.							
	7:0 DRV8				R/	W	0x00	Aw	put Pad a rite of 1 t respondir	to either	GPIODF	R2[n] or				second

A write of 1 to either **GPIODR2[n]** or **GPIODR4[n]** clears the corresponding 8-mA enable bit. The change is effective on the second clock cycle after the write.

Register 14: GPIO Open Drain Select (GPIOODR), offset 0x50C

The **GPIOODR** register is the open drain control register. Setting a bit in this register enables the open drain configuration of the corresponding GPIO pad. When open drain mode is enabled, the corresponding bit should also be set in the **GPIO Digital Enable (GPIODEN)** register (see page 257). Corresponding bits in the drive strength registers (**GPIODR2R**, **GPIODR4R**, **GPIODR8R**, and **GPIOSLR**) can be set to achieve the desired rise and fall times. The GPIO acts as an open-drain input if the corresponding bit in the **GPIODIR** register is cleared. If open drain is selected while the GPIO is configured as an input, the GPIO will remain an input and the open-drain selection has no effect until the GPIO is changed to an output.

GPIO GPIO GPIO GPIO GPIO Offse	Port A b Port B b Port C b Port D b Port E b t 0x50C	n Drain pase: 0x40 pase: 0x40 pase: 0x40 pase: 0x40 pase: 0x40 et 0x0000	000.5000 000.6000 000.7000 002.4000	GPIOO	DR)											
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ĺ		1	1				т т	rese	erved			ſ				
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[1	1	rese	rved		1 T					OI	DE			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	it/Field		Nam	ne	Ту	pe	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv		
	7:0		ODI	E	R/	W	0x00	The	put Pad (ODE val	ues are o			s:			
								Val	ue Desc	ription						

0

1

Open drain configuration is disabled.

Open drain configuration is enabled.

Register 15: GPIO Pull-Up Select (GPIOPUR), offset 0x510

The **GPIOPUR** register is the pull-up control register. When a bit is set to 1, it enables a weak pull-up resistor on the corresponding GPIO signal. Setting a bit in **GPIOPUR** automatically clears the corresponding bit in the **GPIO Pull-Down Select (GPIOPDR)** register (see page 255).

GPIO Pull-Up Select (GPIOPUR)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x510 Type R/W, reset 0x0000.00FF

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1			1 1	rese	erved	ſ				1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	r i i i i i i i i i i i i i i i i i i i	rved		1 1	-		-	-	PL		1	r <u> </u>	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1
E	Bit/Field		Nan	ne	Ту	be	Reset	Des	cription							
	Bit/FieldNameTypeReset31:8reservedRO0x00								ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv	•	
	7:0		PU	E	R/	W	0xFF	Pad	Weak P	ull-Up E	nable	-				
								Val	ue Desc	ription						

0 The corresponding pin's weak pull-up resistor is disabled.

1 The corresponding pin's weak pull-up resistor is enabled.

A write of 1 to **GPIOPDR[n]** clears the corresponding **GPIOPUR[n]** enables. The change is effective on the second clock cycle after the write.

Register 16: GPIO Pull-Down Select (GPIOPDR), offset 0x514

The **GPIOPDR** register is the pull-down control register. When a bit is set to 1, it enables a weak pull-down resistor on the corresponding GPIO signal. Setting a bit in **GPIOPDR** automatically clears the corresponding bit in the **GPIO Pull-Up Select (GPIOPUR)** register (see page 254).

GPIO Pull-Down Select (GPIOPDR)

GPIC GPIC GPIC GPIC GPIC Offse) Port A b) Port B b) Port C b) Port D b) Port E b t 0x514	ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 et 0x0000	00.4000 00.5000 00.6000 00.7000 02.4000	-	,											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			i i		r r		1 1	rese	rved	1	r	1	, , , , , , , , , , , , , , , , , , ,		1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 reserved PDE															
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	e	Тур	e	Reset	Des	cription							
	31:8		reserv	red	R)	0x00	com	patibility	with futu	ure prod	ucts, the	of a rese value of operatio	a reserv	•	
	7:0		PDE	Ξ	R/\	N	0x00	Pad	Weak F	Pull-Dowr	n Enable	!				
								Val	ue Desc	cription						
								0	The	correspo	ndina pi	n's weak	pull-dow	n resist	or is disa	abled.
								-								

1 The corresponding pin's weak pull-down resistor is enabled.

A write of 1 to **GPIOPUR[n]** clears the corresponding **GPIOPDR[n]** enables. The change is effective on the second clock cycle after the write.

Register 17: GPIO Slew Rate Control Select (GPIOSLR), offset 0x518

The **GPIOSLR** register is the slew rate control register. Slew rate control is only available when using the 8-mA drive strength option via the **GPIO 8-mA Drive Select (GPIODR8R)** register (see page 252).

GPIO Slew Rate Control Select (GPIOSLR)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x518 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1		· · · ·		г г	rese	rved	1				T	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved		1 1			1		SF	R RL	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	patibility	with futu	ure prod	he value ucts, the dify-write	value o	f a reser	•	
	7:0		SRI	L	R/	W	0x00				•	A drive o				
								Ihe	SRL val	ues are o	defined a	as follows	S:			

Value Description

- 0 Slew rate control disabled.
- 1 Slew rate control enabled.

Register 18: GPIO Digital Enable (GPIODEN), offset 0x51C

Note: Pins configured as digital inputs are Schmitt-triggered.

The **GPIODEN** register is the digital enable register. By default, all GPIO signals are configured as digital inputs at reset. If a pin is being used as a GPIO or its Alternate Hardware Function, it should be configured as a digital input. The only time that a pin should not be configured as a digital input is when the GPIO pin is configured to be one of the analog input signals for the analog comparators.

GPIO Digital Enable (GPIODEN)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x51C Type R/W, reset 0x0000.00FF

31:8

7:0

-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1			1 I	rese	rved					1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•		rese	erved							DE	EN I		•	'
Туре	RO	RO	RO	rese RO	rved RO	RO	RO	RO	R/W	R/W	R/W	DE R/W	I EN I R/W	R/W	R/W	R/W
Type Reset	RO 0	RO 0	RO 0		L	RO 0	RO 0	RO 0	R/W 1	R/W 1	R/W 1			R/W 1	R/W 1	R/W 1

Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

DEN R/W

reserved

RO

0x00

0xFF

Digital Enable

The DEN values are defined as follows:

Value Description

- 0 Digital functions disabled.
- 1 Digital functions enabled.

Register 19: GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 4 (GPIOPeriphID4)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFD0 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1					rese	rved			•	1	•	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			•	rese	rved							PI	D4		•	•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Reset 0 0 Bit/Field			ie	Ту	pe	Reset	Des	cription							
	Bit/Field Name 31:8 reserved					0	0x00	com	ware sho patibility served ac	with futu	ure prod	ucts, the	value of	a reserv		
	7:0		PID	4	R	0	0x00	GPI	O Periph	ieral ID F	Register	[7:0]				

Register 20: GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 5 (GPIOPeriphID5)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFD4 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		•					rese	rved			1	1	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•	l		rese	rved	I		l				PI	D5	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Reset 0 0 0 Bit/Field Na			ie	Ту	ре	Reset	Des	cription							
	Bit/Field Name 31:8 reserved				R	0	0x00	com	ware sho patibility served ac	with futu	ure prod	ucts, the	value of	a reserv	•	
	7:0		PID	5	R	0	0x00	GPI	O Periph	ieral ID F	Register	[15:8]				

Register 21: GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 6 (GPIOPeriphID6)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFD8 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1		· ·			rese	rved			1		1	1	•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			•	rese	rved					•	PI	D6	•	1	'	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Reset 0 0 Bit/Field			e	Ту	pe	Reset	Des	cription							
	Bit/Field Name 31:8 reserved					0	0x00	com	ware sho patibility served ac	with futu	ure prod	ucts, the	value of	a reserv		
	7:0		PID	6	R	0	0x00	GPI	O Periph	eral ID F	Register	[23:16]				

Register 22: GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 7 (GPIOPeriphID7)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFDC Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	•				· ·			rese	rved			•		1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•			rese	rved						•	PI	D7	•	•	•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Reset 0 0 Bit/Field			ie	Ту	be	Reset	Des	cription							
	Bit/Field Name 31:8 reserved					C	0x00	com	ware sho patibility served ac	with futu	ure prod	ucts, the	value of	a reserv		
	7:0 PID7 RO 0x0								O Periph	eral ID F	Register	[31:24]				

Register 23: GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 0 (GPIOPeriphID0)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFE0 Type RO, reset 0x0000.0061

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1				1 1	rese	rved					1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		ſ	I	rese	rved	ſ	1 1			[PI	D0	r	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	1
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reser	ved	R	0	0x00	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv	•	vide nould be
	7:0		PID	0	R	0	0x61		O Periph be used			-	ne prese	nce of th	is periph	ieral.

Register 24: GPIO Peripheral Identification 1 (GPIOPeriphID1), offset 0xFE4

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 1 (GPIOPeriphID1)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFE4 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1				1 1	rese	rved					1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		· · ·	1	r	rved		1 1	-		-		PI		1	r	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Tv	ре	Reset	Des	cription							
	Bit/FieldNameTypeRese31:8reservedRO0x00								patibility	with futu	ire produ	he value ucts, the lify-write	value of	a reserv		
							0x00		O Periph be used			[15:8] dentify th	e prese	nce of th	is periph	eral.

Register 25: GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 2 (GPIOPeriphID2)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFE8 Type RO, reset 0x0000.0018

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1		1		1 1	rese	rved					1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		1	rese	l erved	r	1 I		,,	I	i 1	I PII	D2	ı	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
E	3it/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com		with futu	ure produ	ucts, the	value of	erved bit f a reserv on.		
	7:0		PID	2	R	0	0x18		O Periph be used				ne prese	nce of th	is periph	neral.

Register 26: GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 3 (GPIOPeriphID3)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFEC Type RO, reset 0x0000.0001

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1				1 1	rese	rved					1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		r	1		rved		1 1				r	PI		1	r	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
E	3it/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8	reserved RO 0x00						Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								
	7:0		PID	3	R	0	0x01 GPIO Peripheral ID Register[31:24] Can be used by software to identify the presence						nce of th	is periph	ieral.	

Register 27: GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 0 (GPIOPCellID0)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFF0 Type RO, reset 0x0000.000D

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			I				1 1	rese	rved					1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ		1	rese	rved		r r				I	CII	0	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8								Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.							
	7:0 CID0 RO 0x0D GPIO PrimeCo Provides softw							• •	•	eriphera	I identific	cation sy	stem.			

Register 28: GPIO PrimeCell Identification 1 (GPIOPCellID1), offset 0xFF4

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 1 (GPIOPCellID1)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFF4 Type RO, reset 0x0000.00F0

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1				1 1	rese	rved					1	1	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Ĩ		I	rese	rved		1 1					CII	D1	I	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8							Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								
	7:0 CID1 RO 0xF0 GPIO Prim Provides s								• •	-	eriphera	I identific	cation sy	stem.		

Register 29: GPIO PrimeCell Identification 2 (GPIOPCellID2), offset 0xFF8

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 2 (GPIOPCellID2)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFF8 Type RO, reset 0x0000.0005

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1				1	rese	rved					1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		I	rese	rved	r	, , , ,		,,			CI	D2	ı	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8	1:8 reserved RO 0x00						Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								
	7:0 CID2 RO 0x05 GPIO Prime Provides sof							• •	-	eriphera	I identific	cation sy	stem.			

Register 30: GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 3 (GPIOPCellID3)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFFC Type RO, reset 0x0000.00B1

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1				1 1	rese	rved					1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		1	rese	rved	r	1 I		,,			CII	53	ı	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8							Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								
	7:0 CID3 RO 0xB1 GPIO PrimeCell ID Re Provides software a si						• •	-	eriphera	I identific	cation sy	stem.				

8 General-Purpose Timers

Programmable timers can be used to count or time external events that drive the Timer input pins. The Stellaris[®] General-Purpose Timer Module (GPTM) contains three GPTM blocks (Timer0, Timer1, and Timer 2). Each GPTM block provides two 16-bit timers/counters (referred to as TimerA and TimerB) that can be configured to operate independently as timers or event counters, or configured to operate as one 32-bit timer or one 32-bit Real-Time Clock (RTC).

In addition, timers can be used to trigger analog-to-digital conversions (ADC). The ADC trigger signals from all of the general-purpose timers are ORed together before reaching the ADC module, so only one timer should be used to trigger ADC events.

The GPT Module is one timing resource available on the Stellaris microcontrollers. Other timer resources include the System Timer (SysTick) (see 85) and the PWM timer in the PWM module (see "PWM Timer" on page 459).

The General-Purpose Timers provide the following features:

- Three General-Purpose Timer Modules (GPTM), each of which provides two 16-bit timers/counters. Each GPTM can be configured to operate independently:
 - As a single 32-bit timer
 - As one 32-bit Real-Time Clock (RTC) to event capture
 - For Pulse Width Modulation (PWM)
 - To trigger analog-to-digital conversions
- 32-bit Timer modes
 - Programmable one-shot timer
 - Programmable periodic timer
 - Real-Time Clock when using an external 32.768-KHz clock as the input
 - User-enabled stalling when the controller asserts CPU Halt flag during debug
 - ADC event trigger
- 16-bit Timer modes
 - General-purpose timer function with an 8-bit prescaler (for one-shot and periodic modes only)
 - Programmable one-shot timer
 - Programmable periodic timer
 - User-enabled stalling when the controller asserts CPU Halt flag during debug
 - ADC event trigger
- 16-bit Input Capture modes
 - Input edge count capture

- Input edge time capture
- 16-bit PWM mode
 - Simple PWM mode with software-programmable output inversion of the PWM signal

8.1 Block Diagram

Note: In Figure 8-1 on page 271, the specific CCP pins available depend on the Stellaris device. See Table 8-1 on page 271 for the available CCPs.

Figure 8-1. GPTM Module Block Diagram

Table 8-1. Available CCP Pins

Timer	16-Bit Up/Down Counter	Even CCP Pin	Odd CCP Pin
Timer 0	TimerA	CCP0	-
	TimerB	-	CCP1
Timer 1	TimerA	CCP2	-
	TimerB	-	CCP3
Timer 2	TimerA	CCP4	-
	TimerB	-	CCP5

8.2 Signal Description

Table 8-2 on page 272lists the external signals of the GP Timer module and describes the function of each. The GP Timer signals are alternate functions for some GPIO signals and default to be GPIO signals at reset. The column in the table below titled "Pin Assignment" lists the possible GPIO

pin placements for these GP Timer signals. The AFSEL bit in the **GPIO Alternate Function Select** (**GPIOAFSEL**) register (page 248) should be set to choose the GP Timer function. For more information on configuring GPIOs, see "General-Purpose Input/Outputs (GPIOs)" on page 229.

Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description
CCP0	45	I/O	TTL	Capture/Compare/PWM 0.
CCP1	13	I/O	TTL	Capture/Compare/PWM 1.
CCP2	46	I/O	TTL	Capture/Compare/PWM 2.
CCP3	12	I/O	TTL	Capture/Compare/PWM 3.
CCP4	11	I/O	TTL	Capture/Compare/PWM 4.
CCP5	14	I/O	TTL	Capture/Compare/PWM 5.

Table 8-2. General-Purpose Timers Signals (48QFP)

a. The TTL designation indicates the pin has TTL-compatible voltage levels.

8.3 Functional Description

The main components of each GPTM block are two free-running 16-bit up/down counters (referred to as TimerA and TimerB), two 16-bit match registers, two prescaler match registers, and two 16-bit load/initialization registers and their associated control functions. The exact functionality of each GPTM is controlled by software and configured through the register interface.

Software configures the GPTM using the **GPTM Configuration (GPTMCFG)** register (see page 282), the **GPTM TimerA Mode (GPTMTAMR)** register (see page 283), and the **GPTM TimerB Mode (GPTMTBMR)** register (see page 285). When in one of the 32-bit modes, the timer can only act as a 32-bit timer. However, when configured in 16-bit mode, the GPTM can have its two 16-bit timers configured in any combination of the 16-bit modes.

8.3.1 GPTM Reset Conditions

After reset has been applied to the GPTM module, the module is in an inactive state, and all control registers are cleared and in their default states. Counters TimerA and TimerB are initialized to 0xFFFF, along with their corresponding load registers: the **GPTM TimerA Interval Load** (**GPTMTAILR**) register (see page 296) and the **GPTM TimerB Interval Load** (**GPTMTBILR**) register (see page 297). The prescale counters are initialized to 0x00: the **GPTM TimerA Prescale** (**GPTMTAPR**) register (see page 300) and the **GPTM TimerB Prescale** (**GPTMTBPR**) register (see page 301).

8.3.2 32-Bit Timer Operating Modes

This section describes the three GPTM 32-bit timer modes (One-Shot, Periodic, and RTC) and their configuration.

The GPTM is placed into 32-bit mode by writing a 0 (One-Shot/Periodic 32-bit timer mode) or a 1 (RTC mode) to the **GPTM Configuration (GPTMCFG)** register. In both configurations, certain GPTM registers are concatenated to form pseudo 32-bit registers. These registers include:

- GPTM TimerA Interval Load (GPTMTAILR) register [15:0], see page 296
- GPTM TimerB Interval Load (GPTMTBILR) register [15:0], see page 297
- GPTM TimerA (GPTMTAR) register [15:0], see page 304
- GPTM TimerB (GPTMTBR) register [15:0], see page 305

In the 32-bit modes, the GPTM translates a 32-bit write access to **GPTMTAILR** into a write access to both **GPTMTAILR** and **GPTMTBILR**. The resulting word ordering for such a write operation is:

GPTMTBILR[15:0]:GPTMTAILR[15:0]

Likewise, a read access to GPTMTAR returns the value:

GPTMTBR[15:0]:GPTMTAR[15:0]

8.3.2.1 32-Bit One-Shot/Periodic Timer Mode

In 32-bit one-shot and periodic timer modes, the concatenated versions of the TimerA and TimerB registers are configured as a 32-bit down-counter. The selection of one-shot or periodic mode is determined by the value written to the TAMR field of the **GPTM TimerA Mode (GPTMTAMR)** register (see page 283), and there is no need to write to the **GPTM TimerB Mode (GPTMTBMR)** register.

When software writes the TAEN bit in the **GPTM Control (GPTMCTL)** register (see page 287), the timer begins counting down from its preloaded value. Once the 0x0000.0000 state is reached, the timer reloads its start value from the concatenated **GPTMTAILR** on the next cycle. If configured to be a one-shot timer, the timer stops counting and clears the TAEN bit in the **GPTMCTL** register. If configured as a periodic timer, it continues counting.

In addition to reloading the count value, the GPTM generates interrupts and triggers when it reaches the 0x000.0000 state. The GPTM sets the TATORIS bit in the **GPTM Raw Interrupt Status** (GPTMRIS) register (see page 292), and holds it until it is cleared by writing the GPTM Interrupt Clear (GPTMICR) register (see page 294). If the time-out interrupt is enabled in the GPTM Interrupt Mask (GPTMIMR) register (see page 290), the GPTM also sets the TATOMIS bit in the GPTM Masked Interrupt Status (GPTMMIS) register (see page 293). The ADC trigger is enabled by setting the TAOTE bit in GPTMCTL.

If software reloads the **GPTMTAILR** register while the counter is running, the counter loads the new value on the next clock cycle and continues counting from the new value.

If the TASTALL bit in the **GPTMCTL** register is set, the timer freezes counting while the processor is halted by the debugger. The timer resumes counting when the processor resumes execution.

8.3.2.2 32-Bit Real-Time Clock Timer Mode

In Real-Time Clock (RTC) mode, the concatenated versions of the TimerA and TimerB registers are configured as a 32-bit up-counter. When RTC mode is selected for the first time, the counter is loaded with a value of 0x0000.0001. All subsequent load values must be written to the **GPTM TimerA Match (GPTMTAMATCHR)** register (see page 298) by the controller.

The input clock on an even CCP input is required to be 32.768 KHz in RTC mode. The clock signal is then divided down to a 1 Hz rate and is passed along to the input of the 32-bit counter.

When software writes the TAEN bit in the **GPTMCTL** register, the counter starts counting up from its preloaded value of 0x0000.0001. When the current count value matches the preloaded value in the **GPTMTAMATCHR** register, it rolls over to a value of 0x0000.0000 and continues counting until either a hardware reset, or it is disabled by software (clearing the TAEN bit). When a match occurs, the GPTM asserts the RTCRIS bit in **GPTMRIS**. If the RTC interrupt is enabled in **GPTMIMR**, the GPTM also sets the RTCMIS bit in **GPTMMIS** and generates a controller interrupt. The status flags are cleared by writing the RTCCINT bit in **GPTMICR**.

If the TASTALL and/or TBSTALL bits in the **GPTMCTL** register are set, the timer does not freeze if the RTCEN bit is set in **GPTMCTL**.

8.3.3 16-Bit Timer Operating Modes

The GPTM is placed into global 16-bit mode by writing a value of 0x4 to the **GPTM Configuration** (**GPTMCFG**) register (see page 282). This section describes each of the GPTM 16-bit modes of operation. TimerA and TimerB have identical modes, so a single description is given using an **n** to reference both.

8.3.3.1 16-Bit One-Shot/Periodic Timer Mode

In 16-bit one-shot and periodic timer modes, the timer is configured as a 16-bit down-counter with an optional 8-bit prescaler that effectively extends the counting range of the timer to 24 bits. The selection of one-shot or periodic mode is determined by the value written to the TnMR field of the **GPTMTnMR** register. The optional prescaler is loaded into the **GPTM Timern Prescale (GPTMTnPR)** register.

When software writes the TnEN bit in the **GPTMCTL** register, the timer begins counting down from its preloaded value. Once the 0x0000 state is reached, the timer reloads its start value from **GPTMTNILR** and **GPTMTNPR** on the next cycle. If configured to be a one-shot timer, the timer stops counting and clears the TnEN bit in the **GPTMCTL** register. If configured as a periodic timer, it continues counting.

In addition to reloading the count value, the timer generates interrupts and triggers when it reaches the 0x0000 state. The GPTM sets the TnTORIS bit in the GPTMRIS register, and holds it until it is cleared by writing the GPTMICR register. If the time-out interrupt is enabled in GPTMIMR, the GPTM also sets the TnTOMIS bit in GPTMISR and generates a controller interrupt. The ADC trigger is enabled by setting the TnOTE bit in the GPTMCTL register.

If software reloads the **GPTMTAILR** register while the counter is running, the counter loads the new value on the next clock cycle and continues counting from the new value.

If the TnSTALL bit in the **GPTMCTL** register is set, the timer freezes counting while the processor is halted by the debugger. The timer resumes counting when the processor resumes execution.

The following example shows a variety of configurations for a 16-bit free running timer while using the prescaler. All values assume a 50-MHz clock with Tc=20 ns (clock period).

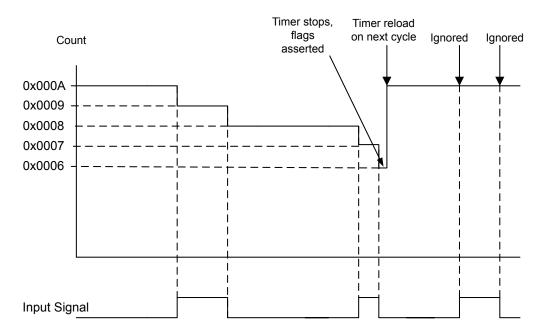
Prescale	#Clock (T c) ^a	Max Time	Units
00000000	1	1.3107	mS
0000001	2	2.6214	mS
00000010	3	3.9322	mS
1111101	254	332.9229	mS
1111110	255	334.2336	mS
1111111	256	335.5443	mS

 Table 8-3. 16-Bit Timer With Prescaler Configurations

a. Tc is the clock period.

8.3.3.2 16-Bit Input Edge Count Mode

- **Note:** For rising-edge detection, the input signal must be High for at least two system clock periods following the rising edge. Similarly, for falling-edge detection, the input signal must be Low for at least two system clock periods following the falling edge. Based on this criteria, the maximum input frequency for edge detection is 1/4 of the system frequency.
- Note: The prescaler is not available in 16-Bit Input Edge Count mode.


In Edge Count mode, the timer is configured as a down-counter capable of capturing three types of events: rising edge, falling edge, or both. To place the timer in Edge Count mode, the TnCMR bit of the **GPTMTnMR** register must be set to 0. The type of edge that the timer counts is determined by the TnEVENT fields of the **GPTMCTL** register. During initialization, the **GPTM Timern Match** (**GPTMTnMATCHR**) register is configured so that the difference between the value in the **GPTMTnILR** register and the **GPTMTnMATCHR** register equals the number of edge events that must be counted.

When software writes the TnEN bit in the **GPTM Control (GPTMCTL)** register, the timer is enabled for event capture. Each input event on the CCP pin decrements the counter by 1 until the event count matches **GPTMTnMATCHR**. When the counts match, the GPTM asserts the CnMRIS bit in the **GPTMRIS** register (and the CnMMIS bit, if the interrupt is not masked).

The counter is then reloaded using the value in **GPTMTnILR**, and stopped since the GPTM automatically clears the TnEN bit in the **GPTMCTL** register. Once the event count has been reached, all further events are ignored until TnEN is re-enabled by software.

Figure 8-2 on page 275 shows how input edge count mode works. In this case, the timer start value is set to **GPTMTnILR** =0x000A and the match value is set to **GPTMTnMATCHR** =0x0006 so that four edge events are counted. The counter is configured to detect both edges of the input signal.

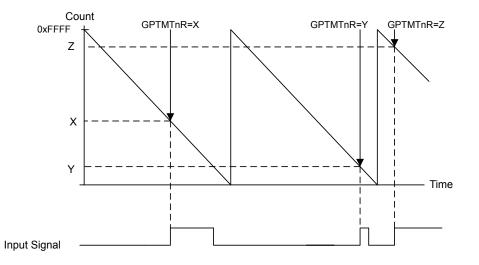
Note that the last two edges are not counted since the timer automatically clears the TnEN bit after the current count matches the value in the **GPTMTnMATCHR** register.

Figure 8-2. 16-Bit Input Edge Count Mode Example

8.3.3.3 16-Bit Input Edge Time Mode

- **Note:** For rising-edge detection, the input signal must be High for at least two system clock periods following the rising edge. Similarly, for falling edge detection, the input signal must be Low for at least two system clock periods following the falling edge. Based on this criteria, the maximum input frequency for edge detection is 1/4 of the system frequency.
- **Note:** The prescaler is not available in 16-Bit Input Edge Time mode.

In Edge Time mode, the timer is configured as a free-running down-counter initialized to the value loaded in the **GPTMTnILR** register (or 0xFFFF at reset). The timer is capable of capturing three types of events: rising edge, falling edge, or both. The timer is placed into Edge Time mode by setting the TnCMR bit in the **GPTMTnMR** register, and the type of event that the timer captures is determined by the TnEVENT fields of the **GPTMCTL** register.


When software writes the TnEN bit in the **GPTMCTL** register, the timer is enabled for event capture. When the selected input event is detected, the current Tn counter value is captured in the **GPTMTnR** register and is available to be read by the controller. The GPTM then asserts the CnERIS bit (and the CnEMIS bit, if the interrupt is not masked).

After an event has been captured, the timer does not stop counting. It continues to count until the TnEN bit is cleared. When the timer reaches the 0x0000 state, it is reloaded with the value from the **GPTMTNILR** register.

Figure 8-3 on page 276 shows how input edge timing mode works. In the diagram, it is assumed that the start value of the timer is the default value of 0xFFFF, and the timer is configured to capture rising edge events.

Each time a rising edge event is detected, the current count value is loaded into the **GPTMTnR** register, and is held there until another rising edge is detected (at which point the new count value is loaded into **GPTMTnR**).

Figure 8-3. 16-Bit Input Edge Time Mode Example

8.3.3.4 16-Bit PWM Mode

Note: The prescaler is not available in 16-Bit PWM mode.

The GPTM supports a simple PWM generation mode. In PWM mode, the timer is configured as a down-counter with a start value (and thus period) defined by **GPTMTnILR**. In this mode, the PWM frequency and period are synchronous events and therefore guaranteed to be glitch free. PWM mode is enabled with the **GPTMTnMR** register by setting the TnAMS bit to 0x1, the TnCMR bit to 0x0, and the TnMR field to 0x2.

When software writes the TnEN bit in the **GPTMCTL** register, the counter begins counting down until it reaches the 0x0000 state. On the next counter cycle, the counter reloads its start value from

GPTMTnILR and continues counting until disabled by software clearing the **TnEN** bit in the **GPTMCTL** register. No interrupts or status bits are asserted in PWM mode.

The output PWM signal asserts when the counter is at the value of the **GPTMTnILR** register (its start state), and is deasserted when the counter value equals the value in the **GPTM Timern Match Register (GPTMTnMATCHR)**. Software has the capability of inverting the output PWM signal by setting the TnPWML bit in the **GPTMCTL** register.

Figure 8-4 on page 277 shows how to generate an output PWM with a 1-ms period and a 66% duty cycle assuming a 50-MHz input clock and **TnPWML** =0 (duty cycle would be 33% for the **TnPWML** =1 configuration). For this example, the start value is **GPTMTnIRL**=0xC350 and the match value is **GPTMTnMATCHR**=0x411A.

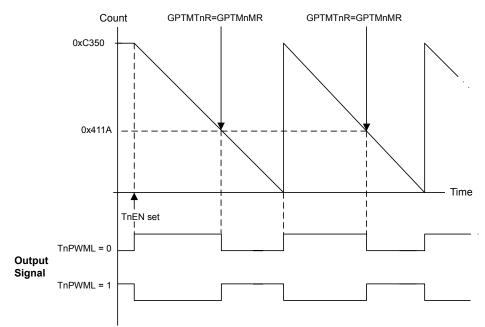


Figure 8-4. 16-Bit PWM Mode Example

8.4 Initialization and Configuration

To use the general-purpose timers, the peripheral clock must be enabled by setting the TIMERO, TIMER1, and TIMER2 bits in the **RCGC1** register.

This section shows module initialization and configuration examples for each of the supported timer modes.

8.4.1 32-Bit One-Shot/Periodic Timer Mode

The GPTM is configured for 32-bit One-Shot and Periodic modes by the following sequence:

- 1. Ensure the timer is disabled (the TAEN bit in the **GPTMCTL** register is cleared) before making any changes.
- 2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x0.

- 3. Set the TAMR field in the GPTM TimerA Mode Register (GPTMTAMR):
 - **a.** Write a value of 0x1 for One-Shot mode.
 - **b.** Write a value of 0x2 for Periodic mode.
- 4. Load the start value into the GPTM TimerA Interval Load Register (GPTMTAILR).
- 5. If interrupts are required, set the TATOIM bit in the GPTM Interrupt Mask Register (GPTMIMR).
- 6. Set the TAEN bit in the GPTMCTL register to enable the timer and start counting.
- 7. Poll the TATORIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the TATOCINT bit of the GPTM Interrupt Clear Register (GPTMICR).

In One-Shot mode, the timer stops counting after step 7 on page 278. To re-enable the timer, repeat the sequence. A timer configured in Periodic mode does not stop counting after it times out.

8.4.2 32-Bit Real-Time Clock (RTC) Mode

To use the RTC mode, the timer must have a 32.768-KHz input signal on an even CCP input. To enable the RTC feature, follow these steps:

- **1.** Ensure the timer is disabled (the TAEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x1.
- 3. Write the desired match value to the GPTM TimerA Match Register (GPTMTAMATCHR).
- 4. Set/clear the RTCEN bit in the GPTM Control Register (GPTMCTL) as desired.
- 5. If interrupts are required, set the RTCIM bit in the GPTM Interrupt Mask Register (GPTMIMR).
- 6. Set the TAEN bit in the GPTMCTL register to enable the timer and start counting.

When the timer count equals the value in the **GPTMTAMATCHR** register, the GPTM asserts the RTCRIS bit in the **GPTMRIS** register and continues counting until Timer A is disabled or a hardware reset. The interrupt is cleared by writing the RTCCINT bit in the **GPTMICR** register.

8.4.3 16-Bit One-Shot/Periodic Timer Mode

A timer is configured for 16-bit One-Shot and Periodic modes by the following sequence:

- **1.** Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x4.
- 3. Set the TnMR field in the GPTM Timer Mode (GPTMTnMR) register:
 - **a.** Write a value of 0x1 for One-Shot mode.
 - **b.** Write a value of 0x2 for Periodic mode.
- 4. If a prescaler is to be used, write the prescale value to the GPTM Timern Prescale Register (GPTMTnPR).

- 5. Load the start value into the GPTM Timer Interval Load Register (GPTMTnILR).
- 6. If interrupts are required, set the **TnTOIM** bit in the **GPTM** Interrupt Mask Register (GPTMIMR).
- 7. Set the TREN bit in the GPTM Control Register (GPTMCTL) to enable the timer and start counting.
- 8. Poll the TnTORIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the TnTOCINT bit of the GPTM Interrupt Clear Register (GPTMICR).

In One-Shot mode, the timer stops counting after step 8 on page 279. To re-enable the timer, repeat the sequence. A timer configured in Periodic mode does not stop counting after it times out.

8.4.4 16-Bit Input Edge Count Mode

A timer is configured to Input Edge Count mode by the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.
- 3. In the GPTM Timer Mode (GPTMTnMR) register, write the TnCMR field to 0x0 and the TnMR field to 0x3.
- 4. Configure the type of event(s) that the timer captures by writing the TnEVENT field of the GPTM Control (GPTMCTL) register.
- 5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.
- 6. Load the desired event count into the GPTM Timern Match (GPTMTnMATCHR) register.
- 7. If interrupts are required, set the CnMIM bit in the GPTM Interrupt Mask (GPTMIMR) register.
- 8. Set the TREN bit in the **GPTMCTL** register to enable the timer and begin waiting for edge events.
- 9. Poll the CnMRIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the CnMCINT bit of the GPTM Interrupt Clear (GPTMICR) register.

In Input Edge Count Mode, the timer stops after the desired number of edge events has been detected. To re-enable the timer, ensure that the TnEN bit is cleared and repeat step 4 on page 279 through step 9 on page 279.

8.4.5 16-Bit Input Edge Timing Mode

A timer is configured to Input Edge Timing mode by the following sequence:

- **1.** Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.
- 3. In the GPTM Timer Mode (GPTMTnMR) register, write the TnCMR field to 0x1 and the TnMR field to 0x3.

- 4. Configure the type of event that the timer captures by writing the TnEVENT field of the GPTM Control (GPTMCTL) register.
- 5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.
- 6. If interrupts are required, set the CnEIM bit in the GPTM Interrupt Mask (GPTMIMR) register.
- 7. Set the TNEN bit in the GPTM Control (GPTMCTL) register to enable the timer and start counting.
- 8. Poll the CnERIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the CnECINT bit of the GPTM Interrupt Clear (GPTMICR) register. The time at which the event happened can be obtained by reading the GPTM Timern (GPTMTnR) register.

In Input Edge Timing mode, the timer continues running after an edge event has been detected, but the timer interval can be changed at any time by writing the **GPTMTnILR** register. The change takes effect at the next cycle after the write.

8.4.6 16-Bit PWM Mode

A timer is configured to PWM mode using the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.
- 3. In the GPTM Timer Mode (GPTMTnMR) register, set the TnAMS bit to 0x1, the TnCMR bit to 0x0, and the TnMR field to 0x2.
- 4. Configure the output state of the PWM signal (whether or not it is inverted) in the TnPWML field of the GPTM Control (GPTMCTL) register.
- 5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.
- 6. Load the GPTM Timern Match (GPTMTnMATCHR) register with the desired value.
- 7. Set the TnEN bit in the GPTM Control (GPTMCTL) register to enable the timer and begin generation of the output PWM signal.

In PWM Timing mode, the timer continues running after the PWM signal has been generated. The PWM period can be adjusted at any time by writing the **GPTMTnILR** register, and the change takes effect at the next cycle after the write.

8.5 Register Map

Table 8-4 on page 281 lists the GPTM registers. The offset listed is a hexadecimal increment to the register's address, relative to that timer's base address:

- Timer0: 0x4003.0000
- Timer1: 0x4003.1000
- Timer2: 0x4003.2000

Note that the Timer module clock must be enabled before the registers can be programmed (see page 197). There must be a delay of 3 system clocks after the Timer module clock is enabled before any Timer module registers are accessed.

Offset	Name	Туре	Reset	Description	See page
0x000	GPTMCFG	R/W	0x0000.0000	GPTM Configuration	282
0x004	GPTMTAMR	R/W	0x0000.0000	GPTM TimerA Mode	283
0x008	GPTMTBMR	R/W	0x0000.0000	GPTM TimerB Mode	285
0x00C	GPTMCTL	R/W	0x0000.0000	GPTM Control	287
0x018	GPTMIMR	R/W	0x0000.0000	GPTM Interrupt Mask	290
0x01C	GPTMRIS	RO	0x0000.0000	GPTM Raw Interrupt Status	292
0x020	GPTMMIS	RO	0x0000.0000	GPTM Masked Interrupt Status	293
0x024	GPTMICR	W1C	0x0000.0000	GPTM Interrupt Clear	294
0x028	GPTMTAILR	R/W	0xFFFF.FFFF	GPTM TimerA Interval Load	296
0x02C	GPTMTBILR	R/W	0x0000.FFFF	GPTM TimerB Interval Load	297
0x030	GPTMTAMATCHR	R/W	0xFFFF.FFFF	GPTM TimerA Match	298
0x034	GPTMTBMATCHR	R/W	0x0000.FFFF	GPTM TimerB Match	299
0x038	GPTMTAPR	R/W	0x0000.0000	GPTM TimerA Prescale	300
0x03C	GPTMTBPR	R/W	0x0000.0000	GPTM TimerB Prescale	301
0x040	GPTMTAPMR	R/W	0x0000.0000	GPTM TimerA Prescale Match	302
0x044	GPTMTBPMR	R/W	0x0000.0000	GPTM TimerB Prescale Match	303
0x048	GPTMTAR	RO	0xFFFF.FFFF	GPTM TimerA	304
0x04C	GPTMTBR	RO	0x0000.FFFF	GPTM TimerB	305

Table 8-4. Timers Register Map

8.6 Register Descriptions

The remainder of this section lists and describes the GPTM registers, in numerical order by address offset.

Register 1: GPTM Configuration (GPTMCFG), offset 0x000

This register configures the global operation of the GPTM module. The value written to this register determines whether the GPTM is in 32- or 16-bit mode.

GPTM Configuration (GPTMCFG)

	0	•
Timer0 base:	0x4003.0000	
Timer1 base:	0x4003.1000	
Timer2 base:	0x4003.2000	
Offset 0x000		
Type R/W, re:	set 0x0000.00	000

31:3

2:0

-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1		1	1 1	rese	erved					1	1	•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	Î	î .	1	î	reserved		1 1 1		1	1			I GPTMCFG	1 5
Туре	RO	RO	RO	RO	I RO	RO	reserved RO	RO	I I RO	RO	RO	RO	I RO	R/W	GPTMCFG R/W	R/W
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			

RO

R/W

reserved

GPTMCFG

0x00

0x0

Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

GPTM Configuration

The GPTMCFG values are defined as follows:

Value Description

- 0x0 32-bit timer configuration.
- 0x1 32-bit real-time clock (RTC) counter configuration.
- 0x2 Reserved
- 0x3 Reserved
- 0x4-0x7 16-bit timer configuration, function is controlled by bits 1:0 of **GPTMTAMR** and **GPTMTBMR**.

Register 2: GPTM TimerA Mode (GPTMTAMR), offset 0x004

This register configures the GPTM based on the configuration selected in the **GPTMCFG** register. When in 16-bit PWM mode, set the TAAMS bit to 0x1, the TACMR bit to 0x0, and the TAMR field to 0x2.

GPTM TimerA Mode (GPTMTAMR)

Timeı Timeı Offse	0 base: 0 1 base: 0 2 base: 0 t 0x004 R/W, rese	x4003.1 x4003.2	1000 2000															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
[ľ		1	1	ı ı		1 1	reser	ved				1	г г	1			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	ľ		1	1	, ,	res	erved	· ·					TAAMS	TACMR	TAI	MR		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0		
В	it/Field		Nan	ne	Тур	be	Reset	Desc	ription									
	31:4		reser	ved	R	C	0x00	com	oatibility	with futu	ure produ	ucts, the		erved bit a reserv on.				
	3		TAAI	ИS	R/	N	0				ate Mod re define							
								Valu	ie Desc	ription								
								0		•	e is enat	oled						
								1	-		s enable							
									Note				de, you m R field to	nust also 0x2.	clear the	TACMR		
	2		TAC	TACMR R/W			0		PTM TimerA Capture Mode									
								[he '	TACMR	alues ar	re define	a as foll	OWS:					
									ie Desc	•								
								0	Ũ	-Count r								
								1	Edge	e-Time m	ode							

Bit/Field	Name	Туре	Reset	Description
1:0	TAMR	R/W	0x0	GPTM TimerA Mode The TAMR values are defined as follows:
				Value Description
				0x0 Reserved
				0x1 One-Shot Timer mode
				0x2 Periodic Timer mode
				0x3 Capture mode
				The Timer mode is based on the timer configuration defined by bits 2:0 in the GPTMCFG register (16-or 32-bit).
				In 16-bit timer configuration, $\ensuremath{\mathtt{TAMR}}$ controls the 16-bit timer modes for TimerA.
				In 32-bit timer configuration, this register controls the mode and the contents of GPTMTBMR are ignored.

Register 3: GPTM TimerB Mode (GPTMTBMR), offset 0x008

This register configures the GPTM based on the configuration selected in the **GPTMCFG** register. When in 16-bit PWM mode, set the TBAMS bit to 0x1, the TBCMR bit to 0x0, and the TBMR field to 0x2.

GPTM TimerB Mode (GPTMTBMR)

Timer Timer Offsei	0 base: 0 1 base: 0 2 base: 0 t 0x008 R/W, rese)x4003.1)x4003.2	000 000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1	1	г г 1		1 1	resei	ved	i î			r I	r r		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ	1		1	1	, , , , , , , , , , , , , , , , , , ,	res	erved	r 1		· · · · ·			TBAMS	TBCMR	ТВ	MR
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
В	it/Field		Nan	ne	Тур	be	Reset	Desc	cription							
	31:4		reser	ved	R	C 0x00 Software should not rely on the compatibility with future product preserved across a read-modif				ucts, the	value of	a reserve				
3 TBAMS			ИS	R/	N	0	GPTM TimerB Alternate Mode Select The TBAMS values are defined as follows:									
								Valu	ie Desc	ription						
								0	Capt	ure mode	e is enat	oled.				
								1		I mode is						
									Note				de, you n R field to	nust also o 0x2.	clear the	TBCMR
	2		TBCI	MR	R/	N	0			B Captu /alues ar			ows:			
											e donno					
									ie Desc		nodo					
								0	0	-Count r						
								1	Eage	-Time m	ode					

Bit/Field	Name	Туре	Reset	Description
1:0	TBMR	R/W	0x0	GPTM TimerB Mode The TBMR values are defined as follows:
				Value Description
				0x0 Reserved
				0x1 One-Shot Timer mode
				0x2 Periodic Timer mode
				0x3 Capture mode
				The timer mode is based on the timer configuration defined by bits 2:0 in the GPTMCFG register.
				In 16-bit timer configuration, these bits control the 16-bit timer modes for TimerB.
				In 32-bit timer configuration, this register's contents are ignored and GPTMTAMR is used.

Register 4: GPTM Control (GPTMCTL), offset 0x00C

This register is used alongside the **GPTMCFG** and **GMTMTnMR** registers to fine-tune the timer configuration, and to enable other features such as timer stall and the output trigger. The output trigger can be used to initiate transfers on the ADC module.

Timer Timer Timer Offse	r0 base: (r1 base: (r2 base: (et 0x00C	0x4003.00 0x4003.10 0x4003.20 0x4003.20 et 0x0000	00 00 00	-)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							· ·	rese	erved					•		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reserved	TBPWML	TBOTE	reserved	TBEV	/ENT	TBSTALL	TBEN	reserved	TAPWML	TAOTE	RTCEN	TAE	I /ENT	TASTALL	TAEN
Type Reset	RO 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	scription							
	31:15		reserved RO 0x		0x00	con	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.									
	14		TBPWML R		R/	W	0	GPTM TimerB PWM Output Level The TBPWML values are defined as follows:								
								Val C	-	ription ut is una ut is inve						
13 TBOTE		TE	R/	W	0	GPTM TimerB Output Trigger Enable The TBOTE values are defined as follows: Value Description										
								(•	merR ΔΓ	DC trigge	r is disa	hled		
								1		•		DC trigge				
															ected as a e page 34	
	12		reser	ved	R	0	0	con		with futu	ure produ	ucts, the	value of	a reserv	t. To provi ved bit sh	

GPTM Control (GPTMCTL)

Bit/Field	Name	Туре	Reset	Description
11:10	TBEVENT	R/W	0x0	GPTM TimerB Event Mode
				The TBEVENT values are defined as follows:
				Value Description
				0x0 Positive edge
				0x1 Negative edge
				0x2 Reserved
				0x3 Both edges
9	TBSTALL	R/W	0	GPTM Timer B Stall Enable
				The TBSTALL values are defined as follows:
				Value Description
				0 Timer B continues counting while the processor is halted by the debugger.
				1 Timer B freezes counting while the processor is halted by the debugger.
				If the processor is executing normally, the $\ensuremath{\mathtt{TBSTALL}}$ bit is ignored.
8	TBEN	R/W	0	GPTM TimerB Enable
				The TBEN values are defined as follows:
				Value Description
				0 TimerB is disabled.
				1 TimerB is enabled and begins counting or the capture logic is enabled based on the GPTMCFG register.
7	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
6	TAPWML	R/W	0	GPTM TimerA PWM Output Level
				The TAPWML values are defined as follows:
				Value Description
				0 Output is unaffected.
				1 Output is inverted.
5	TAOTE	R/W	0	GPTM TimerA Output Trigger Enable
				The TAOTE values are defined as follows:
				Value Description
				0 The output TimerA ADC trigger is disabled.
				1 The output TimerA ADC trigger is enabled.
				In addition, the ADC must be enabled and the timer selected as a trigger source with the EMn bit in the ADCEMUX register (see page 345).

Bit/Field	Name	Туре	Reset	Description
4	RTCEN	R/W	0	GPTM RTC Enable The RTCEN values are defined as follows:
				Value Description
				0 RTC counting is disabled.
				1 RTC counting is enabled.
3:2	TAEVENT	R/W	0x0	GPTM TimerA Event Mode
				The TAEVENT values are defined as follows:
				Value Description
				0x0 Positive edge
				0x1 Negative edge
				0x2 Reserved
				0x3 Both edges
1	TASTALL	R/W	0	GPTM Timer A Stall Enable
				The TASTALL values are defined as follows:
				Value Description
				0 Timer A continues counting while the processor is halted by the debugger.
				1 Timer A freezes counting while the processor is halted by the debugger.
				If the processor is executing normally, the TASTALL bit is ignored.
0	TAEN	R/W	0	GPTM TimerA Enable
				The TAEN values are defined as follows:
				Value Description
				0 TimerA is disabled.
				1 TimerA is enabled and begins counting or the capture logic is enabled based on the GPTMCFG register.

Register 5: GPTM Interrupt Mask (GPTMIMR), offset 0x018

This register allows software to enable/disable GPTM controller-level interrupts. Writing a 1 enables the interrupt, while writing a 0 disables it.

GPTM Interrupt Mask (GPTMIMR) Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x018 Type R/W, reset 0x0000.0000 31 30 29 28 24 22 16 27 26 25 23 21 20 19 18 17 reserved Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RTCIM reserved CBEIM CBMIM твтоім CAEIM CAMIM TATOIM reserved R/W R/W R/W R/W R/W RO RO RO RO RO RO RO RO RO R/W R/W Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Name Reset Description Type RO 0x00 Software should not rely on the value of a reserved bit. To provide 31:11 reserved compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 10 CBEIM R/W GPTM CaptureB Event Interrupt Mask 0 The CBEIM values are defined as follows: Value Description 0 Interrupt is disabled. Interrupt is enabled. 1 9 CBMIM R/W 0 GPTM CaptureB Match Interrupt Mask The CBMIM values are defined as follows: Value Description 0 Interrupt is disabled. Interrupt is enabled. 1 TBTOIM R/W GPTM TimerB Time-Out Interrupt Mask 8 0 The TBTOIM values are defined as follows: Value Description Interrupt is disabled. 0 Interrupt is enabled. 1 7:4 RO 0 Software should not rely on the value of a reserved bit. To provide reserved compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Bit/Field	Name	Туре	Reset	Description
3	RTCIM	R/W	0	GPTM RTC Interrupt Mask The RTCIM values are defined as follows:
				Value Description0 Interrupt is disabled.1 Interrupt is enabled.
2	CAEIM	R/W	0	GPTM CaptureA Event Interrupt Mask The CAEIM values are defined as follows:
				Value Description0 Interrupt is disabled.1 Interrupt is enabled.
1	САМІМ	R/W	0	GPTM CaptureA Match Interrupt Mask The CAMIM values are defined as follows: Value Description 0 Interrupt is disabled.
				1 Interrupt is enabled.
0	ΤΑΤΟΙΜ	R/W	0	GPTM TimerA Time-Out Interrupt Mask The TATOIM values are defined as follows:
				Value Description0 Interrupt is disabled.1 Interrupt is enabled.

Register 6: GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C

This register shows the state of the GPTM's internal interrupt signal. These bits are set whether or not the interrupt is masked in the **GPTMIMR** register. Each bit can be cleared by writing a 1 to its corresponding bit in **GPTMICR**.

GPTM Raw Interrupt Status (GPTMRIS)

Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x01C
Type RO, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	I							rese	rved						1	•	
Туре	RO 0	RO 0	RO	RO	RO	RO	RO 0	RO 0	RO	RO	RO	RO	RO 0	RO	RO	RO	
Reset			0	0	0	0			0	0	0	0		0	0	0	
г	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
l			reserved		1	CBERIS	CBMRIS	TBTORIS		rese			RTCRIS	CAERIS	CAMRIS	TATORIS	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
В	it/Field		Nam	e	Ту	ре	Reset	Des	cription								
	31:11		reserv	ved	R	0	0x00	Soft	ware sho	uld not i	elv on ti	ne value	of a res	erved hit		/ide	
	01.11		100011	0u		0	onoo						value of				
								pres	erved ad	cross a r	ead-mod	lify-write	e operatio	on.			
	10	CBERIS RO 0 GPTM CaptureB Event Raw Interrupt This is the CaptureB Event interrupt status prior to masking															
		This is the CaptureB Event interrupt status prior to masking.															
	9	CBMRIS RO 0 GPTM CaptureB Match Raw Interrupt															
	9		CDIVIF	(15	К	0	0						status pr	ior to ma	ekina		
								1113	13 110 0	aptureb	Matchin	licitupi	status pi		isking.		
	8		TBTO	RIS	R	0	0			B Time-							
								This	is the Ti	imerB tin	ne-out in	terrupt	status pri	or to ma	sking.		
	7:4		reserv	ved	R	0	0x0	Soft	ware sho	ould not	ely on t	ne value	of a res	erved bit	t. To prov	/ide	
									• •		•		value of		ed bit sh	nould be	
								pres	erveu au	1088 a 1	eau-mou	iny-write	e operatio	л .			
	3		RTCF	RIS	R	0	0	GPT	M RTC	Raw Inte	errupt						
								This	is the R	TC Ever	it interru	pt status	s prior to	masking].		
	2		CAEF	RIS	R	0	0	GPT	M Captu	ureA Eve	nt Raw	Interrup	t				
		This is the CaptureA Event interrupt status prior to masking.															
	1		CAMF	219	R	0	0 GPTM CaptureA Match Raw Interrupt										
	I		UAIVIE	10	К	0	U		•			•		ior to me	askina		
		This is the CaptureA Match interrupt status prior to masking.															
	0		TATO	RIS	R	0	0			A Time-							
								This	the Tim	erA time	-out inte	rrupt sta	itus prior	to mask	ing.		

Register 7: GPTM Masked Interrupt Status (GPTMMIS), offset 0x020

This register show the state of the GPTM's controller-level interrupt. If an interrupt is unmasked in **GPTMIMR**, and there is an event that causes the interrupt to be asserted, the corresponding bit is set in this register. All bits are cleared by writing a 1 to the corresponding bit in **GPTMICR**.

Timer Timer Offsei	1 base: 0 2 base: 0 t 0x020 RO, reset	x4003.1 x4003.2	000															
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	I		1 1					rese	rved			1			1	•		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
г	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
			reserved		1	CBEMIS	CBMMIS	TBTOMIS			erved		RTCMIS	CAEMIS	CAMMIS	TATOMIS		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
В	it/Field		Nam	е	Ту	ре	Reset	Des	cription									
	31:11	reservedRO0x00Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.CBEMISRO0GPTM CaptureB Event Masked Interrupt This is the CaptureB event interrupt status after masking																
	10	This is the CaptureB event interrupt status after masking.																
	9		CBMM	/IS	R	0	0		M Captuis the Ca				•	ter mask	ing.			
	8		TBTOM	MIS	R	0	0		M Timer is the Ti				•	er maski	ing.			
	7:4		reserv	red	R	0	0x0	com	ware sho patibility erved ac	with fut	ure produ	ucts, the	value of	a reserv				
	3		RTCM	RTCMIS RO 0 GPTM RTC Masked Interrupt This is the RTC event interrupt status after masking.														
	2		CAEM	1IS	R	0	0 GPTM CaptureA Event Masked Interrupt This is the CaptureA event interrupt status after masking.											
	1		CAMM	lis	R	0	0	0 GPTM CaptureA Match Masked Interrupt This is the CaptureA match interrupt status after masking.										
	0		TATON															

GPTM Masked Interrupt Status (GPTMMIS)

Timer0 base: 0x4003.0000

Register 8: GPTM Interrupt Clear (GPTMICR), offset 0x024

This register is used to clear the status bits in the **GPTMRIS** and **GPTMMIS** registers. Writing a 1 to a bit clears the corresponding bit in the **GPTMRIS** and **GPTMMIS** registers.

Timer Timer Timer Offse	M Intern 0 base: 0: 1 base: 0: 2 base: 0: t 0x024 W1C, rese	x4003.0 x4003.1 x4003.2	000 000	TMICR)															
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16				
	I					I	1	rese	rved											
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0				
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
			reserved			CBECINT	CBMCINT	TBTOCINT	ľ	rese	rved	•	RTCCINT	CAECINT	CAMCINT	TATOCINT				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	W1C 0	W1C 0	W1C 0	RO 0	RO 0	RO 0	RO 0	W1C 0	W1C 0	W1C 0	W1C 0				
В	it/Field		Nam	e	Ту	ре	Reset	Des	cription											
	31:11	reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. CBECINT W1C 0 GPTM CaptureB Event Interrupt Clear The CRECINT values are defined as follows:																		
	10		CBECI	NT	W	1C	0	 GPTM CaptureB Event Interrupt Clear The CBECINT values are defined as follows: Value Description 0 The interrupt is unaffected. 												
	9	0 The interrupt is unaffected.																		
	8		твтос	INT	w	1C	0	 GPTM TimerB Time-Out Interrupt Clear The TBTOCINT values are defined as follows: Value Description The interrupt is unaffected. The interrupt is cleared. 												
	7:4		reserv	ed	R	0	0x0	com	patibility	with futu	ire prodi	ucts, the	of a res value of operatio	a reserv						

Bit/Field	Name	Туре	Reset	Description
3	RTCCINT	W1C	0	GPTM RTC Interrupt Clear The RTCCINT values are defined as follows:
				Value Description0 The interrupt is unaffected.1 The interrupt is cleared.
2	CAECINT	W1C	0	GPTM CaptureA Event Interrupt Clear The CAECINT values are defined as follows:
				Value Description0 The interrupt is unaffected.1 The interrupt is cleared.
1	CAMCINT	W1C	0	GPTM CaptureA Match Interrupt Clear The CAMCINT values are defined as follows: Value Description 0 The interrupt is unaffected.
				1 The interrupt is cleared.
0	TATOCINT	W1C	0	GPTM TimerA Time-Out Interrupt Clear The TATOCINT values are defined as follows:
				Value Description0 The interrupt is unaffected.1 The interrupt is cleared.

Register 9: GPTM TimerA Interval Load (GPTMTAILR), offset 0x028

This register is used to load the starting count value into the timer. When GPTM is configured to one of the 32-bit modes, **GPTMTAILR** appears as a 32-bit register (the upper 16-bits correspond to the contents of the **GPTM TimerB Interval Load (GPTMTBILR)** register). In 16-bit mode, the upper 16 bits of this register read as 0s and have no effect on the state of **GPTMTBILR**.

Timer Timer Offse	r0 base: (r1 base: (r2 base: (t 0x028	0x4003.00 0x4003.10 0x4003.20 et 0xFFF	000			.,										
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1			1 1	TAI	LRH	I		1		1	1	1
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		8	1	1				TAI	LRL	1		1		1	1	'
Type Reset	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1
В	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
31:16 TAILRH R/W 0xFFFF GPTM Time When com TimerB I write. A re In 16-bit r										ured for a rval Loa I returns de, this fi	32-bit mo id (GPT the curr eld read	ode via th MTBILR ent value	ne GPTN) register e of GPT	r loads th MTBILR	nis value L	on a
state of GPTMTBIL 15:0 TAILRL R/W 0xFFFF GPTM TimerA Inter For both 16- and 32 TimerA. A read retu											bit mode	es, writing	g this fie			iter for

GPTM TimerA Interval Load (GPTMTAILR)

Register 10: GPTM TimerB Interval Load (GPTMTBILR), offset 0x02C

This register is used to load the starting count value into TimerB. When the GPTM is configured to a 32-bit mode, **GPTMTBILR** returns the current value of TimerB and ignores writes.

GPTM TimerB Interval Load (GPTMTBILR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x02C Type R/W, reset 0x0000.FFFF

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		1	1	· · · · ·		, ,	rese	rved						1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ		1	•			1 1	TBI	LRL							'
Type Reset	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	Bit/Field Name 31:16 reserved					С	0x0000	com	ware sho patibility served ac	with fut	ure produ	ucts, the	value of	a reserv	•	
	15:0 TBILRL R/W 0x						0xFFFF	GPT	rM Timer	B Interv	al Load I	Register				
	13.0 IBIENE								en the Gl ates GP 1		-					

return the current value of GPTMTBILR.

Register 11: GPTM TimerA Match (GPTMTAMATCHR), offset 0x030

This register is used in 32-bit Real-Time Clock mode and 16-bit PWM and Input Edge Count modes.

GPT	M Tim	erA Ma	tch (GP	ТМТАМ	IATCHF	R)										
Timer Timer Offse	1 base: (2 base: (t 0x030	0x4003.00 0x4003.10 0x4003.20	000													
Туре	R/W, res 31	et 0xFFFI		20	07	26	25	24	23	22	21	20	10	10	17	16
[51	30	29 I	28	27	26	25	24 TAI	I MRH	1	1	20	19 1	18 I	17 I	16
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	1		I	1 1	TA	MRL	1	1	1		1	1	'
Type Reset	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W	R/W 1	R/W 1	R/W 1	R/W	R/W 1	R/W 1	R/W 1
Resel	I		I	1	1		1	I	I			i	I	I	1	I
В	it/Field		Nan	ne	Ту	ре	Reset	Des	scription							
	31:16		TAM	RH	R/	W	0xFFFF	GP	TM Time	rA Match	n Registe	er High				
								GP	en config TMCFG I TMTAR,	register,	this valu	e is com	pared to	,		
									6-bit mod					not have	an effe	ct on the
								stat	e of GPT	MTBMA	TCHR.					
	15:0		TAM	RL	R/	W	0xFFFF	GP'	TM Time	rA Match	n Registe	er Low				
15:0 TAMRL R/W 0xFFF GPTM TimerA Match Register Low When configured for 32-bit Real-Time Clock GPTMCFG register, this value is compared t GPTMTAR, to determine match events.											pared to					
									en config ermines t			-		•	n GPTM	TAILR,
									en config			•		0	na with	
								GP [.] nun	TMTAILF nber of e us this va	R , determ dge ever	nines how	v many e	edge eve	nts are c	ounted.	

Register 12: GPTM TimerB Match (GPTMTBMATCHR), offset 0x034

This register is used in 16-bit PWM and Input Edge Count modes.

Timer Timer Timer Offse	M Time n0 base: (n1 base: (n2 base: (t 0x034 R/W, res	0x4003.0 0x4003.1 0x4003.2	000 000	ТМТВМ	1ATCHF	R)										
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1			1 1	rese	rved	1	1	1			1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	1			1 1	TBN	/RL	1	I	1	ı	1	1	
Type Reset	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:16		reser	ved	R	0	patibility	with fut	ure prod	ucts, the	of a reso value of operatio	a reserv	•	vide hould be		
	15:0		TBM	RL	R/	W	0xFFFF	GP1	M Time	rB Match	n Registe	er Low				
When configured determines the deter												,		0	n GPTM	ITBILR,
When configured for E GPTMTBILR, determin number of edge event minus this value.											nines how	w many e	edge evei	nts are c	ounted.	

Register 13: GPTM TimerA Prescale (GPTMTAPR), offset 0x038

This register allows software to extend the range of the 16-bit timers when operating in one-shot or periodic mode.

GPTM TimerA Prescale (GPTMTAPR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x038 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1				1 1	rese	rved					1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	rved							TAF	i PSR	1	I	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Name Type Reset					Des	cription							
	31:8 reserved					0	0x00	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv	•	
	7:0		TAPS	SR	R/	W	0x00	GP 1	rM Timer	A Presc	ale					
									register ne registe		s value c	on a write	e. A read	returns	the curre	nt value

Refer to Table 8-3 on page 274 for more details and an example.

Register 14: GPTM TimerB Prescale (GPTMTBPR), offset 0x03C

This register allows software to extend the range of the 16-bit timers when operating in one-shot or periodic mode.

GPTM TimerB Prescale (GPTMTBPR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x03C Type R/W, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[T			1	1 1	rese	erved	[1	ſ	1	1		I
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[T	rese	rved	I	1 1				1	TBF	I PSR I	1	[1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	it/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	ware sho patibility served ac	with fut	ure prod	ucts, the	value of	a reserv	•	
	7:0		TBPS	SR	R/	W	0x00	GP ⁻	TM Timer	B Presc	ale					
									register nis registe		is value o	on a write	e. A read	returns t	he curre	ent value

Refer to Table 8-3 on page 274 for more details and an example.

Register 15: GPTM TimerA Prescale Match (GPTMTAPMR), offset 0x040

This register effectively extends the range of **GPTMTAMATCHR** to 24 bits when operating in 16-bit one-shot or periodic mode.

GPTM TimerA Prescale Match (GPTMTAPMR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x040 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1	1		1 1	rese	rved	1	1	1		I	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved		1 1			1	1	TAP	SMR	Γ	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	be	Reset	Des	cription							
	31:8		reser	ved	R	С	0x00	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv	•	
	7:0		TAPS	MR	R/	W	0x00	GP1	rM Time	rA Prese	cale Mate	ch				
											longside a prescale	GPTMT/ er.	AMATCH	IR to de	tect time	r match

Register 16: GPTM TimerB Prescale Match (GPTMTBPMR), offset 0x044

This register effectively extends the range of **GPTMTBMATCHR** to 24 bits when operating in 16-bit one-shot or periodic mode.

GPTM TimerB Prescale Match (GPTMTBPMR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x044 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1	 	[1	rese	rved	ſ	[I		ſ	I	•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I		•	rese	rved		•	•				TBP	SMR		1	•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:8		reser	ved	R	0	0x00	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv	•	
	7:0		TBPS	MR	R/	W	0x00	GP1	rM Timer	rB Presc	ale Mato	:h				
									s value is nts while		0		BMATCI	HR to de	tect time	er match

Register 17: GPTM TimerA (GPTMTAR), offset 0x048

This register shows the current value of the TimerA counter in all cases except for Input Edge Count mode. When in this mode, this register contains the number of edges that have occurred.

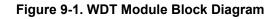
GP1	rm Tim	erA (G	PTMT	AR)												
Time Time Offse	r0 base: (r1 base: (r2 base: (et 0x048 RO, rese	0x4003. 0x4003.	1000 2000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		I	1	I	1	Í	1 1	TA	ARH	1	T	1	1 1	ſ	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	ſ	1	I	1 1	T/	ARL	1	1	1	1		1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset E	1 Bit/Field	1	1 N	1 ame	1 Ty	1 pe	1 Reset	1 Des	1 scription	1	1	1	1	1	1	1
	31:16		T/	ARH	R	0	0xFFFF	GP.	TM Time	rA Regis	ster High	า				
												oit mode, de, this is			read. If t	the
	15:0		T	ARL	R	0	0xFFFF	GP	TM Time	rA Regis	ster Low					
								exc		out Edge						Register , of edges

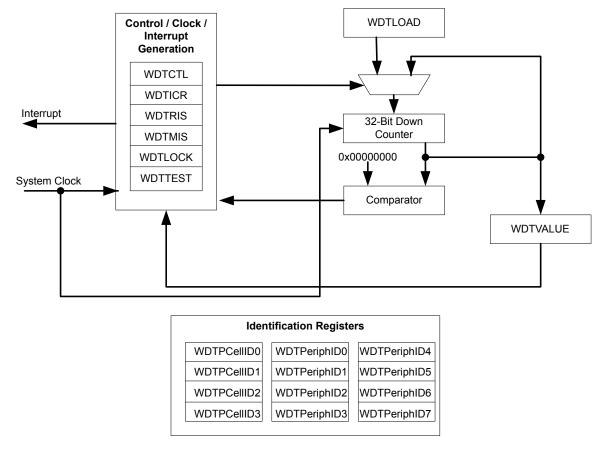
Register 18: GPTM TimerB (GPTMTBR), offset 0x04C

This register shows the current value of the TimerB counter in all cases except for Input Edge Count mode. When in this mode, this register contains the number of edges that have occurred.

Time Time Time Offse	TM Time r0 base: 0> r1 base: 0> r2 base: 0>	(4003.) (4003.) (4003.)	0000 1000 2000	R)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	T		1	1			1 1	res	erved	1	1	1	1		1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	T		1	1	1 1 1		т т	TI	BRL	I	1	1	1	r	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Bit/Field 31:16		Nar reser		Ty _l R(Reset 0x0000	Sof	scription tware sho							
					_	-		pre	served a	cross a r	•					
	15:0		TBF	RL	R	С	0xFFFF	GP	TM Time	rВ						
								exc	ead returi ept in Inp t have oc	ut Edge						•

9 Watchdog Timer


A watchdog timer can generate nonmaskable interrupts (NMIs) or a reset when a time-out value is reached. The watchdog timer is used to regain control when a system has failed due to a software error or due to the failure of an external device to respond in the expected way.


The Stellaris[®] Watchdog Timer module has the following features:

- 32-bit down counter with a programmable load register
- Separate watchdog clock with an enable
- Programmable interrupt generation logic with interrupt masking
- Lock register protection from runaway software
- Reset generation logic with an enable/disable
- User-enabled stalling when the controller asserts the CPU Halt flag during debug

The Watchdog Timer can be configured to generate an interrupt to the controller on its first time-out, and to generate a reset signal on its second time-out. Once the Watchdog Timer has been configured, the lock register can be written to prevent the timer configuration from being inadvertently altered.

9.1 Block Diagram

9.2 Functional Description

The Watchdog Timer module generates the first time-out signal when the 32-bit counter reaches the zero state after being enabled; enabling the counter also enables the watchdog timer interrupt. After the first time-out event, the 32-bit counter is re-loaded with the value of the **Watchdog Timer Load (WDTLOAD)** register, and the timer resumes counting down from that value. Once the Watchdog Timer has been configured, the **Watchdog Timer Lock (WDTLOCK)** register is written, which prevents the timer configuration from being inadvertently altered by software.

If the timer counts down to its zero state again before the first time-out interrupt is cleared, and the reset signal has been enabled (via the WatchdogResetEnable function), the Watchdog timer asserts its reset signal to the system. If the interrupt is cleared before the 32-bit counter reaches its second time-out, the 32-bit counter is loaded with the value in the WDTLOAD register, and counting resumes from that value.

If **WDTLOAD** is written with a new value while the Watchdog Timer counter is counting, then the counter is loaded with the new value and continues counting.

Writing to **WDTLOAD** does not clear an active interrupt. An interrupt must be specifically cleared by writing to the **Watchdog Interrupt Clear (WDTICR)** register.

The Watchdog module interrupt and reset generation can be enabled or disabled as required. When the interrupt is re-enabled, the 32-bit counter is preloaded with the load register value and not its last state.

9.3 Initialization and Configuration

To use the WDT, its peripheral clock must be enabled by setting the WDT bit in the **RCGC0** register. The Watchdog Timer is configured using the following sequence:

- 1. Load the WDTLOAD register with the desired timer load value.
- 2. If the Watchdog is configured to trigger system resets, set the RESEN bit in the WDTCTL register.
- 3. Set the INTEN bit in the WDTCTL register to enable the Watchdog and lock the control register.

If software requires that all of the watchdog registers are locked, the Watchdog Timer module can be fully locked by writing any value to the **WDTLOCK** register. To unlock the Watchdog Timer, write a value of 0x1ACC.E551.

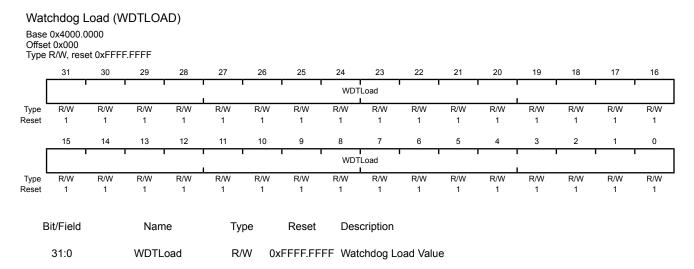
9.4 Register Map

Table 9-1 on page 308 lists the Watchdog registers. The offset listed is a hexadecimal increment to the register's address, relative to the Watchdog Timer base address of 0x4000.0000.

Offset	Name	Туре	Reset	Description	See page
0x000	WDTLOAD	R/W	0xFFFF.FFFF	Watchdog Load	310
0x004	WDTVALUE	RO	0xFFFF.FFFF	Watchdog Value	311
0x008	WDTCTL	R/W	0x0000.0000	Watchdog Control	312
0x00C	WDTICR	WO	-	Watchdog Interrupt Clear	313
0x010	WDTRIS	RO	0x0000.0000	Watchdog Raw Interrupt Status	314
0x014	WDTMIS	RO	0x0000.0000	Watchdog Masked Interrupt Status	315
0x418	WDTTEST	R/W	0x0000.0000	Watchdog Test	316
0xC00	WDTLOCK	R/W	0x0000.0000	Watchdog Lock	317
0xFD0	WDTPeriphID4	RO	0x0000.0000	Watchdog Peripheral Identification 4	318
0xFD4	WDTPeriphID5	RO	0x0000.0000	Watchdog Peripheral Identification 5	319
0xFD8	WDTPeriphID6	RO	0x0000.0000	Watchdog Peripheral Identification 6	320
0xFDC	WDTPeriphID7	RO	0x0000.0000	Watchdog Peripheral Identification 7	321
0xFE0	WDTPeriphID0	RO	0x0000.0005	Watchdog Peripheral Identification 0	322
0xFE4	WDTPeriphID1	RO	0x0000.0018	Watchdog Peripheral Identification 1	323
0xFE8	WDTPeriphID2	RO	0x0000.0018	Watchdog Peripheral Identification 2	324

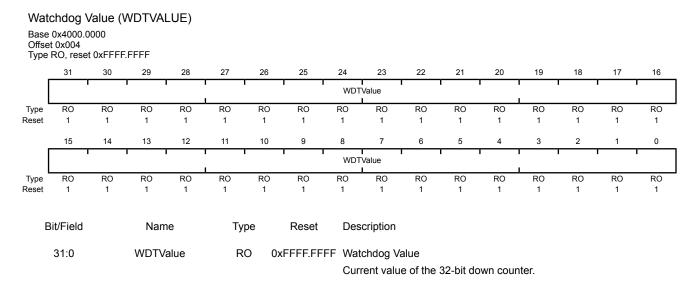
Table 9-1. Watchdog Timer Register Map

Offset	Name	Туре	Reset	Description	See page
0xFEC	WDTPeriphID3	RO	0x0000.0001	Watchdog Peripheral Identification 3	325
0xFF0	WDTPCellID0	RO	0x0000.000D	Watchdog PrimeCell Identification 0	326
0xFF4	WDTPCellID1	RO	0x0000.00F0	Watchdog PrimeCell Identification 1	327
0xFF8	WDTPCellID2	RO	0x0000.0005	Watchdog PrimeCell Identification 2	328
0xFFC	WDTPCellID3	RO	0x0000.00B1	Watchdog PrimeCell Identification 3	329


Table 9-1. Watchdog Timer Register Map (continued)

9.5 Register Descriptions

The remainder of this section lists and describes the WDT registers, in numerical order by address offset.


Register 1: Watchdog Load (WDTLOAD), offset 0x000

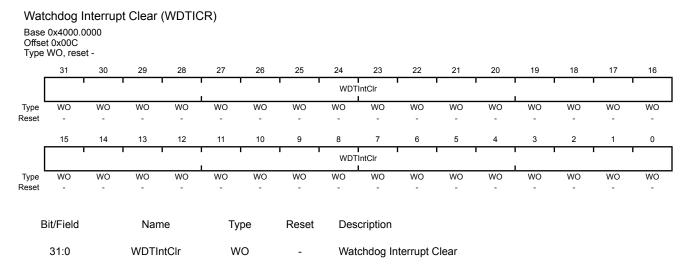
This register is the 32-bit interval value used by the 32-bit counter. When this register is written, the value is immediately loaded and the counter restarts counting down from the new value. If the **WDTLOAD** register is loaded with 0x0000.0000, an interrupt is immediately generated.

Register 2: Watchdog Value (WDTVALUE), offset 0x004

This register contains the current count value of the timer.

Register 3: Watchdog Control (WDTCTL), offset 0x008

This register is the watchdog control register. The watchdog timer can be configured to generate a reset signal (on second time-out) or an interrupt on time-out.


When the watchdog interrupt has been enabled, all subsequent writes to the control register are ignored. The only mechanism that can re-enable writes is a hardware reset.

Base Offse	0x4000.0 t 0x008		(WDTC	TL)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			•					rese	erved			•			•	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1			•	reser	ved			•	•			RESEN	INTEN
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Б	lit/Field		Nan		т	n 0	Reset	Dee	scription							
D	ni/Fielu		Indi	le	ТУ	pe	Resei	Des	scription							
	31:2		reser	ved	R	0	0x00	com		with fut	ure prod	ucts, the	value of	a reser	t. To prov ved bit sh	
	1		RES	FN	R	W	0	Wat	tchdog R	eset En	ahle					
	I		INEO		10		0		RESEN			ed as foll	ows.			
								1110		valuee a			0110.			
								Val	ue Deso	cription						
								C) Disa	bled.						
								1	l Enal	ole the W	/atchdog	module	reset ou	utput.		
	0		INTE	ΞN	R/	W	0	Wat	tchdog Ir	nterrupt E	Enable					
									INTEN	•		ed as foll	ows:			
								Val	ue Deso	cription						
								C			nt disabl hardwar		e this bit	is set, it	can only	be
								1	l Intor		nt on able	nd Onco	onablo	h all writ	tos aro io	norod

1 Interrupt event enabled. Once enabled, all writes are ignored.

Register 4: Watchdog Interrupt Clear (WDTICR), offset 0x00C

This register is the interrupt clear register. A write of any value to this register clears the Watchdog interrupt and reloads the 32-bit counter from the **WDTLOAD** register. Value for a read or reset is indeterminate.

Register 5: Watchdog Raw Interrupt Status (WDTRIS), offset 0x010

This register is the raw interrupt status register. Watchdog interrupt events can be monitored via this register if the controller interrupt is masked.

Watchdog Raw Interrupt Status (WDTRIS)

Base Offse	0x4000. t 0x010 RO, rese	0000).0000			- ,										
-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1			1 1	rese	rved		1	1		T	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	I	I	I I		1 1	reserved			1	1	L	1	1	WDTRIS
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset E	o Bit/Field	0	o Nan	o ne	o Tyj	o pe	0 Reset	0 Dese	0 cription	0	0	0	0	0	0	0
	31:1		reser	ved	R	0	0x00	com	patibility	with fut	ure prod	the value ucts, the dify-write	value of	a reserv	•	vide hould be
	0		WDT	RIS	R	0	0		chdog R es the ra		•	tus (prior to	masking) of WD	TINTR.	

July 14, 2014

Register 6: Watchdog Masked Interrupt Status (WDTMIS), offset 0x014

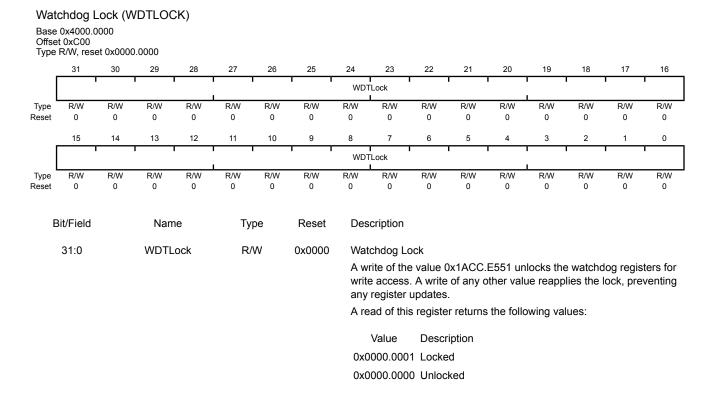
This register is the masked interrupt status register. The value of this register is the logical AND of the raw interrupt bit and the Watchdog interrupt enable bit.

Watchdog Masked Interrupt Status (WDTMIS)

Base 0x4000.0000 Offset 0x014 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1			1 1	rese	rved	1	1	I		T	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	1			1 1	reserved	1	1	1	1		T	1	WDTMIS
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nan	ne	Ту	be	Reset	Des	cription							
	31:1		reser	ved	R	С	0x00	com	patibilit	y with fut	ure prod	he value ucts, the dify-write	value c	of a reser	•	vide hould be
	0		WDTI	MIS	R	С	0	Wat	chdog N	/lasked Ir	nterrupt	Status				
									es the m rrupt.	asked in	terrupt s	tate (afte	er mask	ing) of th	e WDTII	NTR

Register 7: Watchdog Test (WDTTEST), offset 0x418


This register provides user-enabled stalling when the microcontroller asserts the CPU halt flag during debug.

Base Offse	0x4000. t 0x418	-	VDTTES	ST)												
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1 1		1	1	rese	rved		1	1			1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[1	Ì	reserved		Î	1	STALL			Î	rese	erved	ì	Î	
Туре	RO	RO	RO	RO	RO	RO	RO	R/W	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	Bit/Field		Nar	ne	Ту	ре	Reset	Des	cription							
	31:9		reser	ved	R	0	0x00	com	patibility	with futu	ure proc	the value lucts, the dify-write	value of	a reserv	•	ovide hould be
	8		STA	LL	R/	W	0	Wat	chdog S	tall Enab	ole					
								the	watchdo	g timer st	tops cou		ce the m	••		ebugger, restarted,
	7:0		reser	ved	R	0	0x00	com	patibility	with futu	ure proc	the value lucts, the dify-write	value of	a reserv	•	ovide should be

July 14, 2014

Register 8: Watchdog Lock (WDTLOCK), offset 0xC00

Writing 0x1ACC.E551 to the **WDTLOCK** register enables write access to all other registers. Writing any other value to the **WDTLOCK** register re-enables the locked state for register writes to all the other registers. Reading the **WDTLOCK** register returns the lock status rather than the 32-bit value written. Therefore, when write accesses are disabled, reading the **WDTLOCK** register returns 0x0000.0001 (when locked; otherwise, the returned value is 0x0000.0000 (unlocked)).

Register 9: Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0

The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 4 (WDTPeriphID4)

Base 0x4000.0000 Offset 0xFD0 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	r I		1 1	rese	rved		1	1	r I	1	1	r
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	rved		1 1				1	PI	1 D4 1	1	1	T
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nar	ne	Ту	ре	Reset	Des	cription							
	31:8		reser	ved	R	0	0x00	com	npatibility	with fut	ure prod	the value lucts, the dify-write	value of	a reser		
	7:0		PIE	04	R	0	0x00	WD	T Periph	eral ID F	Register	[7:0]				

Register 10: Watchdog Peripheral Identification 5 (WDTPeriphID5), offset 0xFD4

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 5 (WDTPeriphID5)

Base 0x4000.0000

Offset 0xFD4 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
			1		1			rese	erved		r	1	1	1	1				
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
	reserved											PI	D5	1	1	'			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
Bit/Field			Nan	Type Re:		Reset	Des	Description											
31:8			reserved		R	0	0x00	com	ftware should not rely on the value of a reserved bit. To provide mpatibility with future products, the value of a reserved bit should be eserved across a read-modify-write operation.										
7:0			PID5		R	RO 0x00		WD	WDT Peripheral ID Register[15:8]										

Register 11: Watchdog Peripheral Identification 6 (WDTPeriphID6), offset 0xFD8

The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 6 (WDTPeriphID6)

Base 0x4000.0000 Offset 0xFD8 Type RO, reset 0x0000.0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved RO Туре 0 Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 15 14 13 11 10 9 8 7 6 5 4 3 2 0 1 PID6 reserved Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit/Field Description Name Туре Reset 31:8 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:0 PID6 RO 0x00 WDT Peripheral ID Register[23:16]

Register 12: Watchdog Peripheral Identification 7 (WDTPeriphID7), offset 0xFDC

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 7 (WDTPeriphID7)

Base 0x4000.0000

Offset 0xFDC Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
			1					erved		r	1	ı 1	I	1					
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
	reserved											PI	D7	I	1	'			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
Bit/Field			Nan	Type Reset		Reset	Des	Description											
31:8			reserved		R	C	0x00	com	ware should not rely on the value of a reserved bit. To provide apatibility with future products, the value of a reserved bit should be served across a read-modify-write operation.										
7:0			PID7		R	C	0x00		WDT Peripheral ID Register[31:24]										

Register 13: Watchdog Peripheral Identification 0 (WDTPeriphID0), offset 0xFE0

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 0 (WDTPeriphID0)

Base 0x4000.0000

Offset 0xFE0 Type RO, reset 0x0000.0005 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved RO Туре 0 Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 15 14 13 11 10 9 8 7 6 5 4 3 2 0 1 PID0 reserved Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 Bit/Field Description Reset Name Туре 31:8 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:0 PID0 RO 0x05 Watchdog Peripheral ID Register[7:0]

Register 14: Watchdog Peripheral Identification 1 (WDTPeriphID1), offset 0xFE4

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 1 (WDTPeriphID1)

Base 0x4000.0000

Offset 0xFE4 Type RO, reset 0x0000.0018

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
		I	1				1 1	rese	erved		ſ	1	1	1	1	1			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
	reserved										ſ	I Pl	1 D1 I	1	1				
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0			
Bit/Field			Nam	Type Reset			Des	Description											
31:8			reserved		R	0	con		Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.										
7:0			PID1		R	0	0x18	Wat	Vatchdog Peripheral ID Register[15:8]										

Register 15: Watchdog Peripheral Identification 2 (WDTPeriphID2), offset 0xFE8

The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 2 (WDTPeriphID2)

Base 0x4000.0000 Offset 0xFE8 Type RO, reset 0x0000.0018

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
		ſ	1		 			rved			1		1	1					
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
	reserved									PID2									
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0			
E	Bit/Field		Name		Туре		Reset	Des	cription										
31:8			reserved		R	c		com	ware sho patibility served ac	with futu	ire prod	ucts, the	value of	a reserv					
7:0			PID2		RO 0x18		0x18	Wat	Watchdog Peripheral ID Register[23:16]										

Register 16: Watchdog Peripheral Identification 3 (WDTPeriphID3), offset 0xFEC

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 3 (WDTPeriphID3)

Base 0x4000.0000 Offset 0xFEC Type RO, reset 0x0000.0001

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		1	1				т т	rese	erved		ſ	I	1	1	1	1	
Type	RO 0	RO 0	RO	RO 0	RO 0	RO	RO 0	RO 0	RO	RO 0	RO 0	RO	RO 0	RO 0	RO	RO	
Reset	0	U	0	U	U	0	0	U	0	0	0	0	0	U	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		•		rese	rved				'			PI	D3	1	1	'	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
E	Bit/Field		Nam	ie	Туре		Reset	Des	cription								
	31:8 reserved				R	C	0x00	com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should b preserved across a read-modify-write operation.								
	7:0		PID	3	R	С	0x01	Wat	chdog P	eripheral	ID Reg	ister[31:2	24]				

Register 17: Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFF0

The **WDTPCellIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog PrimeCell Identification 0 (WDTPCellID0)

Base 0x4000.0000 Offset 0xFF0 Type RO, reset 0x0000.000D

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	T	1	1	r	1 1	rese	rved		1	1	r 1	1	T	r
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	rved	1	1 1	[T	CI	D0	T	1	r
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1
E	Bit/Field		Nar	ne	Ту	ре	Reset	Des	cription							
	31:8 rese				R	RO 0:		com	npatibility	with fut	ure proc	the value lucts, the dify-write	value of	a reser	•	
7:0 CID0				R	0	0x0D	Wat	chdog Pi	rimeCell	I ID Reg	ister[7:0]					

Register 18: Watchdog PrimeCell Identification 1 (WDTPCellID1), offset 0xFF4

The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog PrimeCell Identification 1 (WDTPCellID1)

Base 0x4000.0000 Offset 0xFF4 Type RO, reset 0x0000.00F0

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1 1				т г	rese	erved	ſ	[1	I	ſ	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1		rese	rved				'			CI	D1		1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
E	Bit/Field		Nam	e	Туре		Reset	Des	cription							
	31:8 reserved				R	C	0x00	com	tware sho npatibility served ac	with futu	ure prod	ucts, the	value of	a reserv	•	vide nould be
	7:0		CID	1	R	С	0xF0	Wat	chdog Pi	rimeCell	ID Regi	ster[15:8]			

Register 19: Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8

The **WDTPCellIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog PrimeCell Identification 2 (WDTPCellID2)

Base 0x4000.0000 Offset 0xFF8 Type RO, reset 0x0000.0005

71	-,															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	1		, ,	rese	rved		1	I	1	1	1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	rved		1 1				1	CI	D2	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
E	Bit/Field		Name		Туре		Reset	Des	cription							
	31:8		reserv	RO 0>		0x00	com	tware sho npatibility served ac	with fut	ure prod	ucts, the	value of	a reserv			
	7:0		CID	2	R	0	0x05	Wat	chdog Pi	rimeCell	ID Regi	ster[23:1	6]			

Register 20: Watchdog PrimeCell Identification 3 (WDTPCellID3), offset 0xFFC

The **WDTPCellIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog PrimeCell Identification 3 (WDTPCellID3)

Base 0x4000.0000 Offset 0xFFC

Type RO, rese	t 0x0000.	00B1
	00	

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		1	1	1			1 1	rese	rved					1	1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		1	1	rese	erved							CI	D3	1	1	·	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1	
E	Bit/Field Name			Ту	ре	Reset	Des	cription									
	31:8		reser	ved	R	0	0x00	com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								
	7:0 CID3 RO							Wat	chdog P	rimeCell	ID Regi	ster[31:2	4]				

10 Analog-to-Digital Converter (ADC)

An analog-to-digital converter (ADC) is a peripheral that converts a continuous analog voltage to a discrete digital number.

The Stellaris[®] ADC module features 10-bit conversion resolution and supports six input channels, plus an internal temperature sensor. The ADC module contains four programmable sequencer which allows for the sampling of multiple analog input sources without controller intervention. Each sample sequence provides flexible programming with fully configurable input source, trigger events, interrupt generation, and sequence priority.

The Stellaris ADC module provides the following features:

- Six analog input channels
- Single-ended and differential-input configurations
- On-chip internal temperature sensor
- Sample rate of 500 thousand samples/second
- Flexible, configurable analog-to-digital conversion
- Four programmable sample conversion sequences from one to eight entries long, with corresponding conversion result FIFOs
- Flexible trigger control
 - Controller (software)
 - Timers
 - Analog Comparators
 - PWM
 - GPIO
- Hardware averaging of up to 64 samples for improved accuracy
- Converter uses an internal 3-V reference

10.1 Block Diagram

Figure 10-1 on page 331 provides details on the internal configuration of the ADC controls and data registers.

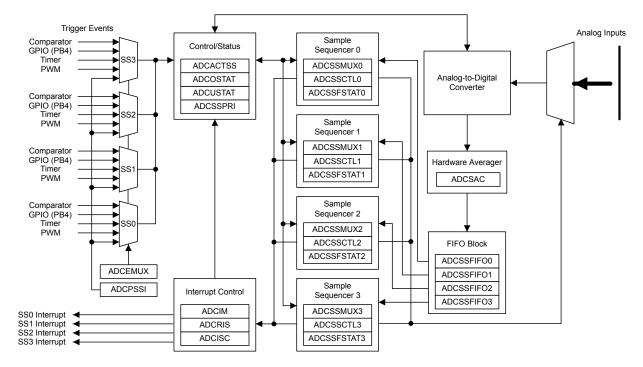


Figure 10-1. ADC Module Block Diagram

10.2 Signal Description

The signals are analog functions for some GPIO signals. The column in the table below titled "Pin Assignment" lists the GPIO pin placement for the ADC signals. The AINx analog signals are not 5-V tolerant and go through an isolation circuit before reaching their circuitry. These signals are configured by clearing the corresponding DEN bit in the **GPIO Digital Enable (GPIODEN)** register. For more information on configuring GPIOs, see "General-Purpose Input/Outputs (GPIOs)" on page 229.

Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description
ADC0	1	I	Analog	Analog-to-digital converter input 0.
ADC1	2	I	Analog	Analog-to-digital converter input 1.
ADC2	3	I	Analog	Analog-to-digital converter input 2.
ADC3	4	I	Analog	Analog-to-digital converter input 3.
ADC4	48	I	Analog	Analog-to-digital converter input 4.
ADC5	47	I	Analog	Analog-to-digital converter input 5.

Table 10-1. ADC Signals (48QFP)

a. The TTL designation indicates the pin has TTL-compatible voltage levels.

10.3 Functional Description

The Stellaris ADC collects sample data by using a programmable sequence-based approach instead of the traditional single or double-sampling approaches found on many ADC modules. Each *sample sequence* is a fully programmed series of consecutive (back-to-back) samples, allowing the ADC to collect data from multiple input sources without having to be re-configured or serviced by the controller. The programming of each sample in the sample sequence includes parameters such as

the input source and mode (differential versus single-ended input), interrupt generation on sample completion, and the indicator for the last sample in the sequence.

10.3.1 Sample Sequencers

The sampling control and data capture is handled by the sample sequencers. All of the sequencers are identical in implementation except for the number of samples that can be captured and the depth of the FIFO. Table 10-2 on page 332 shows the maximum number of samples that each sequencer can capture and its corresponding FIFO depth. In this implementation, each FIFO entry is a 32-bit word, with the lower 10 bits containing the conversion result.

Table 10-2. Samples and FIFO Depth of Sequencers

Sequencer	Number of Samples	Depth of FIFO
SS3	1	1
SS2	4	4
SS1	4	4
SS0	8	8

For a given sample sequence, each sample is defined by two 4-bit nibbles in the **ADC Sample Sequence Input Multiplexer Select (ADCSSMUXn)** and **ADC Sample Sequence Control** (**ADCSSCTLn**) registers, where "n" corresponds to the sequence number. The **ADCSSMUXn** nibbles select the input pin, while the **ADCSSCTLn** nibbles contain the sample control bits corresponding to parameters such as temperature sensor selection, interrupt enable, end of sequence, and differential input mode. Sample sequencers are enabled by setting the respective ASENn bit in the **ADC Active Sample Sequencer (ADCACTSS)** register, and should be configured before being enabled.

When configuring a sample sequence, multiple uses of the same input pin within the same sequence is allowed. In the **ADCSSCTLn** register, the IEn bits can be set for any combination of samples, allowing interrupts to be generated after every sample in the sequence if necessary. Also, the END bit can be set at any point within a sample sequence. For example, if Sequencer 0 is used, the END bit can be set in the nibble associated with the fifth sample, allowing Sequencer 0 to complete execution of the sample sequence after the fifth sample.

After a sample sequence completes execution, the result data can be retrieved from the **ADC Sample Sequence Result FIFO (ADCSSFIFOn)** registers. The FIFOs are simple circular buffers that read a single address to "pop" result data. For software debug purposes, the positions of the FIFO head and tail pointers are visible in the **ADC Sample Sequence FIFO Status (ADCSSFSTATn)** registers along with FULL and EMPTY status flags. Overflow and underflow conditions are monitored using the **ADCOSTAT** and **ADCUSTAT** registers.

10.3.2 Module Control

Outside of the sample sequencers, the remainder of the control logic is responsible for tasks such as:

- Interrupt generation
- Sequence prioritization
- Trigger configuration

Most of the ADC control logic runs at the ADC clock rate of 14-18 MHz. The internal ADC divider is configured automatically by hardware when the system XTAL is selected. The automatic clock divider configuration targets 16.667 MHz operation for all Stellaris devices.

10.3.2.1 Interrupts

The register configurations of the sample sequencers dictate which events generate raw interrupts, but do not have control over whether the interrupt is actually sent to the interrupt controller. The ADC module's interrupt signals are controlled by the state of the MASK bits in the ADC Interrupt Mask (ADCIM) register. Interrupt status can be viewed at two locations: the ADC Raw Interrupt Status (ADCRIS) register, which shows the raw status of the various interrupt signals, and the ADC Interrupt Status and Clear (ADCISC) register, which shows active interrupts that are enabled by the ADCIM register. Sequencer interrupts are cleared by writing a 1 to the corresponding IN bit in ADCISC.

10.3.2.2 Prioritization

When sampling events (triggers) happen concurrently, they are prioritized for processing by the values in the **ADC Sample Sequencer Priority (ADCSSPRI)** register. Valid priority values are in the range of 0-3, with 0 being the highest priority and 3 being the lowest. Multiple active sample sequencer units with the same priority do not provide consistent results, so software must ensure that all active sample sequencer units have a unique priority value.

10.3.2.3 Sampling Events

Sample triggering for each sample sequencer is defined in the **ADC Event Multiplexer Select** (**ADCEMUX**) register. The external peripheral triggering sources vary by Stellaris family member, but all devices share the "Controller" and "Always" triggers. Software can initiate sampling by setting the SSx bits in the **ADC Processor Sample Sequence Initiate** (**ADCPSSI**) register.

Care must be taken when using the "Always" trigger. If a sequence's priority is too high, it is possible to starve other lower priority sequences.

10.3.3 Hardware Sample Averaging Circuit

Higher precision results can be generated using the hardware averaging circuit, however, the improved results are at the cost of throughput. Up to 64 samples can be accumulated and averaged to form a single data entry in the sequencer FIFO. Throughput is decreased proportionally to the number of samples in the averaging calculation. For example, if the averaging circuit is configured to average 16 samples, the throughput is decreased by a factor of 16.

By default the averaging circuit is off and all data from the converter passes through to the sequencer FIFO. The averaging hardware is controlled by the **ADC Sample Averaging Control (ADCSAC)** register (see page 353). There is a single averaging circuit and all input channels receive the same amount of averaging whether they are single-ended or differential.

10.3.4 Analog-to-Digital Converter

The converter itself generates a 10-bit output value for selected analog input. Special analog pads are used to minimize the distortion on the input. An internal 3 V reference is used by the converter resulting in sample values ranging from 0x000 at 0 V input to 0x3FF at 3 V input when in single-ended input mode.

10.3.5 Differential Sampling

In addition to traditional single-ended sampling, the ADC module supports differential sampling of two analog input channels. To enable differential sampling, software must set the Dn bit in the **ADCSSCTLOn** register in a step's configuration nibble.

When a sequence step is configured for differential sampling, its corresponding value in the **ADCSSMUXn** register must be set to one of the four differential pairs, numbered 0-3. Differential pair 0 samples analog inputs 0 and 1; differential pair 1 samples analog inputs 2 and 3; and so on (see Table 10-3 on page 334). The ADC does not support other differential pairings such as analog input 0 with analog input 3. The number of differential pairs supported is dependent on the number of analog inputs (see Table 10-3 on page 334).

Table 10-3. Differential Sampling Pairs

Differential Pair	Analog Inputs
0	0 and 1
1	2 and 3
2	4 and 5

The voltage sampled in differential mode is the difference between the odd and even channels:

 ΔV (differential voltage) = V_{IN EVEN} (even channels) – V_{IN ODD} (odd channels), therefore:

- If $\Delta V = 0$, then the conversion result = 0x1FF
- If $\Delta V > 0$, then the conversion result > 0x1FF (range is 0x1FF–0x3FF)
- If $\Delta V < 0$, then the conversion result < 0x1FF (range is 0–0x1FF)

The differential pairs assign polarities to the analog inputs: the even-numbered input is always positive, and the odd-numbered input is always negative. In order for a valid conversion result to appear, the negative input must be in the range of \pm 1.5 V of the positive input. If an analog input is greater than 3 V or less than 0 V (the valid range for analog inputs), the input voltage is clipped, meaning it appears as either 3 V or 0 V, respectively, to the ADC.

Figure 10-2 on page 335 shows an example of the negative input centered at 1.5 V. In this configuration, the differential range spans from -1.5 V to 1.5 V. Figure 10-3 on page 335 shows an example where the negative input is centered at -0.75 V, meaning inputs on the positive input saturate past a differential voltage of -0.75 V since the input voltage is less than 0 V. Figure 10-4 on page 336 shows an example of the negative input centered at 2.25 V, where inputs on the positive channel saturate past a differential voltage of 0.75 V since the input voltage would be greater than 3 V.

Figure 10-2. Differential Sampling Range, $V_{IN_{ODD}}$ = 1.5 V

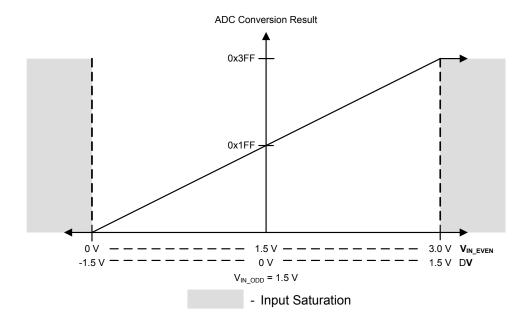
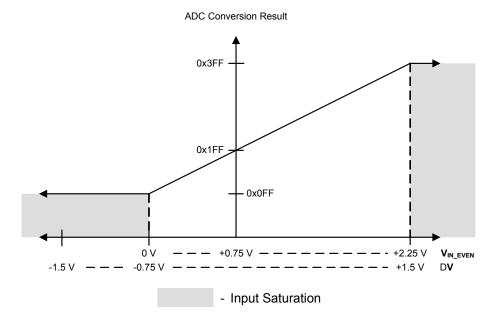



Figure 10-3. Differential Sampling Range, $V_{IN_{ODD}}$ = 0.75 V

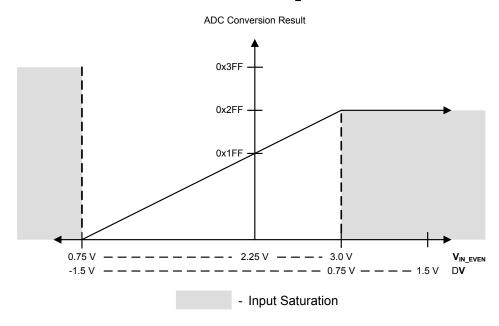


Figure 10-4. Differential Sampling Range, V_{IN_ODD} = 2.25 V

10.3.6 Test Modes

There is a user-available test mode that allows for loopback operation within the digital portion of the ADC module. This can be useful for debugging software without having to provide actual analog stimulus. This mode is available through the **ADC Test Mode Loopback (ADCTMLB)** register (see page 366).

10.3.7 Internal Temperature Sensor

The temperature sensor does not have a separate enable, since it also contains the bandgap reference and must always be enabled. The reference is supplied to other analog modules; not just the ADC.

The internal temperature sensor provides an analog temperature reading as well as a reference voltage. The voltage at the output terminal SENSO is given by the following equation:

SENSO = 2.7 - ((T + 55) / 75)

This relation is shown in Figure 10-5 on page 337.

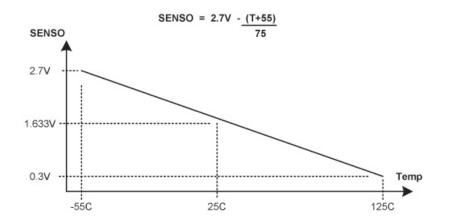


Figure 10-5. Internal Temperature Sensor Characteristic

10.4 Initialization and Configuration

In order for the ADC module to be used, the PLL must be enabled and using a supported crystal frequency (see the **RCC** register). Using unsupported frequencies can cause faulty operation in the ADC module.

10.4.1 Module Initialization

Initialization of the ADC module is a simple process with very few steps. The main steps include enabling the clock to the ADC and reconfiguring the sample sequencer priorities (if needed).

The initialization sequence for the ADC is as follows:

- 1. Enable the ADC clock by writing a value of 0x0001.0000 to the RCGC0 register (see page 191).
- 2. If required by the application, reconfigure the sample sequencer priorities in the ADCSSPRI register. The default configuration has Sample Sequencer 0 with the highest priority, and Sample Sequencer 3 as the lowest priority.

10.4.2 Sample Sequencer Configuration

Configuration of the sample sequencers is slightly more complex than the module initialization since each sample sequence is completely programmable.

The configuration for each sample sequencer should be as follows:

- 1. Ensure that the sample sequencer is disabled by writing a 0 to the corresponding ASENn bit in the **ADCACTSS** register. Programming of the sample sequencers is allowed without having them enabled. Disabling the sequencer during programming prevents erroneous execution if a trigger event were to occur during the configuration process.
- 2. Configure the trigger event for the sample sequencer in the ADCEMUX register.
- **3.** For each sample in the sample sequence, configure the corresponding input source in the **ADCSSMUXn** register.

- 4. For each sample in the sample sequence, configure the sample control bits in the corresponding nibble in the **ADCSSCTLn** register. When programming the last nibble, ensure that the END bit is set. Failure to set the END bit causes unpredictable behavior.
- 5. If interrupts are to be used, write a 1 to the corresponding MASK bit in the ADCIM register.
- 6. Enable the sample sequencer logic by writing a 1 to the corresponding ASENn bit in the ADCACTSS register.

10.5 Register Map

Table 10-4 on page 338 lists the ADC registers. The offset listed is a hexadecimal increment to the register's address, relative to the ADC base address of 0x4003.8000.

Note that the ADC module clock must be enabled before the registers can be programmed (see page 191). There must be a delay of 3 system clocks after the ADC module clock is enabled before any ADC module registers are accessed.

Offset	Name	Туре	Reset	Description	See page
0x000	ADCACTSS	R/W	0x0000.0000	ADC Active Sample Sequencer	340
0x004	ADCRIS	RO	0x0000.0000	ADC Raw Interrupt Status	341
0x008	ADCIM	R/W	0x0000.0000	ADC Interrupt Mask	342
0x00C	ADCISC	R/W1C	0x0000.0000	ADC Interrupt Status and Clear	343
0x010	ADCOSTAT	R/W1C	0x0000.0000	ADC Overflow Status	344
0x014	ADCEMUX	R/W	0x0000.0000	ADC Event Multiplexer Select	345
0x018	ADCUSTAT	R/W1C	0x0000.0000	ADC Underflow Status	349
0x020	ADCSSPRI	R/W	0x0000.3210	ADC Sample Sequencer Priority	350
0x028	ADCPSSI	WO	-	ADC Processor Sample Sequence Initiate	352
0x030	ADCSAC	R/W	0x0000.0000	ADC Sample Averaging Control	353
0x040	ADCSSMUX0	R/W	0x0000.0000	ADC Sample Sequence Input Multiplexer Select 0	354
0x044	ADCSSCTL0	R/W	0x0000.0000	ADC Sample Sequence Control 0	356
0x048	ADCSSFIF00	RO	-	ADC Sample Sequence Result FIFO 0	359
0x04C	ADCSSFSTAT0	RO	0x0000.0100	ADC Sample Sequence FIFO 0 Status	360
0x060	ADCSSMUX1	R/W	0x0000.0000	ADC Sample Sequence Input Multiplexer Select 1	361
0x064	ADCSSCTL1	R/W	0x0000.0000	ADC Sample Sequence Control 1	362
0x068	ADCSSFIF01	RO	-	ADC Sample Sequence Result FIFO 1	359
0x06C	ADCSSFSTAT1	RO	0x0000.0100	ADC Sample Sequence FIFO 1 Status	360
0x080	ADCSSMUX2	R/W	0x0000.0000	ADC Sample Sequence Input Multiplexer Select 2	361
0x084	ADCSSCTL2	R/W	0x0000.0000	ADC Sample Sequence Control 2	362
0x088	ADCSSFIF02	RO	-	ADC Sample Sequence Result FIFO 2	359

Table 10-4. ADC Register Map

Offset	Name	Туре	Reset	Description	See page
0x08C	ADCSSFSTAT2	RO	0x0000.0100	ADC Sample Sequence FIFO 2 Status	360
0x0A0	ADCSSMUX3	R/W	0x0000.0000	ADC Sample Sequence Input Multiplexer Select 3	364
0x0A4	ADCSSCTL3	R/W	0x0000.0002	ADC Sample Sequence Control 3	365
0x0A8	ADCSSFIFO3	RO	-	ADC Sample Sequence Result FIFO 3	359
0x0AC	ADCSSFSTAT3	RO	0x0000.0100	ADC Sample Sequence FIFO 3 Status	360
0x100	ADCTMLB	R/W	0x0000.0000	ADC Test Mode Loopback	366

Table 10-4. ADC Register Map (continued)

10.6 Register Descriptions

The remainder of this section lists and describes the ADC registers, in numerical order by address offset.

Register 1: ADC Active Sample Sequencer (ADCACTSS), offset 0x000

This register controls the activation of the sample sequencers. Each sample sequencer can be enabled or disabled independently.

ADC Active Sample Sequencer (ADCACTSS)

Base 0x4003.8000 Offset 0x000 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1		1			rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1		1	rese	rved	1					ASEN3	ASEN2	ASEN1	ASEN0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit/Field	Name	Туре	Reset	Description
31:4	reserved	RO	0x0000.000	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
3	ASEN3	R/W	0	ADC SS3 Enable
				Specifies whether Sample Sequencer 3 is enabled. If set, the sample sequence logic for Sequencer 3 is active. Otherwise, the sequencer is inactive.
2	ASEN2	R/W	0	ADC SS2 Enable
				Specifies whether Sample Sequencer 2 is enabled. If set, the sample sequence logic for Sequencer 2 is active. Otherwise, the sequencer is inactive.
1	ASEN1	R/W	0	ADC SS1 Enable
				Specifies whether Sample Sequencer 1 is enabled. If set, the sample sequence logic for Sequencer 1 is active. Otherwise, the sequencer is inactive.
0	ASEN0	R/W	0	ADC SS0 Enable
				Specifies whether Sample Sequencer 0 is enabled. If set, the sample sequence logic for Sequencer 0 is active. Otherwise, the sequencer is

sequence logic for Sequencer 0 is active. Otherwise, the sequencer is inactive.

Register 2: ADC Raw Interrupt Status (ADCRIS), offset 0x004

This register shows the status of the raw interrupt signal of each sample sequencer. These bits may be polled by software to look for interrupt conditions without having to generate controller interrupts.

ADC Raw Interrupt Status (ADCRIS)

INR1

INR0

RO

RO

0

Base 0x4003.8000 Offset 0x004 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1		· · · · ·		т т	rese	rved			1	1 I		r	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		1	l.	,	res	erved		1		l.	I	INR3	INR2	INR1	INR0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nam	ie	Ту	pe	Reset	Des	cription							
	31:4		reserv	/ed	R	Type RO		com	patibility	with futu	ure prod	ucts, the	of a reso value of operatio	a reserv	•	
	3		INR	3	R	0	0	This ADC	bit is se		lware w has com	pleted c	mple wit onversio jister.	•		red by
	2		INR	2	R	0	0	This ADC	bit is se		lware w has com	pleted c	mple witi onversio jister.	•		red by

SS1 Raw Interrupt Status This bit is set by hardware when a sample with its respective **ADCSSCTL1** IE bit has completed conversion. This bit is cleared by setting the IN1 bit in the **ADCISC** register.

0 SS0 Raw Interrupt Status

This bit is set by hardware when a sample with its respective **ADCSSCTL0** IE bit has completed conversion. This bit is cleared by setting the IN30 bit in the **ADCISC** register.

1

0

Register 3: ADC Interrupt Mask (ADCIM), offset 0x008

This register controls whether the sample sequencer raw interrupt signals are promoted to controller interrupts. Each raw interrupt signal can be masked independently.

Base Offse	e 0x4003.8 et 0x008	3000	sk (ADC	IM)												
туре	R/W, rese	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1	1	r	· · ·		rved			1	1	1	r	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					1		served		1				MASK3	MASK2	MASK1	MASK0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nan	ne	Ту	Type Reset		Des	cription							
	31:4		reser	ved	R	RO 0x000		com	patibility	with fut	ure prod	ucts, the	of a resolution of a resolutio	a reserv		
	3		MASK3 R/W		W	0	Whe 3 (A Whe	DCRIS r en clear,	is bit allo egister : the statu	INR3 bit) to be p	upt signa romoted quencer 3	to a con	troller in	terrupt.	
	2		MAS	K2	R/	W	0		rrupt stat 2 Interrup							
								Whe	en set, thi	is bit allo			upt signa romoted			
									en clear, rrupt stat		is of Sar	nple Sec	quencer 2	2 does no	ot affect	the SS2
	1		MAS	K1	R/	W	0	SS1	Interrup	t Mask						
													upt signa romoted			
							en clear, rrupt stat		is of Sar	nple Sec	quencer '	1 does no	ot affect	the SS1		
	0		MAS	K0	R/	w	0	SSC	Interrup	t Mask						
													upt signa romoted			
									en clear, rrupt stat		is of Sar	nple Sec	quencer () does no	ot affect	the SS0

Register 4: ADC Interrupt Status and Clear (ADCISC), offset 0x00C

This register provides the mechanism for clearing sample sequence interrupt conditions and shows the status of controller interrupts generated by the sample sequencers. When read, each bit field is the logical AND of the respective INR and MASK bits. Sample sequence nterrupts are cleared by setting the corresponding bit position. If software is polling the **ADCRIS** instead of generating interrupts, the sample sequence INR bits are still cleared via the **ADCISC** register, even if the IN bit is not set.

ADC Interrupt Status and Clear (ADCISC)

Base 0x4003.8000

Offset 0x00C Type R/W1C, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ	1		[1 1	rese	erved			I	1 1	I	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						rese	erved		1				IN3	IN2	IN1	IN0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W1C 0	R/W1C 0	R/W1C 0	R/W1C 0
В	it/Field		Nam	ne	Ту	oe	Reset	Des	cription							
_									•					نا امیر		بأعام
	31:4		reserv	/ea	R	0	0x000	com	patibility	with futu	ire produ	ucts, the	e of a rese value of e operatio	a reserv		
	3		INS	3	R/M	/1C	0	SS3	8 Interrup	t Status	and Clea	ar				
	2 IN2						MAS to th	K3 bit in he contro	the ADC I Iler.	I M regist	er are se	t in the A et, providi aring this	ng a leve	el-based i	interrupt	
	2		IN	IN2 R/W1C		/1C	0	SS2	2 Interrup	t Status	and Clea	ar				
	_			-			-	This MAS	s bit is se	t when b the ADC I	oth the :	INR2 bi	t in the A et, providi		-	
								This bit.	s bit is cle	eared by	writing a	a 1. Clea	aring this	bit also	clears th	e INR2
	1		IN1	I	R/W	/1C	0	SS1	Interrup	t Status	and Clea	ar				
								MAS		the ADC			t in the A et, providi			
					This bit.	s bit is cle	eared by	writing a	a 1. Clea	aring this	bit also	clears th	e INR1			
	0	IN0 R/W1C		/1C	0	SSC) Interrup	t Status	and Clea	ar						
								MAS		the ADC			t in the A et, providi		0	
								This bit.	s bit is cle	eared by	writing a	a 1. Clea	aring this	bit also	clears th	e INRO

Register 5: ADC Overflow Status (ADCOSTAT), offset 0x010

This register indicates overflow conditions in the sample sequencer FIFOs. Once the overflow condition has been handled by software, the condition can be cleared by writing a 1 to the corresponding bit position.

ADC Overflow Status (ADCOSTAT)

Base 0x4003.8000 Offset 0x010 Type R/W1C, reset 0x0000.0000

							a -									
г	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					1			rese	erved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset		U			0				0						0	
г	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
						re	eserved						OV3	OV2	OV1	OV0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W1C 0	R/W1C 0	R/W1C 0	R/W1C 0
В	sit/Field		Nam	ne	Ty	ne	Reset	Des	cription							
_					. ,	20		200	, en puen							
	31:4		reserv	ved	R	0	0x0000.000						e of a res			
													e value of e operation		eu bit si	
				•			•						·			
	3		OV	3	R/M	/1C	0		3 FIFO O							<u>.</u>
													IFO for S IFO is fu	•	•	
													cted, the			
									oped.							
									s bit is cle	eared by	writing a	a 1.				
	2		OV	2	R/W	/1C	0	SS2	2 FIFO O	verflow						
								Whe	en set, th	is bit sp	ecifies th	at the F	IFO for S	Sample S	Sequence	er 2 has
													IFO is ful cted, the			
								•	oped.	vileii ali	overnow	/ is uele	cieu, ine	mostre		6 15
								This	s bit is cle	eared by	writing a	a 1.				
	4					40	0	004								
	1		OV	1	R/W	/10	0		I FIFO O		ooifica th	at the E	IEO for S	omnlo C	Soguono	or 1 hoo
									-	•			IFO for S IFO is fu	•		
										Vhen an	overflow	/ is dete	cted, the	most re	cent write	e is
									oped.							
								This	s bit is cle	eared by	writing a	a 1.				
	0		OV	0	R/W	/1C	0	SSC) FIFO O	verflow						
													IFO for S			
													IFO is fu			
								•	oped.	viien an	OVELIION	is dete	cted, the	mostre		5 15
									s bit is cle	eared by	writing a	a 1.				
				IN												

Register 6: ADC Event Multiplexer Select (ADCEMUX), offset 0x014

The **ADCEMUX** selects the event (trigger) that initiates sampling for each sample sequencer. Each sample sequencer can be configured with a unique trigger source.

ADC Event Multiplexer Select (ADCEMUX)

Base 0x4003.8000 Offset 0x014 Type R/W, reset 0x0000.0000

ſ	31	30	29	28	27	26	25	24	23	22	21	20	19 I	18	17 1	16
l					1			reser					1			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[r		і МЗ	1		r	i i M2			1	1 M1	1		r	1 M0	1
Type L	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
eset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	it/Field		Nam	ne	Ту	ре	Reset	Desc	ription							
	31:16		reser	ved	R	RO 0x		comp	oatibilit	ould not y with futu cross a r	ure prod	ucts, the	value of	a reserv		
	15:12		EM	3	R/	W	0x0	SS3	Trigaeı	Select						
										elects the	trigger s	source fo	r Sample	e Seque	ncer 3.	
								The	valid co	onfiguratio	ons for t	nis field a	are:			
								Valu	e E	vent						
								0x0	С	ontroller	(default)					
								0x1	A	nalog Co	mparato	r 0				
								0x2	R	eserved						
								0x3	R	eserved						
								0x4	E	xternal (C	GPIO PB	4)				
								0x5	Ti	mer						
										addition e GPTM	-	-			the TnO	re bit
								0x6	P	WM0						
									In	he PWM i i terrupt a age 478.						
								0x7	P	WM1						
										he PWM WM1INT				-	ed with th	ne
						0x8	P	WM2								
								he PWM WM2INT				-	ed with th	ne		
								0x9-	0xE re	served						
								0xF		lways (co						

Bit/Field	Name	Туре	Reset	Descripti	on
11:8	EM2	R/W	0x0	This field	ger Select I selects the trigger source for Sample Sequencer 2. I configurations for this field are:
				Value	Event
				0x0	Controller (default)
				0x1	Analog Comparator 0
				0x2	Reserved
				0x3	Reserved
				0x4	External (GPIO PB4)
				0x5	Timer
					In addition, the trigger must be enabled with the TROTE bit in the GPTMCTL register (see page 287).
				0x6	PWM0
					The PWM module 0 trigger can be configured with the PWM0 Interrupt and Trigger Enable (PWM0INTEN) register, see page 478.
				0x7	PWM1
					The PWM module 1 trigger can be configured with the PWM1INTEN register, see page 478.
				0x8	PWM2
					The PWM module 2 trigger can be configured with the PWM2INTEN register, see page 478.
				0x9-0xE	reserved
				0xF	Always (continuously sample)

Bit/Field	Name	Туре	Reset	Description				
7:4	EM1	R/W	0x0	This field	ger Select selects the trigger source for Sample Sequencer 1. configurations for this field are:			
				Value	Event			
				0x0	Controller (default)			
				0x1	Analog Comparator 0			
				0x2	Reserved			
				0x3	Reserved			
				0x4	External (GPIO PB4)			
				0x5	Timer			
					In addition, the trigger must be enabled with the $TnOTE$ bit in the GPTMCTL register (see page 287).			
				0x6	PWM0			
					The PWM module 0 trigger can be configured with the PWM0 Interrupt and Trigger Enable (PWM0INTEN) register, see page 478.			
				0x7	PWM1			
					The PWM module 1 trigger can be configured with the PWM1INTEN register, see page 478.			
				0x8	PWM2			
					The PWM module 2 trigger can be configured with the PWM2INTEN register, see page 478.			
				0x9-0xE	reserved			
				0xF	Always (continuously sample)			

Bit/Field	Name	Туре	Reset	Descriptio	on
3:0	EMO	R/W	0x0	This field	ger Select selects the trigger source for Sample Sequencer 0. configurations for this field are:
				Value	Event
				0x0	Controller (default)
				0x1	Analog Comparator 0
				0x2	Reserved
				0x3	Reserved
				0x4	External (GPIO PB4)
				0x5	Timer
					In addition, the trigger must be enabled with the TROTE bit in the GPTMCTL register (see page 287).
				0x6	PWM0
					The PWM module 0 trigger can be configured with the PWM0 Interrupt and Trigger Enable (PWM0INTEN) register, see page 478.
				0x7	PWM1
					The PWM module 1 trigger can be configured with the PWM1INTEN register, see page 478.
				0x8	PWM2
					The PWM module 2 trigger can be configured with the PWM2INTEN register, see page 478.
				0x9-0xE	reserved
				0xF	Always (continuously sample)

Register 7: ADC Underflow Status (ADCUSTAT), offset 0x018

This register indicates underflow conditions in the sample sequencer FIFOs. The corresponding underflow condition is cleared by writing a 1 to the relevant bit position.

ADC Underflow Status (ADCUSTAT)

Base 0x4003.8000 Offset 0x018 Type R/W1C, reset 0x0000.0000

) [**	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Γ	r		1	r i	r r		1 1	rese	erved	1	· · · · ·		1	r	r ı	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Г	1						eserved					•	UV3	UV2	UV1	UVO
Туре L	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W1C	R/W1C	R/W1C	R/W1C
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	it/Field		Nam	ne	Тур	ре	Reset	Des	cription							
	31:4		reserv	ved	d RO (R/W1C		0x0000.000	com	tware sho npatibility served ac	with futu	ure produ	ucts, the	value of	a reserv		
	3		UV	3	R/W	/1C	0	SS3	3 FIFO U	nderflow						
								hit a requ 0s a	en set, th an underf uested. T are returr	low cond he probl ned.	dition wh ematic re	ere the ad doe:	FIFO is e	empty an	d a read	was
								This	s bit is cle	eared by	writing a	11.				
	2		UV	2	R/W	/1C	0		2 FIFO U							
								hit a requ	en set, th an underf uested. T are returr	low cond he probl	dition wh	ere the	FIFO is e	empty an	id a read	was
								This	s bit is cle	eared by	writing a	ı 1.				
	1		UV	1	R/W	/1C	0	SS1	I FIFO U	nderflow						
					R/W1C			hit a requ	en set, th an underf uested. T are returr	low cond he probl	dition wh	ere the	FIFO is e	empty an	id a read	was
								This	s bit is cle	eared by	writing a	ı 1.				
	0		UV	0	R/W	/1C	0	SSC) FIFO U	nderflow						
								hit a requ 0s a	en set, th an underf uested. T are returr	low cond he probl ned.	dition wh ematic re	ere the ead doe:	FIFO is e	empty an	d a read	was
								This	s bit is cle	eared by	writing a	ı 1.				

Register 8: ADC Sample Sequencer Priority (ADCSSPRI), offset 0x020

This register sets the priority for each of the sample sequencers. Out of reset, Sequencer 0 has the highest priority, and Sequencer 3 has the lowest priority. When reconfiguring sequence priorities, each sequence must have a unique priority for the ADC to operate properly.

ADC Sample Sequencer Priority (ADCSSPRI)

Base 0x4003.8000 Offset 0x020 Type R/W, reset 0x0000.3210

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[1			20	1 1		erved			1	1	1	· · · ·	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[rese	rved	s	53	reser	ved	SS	2	rese	I erved	S	I S1	rese	1 erved	S	50
Type Reset	RO 0	RO 0	R/W 1	R/W 1	RO 0	RO 0	R/W 1	R/W 0	RO 0	RO 0	R/W 0	R/W 1	RO 0	RO 0	R/W 0	R/W 0
В	lit/Field		Nam	ne	Тур	be	Reset	Des	cription							
	31:14		reserv	ved	R	C	0x0000.0	com	patibility	ould not with futu cross a r	ure prod	ucts, the	value of	a reserv	•	
	13:12		SS	3	R/	N	0x3	SS3	8 Priority							
						This field contains a binary-encoded value t encoding of Sample Sequencer 3. A priority and 3 is lowest. The priorities assigned to th uniquely mapped. The ADC may not operat fields are equal.RO0x0Software should not rely on the value of a re							priority e ed to the	ncoding sequenc	of 0 is hi cers mus	ighest it be
	11:10		reserv	ved	RO 0x0 S				patibility	ould not with futu cross a r	ure prod	ucts, the	value of	a reserv	•	
	9:8		SS	2	R/	N	0x2	SS2	2 Priority							
								enc and unic	oding of 3 is low juely ma	ntains a Sample est. The pped. Th ual.	Sequeno priorities	cer 2. A p assigne	priority e ed to the	ncoding sequend	of 0 is hi cers mus	ighest it be
	7:6		reserv	ved	fields are equal. RO 0x0 Software should not rely on the value compatibility with future products, the preserved across a read-modify-writ					ucts, the	value of	a reserv	•			
	5:4		SS	1	R/	N	0x1	x1 SS1 Priority This field contains a binary-encoded value that specifi encoding of Sample Sequencer 1. A priority encoding and 3 is lowest. The priorities assigned to the sequence uniquely mapped. The ADC may not operate properly fields are equal.				of 0 is hi cers mus	ighest it be			
	3:2		reserv	ved	R	С	0x0	com	patibility	ould not with futu cross a r	ure prod	ucts, the	value of	a reserv		

Bit/Field	Name	Туре	Reset	Description
1:0	SS0	R/W	0x0	SS0 Priority This field contains a binary-encoded value that specifies the priority encoding of Sample Sequencer 0. A priority encoding of 0 is highest and 3 is lowest. The priorities assigned to the sequencers must be uniquely mapped. The ADC may not operate properly if two or more fields are equal.

Register 9: ADC Processor Sample Sequence Initiate (ADCPSSI), offset 0x028

This register provides a mechanism for application software to initiate sampling in the sample sequencers. Sample sequences can be initiated individually or in any combination. When multiple sequences are triggered simultaneously, the priority encodings in **ADCSSPRI** dictate execution order.

ADC Processor Sample Sequence Initiate (ADCPSSI)

Base 0x4003.8000

Offset 0x028 Type WO, reset -

туре	wo, iese	÷L -																	
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
			1				1 1	rese	erved			1		1					
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
			1			res	erved					1	SS3	SS2	SS1	SS0			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	WO -	WO -	WO -	WO -			
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription						RO 0 1 SS1 WO -				
	31:4		reser	ved	R	0	0	com		with futu	ure prod	ucts, the	value of	a reserv					
	3		SS	3	W	0	-	SS3	3 Initiate										
	3 333									When set, this bit triggers sampling on Sample Sequencer 3 if the sequencer is enabled in the ADCACTSS register. Only a write by software is valid; a read of this register returns no									
								mea	aningful c	lata.									
	2		SS	2	W	0	-	SS2	2 Initiate										
									en set, th uencer is						ncer 2 if	the			
									y a write aningful c		are is va	alid; a rea	ad of this	s register	returns	no			
	1		SS	1	W	0	-	SS1	I Initiate										
									en set, th uencer is						ncer 1 if	the			
									y a write aningful c		are is va	alid; a rea	ad of this	s register	returns	no			
	0		SS	0	W	0	-	SSC) Initiate										
									en set, th uencer is						ncer 0 if	the			
									y a write aningful c		are is va	alid; a rea	ad of this	s register	returns	no			

Register 10: ADC Sample Averaging Control (ADCSAC), offset 0x030

This register controls the amount of hardware averaging applied to conversion results. The final conversion result stored in the FIFO is averaged from 2^{AVG} consecutive ADC samples at the specified ADC speed. If AVG is 0, the sample is passed directly through without any averaging. If AVG=6, then 64 consecutive ADC samples are averaged to generate one result in the sequencer FIFO. An AVG = 7 provides unpredictable results.

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				l	· ·			reserv	ved	l			1	I	1	•
pe set	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				1			reserved		1						AVG	
oe et	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0
В	it/Field		Nam	ie	Ту	be	Reset	Desc	ription							
	31:3					0x0000.000	00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should I preserved across a read-modify-write operation.									
										cross a r	ead-mod					
	2:0		AVC	3	R/	W	0x0	prese Hardv Spec samp	ware Avifies the	veraging amount e AVG fie	Control	lify-write vare ave e any va	operation raging the	on. nat will be		
	2:0		AVC	3	R/	w	0x0	prese Hardv Spec samp value	ware Avifies the	veraging amount e AVG fie eates un	Control of hardveld can b	lify-write vare ave e any va	operation raging the	on. nat will be		
	2:0		AVC	3	R/	W	0x0	prese Hardv Spec samp value	ware Av ifies the ples. Th e of 7 cr e Desc	veraging amount e AVG fie eates un ription	Control of hardveld can b	lify-write vare ave e any va ble resul	operation raging the	on. nat will be		
	2:0		AVC	5	R/	W	0x0	prese Hardv Spec samp value Value	ware Av ifies the oles. Th e of 7 cr e Desc No h	veraging amount e AVG fie eates un ription ardware	Control of hardv eld can b predicta	lify-write vare ave e any va ble resul npling	operation raging the	on. nat will be		
	2:0		AVC	3	R/	W	0x0	prese Hardy Spec samp value Value 0x0	ware Av ifies the oles. Th of 7 cr e Desc No h 2x ha	veraging amount e AVG fie eates un ription ardware ardware	Control of hardweld can b predicta	lify-write vare ave e any va ble resul npling pling	operation raging the	on. nat will be		
	2:0		AVC	3	R/	w	0x0	prese Hardy Spec samp value Value 0x0 0x1	ware Av ifies the oles. Th of 7 cr e Desc No h 2x ha 4x ha	veraging e amount e AVG fie eates un ription ardware ardware	Control of hardw ld can b predicta oversan	lify-write vare ave e any va ble resul npling pling pling	operation raging the	on. nat will be		
	2:0		AVC	3	R/	w	0x0	prese Hardy Spec samp value Value 0x0 0x1 0x2	erved ac ware Av ifies the oles. Th e of 7 cr e Desc No h 2x ha 4x ha 8x ha	veraging amount e AVG fie eates un ription ardware ardware ardware ardware	Control of hardweld can b predicta oversan oversam	lify-write vare ave e any va ble resul npling pling pling pling	operation raging the	on. nat will be		
	2:0		AVC	3	R/	w	0x0	prese Hardy Spec samp value Value 0x0 0x1 0x2 0x2 0x3	erved ac ware Av ifies the oles. Th of 7 cr e Desc No h 2x ha 4x ha 8x ha 16x h	veraging e amount e AVG fice eates un ription ardware ardware ardware ardware ardware ardware	Control of hardv eld can b predicta oversam oversam oversam	lify-write vare ave e any va ble resul npling pling pling pling npling	operation raging the	on. nat will be		
	2:0		AVC	3	R/	w	0x0	prese Hardy Spec samp value Value 0x0 0x1 0x1 0x2 0x3 0x4	erved ac ware Av ifies the oles. Th e of 7 cr e Desc No h 2x ha 4x ha 8x ha 16x h 32x h	veraging amount e AVG fie eates un ription ardware ardware ardware hardware	Control of hardweld can b predicta oversam oversam oversam	lify-write vare ave e any va ble resul npling pling pling npling npling npling	operation raging the	on. nat will be		

ADC Sample Averaging Control (ADCSAC)

Base 0x4003.8000

Register 11: ADC Sample Sequence Input Multiplexer Select 0 (ADCSSMUX0). offset 0x040

This register defines the analog input configuration for each sample in a sequence executed with Sample Sequencer 0. This register is 32 bits wide and contains information for eight possible samples.

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 31 MUX5 MUX7 MUX6 MUX4 reserved reserved reserved reserved RO RO R/W R/W RO RO R/W R/W RO RO R/W R/W RO RO R/W R/W Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 12 2 15 14 11 10 9 8 7 6 5 4 3 1 0 михз MUX2 MUX1 MUXO reserved reserved reserved reserved RO RO R/W R/W RO RO R/W RO R/W R/W RO RO R/W R/W Type Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit/Field Name Туре Reset Description RO 0 Software should not rely on the value of a reserved bit. To provide 31:30 reserved compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 29:28 MUX7 R/W 0x0 8th Sample Input Select The MUX7 field is used during the eighth sample of a sequence executed with the sample sequencer. It specifies which of the analog inputs is sampled for the analog-to-digital conversion. The value set here indicates the corresponding pin, for example, a value of 1 indicates the input is ADC1. 27:26 RO 0 Software should not rely on the value of a reserved bit. To provide reserved compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 25.24MUX6 R/W 0x0 7th Sample Input Select The MUX6 field is used during the seventh sample of a sequence executed with the sample sequencer. It specifies which of the analog inputs is sampled for the analog-to-digital conversion. 23:22 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. R/W 21:20 MUX5 0x0 6th Sample Input Select The MUX5 field is used during the sixth sample of a sequence executed with the sample sequencer. It specifies which of the analog inputs is sampled for the analog-to-digital conversion. RO 19:18 reserved 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

ADC Sample Sequence Input Multiplexer Select 0 (ADCSSMUX0) Base 0x4003.8000

Offset 0x040

Type R/W, reset 0x0000.0000

Bit/Field	Name	Туре	Reset	Description
17:16	MUX4	R/W	0x0	5th Sample Input Select The MUX4 field is used during the fifth sample of a sequence executed with the sample sequencer. It specifies which of the analog inputs is sampled for the analog-to-digital conversion.
15:14	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
13:12	MUX3	R/W	0x0	4th Sample Input Select The MUX3 field is used during the fourth sample of a sequence executed with the sample sequencer. It specifies which of the analog inputs is sampled for the analog-to-digital conversion.
11:10	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
9:8	MUX2	R/W	0x0	3rd Sample Input Select The MUX72 field is used during the third sample of a sequence executed with the sample sequencer. It specifies which of the analog inputs is sampled for the analog-to-digital conversion.
7:6	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
5:4	MUX1	R/W	0x0	2nd Sample Input Select The MUX1 field is used during the second sample of a sequence executed with the sample sequencer. It specifies which of the analog inputs is sampled for the analog-to-digital conversion.
3:2	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
1:0	MUX0	R/W	0x0	1st Sample Input Select The MUX0 field is used during the first sample of a sequence executed with the sample sequencer. It specifies which of the analog inputs is sampled for the analog-to-digital conversion.

Register 12: ADC Sample Sequence Control 0 (ADCSSCTL0), offset 0x044

This register contains the configuration information for each sample for a sequence executed with a sample sequencer. When configuring a sample sequence, the END bit must be set at some point, whether it be after the first sample, last sample, or any sample in between. This register is 32-bits wide and contains information for eight possible samples.

Туре	R/W, res	et 0x0000	0.0000													
-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	TS7	IE7	END7	D7	TS6	IE6	END6	D6	TS5	IE5	END5	D5	TS4	IE4	END4	D4
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TS3	IE3	END3	D3	TS2	IE2	END2	D2	TS1	IE1	END1	D1	TS0	IE0	END0	D0
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	it/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31		TS	7	R/	W	0	8th	Sample ⁻	Temp Se	ensor Sel	ect				
								and Whe Whe	specifies en set, th en clear,	s the inp le tempe the inpu	ut source rature se t pin spee	e of the s ensor is i	sample. read.		e sequer Kregister	
	30 IE7				R/	W	0	This spec end is se Whe	8th Sample Interrupt Enable This bit is used during the eighth sample of the sample sequence specifies whether the raw interrupt signal (INR0 bit) is asserted at end of the sample's conversion. If the MASK0 bit in the ADCIM reg is set, the interrupt is promoted to a controller-level interrupt. When this bit is set, the raw interrupt is asserted. When this bit is clear, the raw interrupt is not asserted.						d at the	
												•			nerate int	errupts.
	29		END)7	R/	W	0	8th 3	Sample i	s End of	f Sequen	ce				
								poss after ever the the the	sible to e r the sam n though END bit s	nd the son the conf the field comewhe as a sing	equence aining a s may be ere withir	on any s set END non-zer the seq	ample p are not o. It is re uence. (osition. S requeste quired th Sample	e sequer Samples ed for cor nat softwa Sequend rdwired t	defined oversion are write cer 3,
								Sett	ing this t	oit indica	tes that	this sam	ple is the	e last in t	he sequ	ence.
	28		D7		R/	W	0	8th	Sample I	Diff Inpu	t Select					
								The "i", v doe	correspo where the	onding A e paired /e a diffe	DCSSM inputs a erential o	UXx nibb re "2i and	ole must d 2i+1".	be set to The tem	entially sa the pair perature log inputs	number sensor
	27		TS	6	R/	W	0				ensor Sel s7 but u		ng the se	eventh s	ample.	

ADC Sample Sequence Control 0 (ADCSSCTL0)

Base 0x4003.8000

Offset 0x044 Type R/W, reset 0x0000.0000

Bit/Field	Name	Туре	Reset	Description
26	IE6	R/W	0	7th Sample Interrupt Enable Same definition as IE7 but used during the seventh sample.
25	END6	R/W	0	7th Sample is End of Sequence Same definition as END7 but used during the seventh sample.
24	D6	R/W	0	7th Sample Diff Input Select Same definition as D7 but used during the seventh sample.
23	TS5	R/W	0	6th Sample Temp Sensor Select Same definition as ${\tt TS7}$ but used during the sixth sample.
22	IE5	R/W	0	6th Sample Interrupt Enable Same definition as IE7 but used during the sixth sample.
21	END5	R/W	0	6th Sample is End of Sequence Same definition as END7 but used during the sixth sample.
20	D5	R/W	0	6th Sample Diff Input Select Same definition as $D7$ but used during the sixth sample.
19	TS4	R/W	0	5th Sample Temp Sensor Select Same definition as TS7 but used during the fifth sample.
18	IE4	R/W	0	5th Sample Interrupt Enable Same definition as $IE7$ but used during the fifth sample.
17	END4	R/W	0	5th Sample is End of Sequence Same definition as END7 but used during the fifth sample.
16	D4	R/W	0	5th Sample Diff Input Select Same definition as $D7$ but used during the fifth sample.
15	TS3	R/W	0	4th Sample Temp Sensor Select Same definition as TS7 but used during the fourth sample.
14	IE3	R/W	0	4th Sample Interrupt Enable Same definition as IE7 but used during the fourth sample.
13	END3	R/W	0	4th Sample is End of Sequence Same definition as END7 but used during the fourth sample.
12	D3	R/W	0	4th Sample Diff Input Select Same definition as $D7$ but used during the fourth sample.
11	TS2	R/W	0	3rd Sample Temp Sensor Select Same definition as TS7 but used during the third sample.
10	IE2	R/W	0	3rd Sample Interrupt Enable Same definition as IE7 but used during the third sample.
9	END2	R/W	0	3rd Sample is End of Sequence Same definition as END7 but used during the third sample.

Bit/Field	Name	Туре	Reset	Description
8	D2	R/W	0	3rd Sample Diff Input Select Same definition as ${\ensuremath{\mathbb D} 7}$ but used during the third sample.
7	TS1	R/W	0	2nd Sample Temp Sensor Select Same definition as ${\rm TS7}$ but used during the second sample.
6	IE1	R/W	0	2nd Sample Interrupt Enable Same definition as IE7 but used during the second sample.
5	END1	R/W	0	2nd Sample is End of Sequence Same definition as END7 but used during the second sample.
4	D1	R/W	0	2nd Sample Diff Input Select Same definition as $D7$ but used during the second sample.
3	TS0	R/W	0	1st Sample Temp Sensor Select Same definition as ${\tt TS7}$ but used during the first sample.
2	IE0	R/W	0	1st Sample Interrupt Enable Same definition as $IE7$ but used during the first sample.
1	END0	R/W	0	1st Sample is End of Sequence Same definition as END7 but used during the first sample.
0	D0	R/W	0	1st Sample Diff Input Select Same definition as ${\td}7$ but used during the first sample.

Register 13: ADC Sample Sequence Result FIFO 0 (ADCSSFIFO0), offset 0x048 Register 14: ADC Sample Sequence Result FIFO 1 (ADCSSFIFO1), offset 0x068 Register 15: ADC Sample Sequence Result FIFO 2 (ADCSSFIFO2), offset 0x088 Register 16: ADC Sample Sequence Result FIFO 3 (ADCSSFIFO3), offset 0x0A8

Important: This register is read-sensitive. See the register description for details.

This register contains the conversion results for samples collected with the sample sequencer (the **ADCSSFIFO0** register is used for Sample Sequencer 0, **ADCSSFIFO1** for Sequencer 1, **ADCSSFIFO2** for Sequencer 2, and **ADCSSFIFO3** for Sequencer 3). Reads of this register return conversion result data in the order sample 0, sample 1, and so on, until the FIFO is empty. If the FIFO is not properly handled by software, overflow and underflow conditions are registered in the **ADCOSTAT** and **ADCUSTAT** registers.

ADC Sample Sequence Result FIFO 0 (ADCSSFIFO0)

Base 0x4003.8000 Offset 0x048 Type RO, reset -31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved RO Туре RO RO RO Reset 15 14 13 12 11 10 9 8 7 6 5 3 2 1 0 reserved DATA RO Type Reset Bit/Field Description Name Туре Reset 31:10 reserved RO Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 9:0 DATA RO **Conversion Result Data**

Register 17: ADC Sample Sequence FIFO 0 Status (ADCSSFSTAT0), offset 0x04C

Register 18: ADC Sample Sequence FIFO 1 Status (ADCSSFSTAT1), offset 0x06C

Register 19: ADC Sample Sequence FIFO 2 Status (ADCSSFSTAT2), offset 0x08C

Register 20: ADC Sample Sequence FIFO 3 Status (ADCSSFSTAT3), offset 0x0AC

This register provides a window into the sample sequencer, providing full/empty status information as well as the positions of the head and tail pointers. The reset value of 0x100 indicates an empty FIFO. The **ADCSSFSTAT0** register provides status on FIFO0, **ADCSSFSTAT1** on FIFO1, **ADCSSFSTAT2** on FIFO2, and **ADCSSFSTAT3** on FIFO3.

ADC Sample Sequence FIFO 0 Status (ADCSSFSTAT0)

Base 0x4003.8000

Offset 0x04C Type RO, reset 0x0000.0100

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							1	reserved								1
І Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		reserved		FULL		reserved	•	EMPTY		HP	TR	•		TP	TR	•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:13		reser	ved	R	0	0x0	com	patibility	with futu	ure prod	he value ucts, the dify-write	value of	a reserv	•	
	12		FUL		R	0	0) Full							
	12		FUL	-L	К	0	0									
								Whe	en set, th	is bit ind	licates ti	hat the FI	FO is cu	irrently fu	JII.	
	11:9		reser	ved	R	0	0x0	com	patibility	with futu	ure prod	he value ucts, the dify-write	value of	a reserv		
	8		EMP	τv	R	\circ	1	FIEC) Empty							
	0					0	I									
								Whe	en set, tr	iis bit ind	licates ti	nat the FI	FO is cu	irrently e	mpty.	
	7:4		HPT	R	R	0	0x0	FIFC) Head I	Pointer						
										ntains the y to be v		t "head" p	pointer ir	ndex for t	he FIFC), that is,
	3:0		TPT	R	R	0	0x0	FIFC) Tail Po	inter						
								Thie	field co	ntains th	e currer	nt "tail" po	inter ind	ex for th		that is
										y to be r		n tan pu			C I II O,	mar 10,

Register 21: ADC Sample Sequence Input Multiplexer Select 1 (ADCSSMUX1), offset 0x060

Register 22: ADC Sample Sequence Input Multiplexer Select 2 (ADCSSMUX2), offset 0x080

This register defines the analog input configuration for each sample in a sequence executed with Sample Sequencer 1 or 2. These registers are 16-bits wide and contain information for four possible samples. See the ADCSSMUX0 register on page 354 for detailed bit descriptions. The ADCSSMUX1 register affects Sample Sequencer 1 and the ADCSSMUX2 register affects Sample Sequencer 2.

	R/W, rese	et 0x000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	•		•				• •	rese	erved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reserved		MUX3		reserved		MUX2		reserved		MUX1		reserved		MUX0	
Type Reset	RO 0	R/W 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	scription							
	31:15		reserv	/ed	R	C	0x0000	con	npatibility	with fut	ure produ	ucts, the	e of a rese value of e operatio	a reserv		
	14:12		MUX	(3	R/	W	0x0	4th	Sample I	nput Se	lect					
	11		reserv	/ed	R	C	0	con	npatibility	with fut	ure produ	ucts, the	e of a rese value of e operatio	a reserv		
	10:8		MUX	(2	R/	W	0x0	3rd	Sample I	nput Se	lect					
	7		reserv	/ed	R	C	0	con	npatibility	with fut	ure produ	ucts, the	e of a rese value of e operatio	a reserv	•	
	6:4		MUX	(1	R/	W	0x0	2nd	l Sample	Input Se	elect					
	3		reserv	ved	R	C	0	con	npatibility	with fut	ure produ	ucts, the	e of a rese value of e operatio	a reserv		
	2:0		MUX	(0	R/	W	0x0	1st	Sample I	nput Se	lect					

ADC Sample Sequence Input Multiplexer Select 1 (ADCSSMUX1)
Base 0x4003.8000

Offset 0x060

Register 23: ADC Sample Sequence Control 1 (ADCSSCTL1), offset 0x064 Register 24: ADC Sample Sequence Control 2 (ADCSSCTL2), offset 0x084

These registers contain the configuration information for each sample for a sequence executed with Sample Sequencer 1 or 2. When configuring a sample sequence, the END bit must be set at some point, whether it be after the first sample, last sample, or any sample in between. These registers are 16-bits wide and contain information for four possible samples. See the **ADCSSCTL0** register on page 356 for detailed bit descriptions. The **ADCSSCTL1** register configures Sample Sequencer 1 and the **ADCSSCTL2** register configures Sample Sequencer 2.

	t 0x064 R/W, rese	et 0x0000	0.0000															
-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
			1				1	rese	rved									
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	TS3	IE3	END3	D3	TS2	IE2	END2	D2	TS1	IE1	END1	D1	TS0	IE0	END0	D0		
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0		
В	it/Field		Nam	ne	Ту	ре	Reset	Des	cription									
	31:16		reserv	ved	R	0	0x0000	com	patibility	with futu	ure produ	ne value ucts, the lify-write	value of	a reserv	•			
	15		TS	3	R/	W	0	4th Sample Temp Sensor Select Same definition as ${\tt TS7}$ but used during the fourth sample.										
	14		IE3	3	R/	W	0		Sample I ne definit			sed durir	ng the fo	ourth san	nple.			
	13		END)3	R/	W	0		4th Sample is End of Sequence Same definition as $END7$ but used during the fourth sample.									
	12		D3	•	R/	W	0		Sample I ne definit			ed during	g the fou	rth samp	ole.			
	11		TS	2	R/	W	0		Sample ⁻ ne definit	•		lect sed durir	ng the th	ird samp	ole.			
	10		IE2	2	R/	W	0		Sample I ne definit			sed durir	ng the th	ird samp	ole.			
	9		END)2	R/	W	0		Sample i ne definit		•	ice used dui	ring the 1	third san	nple.			
	8		D2	2	R/	W	0		Sample I ne definit			ed during	g the thir	d sample	е.			
	7		TS1 R/W 0				2nd Sample Temp Sensor Select Same definition as TS7 but used during the second sample.											

ADC Sample Sequence Control 1 (ADCSSCTL1) Base 0x4003.8000 Offset 0x064 Type PAW reset 0x0000 0000

Bit/Field	Name	Туре	Reset	Description
6	IE1	R/W	0	2nd Sample Interrupt Enable Same definition as IE7 but used during the second sample.
5	END1	R/W	0	2nd Sample is End of Sequence Same definition as END7 but used during the second sample.
4	D1	R/W	0	2nd Sample Diff Input Select Same definition as D7 but used during the second sample.
3	TS0	R/W	0	1st Sample Temp Sensor Select Same definition as ${\tt TS7}$ but used during the first sample.
2	IE0	R/W	0	1st Sample Interrupt Enable Same definition as IE7 but used during the first sample.
1	END0	R/W	0	1st Sample is End of Sequence Same definition as END7 but used during the first sample.
0	D0	R/W	0	1st Sample Diff Input Select Same definition as $D7$ but used during the first sample.

Register 25: ADC Sample Sequence Input Multiplexer Select 3 (ADCSSMUX3), offset 0x0A0

This register defines the analog input configuration for a sample executed with Sample Sequencer 3. This register is 4-bits wide and contains information for one possible sample. See the **ADCSSMUX0** register on page 354 for detailed bit descriptions.

	t 0x0A0 R/W, res	et 0x000	00.000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[I	1	T	T L	I	1 1	rese	rved		T	1	1	Ĩ	Ĩ	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[I	1	1	1 1	I	reserved		1 1 1		T	r	1		MUX0	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	3it/Field		Na	me	Ту	ре	Reset	Des	cription							
	31:3		rese	rved	R	0	0x0000.000	com	ware sho patibility served ac	with fut	ure prod	ucts, the	value of	a reserv	•	
	2:0		ML	IX0	R/	W	0	1st	Sample I	nput Se	lect					

ADC Sample Sequence Input Multiplexer Select 3 (ADCSSMUX3) Base 0x4003.8000

Register 26: ADC Sample Sequence Control 3 (ADCSSCTL3), offset 0x0A4

This register contains the configuration information for a sample executed with Sample Sequencer 3. The END bit is always set since there is only one sample in this sequencer. This register is 4-bits wide and contains information for one possible sample. See the **ADCSSCTL0** register on page 356 for detailed bit descriptions.

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	r		1		г г 1		1 1	rese	rved	1	1	1	r 1	1	1	·
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Į		1		, ,		served		1	1			TS0	IE0	END0	D0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
E	31:4 3		Nam reserv TS(ved	Tyr RC RA	C	Reset 0x0000.000 0	Soft com pres	patibility erved a Sample ⁻	v with futu cross a r Temp Se	ure prod read-mod ensor Se	he value ucts, the dify-write lect used duri	value of operation	a reservon.	ved bit sh	
	2		IEC	h	R/\	N	0	1et 9	Sampla I	Interrupt	Enable					
	2		iEU	,	17/1	, v	U		•	•						
	1		END	00	RA	N	1	1st San	Sample i ne definit	is End of tion as	f Sequer ND7 but	ised duri nce used du ly one er	ring the t	first sam	ple.	
	0		D0	1	R/\	N	0	1st s	Sample I	Diff Input	t Select					
								San	ne definit	tion as D	7 but us	ed during	n the firs	t sample	د	
								Jan			/ but us	cu uunn	9 110 1113	coumpic		

ADC Sample Sequence Control 3 (ADCSSCTL3)

Base 0x4003.8000

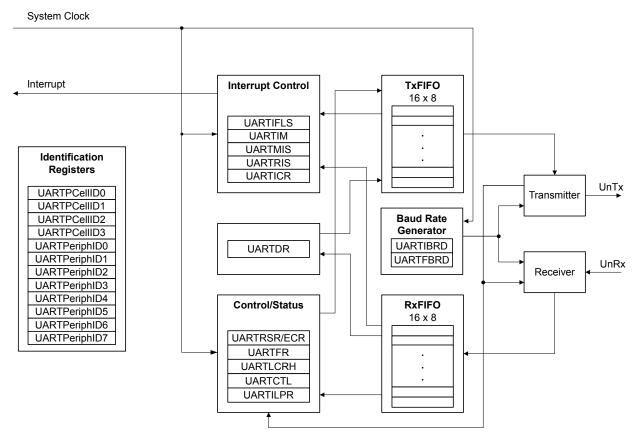
Offset 0x0A4 Type R/W, reset 0x0000.0002

Register 27: ADC Test Mode Loopback (ADCTMLB), offset 0x100

This register provides loopback operation within the digital logic of the ADC, which can be useful in debugging software without having to provide actual analog stimulus. This test mode is entered by writing a value of 0x0000.0001 to this register. When data is read from the FIFO in loopback mode, the read-only portion of this register is returned.

Base Offse	0x4003.8 t 0x100 R/W, rese	000	00.0000	(700)	WLD)											
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			I	1	· ·		1	res	erved	•	I	1	· ·		1	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	'			•	· ·		•	reserved		•		•	· ·		•	LB
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0
В	it/Field		Nan	ne	Тур	ре	Reset	Des	scription							
	31:1		reser	ved	R	С	0x0000.00	con	npatibility	y with fu	t rely on ti iture produ read-mod	ucts, the	value of	a reserv		
0 LB R/W 0 Loopback Mode Enable When set, forces a loopback within the digital block to provide on input and unique numbering. The ADCSSFIFOn registed provide sample data, but instead provide the 10-bit loopba shown below.								gisters o	do not							
								Bit	/Field N	ame	Descript	ion				
								9:6	c C	NT	Continuo	ous Sam	ple Cour	nter		
											and cou	nts each	ple count sample nique val	as it pro	cessed.	This
								5	С	ONT	Continua	ation Sa	mple Indi	cator		
											sample. run back	For exa	ites that f mple, if tw , this ind y samplir	wo sequ icates th	encers v at the co	were to
								4	D	IFF	Different	tial Sam	ole Indica	ator		
											When se sample.	et, indica	ites that f	this is a	different	ial
								3	Т	S	Temp Se	ensor Sa	imple Ind	licator		
											When se sensor s		ites that f	this is a t	tempera	ture
								2:0	M	UX	Analog I	nput Ind	icator			
											Indicates	s which a	analog in	put is to	be sam	pled.

ADC Test Mode Loopback (ADCTMLB)


11 Universal Asynchronous Receivers/Transmitters (UARTs)

Each Stellaris[®] Universal Asynchronous Receiver/Transmitter (UART) has the following features:

- Two fully programmable 16C550-type UARTs
- Separate 16x8 transmit (TX) and receive (RX) FIFOs to reduce CPU interrupt service loading
- Programmable baud-rate generator allowing speeds up to 3.125 Mbps
- Programmable FIFO length, including 1-byte deep operation providing conventional double-buffered interface
- FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8
- Standard asynchronous communication bits for start, stop, and parity
- Line-break generation and detection
- Fully programmable serial interface characteristics
 - 5, 6, 7, or 8 data bits
 - Even, odd, stick, or no-parity bit generation/detection
 - 1 or 2 stop bit generation

11.1 Block Diagram

Figure 11-1. UART Module Block Diagram

11.2 Signal Description

Table 11-1 on page 368 lists the external signals of the UART module and describes the function of each. The UART signals are alternate functions for some GPIO signals and default to be GPIO signals at reset, with the exception of the UORx and UOTx pins which default to the UART function. The column in the table below titled "Pin Assignment" lists the possible GPIO pin placements for these UART signals. The AFSEL bit in the **GPIO Alternate Function Select (GPIOAFSEL)** register (page 248) should be set to choose the UART function. For more information on configuring GPIOs, see "General-Purpose Input/Outputs (GPIOs)" on page 229.

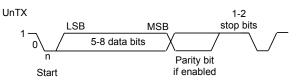
Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description
UORx	17	I	TTL	UART module 0 receive.
UOTx	18	0	TTL	UART module 0 transmit.
UlRx	27	I	TTL	UART module 1 receive.
UlTx	28	0	TTL	UART module 1 transmit.

 Table 11-1. UART Signals (48QFP)

a. The TTL designation indicates the pin has TTL-compatible voltage levels.

11.3 Functional Description

Each Stellaris UART performs the functions of parallel-to-serial and serial-to-parallel conversions. It is similar in functionality to a 16C550 UART, but is not register compatible.


The UART is configured for transmit and/or receive via the TXE and RXE bits of the **UART Control** (**UARTCTL**) register (see page 385). Transmit and receive are both enabled out of reset. Before any control registers are programmed, the UART must be disabled by clearing the UARTEN bit in **UARTCTL**. If the UART is disabled during a TX or RX operation, the current transaction is completed prior to the UART stopping.

11.3.1 Transmit/Receive Logic

The transmit logic performs parallel-to-serial conversion on the data read from the transmit FIFO. The control logic outputs the serial bit stream beginning with a start bit, and followed by the data bits (LSB first), parity bit, and the stop bits according to the programmed configuration in the control registers. See Figure 11-2 on page 369 for details.

The receive logic performs serial-to-parallel conversion on the received bit stream after a valid start pulse has been detected. Overrun, parity, frame error checking, and line-break detection are also performed, and their status accompanies the data that is written to the receive FIFO.

Figure 11-2. UART Character Frame

11.3.2 Baud-Rate Generation

The baud-rate divisor is a 22-bit number consisting of a 16-bit integer and a 6-bit fractional part. The number formed by these two values is used by the baud-rate generator to determine the bit period. Having a fractional baud-rate divider allows the UART to generate all the standard baud rates.

The 16-bit integer is loaded through the **UART Integer Baud-Rate Divisor (UARTIBRD)** register (see page 381) and the 6-bit fractional part is loaded with the **UART Fractional Baud-Rate Divisor (UARTFBRD)** register (see page 382). The baud-rate divisor (BRD) has the following relationship to the system clock (where *BRDI* is the integer part of the BRD and *BRDF* is the fractional part, separated by a decimal place.)

BRD = BRDI + BRDF = UARTSysClk / (16 * Baud Rate)

where UARTSysClk is the system clock connected to the UART.

The 6-bit fractional number (that is to be loaded into the DIVFRAC bit field in the **UARTFBRD** register) can be calculated by taking the fractional part of the baud-rate divisor, multiplying it by 64, and adding 0.5 to account for rounding errors:

```
UARTFBRD[DIVFRAC] = integer(BRDF * 64 + 0.5)
```

The UART generates an internal baud-rate reference clock at 16x the baud-rate (referred to as Baud16). This reference clock is divided by 16 to generate the transmit clock, and is used for error detection during receive operations.

Along with the **UART Line Control, High Byte (UARTLCRH)** register (see page 383), the **UARTIBRD** and **UARTFBRD** registers form an internal 30-bit register. This internal register is only updated when a write operation to **UARTLCRH** is performed, so any changes to the baud-rate divisor must be followed by a write to the **UARTLCRH** register for the changes to take effect.

To update the baud-rate registers, there are four possible sequences:

- UARTIBRD write, UARTFBRD write, and UARTLCRH write
- UARTFBRD write, UARTIBRD write, and UARTLCRH write
- UARTIBRD write and UARTLCRH write
- UARTFBRD write and UARTLCRH write

11.3.3 Data Transmission

Data received or transmitted is stored in two 16-byte FIFOs, though the receive FIFO has an extra four bits per character for status information. For transmission, data is written into the transmit FIFO. If the UART is enabled, it causes a data frame to start transmitting with the parameters indicated in the **UARTLCRH** register. Data continues to be transmitted until there is no data left in the transmit FIFO. The BUSY bit in the **UART Flag (UARTFR)** register (see page 379) is asserted as soon as data is written to the transmit FIFO (that is, if the FIFO is non-empty) and remains asserted while data is being transmitted. The BUSY bit is negated only when the transmit FIFO is empty, and the last character has been transmitted from the shift register, including the stop bits. The UART can indicate that it is busy even though the UART may no longer be enabled.

When the receiver is idle (the UnRx is continuously 1) and the data input goes Low (a start bit has been received), the receive counter begins running and data is sampled on the eighth cycle of Baud16 (described in "Transmit/Receive Logic" on page 369).

The start bit is valid and recognized if UnRx is still low on the eighth cycle of Baud16, otherwise it is ignored. After a valid start bit is detected, successive data bits are sampled on every 16th cycle of Baud16 (that is, one bit period later) according to the programmed length of the data characters. The parity bit is then checked if parity mode was enabled. Data length and parity are defined in the **UARTLCRH** register.

Lastly, a valid stop bit is confirmed if UnRx is High, otherwise a framing error has occurred. When a full word is received, the data is stored in the receive FIFO, with any error bits associated with that word.

11.3.4 FIFO Operation

The UART has two 16-entry FIFOs; one for transmit and one for receive. Both FIFOs are accessed via the **UART Data (UARTDR)** register (see page 375). Read operations of the **UARTDR** register return a 12-bit value consisting of 8 data bits and 4 error flags while write operations place 8-bit data in the transmit FIFO.

Out of reset, both FIFOs are disabled and act as 1-byte-deep holding registers. The FIFOs are enabled by setting the FEN bit in **UARTLCRH** (page 383).

FIFO status can be monitored via the **UART Flag (UARTFR)** register (see page 379) and the **UART Receive Status (UARTRSR)** register. Hardware monitors empty, full and overrun conditions. The **UARTFR** register contains empty and full flags (TXFE, TXFF, RXFE, and RXFF bits) and the **UARTRSR** register shows overrun status via the OE bit.

The trigger points at which the FIFOs generate interrupts is controlled via the **UART Interrupt FIFO Level Select (UARTIFLS)** register (see page 387). Both FIFOs can be individually configured to trigger interrupts at different levels. Available configurations include 1/8, $\frac{1}{4}$, $\frac{1}{2}$, $\frac{3}{4}$, and 7/8. For example, if the $\frac{1}{4}$ option is selected for the receive FIFO, the UART generates a receive interrupt after 4 data bytes are received. Out of reset, both FIFOs are configured to trigger an interrupt at the $\frac{1}{2}$ mark.

11.3.5 Interrupts

The UART can generate interrupts when the following conditions are observed:

- Overrun Error
- Break Error
- Parity Error
- Framing Error
- Receive Timeout
- Transmit (when condition defined in the TXIFLSEL bit in the UARTIFLS register is met)
- Receive (when condition defined in the RXIFLSEL bit in the UARTIFLS register is met)

All of the interrupt events are ORed together before being sent to the interrupt controller, so the UART can only generate a single interrupt request to the controller at any given time. Software can service multiple interrupt events in a single interrupt service routine by reading the **UART Masked Interrupt Status (UARTMIS)** register (see page 392).

The interrupt events that can trigger a controller-level interrupt are defined in the **UART Interrupt Mask (UARTIM**) register (see page 389) by setting the corresponding IM bit to 1. If interrupts are not used, the raw interrupt status is always visible via the **UART Raw Interrupt Status (UARTRIS)** register (see page 391).

Interrupts are always cleared (for both the **UARTMIS** and **UARTRIS** registers) by setting the corresponding bit in the **UART Interrupt Clear (UARTICR)** register (see page 393).

The receive interrupt changes state when one of the following events occurs:

- If the FIFOs are enabled and the receive FIFO reaches the programmed trigger level, the RXRIS bit is set. The receive interrupt is cleared by reading data from the receive FIFO until it becomes less than the trigger level, or by clearing the interrupt by writing a 1 to the RXIC bit.
- If the FIFOs are disabled (have a depth of one location) and data is received thereby filling the location, the RXRIS bit is set. The receive interrupt is cleared by performing a single read of the receive FIFO, or by clearing the interrupt by writing a 1 to the RXIC bit.

The transmit interrupt changes state when one of the following events occurs:

If the FIFOs are enabled and the transmit FIFO progresses through the programmed trigger level, the TXRIS bit is set. The transmit interrupt is based on a transition through level, therefore the FIFO must be written past the programmed trigger level otherwise no further transmit interrupts will be generated. The transmit interrupt is cleared by writing data to the transmit FIFO until it becomes greater than the trigger level, or by clearing the interrupt by writing a 1 to the TXIC bit. If the FIFOs are disabled (have a depth of one location) and there is no data present in the transmitters single location, the TXRIS bit is set. It is cleared by performing a single write to the transmit FIFO, or by clearing the interrupt by writing a 1 to the TXIC bit.

11.3.6 Loopback Operation

The UART can be placed into an internal loopback mode for diagnostic or debug work. This is accomplished by setting the LBE bit in the **UARTCTL** register (see page 385). In loopback mode, data transmitted on UnTx is received on the UnRx input.

11.4 Initialization and Configuration

To use the UARTs, the peripheral clock must be enabled by setting the UART0 or UART1 bits in the **RCGC1** register.

This section discusses the steps that are required to use a UART module. For this example, the UART clock is assumed to be 20 MHz and the desired UART configuration is:

- 115200 baud rate
- Data length of 8 bits
- One stop bit
- No parity
- FIFOs disabled
- No interrupts

The first thing to consider when programming the UART is the baud-rate divisor (BRD), since the **UARTIBRD** and **UARTFBRD** registers must be written before the **UARTLCRH** register. Using the equation described in "Baud-Rate Generation" on page 369, the BRD can be calculated:

BRD = 20,000,000 / (16 * 115,200) = 10.8507

which means that the DIVINT field of the **UARTIBRD** register (see page 381) should be set to 10. The value to be loaded into the **UARTFBRD** register (see page 382) is calculated by the equation:

UARTFBRD[DIVFRAC] = integer(0.8507 * 64 + 0.5) = 54

With the BRD values in hand, the UART configuration is written to the module in the following order:

- 1. Disable the UART by clearing the UARTEN bit in the UARTCTL register.
- 2. Write the integer portion of the BRD to the **UARTIBRD** register.
- 3. Write the fractional portion of the BRD to the UARTFBRD register.
- **4.** Write the desired serial parameters to the **UARTLCRH** register (in this case, a value of 0x0000.0060).
- 5. Enable the UART by setting the UARTEN bit in the **UARTCTL** register.

11.5 Register Map

Table 11-2 on page 373 lists the UART registers. The offset listed is a hexadecimal increment to the register's address, relative to that UART's base address:

- UART0: 0x4000.C000
- UART1: 0x4000.D000

Note that the UART module clock must be enabled before the registers can be programmed (see page 197). There must be a delay of 3 system clocks after the UART module clock is enabled before any UART module registers are accessed.

Note: The UART must be disabled (see the UARTEN bit in the **UARTCTL** register on page 385) before any of the control registers are reprogrammed. When the UART is disabled during a TX or RX operation, the current transaction is completed prior to the UART stopping.

Table 11-2. UART Register Map

Offset	Name	Туре	Reset	Description	See page
0x000	UARTDR	R/W	0x0000.0000	UART Data	375
0x004	UARTRSR/UARTECR	R/W	0x0000.0000	UART Receive Status/Error Clear	377
0x018	UARTFR	RO	0x0000.0090	UART Flag	379
0x024	UARTIBRD	R/W	0x0000.0000	UART Integer Baud-Rate Divisor	381
0x028	UARTFBRD	R/W	0x0000.0000	UART Fractional Baud-Rate Divisor	382
0x02C	UARTLCRH	R/W	0x0000.0000	UART Line Control	383
0x030	UARTCTL	R/W	0x0000.0300	UART Control	385
0x034	UARTIFLS	R/W	0x0000.0012	UART Interrupt FIFO Level Select	387
0x038	UARTIM	R/W	0x0000.0000	UART Interrupt Mask	389
0x03C	UARTRIS	RO	0x0000.0000	UART Raw Interrupt Status	391
0x040	UARTMIS	RO	0x0000.0000	UART Masked Interrupt Status	392
0x044	UARTICR	W1C	0x0000.0000	UART Interrupt Clear	393
0xFD0	UARTPeriphID4	RO	0x0000.0000	UART Peripheral Identification 4	395
0xFD4	UARTPeriphID5	RO	0x0000.0000	UART Peripheral Identification 5	396
0xFD8	UARTPeriphID6	RO	0x0000.0000	UART Peripheral Identification 6	397
0xFDC	UARTPeriphID7	RO	0x0000.0000	UART Peripheral Identification 7	398
0xFE0	UARTPeriphID0	RO	0x0000.0011	UART Peripheral Identification 0	399
0xFE4	UARTPeriphID1	RO	0x0000.0000	UART Peripheral Identification 1	400
0xFE8	UARTPeriphID2	RO	0x0000.0018	UART Peripheral Identification 2	401
0xFEC	UARTPeriphID3	RO	0x0000.0001	UART Peripheral Identification 3	402
0xFF0	UARTPCellID0	RO	0x0000.000D	UART PrimeCell Identification 0	403
0xFF4	UARTPCellID1	RO	0x0000.00F0	UART PrimeCell Identification 1	404

Offset	Name	Туре	Reset	Description	See page
0xFF8	UARTPCellID2	RO	0x0000.0005	UART PrimeCell Identification 2	405
0xFFC	UARTPCellID3	RO	0x0000.00B1	UART PrimeCell Identification 3	406

Table 11-2. UART Register Map (continued)

11.6 Register Descriptions

The remainder of this section lists and describes the UART registers, in numerical order by address offset.

Register 1: UART Data (UARTDR), offset 0x000

Important: This register is read-sensitive. See the register description for details.

This register is the data register (the interface to the FIFOs).

When FIFOs are enabled, data written to this location is pushed onto the transmit FIFO. If FIFOs are disabled, data is stored in the transmitter holding register (the bottom word of the transmit FIFO). A write to this register initiates a transmission from the UART.

For received data, if the FIFO is enabled, the data byte and the 4-bit status (break, frame, parity, and overrun) is pushed onto the 12-bit wide receive FIFO. If FIFOs are disabled, the data byte and status are stored in the receiving holding register (the bottom word of the receive FIFO). The received data can be retrieved by reading this register.

1 base: t 0x000	0x4000.D	0000																	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16				
	1	1	•		1		rese	erved	•	•	1			•	•				
RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
	rese	erved	•	OE	BE	PE	FE		1	1	D/	ATA	I	I	1				
RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0				
it/Field		Nan	ne	Ту	ре	Reset	Des	cription											
31:12		reser	ved	compatibility with future products, the value					value of	a reserv									
11		OE	E	R	0	0	UAF	RT Overi	un Error										
							The	OE valu	es are d	efined as	s follows	:							
							Val	ue Desc	cription										
							0	Ther	e has be	en no da	ata loss	due to a	FIFO ov	errun.					
							1			s receive	ed when	the FIFC) was ful	ll, resulti	ng in				
10		BE		R	0	0	UAF	RT Break	(Error										
the receive data input was held Low transmission time (defined as start, In FIFO mode, this error is associat the FIFO. When a break occurs, onl FIFO. The next character is only en				eld Low f	for longe	r than a	full-word	0											
				the FIF0	FIFO. W O. The n	hen a br ext char	eak occu acter is d	urs, only only ena	one 0 ch bled afte	aracter i r the rec	s loaded eived da	into the ta input							
	1 base: 1 t 0x000 R/W, resu 31 RO 0 15 RO 0 15 Sit/Field 31:12	F1 base: 0x4000.E t 0x000 R/W, reset 0x0000 31 30 RO RO 0 0 15 14 reset RO RO 0 0 15 14 reset RO RO 0 0 stit/Field 31:12 11 11	R/W, reset 0x0000.0000 31 30 29 RO RO RO 0 0 0 15 14 13 reserved RO RO RO 0 0 0 Sit/Field Nan 31:12 reserved	F1 base: 0x4000.D000 t0x000 R/W, reset 0x0000.0000 31 30 29 28 RO RO RO RO 0 0 0 0 15 14 13 12 reserved RO RO RO 0 0 0 0 ist/Field Name 31:12 reserved 11 OE	F1 base: 0x4000.D000 1 30 29 28 27 RO RO RO RO RO RO RO RO RO RO RO RO 15 14 13 12 11 reserved OE RO RO RO RO 0 0 0 0 0 it/Field Name Ty 31:12 reserved R 11 OE R	1 base: 0x4000.D000 31 30 29 28 27 26 RO RO RO RO RO RO RO RO 15 14 13 12 11 10 reserved OE BE RO RO RO RO RO 0 0 0 0 0 0 15 14 13 12 11 10 reserved OE BE RO RO RO RO RO 0 0 0 0 0 0 sit/Field Name Type 31:12 reserved RO 11 OE RO	1 base: 0x4000.D000 31 30 29 28 27 26 25 RO RO RO RO RO RO RO RO RO 15 14 13 12 11 10 9 reserved OE BE PE RO RO RO RO RO RO 0 0 0 0 0 0 0 15 14 13 12 11 10 9 reserved OE BE PE RO RO 0 0 15 14 13 12 11 10 9 9 8 7 7 8 8 7 7 8 7	11 base: 0x4000.0000 31 30 29 28 27 26 25 24 reset 0x0000.0000 31 30 29 28 27 26 25 24 reset 0x000.0000 31 30 29 28 27 26 25 24 reset 0x000.000 15 14 13 12 11 10 9 8 reserved OE BE PE FE RO RO RO RO RO RO 0 0 0 8t/Field Name Type Reset Des 31:12 reserved RO 0 Soft 31:12 reserved RO 0 UAF The Vaf Co 10 DE RO 0 UAF 10 BE RO 0 UAF This This The 10 BE RO 0 UAF This This This <td <="" colspan="4" td=""><td>Ti base: 0x4000.D000 31 30 29 28 27 26 25 24 23 RO <</td><td>If base: 0x4000.D000 31 30 29 28 27 26 25 24 23 22 reserved RO RO</td><td>If base: 0x4000.D000 31 30 29 28 27 26 25 24 23 22 21 reserved RO RO</td><td>Ti base: 0x4000_D000 31 30 29 28 27 26 25 24 23 22 21 20 RO <</td><td>11 base to X0000 Lox000 31 30 29 28 27 26 25 24 23 22 21 20 19 RO RO</td><td>11 base: base:</td><td>11 base: 0x4000_D000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 RO <</td></td>	<td>Ti base: 0x4000.D000 31 30 29 28 27 26 25 24 23 RO <</td> <td>If base: 0x4000.D000 31 30 29 28 27 26 25 24 23 22 reserved RO RO</td> <td>If base: 0x4000.D000 31 30 29 28 27 26 25 24 23 22 21 reserved RO RO</td> <td>Ti base: 0x4000_D000 31 30 29 28 27 26 25 24 23 22 21 20 RO <</td> <td>11 base to X0000 Lox000 31 30 29 28 27 26 25 24 23 22 21 20 19 RO RO</td> <td>11 base: base:</td> <td>11 base: 0x4000_D000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 RO <</td>				Ti base: 0x4000.D000 31 30 29 28 27 26 25 24 23 RO <	If base: 0x4000.D000 31 30 29 28 27 26 25 24 23 22 reserved RO RO	If base: 0x4000.D000 31 30 29 28 27 26 25 24 23 22 21 reserved RO RO	Ti base: 0x4000_D000 31 30 29 28 27 26 25 24 23 22 21 20 RO <	11 base to X0000 Lox000 31 30 29 28 27 26 25 24 23 22 21 20 19 RO RO	11 base: base:	11 base: 0x4000_D000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 RO <

UART Data (UARTDR)

Bit/Field	Name	Туре	Reset	Description
9	PE	RO	0	UART Parity Error
				This bit is set to 1 when the parity of the received data character does not match the parity defined by bits 2 and 7 of the UARTLCRH register.
				In FIFO mode, this error is associated with the character at the top of the FIFO.
8	FE	RO	0	UART Framing Error
				This bit is set to 1 when the received character does not have a valid stop bit (a valid stop bit is 1).
7:0	DATA	R/W	0	Data Transmitted or Received
				When written, the data that is to be transmitted via the UART. When read, the data that was received by the UART.

Register 2: UART Receive Status/Error Clear (UARTRSR/UARTECR), offset 0x004

The **UARTRSR/UARTECR** register is the receive status register/error clear register.

In addition to the **UARTDR** register, receive status can also be read from the **UARTRSR** register. If the status is read from this register, then the status information corresponds to the entry read from **UARTDR** prior to reading **UARTRSR**. The status information for overrun is set immediately when an overrun condition occurs.

The **UARTRSR** register cannot be written.

A write of any value to the **UARTECR** register clears the framing, parity, break, and overrun errors. All the bits are cleared to 0 on reset.

Reads

UART Receive Status/Error Clear (UARTRSR/UARTECR)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x004 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		ſ	1			ſ	1 1	rese	erved	I	ſ	1		ſ	I	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset																
1	15	14	13 I	12	11	10	9	8	7	6	5	4	3	2	1	0
_							erved		L				OE	BE	PE	FE
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:4		reser	ved	R	0	0	com	tware sho patibility served ac	with futu	ure prod	ucts, the	value of	a reserv	•	
	3		OE		R	0	0	UAF	RT Overr	un Error						
									en this bi s bit is cle) is alrea	dy full.
								the	FIFO co FIFO is f CPU mu	ull, only	the cont	ents of th	ne shift r	egister a	re overv	
	2		BE		R	0	0	UAF	RT Break	Error						
								the	s bit is se received smission	data inp	out was h	neld Low	for long	er than a	a full-wor	d
								This	s bit is cle	eared to	0 by a w	rite to U	ARTECH	R .	• •	
								In FIFO mode, this error is associated with the character at the top of the FIFO. When a break occurs, only one 0 character is loaded into the FIFO. The next character is only enabled after the receive data input goes to a 1 (marking state) and the next valid start bit is received.								

Bit/Field	Name	Туре	Reset	Description
1	PE	RO	0	UART Parity Error
				This bit is set to 1 when the parity of the received data character does not match the parity defined by bits 2 and 7 of the UARTLCRH register.
				This bit is cleared to 0 by a write to UARTECR .
0	FE	RO	0	UART Framing Error
				This bit is set to 1 when the received character does not have a valid stop bit (a valid stop bit is 1).
				This bit is cleared to 0 by a write to UARTECR .
				In FIFO mode, this error is associated with the character at the top of the FIFO.

Writes

UART Receive Status/Error Clear (UARTRSR/UARTECR)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x004 Type WO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		ſ	1				1 1	rese	erved					1	I	1
Type Reset	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		r	1	rese	rved		1 1	[DA	ТА	l .	r	
Type Reset	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	W	0	0	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv	•	
	7:0		DAT	A	W	0	0	Errc	or Clear							
									rite to this	•	r of any	data clea	ars the fr	aming, p	arity, bre	ak, and

overrun flags.

Register 3: UART Flag (UARTFR), offset 0x018

The **UARTFR** register is the flag register. After reset, the TXFF, RXFF, and BUSY bits are 0, and TXFE and RXFE bits are 1.

UART UART Offset	RT Flag 10 base: 0 11 base: 0 t 0x018 RO, reset)x4000.)x4000.	C000 D000															
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
Γ	ſ		1	1			1 1	rese	erved	1				1	1 1			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Γ	r		1	rese	rved	1	1 1		TXFE	RXFF	TXFF	RXFE	BUSY		reserved			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0		
В	it/Field		Nar	me	Ту	ре	Reset	Des	scription									
	31:8		resei	rved	R	0	0	con		with futu	ure produ	ucts, the	value of	a reserv	t. To prov ved bit sh			
7 TXFE RO 1 UART Transmit FIFO Empty																		
		The meaning of this bit depends on the state of the FEN bit in the UARTLCRH register.																
									e FIFO is ster is er		d (fen is	0), this t	oit is set v	when the	e transmit	holding		
									e FIFO i: mpty.	s enable	d (fen is	s 1), this	bit is set	when th	ne transm	nit FIFO		
	6		RX	FF	R	0	0	UAI	RT Rece	ve FIFO	Full							
									meaning RTLCRH			nds on th	ne state (of the FI	™ bit in t	ne		
								lf th is fu		s disable	d, this b	it is set v	vhen the	receive	holding r	egister		
								If th	e FIFO i	s enable	d, this bi	t is set w	hen the	receive	FIFO is f	ull.		
	5		ТХ	FF	R	0	0	UAI	RT Trans	mit FIFC) Full							
									meaning RTLCRH			nds on th	ne state (of the FI	en bit in tl	ne		
								lf th is fu		s disable	d, this bi	it is set v	when the	transmi	t holding	register		
								lf th	e FIFO i	s enable	d, this bi	t is set w	hen the	transmit	FIFO is	full.		
	4		RX	FE	R	0	1	UAI	RT Rece	ve FIFO	Empty							
								The meaning of this bit depends on the state of the FEN bit in the UARTLCRH register.										
								If th		-		it is set v	vhen the	receive	holding r	egister		
								lf th	e FIFO i	s enable	d, this bi	t is set w	hen the	receive	FIFO is e	empty.		

Bit/Field	Name	Туре	Reset	Description
3	BUSY	RO	0	UART Busy When this bit is 1, the UART is busy transmitting data. This bit remains set until the complete byte, including all stop bits, has been sent from the shift register.
				This bit is set as soon as the transmit FIFO becomes non-empty (regardless of whether UART is enabled).
2:0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 4: UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024

The **UARTIBRD** register is the integer part of the baud-rate divisor value. All the bits are cleared on reset. The minimum possible divide ratio is 1 (when **UARTIBRD=**0), in which case the **UARTFBRD** register is ignored. When changing the **UARTIBRD** register, the new value does not take effect until transmission/reception of the current character is complete. Any changes to the baud-rate divisor must be followed by a write to the **UARTLCRH** register. See "Baud-Rate Generation" on page 369 for configuration details.

UART Integer Baud-Rate Divisor (UARTIBRD)

UART0 base: 0x4000.C000

UART1 base: 0x4000.D000 Offset 0x024 Type R/W, reset 0x0000.0000 31 30 29 28 25 23 27 26 24 22 21 20 19 18 17 16 reserved RO Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 1 DIVINT Туре R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Name Туре Reset Description 31:16 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 15:0 DIVINT R/W 0x0000 Integer Baud-Rate Divisor

Register 5: UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028

The **UARTFBRD** register is the fractional part of the baud-rate divisor value. All the bits are cleared on reset. When changing the **UARTFBRD** register, the new value does not take effect until transmission/reception of the current character is complete. Any changes to the baud-rate divisor must be followed by a write to the **UARTLCRH** register. See "Baud-Rate Generation" on page 369 for configuration details.

UART Fractional Baud-Rate Divisor (UARTFBRD)

UART0 base: 0x4000.C000

Offse	T1 base: (et 0x028 R/W, rese																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		1	1		, , , , , , , , , , , , , , , , , , ,		1 1	rese	rved			1					
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		1	1		resei	rved	1 1						DIVF	RO RO RO 0 0 0 2 1 0 /FRAC	1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
E	Bit/Field		Nam	ie	Туј	ре	Reset	Des	cription								
	31:6		reserv	ved	R	RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.											
	5:0		DIVFR	AC	R/	W	0x000	Fractional Baud-Rate Divisor									

Register 6: UART Line Control (UARTLCRH), offset 0x02C

The **UARTLCRH** register is the line control register. Serial parameters such as data length, parity, and stop bit selection are implemented in this register.

When updating the baud-rate divisor (**UARTIBRD** and/or **UARTIFRD**), the **UARTLCRH** register must also be written. The write strobe for the baud-rate divisor registers is tied to the **UARTLCRH** register.

UART Line Control (UARTLCRH)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x02C Type R/W, reset 0x0000.0000

Type	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16				
[r		1	1 1		ſ	т т	rese	erved	[r	1	r		1					
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO				
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
ſ	15	14	13	12	11 rund	10	9	8	7 SPS	6	5 EN	4 FEN	3 STP2	2 EPS	1 PEN	0 BRK				
Туре	RO	RO	RO	rese RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
В	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription											
	31:8		reserv	ved	R	0	0		ware sho											
									patibility served a						ed bit sh	iould be				
	7		SPS	.	D/	14/	0													
	1		58	5	R/	vv	0	0 UART Stick Parity Select When bits 1, 2, and 7 of UARTLCRH are set, the parity bit is transmitted and checked as a 0. When bits 1 and 7 are set and 2 is cleared, the												
								and	checked	l as a 0.	When b	its 1 and	7 are se							
									ty bit is t											
								VVNe	en this bi	t is cleai	red, stick	c parity is	disable	3.						
	6:5		WLE	N	R/	W	0	UAF	RT Word	Length										
									bits indi ne as foll		number	of data I	oits trans	mitted o	r receive	ed in a				
								Val	ue Desc	ription										
								0x	3 8 bits	5										
								0x	2 7 bits	5										
								0x	1 6 bits	6										
								0x	0 5 bits	defaul	t)									
	4		FEI	N	R/	\ \ /	0	IΙΔF	RT Enabl											
	-			•	10	••	0		is bit is se			nd receiv	e FIFO b	ouffers ar	e enable	d (FIFO				
								moc		,						,				
									en cleare ome 1-b				•	acter mo	de). The	FIFOs				
	3		STF	2	R/	W	0	UAF	RT Two S	Stop Bits	Select									
								If th	is bit is s	et to 1, t	wo stop									
								The	receive	logic do	es not ch	neck for t	wo stop	bits bein	ig receiv	ed.				

Bit/Field	Name	Туре	Reset	Description
2	EPS	R/W	0	UART Even Parity Select
				If this bit is set to 1, even parity generation and checking is performed during transmission and reception, which checks for an even number of 1s in data and parity bits.
				When cleared to 0, then odd parity is performed, which checks for an odd number of 1s.
				This bit has no effect when parity is disabled by the ${\tt PEN}$ bit.
1	PEN	R/W	0	UART Parity Enable
				If this bit is set to 1, parity checking and generation is enabled; otherwise, parity is disabled and no parity bit is added to the data frame.
0	BRK	R/W	0	UART Send Break
				If this bit is set to 1, a Low level is continually output on the UnTX output, after completing transmission of the current character. For the proper execution of the break command, the software must set this bit for at least two frames (character periods). For normal use, this bit must be cleared to 0.

Register 7: UART Control (UARTCTL), offset 0x030

The **UARTCTL** register is the control register. All the bits are cleared on reset except for the Transmit Enable (TXE) and Receive Enable (RXE) bits, which are set to 1.

To enable the UART module, the UARTEN bit must be set to 1. If software requires a configuration change in the module, the UARTEN bit must be cleared before the configuration changes are written. If the UART is disabled during a transmit or receive operation, the current transaction is completed prior to the UART stopping.

- **Note:** The **UARTCTL** register should not be changed while the UART is enabled or else the results are unpredictable. The following sequence is recommended for making changes to the **UARTCTL** register.
 - **1.** Disable the UART.
 - 2. Wait for the end of transmission or reception of the current character.
 - 3. Flush the transmit FIFO by disabling bit 4 (FEN) in the line control register (UARTLCRH).
 - **4.** Reprogram the control register.
 - 5. Enable the UART.

UART Control (UARTCTL)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x030 Type R/W, reset 0x0000.0300

1,900	1011,1000															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	Î	1	[Ì	rese	rved	1		I			ſ	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			rese	rved			RXE	TXE	LBE			rese	rved			UARTEN
Туре	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	RO	RO	RO	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
	Bit/Field 31:10 9		Nan resen	ved	Tyj R R/	0	Reset 0 1	Soft com pres UAF If th the	apatibilit served a RT Rece is bit is UART is	nould not y with futu across a r eive Enab set to 1, t	ure prod ead-mo le he recei in the m	ucts, the dify-write ve sectio	value of operation	a reserv on. UART is	ed bit s enable	hould be
	8		тхі	Ξ	R/	W	1	If the	RT Trans is bit is s UART is rent cha	o enable smit Enat set to 1, ti s disabled racter bet o enable	ble he trans I in the r fore stop	mit section middle of oping.	on of the a transn	UART is nission, i	enable t compl	ed. When etes the

Bit/Field	Name	Туре	Reset	Description
7	LBE	R/W	0	UART Loop Back Enable If this bit is set to 1, the $UnTX$ path is fed through the $UnRX$ path.
6:1	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
0	UARTEN	R/W	0	UART Enable If this bit is set to 1, the UART is enabled. When the UART is disabled in the middle of transmission or reception, it completes the current character before stopping.

Register 8: UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034

The **UARTIFLS** register is the interrupt FIFO level select register. You can use this register to define the FIFO level at which the TXRIS and RXRIS bits in the **UARTRIS** register are triggered.

The interrupts are generated based on a transition through a level rather than being based on the level. That is, the interrupts are generated when the fill level progresses through the trigger level. For example, if the receive trigger level is set to the half-way mark, the interrupt is triggered as the module is receiving the 9th character.

Out of reset, the TXIFLSEL and RXIFLSEL bits are configured so that the FIFOs trigger an interrupt at the half-way mark.

UART Interrupt FIFO Level Select (UARTIFLS) UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x034 Type R/W, reset 0x0000.0012 31 30 29 28 27 25 20 19 16 26 24 23 22 21 18 17 reserved RO Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 10 9 8 7 6 3 2 0 11 5 4 1 TXIFLSEL . RXIFLSEL reserved R/W R/W Туре RO R/W R/W R/W R/W Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 Bit/Field Description Name Туре Reset 31:6 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 5:3 RXIFLSEL R/W UART Receive Interrupt FIFO Level Select 0x2 The trigger points for the receive interrupt are as follows: Value Description RX FIFO ≥ ¼ full 0x0 0x1 RX FIFO ≥ ¼ full RX FIFO ≥ ½ full (default) 0x2 0x3 RX FIFO ≥ ¾ full 0x4 RX FIFO ≥ ¼ full 0x5-0x7 Reserved

Bit/Field	Name	Туре	Reset	Description	
2:0	TXIFLSEL	R/W	0x2	UART Transmit Interrupt FIFO Level Select The trigger points for the transmit interrupt are as follows	s:
				Value Description	
				0x0 TX FIFO ≤ ¼ empty	
				0x1 TX FIFO ≤ ¾ empty	
				0x2 TX FIFO $\leq \frac{1}{2}$ empty (default)	
				0x3 TX FIFO ≤ ¼ empty	
				0x4 TX FIFO ≤ ¼ empty	
				0x5-0x7 Reserved	

Register 9: UART Interrupt Mask (UARTIM), offset 0x038

The **UARTIM** register is the interrupt mask set/clear register.

UART Interrupt Mask (UARTIM)

On a read, this register gives the current value of the mask on the relevant interrupt. Writing a 1 to a bit allows the corresponding raw interrupt signal to be routed to the interrupt controller. Writing a 0 prevents the raw interrupt signal from being sent to the interrupt controller.

UART UART Offset	T0 base: (T1 base: (t 0x038 R/W, rese)x4000.C)x4000.D	000	XTIIVI)													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
								rese	rved						•		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	-		reserved			OEIM	BEIM	PEIM	FEIM	RTIM	TXIM	RXIM		rese	erved	-	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	
В	it/Field		Nam	e	Ту	ре	Reset	Des	cription								
	31:11		reserv	ved	R	0	0x00	com	patibility	with futu	ure prod	he value ucts, the lify-write	value of	a reserv			
	10		OEII	M	R/	W	0	On a	a read, tl		nt mask	t Mask for the OI he OEIM					
	9		BEI	И	R/	W	0	On a	a read, tl		nt mask	Nask for the Bine BEIM					
	8		PEI	И	R/	W	0	On a	a read, tl		nt mask	Nask for the Pi ne PEIM		•			
	7		FEIN	И	R/	W	0	On a	a read, tl		nt mask	for the F					
	6		RTI	M	R/	W	0	On a	ART Receive Time-Out Interrupt Mask a read, the current mask for the RTIM interrupt is returned. etting this bit to 1 promotes the RTIM interrupt to the interrupt controller.								
	5		TXI	И	R/	W	0	On a	a read, tl		nt mask	sk for the T he TXIM					
	4		RXII	М	R/	W	0	On a	a read, tl		nt mask	k for the R: ne RXIM					

Bit/Field	Name	Туре	Reset	Description
3:0	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 10: UART Raw Interrupt Status (UARTRIS), offset 0x03C

The **UARTRIS** register is the raw interrupt status register. On a read, this register gives the current raw status value of the corresponding interrupt. A write has no effect.

UART Raw Interrupt Status (UARTRIS)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x03C Type RO, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
	1							rese	rved	1	1								
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
Γ	10		reserved			OERIS	BERIS	PERIS	FERIS		rved								
Г Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0 0 0 0 0 0 0											
B	lit/Field		Nam	A	Ty	ne	Reset	Des	cription										
			Nam						Software should not rely on the value of a reserved bit. To provide										
31:11 reserved RO 0x00 Software should n compatibility with t															•				
											•	dify-write							
	10		OER	IS	R	0	0	UART Overrun Error Raw Interrupt Status											
	Gives the raw interrupt state (prior to masking) of this in												interrupt.						
	9		BERI	2	R	0	0	IΙΔF	2T Brook	Frror R	aw Inter	rupt Stati	19						
	0		DEIX		IX.	0	0					(prior to)) of this	interrupt.				
	8		PERI		R	0	0					" rupt Statu		,	·				
	0		FER	13	R	0	0		,			(prior to)) of this	interrupt.				
	_				-	~) 01 010	inter apt				
	7		FERI	S	R	0	0			0		errupt St (prior to i) of this	intorrunt				
													Ū	,	interrupt				
	6		RTRI	IS	R	0	0					w Interrup							
								Give	es ine ra	wintenu	pi state	(prior to I	masking) or this	menupi				
	5		TXRI	IS	R	0	0		RT Trans		•								
								Give	es the ra	w interru	pt state	(prior to I	masking) of this	interrupt				
	4		RXR	IS	R	0	0		RT Recei		•								
								Give	es the ra	w interru	pt state	(prior to I	masking) of this	interrupt				
	3:0		reserv	ved	R	0	0x0					he value			•				
												ucts, the dify-write			ed bit sh	ould be			

Register 11: UART Masked Interrupt Status (UARTMIS), offset 0x040

The **UARTMIS** register is the masked interrupt status register. On a read, this register gives the current masked status value of the corresponding interrupt. A write has no effect.

UART Masked Interrupt Status (UARTMIS)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x040 Type RO, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
	I		1 1			reserved													
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
ſ	r		reserved			OEMIS	BEMIS	PEMIS	FEMIS	RTMIS	TXMIS	RXMIS		reserved					
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO	RO	RO	RO	RO	RO	RO	RO	RO 0			
Reset	0	0	0	0	0	0	0	0 0 0 0 0 0 0											
В	it/Field		Nam	е	Ту	ре	Reset	Des	Description										
	31:11		reserv	ed	R	0	0x00					he value			•				
						compatibility with future products, the value of a reserved preserved across a read-modify-write operation.													
	10		OEM	IC	R	0	0	UART Overrun Error Masked Interrupt Status											
	10		OLIVI	10		0	0	Give	ıpt.										
	9		BEM	2	R	0	0	IΙΔF	QT Brook		askod Ir	nterrupt S	tatus						
	9		DLIVII	0		0	0					tate of th		ıpt.					
	8		PEM	S	R	0	0	LIAF	RT Parity	Error M	asked In	iterrupt S	tatus						
	U					0	Ū					tate of th		ıpt.					
	7		FEMI	S	R	0	0	UAF	RT Fram	na Error	Masked	I Interrup	t Status						
										•		tate of th		ıpt.					
	6		RTM	S	R	0	0	UAF	RT Rece	ve Time	-Out Ma	sked Inte	rrupt Sta	atus					
								Give	es the m	asked in	terrupt s	tate of th	is interru	ıpt.					
	5		ТХМ	S	R	0	0	UAF	RT Trans	mit Masl	ked Inter	rupt Stat	us						
								Give	es the m	asked in	terrupt s	tate of th	is interru	ıpt.					
	4		RXM	IS	R	0	0	UAF	RT Rece	ve Mask	ed Inter	rupt Stati	JS						
								Give	es the m	asked in	terrupt s	tate of th	is interru	ıpt.					
	3:0		reserv	ed	R	0	0					he value							
								compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.											

Register 12: UART Interrupt Clear (UARTICR), offset 0x044

The **UARTICR** register is the interrupt clear register. On a write of 1, the corresponding interrupt (both raw interrupt and masked interrupt, if enabled) is cleared. A write of 0 has no effect.

UAR UAR Offse	T0 base: (T1 base: (t 0x044 W1C, res)x4000.C)x4000.D	000	(HOR)																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16				
	ſ		1 1				1 1	rese	rved	1	r	1		1	1	1				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0				
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
	I		reserved			OEIC	BEIC	PEIC	FEIC	RTIC	TXIC	RXIC		rese	erved					
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	W1C 0	W1C 0	W1C 0	W1C 0	W1C 0	W1C 0	W1C 0	RO 0	RO 0	RO 0	RO 0				
E	Bit/Field		Nam	ie	Туре		Reset	Description												
	31:11		reserv	ved	R	0	0x00	com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.											
	10		OEI	С	W	1C	0	Overrun Error Interrupt Clear The OEIC values are defined as follows:												
Value Descriptio 0 No effect 1 Clears int										ffect on t		rupt.								
	9		BEI	C	W	1C	0	Break Error Interrupt Clear The BEIC values are defined as follows:												
								Value Description												
								0 No effect on the interrupt.												
								1	Clea	rs interru	errupt.									
	8		PEI	C	W	1C	0		-	Interrupt		6. 11								
											e defined	as follo	WS:							
								van 0	ue Desc	ffect on t	ha intar	-unt								
								1		rs interru		αρι.								
	7		FEI	C	W	1C	0	Frar	ning Erre	or Interru	ıpt Clear									
								The	FEIC Va	alues are	defined	as follo	WS:							
								Val	ue Desc	ription										
								0	No e	ffect on t	he inter	upt.								
								1	Clea	rs interru	ıpt.									

July 14, 2014

UART Interrupt Clear (UARTICR)

Bit/Field	Name	Туре	Reset	Description
6	RTIC	W1C	0	Receive Time-Out Interrupt Clear The RTIC values are defined as follows:
				Value Description0 No effect on the interrupt.1 Clears interrupt.
5	TXIC	W1C	0	Transmit Interrupt Clear The TXIC values are defined as follows: Value Description 0 No effect on the interrupt. 1 Clears interrupt.
4	RXIC	W1C	0	Receive Interrupt Clear The RXIC values are defined as follows: Value Description 0 No effect on the interrupt. 1 Clears interrupt.
3:0	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 13: UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 4 (UARTPeriphID4)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFD0 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1		· ·		1 1	rved							•	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reber	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	15	14	1				1 1	0	<u> </u>					2	· ·	<u> </u>
				rese	rved			PID4								
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Туре		Reset	Des	Description							
	31:8			(od	D	0	0,000	C#	wara aha	uld pot	roly on t		of a rea	on ad hit	To prov	ida
	31.0		reserv	/eu	RO		0x00		ware sho patibility						•	
									served ac		•	-				
								•				,	•			
	7:0		PID	4	R	0	0x0000	UAF	UART Peripheral ID Register[7:0]							
								Can	be used	l by softw	vare to i	dentify th	e prese	nce of th	is periph	neral.

Register 14: UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 5 (UARTPeriphID5)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFD4 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		1	1		· ·		1 1	rese	rved					1	1	•	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
Reset				-					-			0			4		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
				rese	rved				PID5								
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
E	Bit/Field Name				Ту	ре	Reset	Des	Description								
	31:8		reserv	RO 0		0x00	com	Software should not rely on the value of a reserved bit. To prov compatibility with future products, the value of a reserved bit sh preserved across a read-modify-write operation.									
	7:0		PID	5	R	0	0x0000		RT Periph		•	[15:8] dentify th	e prese	nce of th	is periph	ieral.	

Register 15: UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 6 (UARTPeriphID6)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFD8 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			I	1	1	1	1 1	rese	erved	I	1	1		1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reber									-						0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	erved	1	1 1			I	1	PI	D6	I	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field	0 0 0 0 0		Ту	ре	Reset	Des	cription								
	31:8		reser	ved	R	0	0x00	com	npatibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv	•	vide nould be
	7:0		PID	6	R	0	0x0000	UAF	RT Peripl	heral ID	Register	[23:16]				
								Can	h be used	by soft	ware to i	dentify th	ne prese	nce of th	is periph	neral.

Register 16: UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 7 (UARTPeriphID7)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFDC Type RO, reset 0x0000.0000

	·
	RO 0
	0
- <u>'</u>	
	RO
0	0
served bit s	snould be
f this perip	heral.
	0 0 2 1 1 0 RO

Register 17: UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 0 (UARTPeriphID0)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFE0 Type RO, reset 0x0000.0011

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		ſ	1	I	1	1	т т	rese	erved		1	1	1	Γ		I
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	erved	1					1	PI	D0	1		1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
E	Bit/Field		Name Type Reset Description													
					,											
	31:8		reser	ved	R	0	0x00	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv	•	
	7:0		PID	0	R	0	0x11	UAF	RT Peripl	neral ID	Register	[7:0]				
								Can	be used	by soft	ware to i	dentify th	e prese	nce of th	is peripł	neral.

Register 18: UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 1 (UARTPeriphID1)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFE4 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1	1	1	I	1 1	rese	rved		I			1	I	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved	I	1 1				I	PI	D1	I		1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field	0 0 0 0 0			Des	cription										
	Bit/Field Name 31:8 reserved			ved	R	0	0x00	com	ware sho patibility served a	with fut	ure prod	ucts, the	value of	a reserv	•	vide hould be
	7:0		PID	1	R	0	0x00		RT Peripl		0		ne prese	nce of th	is peripł	neral.

Register 19: UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 2 (UARTPeriphID2)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFE8 Type RO, reset 0x0000.0018

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1		1		rese	rved		1			1	1	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset				-					-							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			•	rese	rved	1						PI	D2	1	1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv	•	
	7:0		PID	2	R	0	0x18		RT Peripl		-		ie prese	nce of th	is peripł	neral.

Register 20: UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 3 (UARTPeriphID3)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFEC Type RO, reset 0x0000.0001

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1			1		rese	rved		1			1	1	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
10001	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	10	, ,	1		rved		ست ۱	0	,			PI		1	1	٦
				1636	l I							ΓI	5			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	/ed	R	0	0x00	com	patibility	with futu	ure produ	he value ucts, the dify-write	value of	a reserv	•	
	7:0		PID	3	R	0	0x01		RT Peripl		•	[31:24] dentify th	e prese	nce of th	is periph	neral.

Register 21: UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0

The **UARTPCeIIIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART PrimeCell Identification 0 (UARTPCellID0)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFF0 Type RO, reset 0x0000.000D

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1	1	1	т т	rese	erved		1	1		1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset	0	0	0	U	U	U	0	U	U	U	U	U	0	U	0	U
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	erved	1					1	CI	D0	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1
E	Bit/Field	0 0 0 0 0 0		ре	Reset	Des	cription									
	31:8		reser	ved	R	0	0x00	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv	•	vide hould be
	7:0		CID	0	R	0	0x0D		RT Prime vides sof			[7:0] 1 cross-p	eriphera	l identific	cation sy	/stem.

Register 22: UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4

The **UARTPCellIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART PrimeCell Identification 1 (UARTPCellID1)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFF4 Type RO, reset 0x0000.00F0

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	ſ	1	1	т т	rese	rved		I	1		Γ	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	erved	I					I	CI	D1	I	1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:8					0	0x00	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv	•	vide hould be
	7:0		CID	1	R	0	0xF0		RT Prime vides sof			[15:8] I cross-p	eriphera	l identific	cation sy	/stem.

Register 23: UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8

The **UARTPCeIIIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART PrimeCell Identification 2 (UARTPCellID2)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFF8 Type RO, reset 0x0000.0005

-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1	1		1	1 1	rese	erved		1	1			1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
10001	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ	15	14	10	12	1	10	1 1	0	, 			1			r	```
				rese	erved							CI	D2			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
B	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	Bit/Field Name 31:8 reserved				R	0	0x00	com	ware sho patibility served ac	with fut	ure prod	ucts, the	value of	a reserv	•	vide nould be
	7:0		CID	2	R	0	0x05		RT Prime vides sof				eriphera	l identific	cation sy	/stem.

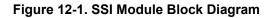
Register 24: UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC

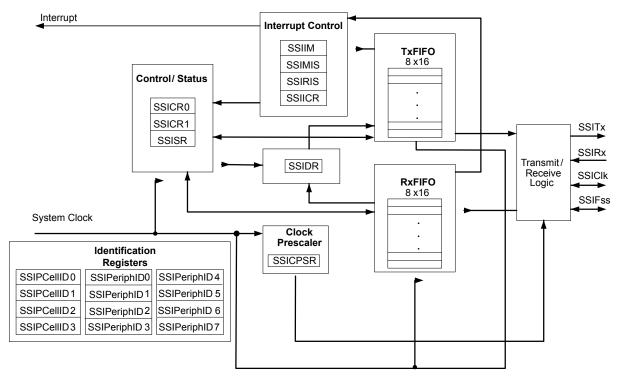
The **UARTPCellIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART PrimeCell Identification 3 (UARTPCellID3)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFFC Type RO, reset 0x0000.00B1

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	· ·			rese	rved					1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
10000	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
I	15	14	13				ب	0		0	5			2	, 	<u> </u>
				rese	rved							CII	53			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	04.0					~	000	0 - 6							T	
	31:8		reserv	/ed	R	0	0x00		ware sho patibility						•	
									served ac		•	-			eu bit si	
								p.00								
	7:0		CID	3	R	0	0xB1	UAF	RT Prime	Cell ID F	Register[31:24]				
								Prov	ides sof	tware a	standard	cross-p	eriphera	l identific	ation sy	stem.


12 Synchronous Serial Interface (SSI)


The Stellaris[®] Synchronous Serial Interface (SSI) is a master or slave interface for synchronous serial communication with peripheral devices that have either Freescale SPI, MICROWIRE, or Texas Instruments synchronous serial interfaces.

The Stellaris SSI module has the following features:

- Master or slave operation
- Programmable clock bit rate and prescale
- Separate transmit and receive FIFOs, 16 bits wide, 8 locations deep
- Programmable interface operation for Freescale SPI, MICROWIRE, or Texas Instruments synchronous serial interfaces
- Programmable data frame size from 4 to 16 bits
- Internal loopback test mode for diagnostic/debug testing

12.1 Block Diagram

12.2 Signal Description

Table 12-1 on page 408 lists the external signals of the SSI module and describes the function of each. The SSI signals are alternate functions for some GPIO signals and default to be GPIO signals

at reset., with the exception of the SSIOClk, SSIOFss, SSIORx, and SSIOTx pins which default to the SSI function. The column in the table below titled "Pin Assignment" lists the possible GPIO pin placements for the SSI signals. The AFSEL bit in the **GPIO Alternate Function Select** (**GPIOAFSEL**) register (page 248) should be set to choose the SSI function. For more information on configuring GPIOs, see "General-Purpose Input/Outputs (GPIOs)" on page 229.

Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description
SSIClk	19	I/O	TTL	SSI clock.
SSIFss	20	I/O	TTL	SSI frame.
SSIRx	21	I	TTL	SSI receive.
SSITx	22	0	TTL	SSI transmit.

a. The TTL designation indicates the pin has TTL-compatible voltage levels.

12.3 Functional Description

The SSI performs serial-to-parallel conversion on data received from a peripheral device. The CPU accesses data, control, and status information. The transmit and receive paths are buffered with internal FIFO memories allowing up to eight 16-bit values to be stored independently in both transmit and receive modes.

12.3.1 Bit Rate Generation

The SSI includes a programmable bit rate clock divider and prescaler to generate the serial output clock. Bit rates are supported to 1.5 MHz and higher, although maximum bit rate is determined by peripheral devices.

The serial bit rate is derived by dividing down the input clock (FSysClk). The clock is first divided by an even prescale value CPSDVSR from 2 to 254, which is programmed in the **SSI Clock Prescale** (**SSICPSR**) register (see page 427). The clock is further divided by a value from 1 to 256, which is 1 + SCR, where SCR is the value programmed in the **SSI Control0 (SSICR0)** register (see page 420).

The frequency of the output clock SSIClk is defined by:

```
SSIClk = FSysClk / (CPSDVSR * (1 + SCR))
```

Note: For master mode, the system clock must be at least two times faster than the SSIClk. For slave mode, the system clock must be at least 12 times faster than the SSIClk.

See "Synchronous Serial Interface (SSI)" on page 515 to view SSI timing parameters.

12.3.2 FIFO Operation

12.3.2.1 Transmit FIFO

The common transmit FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer. The CPU writes data to the FIFO by writing the **SSI Data (SSIDR)** register (see page 424), and data is stored in the FIFO until it is read out by the transmission logic.

When configured as a master or a slave, parallel data is written into the transmit FIFO prior to serial conversion and transmission to the attached slave or master, respectively, through the SSITx pin.

In slave mode, the SSI transmits data each time the master initiates a transaction. If the transmit FIFO is empty and the master initiates, the slave transmits the 8th most recent value in the transmit FIFO. If less than 8 values have been written to the transmit FIFO since the SSI module clock was

enabled using the SSI bit in the **RGCG1** register, then 0 is transmitted. Care should be taken to ensure that valid data is in the FIFO as needed. The SSI can be configured to generate an interrupt when the FIFO is empty.

12.3.2.2 Receive FIFO

The common receive FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer. Received data from the serial interface is stored in the buffer until read out by the CPU, which accesses the read FIFO by reading the **SSIDR** register.

When configured as a master or slave, serial data received through the SSIRx pin is registered prior to parallel loading into the attached slave or master receive FIFO, respectively.

12.3.3 Interrupts

The SSI can generate interrupts when the following conditions are observed:

- Transmit FIFO service
- Receive FIFO service
- Receive FIFO time-out
- Receive FIFO overrun

All of the interrupt events are ORed together before being sent to the interrupt controller, so the SSI can only generate a single interrupt request to the controller at any given time. You can mask each of the four individual maskable interrupts by setting the appropriate bits in the **SSI Interrupt Mask** (**SSIIM**) register (see page 428). Setting the appropriate mask bit to 1 enables the interrupt.

Provision of the individual outputs, as well as a combined interrupt output, allows use of either a global interrupt service routine, or modular device drivers to handle interrupts. The transmit and receive dynamic dataflow interrupts have been separated from the status interrupts so that data can be read or written in response to the FIFO trigger levels. The status of the individual interrupt sources can be read from the **SSI Raw Interrupt Status (SSIRIS)** and **SSI Masked Interrupt Status (SSIMIS)** registers (see page 430 and page 431, respectively).

12.3.4 Frame Formats

Each data frame is between 4 and 16 bits long, depending on the size of data programmed, and is transmitted starting with the MSB. There are three basic frame types that can be selected:

- Texas Instruments synchronous serial
- Freescale SPI
- MICROWIRE

For all three formats, the serial clock (SSIClk) is held inactive while the SSI is idle, and SSIClk transitions at the programmed frequency only during active transmission or reception of data. The idle state of SSIClk is utilized to provide a receive timeout indication that occurs when the receive FIFO still contains data after a timeout period.

For Freescale SPI and MICROWIRE frame formats, the serial frame (SSIFSS) pin is active Low, and is asserted (pulled down) during the entire transmission of the frame.

For Texas Instruments synchronous serial frame format, the SSIFSS pin is pulsed for one serial clock period starting at its rising edge, prior to the transmission of each frame. For this frame format, both the SSI and the off-chip slave device drive their output data on the rising edge of SSIClk, and latch data from the other device on the falling edge.

Unlike the full-duplex transmission of the other two frame formats, the MICROWIRE format uses a special master-slave messaging technique, which operates at half-duplex. In this mode, when a frame begins, an 8-bit control message is transmitted to the off-chip slave. During this transmit, no incoming data is received by the SSI. After the message has been sent, the off-chip slave decodes it and, after waiting one serial clock after the last bit of the 8-bit control message has been sent, responds with the requested data. The returned data can be 4 to 16 bits in length, making the total frame length anywhere from 13 to 25 bits.

12.3.4.1 Texas Instruments Synchronous Serial Frame Format

Figure 12-2 on page 410 shows the Texas Instruments synchronous serial frame format for a single transmitted frame.

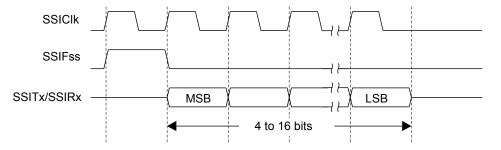
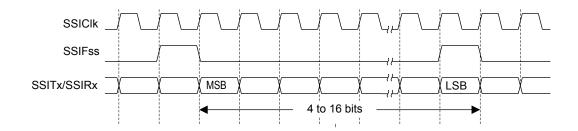



Figure 12-2. TI Synchronous Serial Frame Format (Single Transfer)

In this mode, SSIClk and SSIFSS are forced Low, and the transmit data line SSITx is tristated whenever the SSI is idle. Once the bottom entry of the transmit FIFO contains data, SSIFSS is pulsed High for one SSIClk period. The value to be transmitted is also transferred from the transmit FIFO to the serial shift register of the transmit logic. On the next rising edge of SSIClk, the MSB of the 4 to 16-bit data frame is shifted out on the SSITx pin. Likewise, the MSB of the received data is shifted onto the SSIRx pin by the off-chip serial slave device.

Both the SSI and the off-chip serial slave device then clock each data bit into their serial shifter on the falling edge of each SSIClk. The received data is transferred from the serial shifter to the receive FIFO on the first rising edge of SSIClk after the LSB has been latched.

Figure 12-3 on page 411 shows the Texas Instruments synchronous serial frame format when back-to-back frames are transmitted.

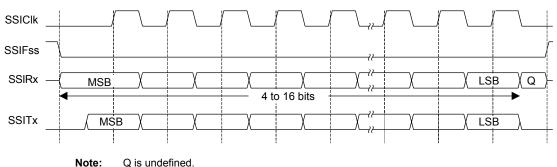
Figure 12-3. TI Synchronous Serial Frame Format (Continuous Transfer)

12.3.4.2 Freescale SPI Frame Format

The Freescale SPI interface is a four-wire interface where the SSIFSS signal behaves as a slave select. The main feature of the Freescale SPI format is that the inactive state and phase of the SSIClk signal are programmable through the SPO and SPH bits within the **SSISCR0** control register.

SPO Clock Polarity Bit

When the SPO clock polarity control bit is Low, it produces a steady state Low value on the SSICIk pin. If the SPO bit is High, a steady state High value is placed on the SSICIk pin when data is not being transferred.


SPH Phase Control Bit

The SPH phase control bit selects the clock edge that captures data and allows it to change state. It has the most impact on the first bit transmitted by either allowing or not allowing a clock transition before the first data capture edge. When the SPH phase control bit is Low, data is captured on the first clock edge transition. If the SPH bit is High, data is captured on the second clock edge transition.

12.3.4.3 Freescale SPI Frame Format with SPO=0 and SPH=0

Single and continuous transmission signal sequences for Freescale SPI format with SPO=0 and SPH=0 are shown in Figure 12-4 on page 411 and Figure 12-5 on page 412.

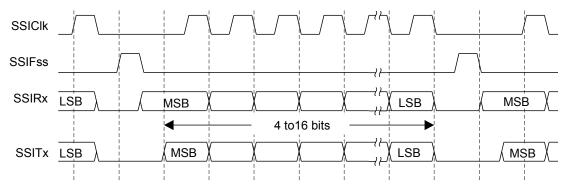


Figure 12-5. Freescale SPI Format (Continuous Transfer) with SPO=0 and SPH=0

In this configuration, during idle periods:

- SSIClk is forced Low
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSIClk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFSS master signal being driven Low. This causes slave data to be enabled onto the SSIRx input line of the master. The master SSITx output pad is enabled.

One half SSIClk period later, valid master data is transferred to the SSITx pin. Now that both the master and slave data have been set, the SSIClk master clock pin goes High after one further half SSIClk period.

The data is now captured on the rising and propagated on the falling edges of the SSIClk signal.

In the case of a single word transmission, after all bits of the data word have been transferred, the SSIFss line is returned to its idle High state one SSIClk period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSIFss signal must be pulsed High between each data word transfer. This is because the slave select pin freezes the data in its serial peripheral register and does not allow it to be altered if the SPH bit is logic zero. Therefore, the master device must raise the SSIFss pin of the slave device between each data transfer to enable the serial peripheral data write. On completion of the continuous transfer, the SSIFss pin is returned to its idle state one SSICIk period after the last bit has been captured.

12.3.4.4 Freescale SPI Frame Format with SPO=0 and SPH=1

The transfer signal sequence for Freescale SPI format with SPO=0 and SPH=1 is shown in Figure 12-6 on page 413, which covers both single and continuous transfers.

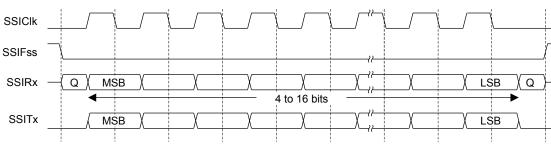


Figure 12-6. Freescale SPI Frame Format with SPO=0 and SPH=1

Note: Q is undefined.

In this configuration, during idle periods:

- SSIClk is forced Low
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSIClk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low. The master SSITx output is enabled. After a further one half SSIClk period, both master and slave valid data is enabled onto their respective transmission lines. At the same time, the SSIClk is enabled with a rising edge transition.

Data is then captured on the falling edges and propagated on the rising edges of the SSIClk signal.

In the case of a single word transfer, after all bits have been transferred, the SSIFSS line is returned to its idle High state one SSIClk period after the last bit has been captured.

For continuous back-to-back transfers, the SSIFSS pin is held Low between successive data words and termination is the same as that of the single word transfer.

12.3.4.5 Freescale SPI Frame Format with SPO=1 and SPH=0

Single and continuous transmission signal sequences for Freescale SPI format with SPO=1 and SPH=0 are shown in Figure 12-7 on page 413 and Figure 12-8 on page 414.

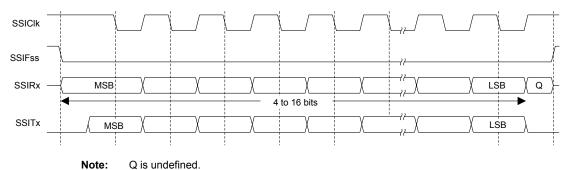


Figure 12-7. Freescale SPI Frame Format (Single Transfer) with SPO=1 and SPH=0

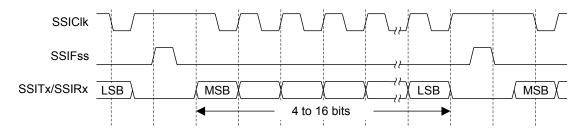


Figure 12-8. Freescale SPI Frame Format (Continuous Transfer) with SPO=1 and SPH=0

In this configuration, during idle periods:

- SSIClk is forced High
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSIClk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low, which causes slave data to be immediately transferred onto the SSIRx line of the master. The master SSITx output pad is enabled.

One half period later, valid master data is transferred to the SSITx line. Now that both the master and slave data have been set, the SSIC1k master clock pin becomes Low after one further half SSIC1k period. This means that data is captured on the falling edges and propagated on the rising edges of the SSIC1k signal.

In the case of a single word transmission, after all bits of the data word are transferred, the SSIFSS line is returned to its idle High state one SSIClk period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSIFss signal must be pulsed High between each data word transfer. This is because the slave select pin freezes the data in its serial peripheral register and does not allow it to be altered if the SPH bit is logic zero. Therefore, the master device must raise the SSIFss pin of the slave device between each data transfer to enable the serial peripheral data write. On completion of the continuous transfer, the SSIFss pin is returned to its idle state one SSICIk period after the last bit has been captured.

12.3.4.6 Freescale SPI Frame Format with SPO=1 and SPH=1

The transfer signal sequence for Freescale SPI format with SPO=1 and SPH=1 is shown in Figure 12-9 on page 415, which covers both single and continuous transfers.

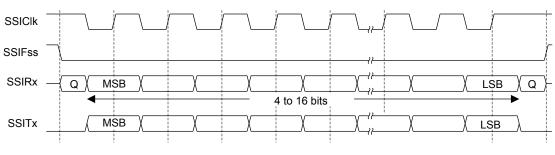


Figure 12-9. Freescale SPI Frame Format with SPO=1 and SPH=1

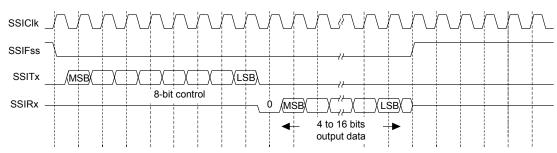
Note: Q is undefined.

In this configuration, during idle periods:

- SSIClk is forced High
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSIClk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low. The master SSITx output pad is enabled. After a further one-half SSIClk period, both master and slave data are enabled onto their respective transmission lines. At the same time, SSIClk is enabled with a falling edge transition. Data is then captured on the rising edges and propagated on the falling edges of the SSIClk signal.

After all bits have been transferred, in the case of a single word transmission, the SSIFSS line is returned to its idle high state one SSIClk period after the last bit has been captured.


For continuous back-to-back transmissions, the SSIFSS pin remains in its active Low state, until the final bit of the last word has been captured, and then returns to its idle state as described above.

For continuous back-to-back transfers, the SSIFSS pin is held Low between successive data words and termination is the same as that of the single word transfer.

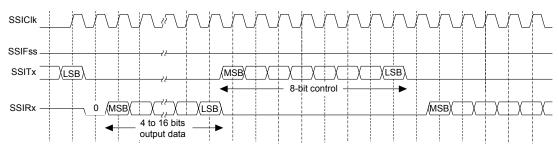
12.3.4.7 MICROWIRE Frame Format

Figure 12-10 on page 415 shows the MICROWIRE frame format, again for a single frame. Figure 12-11 on page 416 shows the same format when back-to-back frames are transmitted.

Figure 12-10. MICROWIRE Frame Format (Single Frame)

MICROWIRE format is very similar to SPI format, except that transmission is half-duplex instead of full-duplex, using a master-slave message passing technique. Each serial transmission begins with an 8-bit control word that is transmitted from the SSI to the off-chip slave device. During this transmission, no incoming data is received by the SSI. After the message has been sent, the off-chip slave decodes it and, after waiting one serial clock after the last bit of the 8-bit control message has been sent, responds with the required data. The returned data is 4 to 16 bits in length, making the total frame length anywhere from 13 to 25 bits.

In this configuration, during idle periods:


- SSIClk is forced Low
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low

A transmission is triggered by writing a control byte to the transmit FIFO. The falling edge of SSIFSS causes the value contained in the bottom entry of the transmit FIFO to be transferred to the serial shift register of the transmit logic, and the MSB of the 8-bit control frame to be shifted out onto the SSITx pin. SSIFSS remains Low for the duration of the frame transmission. The SSIRx pin remains tristated during this transmission.

The off-chip serial slave device latches each control bit into its serial shifter on the rising edge of each SSIClk. After the last bit is latched by the slave device, the control byte is decoded during a one clock wait-state, and the slave responds by transmitting data back to the SSI. Each bit is driven onto the SSIRx line on the falling edge of SSIClk. The SSI in turn latches each bit on the rising edge of SSIClk. At the end of the frame, for single transfers, the SSIFss signal is pulled High one clock period after the last bit has been latched in the receive serial shifter, which causes the data to be transferred to the receive FIFO.

Note: The off-chip slave device can tristate the receive line either on the falling edge of SSIClk after the LSB has been latched by the receive shifter, or when the SSIFss pin goes High.

For continuous transfers, data transmission begins and ends in the same manner as a single transfer. However, the SSIFSS line is continuously asserted (held Low) and transmission of data occurs back-to-back. The control byte of the next frame follows directly after the LSB of the received data from the current frame. Each of the received values is transferred from the receive shifter on the falling edge of SSIClk, after the LSB of the frame has been latched into the SSI.

Figure 12-11. MICROWIRE Frame Format (Continuous Transfer)

In the MICROWIRE mode, the SSI slave samples the first bit of receive data on the rising edge of SSIClk after SSIFss has gone Low. Masters that drive a free-running SSIClk must ensure that the SSIFss signal has sufficient setup and hold margins with respect to the rising edge of SSIClk.

Figure 12-12 on page 417 illustrates these setup and hold time requirements. With respect to the SSIClk rising edge on which the first bit of receive data is to be sampled by the SSI slave, SSIFss must have a setup of at least two times the period of SSIClk on which the SSI operates. With respect to the SSIClk rising edge previous to this edge, SSIFss must have a hold of at least one SSIClk period.

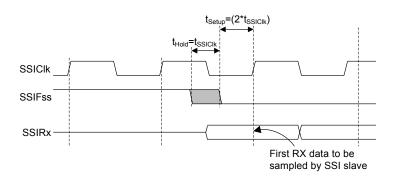


Figure 12-12. MICROWIRE Frame Format, SSIFss Input Setup and Hold Requirements

12.4 Initialization and Configuration

To use the SSI, its peripheral clock must be enabled by setting the SSI bit in the **RCGC1** register. For each of the frame formats, the SSI is configured using the following steps:

- 1. Ensure that the SSE bit in the SSICR1 register is disabled before making any configuration changes.
- 2. Select whether the SSI is a master or slave:
 - a. For master operations, set the **SSICR1** register to 0x0000.0000.
 - **b.** For slave mode (output enabled), set the **SSICR1** register to 0x0000.0004.
 - c. For slave mode (output disabled), set the SSICR1 register to 0x0000.000C.
- 3. Configure the clock prescale divisor by writing the SSICPSR register.
- 4. Write the **SSICR0** register with the following configuration:
 - Serial clock rate (SCR)
 - Desired clock phase/polarity, if using Freescale SPI mode (SPH and SPO)
 - The protocol mode: Freescale SPI, TI SSF, MICROWIRE (FRF)
 - The data size (DSS)
- 5. Enable the SSI by setting the SSE bit in the SSICR1 register.

As an example, assume the SSI must be configured to operate with the following parameters:

Master operation

- Freescale SPI mode (SPO=1, SPH=1)
- 1 Mbps bit rate
- 8 data bits

Assuming the system clock is 20 MHz, the bit rate calculation would be:

```
FSSIClk = FSysClk / (CPSDVSR * (1 + SCR))1x10^{6} = 20x10^{6} / (CPSDVSR * (1 + SCR))
```

In this case, if CPSDVSR=2, SCR must be 9.

The configuration sequence would be as follows:

- 1. Ensure that the SSE bit in the **SSICR1** register is disabled.
- 2. Write the SSICR1 register with a value of 0x0000.0000.
- 3. Write the **SSICPSR** register with a value of 0x0000.0002.
- 4. Write the **SSICR0** register with a value of 0x0000.09C7.
- 5. The SSI is then enabled by setting the SSE bit in the SSICR1 register to 1.

12.5 Register Map

Table 12-2 on page 418 lists the SSI registers. The offset listed is a hexadecimal increment to the register's address, relative to that SSI module's base address:

SSI0: 0x4000.8000

Note that the SSI module clock must be enabled before the registers can be programmed (see page 197). There must be a delay of 3 system clocks after the SSI module clock is enabled before any SSI module registers are accessed.

Note: The SSI must be disabled (see the SSE bit in the **SSICR1** register) before any of the control registers are reprogrammed.

Table 12-2. SSI Register Map

Offset	Name	Туре	Reset	Description	See page
0x000	SSICR0	R/W	0x0000.0000	SSI Control 0	420
0x004	SSICR1	R/W	0x0000.0000	SSI Control 1	422
0x008	SSIDR	R/W	0x0000.0000	SSI Data	424
0x00C	SSISR	RO	0x0000.0003	SSI Status	425
0x010	SSICPSR	R/W	0x0000.0000	SSI Clock Prescale	427
0x014	SSIIM	R/W	0x0000.0000	SSI Interrupt Mask	428
0x018	SSIRIS	RO	0x0000.0008	SSI Raw Interrupt Status	430
0x01C	SSIMIS	RO	0x0000.0000	SSI Masked Interrupt Status	431

Offset	Name	Туре	Reset	Description	See page
0x020	SSIICR	W1C	0x0000.0000	SSI Interrupt Clear	432
0xFD0	SSIPeriphID4	RO	0x0000.0000	SSI Peripheral Identification 4	433
0xFD4	SSIPeriphID5	RO	0x0000.0000	SSI Peripheral Identification 5	434
0xFD8	SSIPeriphID6	RO	0x0000.0000	SSI Peripheral Identification 6	435
0xFDC	SSIPeriphID7	RO	0x0000.0000	SSI Peripheral Identification 7	436
0xFE0	SSIPeriphID0	RO	0x0000.0022	SSI Peripheral Identification 0	437
0xFE4	SSIPeriphID1	RO	0x0000.0000	SSI Peripheral Identification 1	438
0xFE8	SSIPeriphID2	RO	0x0000.0018	SSI Peripheral Identification 2	439
0xFEC	SSIPeriphID3	RO	0x0000.0001	SSI Peripheral Identification 3	440
0xFF0	SSIPCelIID0	RO	0x0000.000D	SSI PrimeCell Identification 0	441
0xFF4	SSIPCelIID1	RO	0x0000.00F0	SSI PrimeCell Identification 1	442
0xFF8	SSIPCelIID2	RO	0x0000.0005	SSI PrimeCell Identification 2	443
0xFFC	SSIPCelIID3	RO	0x0000.00B1	SSI PrimeCell Identification 3	444

 Table 12-2. SSI Register Map (continued)

12.6 Register Descriptions

The remainder of this section lists and describes the SSI registers, in numerical order by address offset.

Register 1: SSI Control 0 (SSICR0), offset 0x000

SSICR0 is control register 0 and contains bit fields that control various functions within the SSI module. Functionality such as protocol mode, clock rate, and data size are configured in this register.

Offset	t 0x000	4000.800 et 0x0000																
г	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
			-			-			rved	-	-		- I	-	-	-		
ype eset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
ſ		ı –	I	SC	CR	1	1 1		SPH	SPO	F	I RF		D	I SS	1		
rpe set	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0		
В	it/Field		Nam	ne	Ту	pe	Reset	Des	cription									
:	31:16		reser	ved	R	0	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.										
	15:8		SC	२	R/	W	0x0000	The	value S	lock Rate CR is use bit rate	ed to ger	nerate the	e transm	iit and re	ceive bit	rate o		
								whe	re CPSD	vsr i s a	n even v		n 2-254		med in tl	he		
	7		0.00				0			-		s a value	e from 0-	255.				
	7		SPI	7	R/	vv	0			lock Pha		he Free	scale SP	I Format	ł			
								This bit is only applicable to the Freescale SPI Format The SPH control bit selects the clock edge that captures it to change state. It has the most impact on the first bi either allowing or not allowing a clock transition before capture edge.						s data an it transm	itted I			
												•			c edge tra transitio			
	6		SPO	С	R/	W	0	SSI	Serial C	lock Pola	arity							
								This	bit is or	ly applic	able to t	he Frees	scale SP	I Format	t.			
								When the SPO bit is 0, it produces a steady sta SSIClk pin. If SPO is 1, a steady state High va SSIClk pin when data is not being transferred						alue is p				
	5:4		FR	F	R/	W	0x0											
								The FRF values are defined as follows:										
								Value Frame Format 0x0 Freescale SPI Frame Format										
													с <i>і</i>	. –	- .			
								0x				nchrono	us Seria	I Frame	⊦ormat			
								0x	2 MICF	ROWIRE	Frame	Format						

Bit/Field	Name	Туре	Reset	Description
3:0	DSS	R/W	0x00	SSI Data Size Select The DSS values are defined as follows:
				Value Data Size
				0x0-0x2 Reserved
				0x3 4-bit data
				0x4 5-bit data
				0x5 6-bit data
				0x6 7-bit data
				0x7 8-bit data
				0x8 9-bit data
				0x9 10-bit data
				0xA 11-bit data
				0xB 12-bit data
				0xC 13-bit data
				0xD 14-bit data
				0xE 15-bit data
				0xF 16-bit data

Register 2: SSI Control 1 (SSICR1), offset 0x004

SSICR1 is control register 1 and contains bit fields that control various functions within the SSI module. Master and slave mode functionality is controlled by this register.

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
			1	1		1	1 1	rese	rved		1	1		1	1	1			
ype eset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
001	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
	10		1	1	1	r	i i erved				1	i	SOD	MS	SSE	LBM			
/pe	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W			
set	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription										
	31:4		reser	ved	R	0	0x00	com	patibility	with fut	ure prod	ucts, the		a reserv	t. To prov ved bit sł				
	3		SO	D	R/	W	0	SSI Slave Mode Output Disable											
								systems, it is possible for the SSI master to broadcast a slaves in the system while ensuring that only one slave of the serial output line. In such systems, the TXD lines from could be tied together. To operate in such a system, the configured so that the SSI slave does not drive the SSI The SOD values are defined as follows:								ata or e slav t can			
									-						, i i i i pini				
								The	-	ues are					,				
								The	SOD val	ues are	defined a	as follow							
								The Valu	SOD val ue Desc SSI c	ues are ription an drive	defined a	as follow output ir	s:	Dutput m	iode.				
	2		MS	8	R/	w	0	The Valu 0 1	SOD val ue Desc SSI c	ues are ription can drive nust not	defined a SSITx drive the	as follow output ir	s: ı Slave C	Dutput m	iode.				
	2		MS	3	R	W	0	The Valu 0 1 SSI This	SOD val ue Desc SSI c SSI r Master/S	ues are ription can drive nust not Slave Se cts Mast	defined a SSITx drive the elect er or Sla	as follow output ir e SSITx	s: i Slave C output ii	Dutput m n Slave i	iode.				
	2		MS	3	R/	W	0	The Valu 0 1 SSI This SSI	SOD val ue Desc SSI c SSI r Master/S	ues are ription can drive nust not Slave Se cts Mast ed (SSE	defined a ssitx drive the elect er or Sla =0).	as follow output ir e SSITx ve mode	s: I Slave C output in e and car	Dutput m n Slave i	node. mode.				
	2		MS	3	R	w	0	The Valu 0 1 SSI SSI The	SOD val ue Desc SSI o SSI o SSI n Master/S bit selectis disabl	ues are o ription can drive nust not Slave Se cts Mast ed (SSE es are do	defined a ssitx drive the elect er or Sla =0).	as follow output ir e SSITx ve mode	s: I Slave C output in e and car	Dutput m n Slave i	node. mode.				
	2		MS	5	R/	W	0	The Valu 0 1 SSI SSI The	SOD val ue Desc SSI o SSI r Master/S bit sele is disabl MS value	ues are o ription can drive nust not Slave Se cts Mast ed (SSE es are do ription	defined a ssitx drive the elect er or Sla =0).	as follow output ir e SSITx ve mode	s: output ir e and car	Dutput m n Slave i	node. mode.				

Bit/Field	Name	Туре	Reset	Description
1	SSE	R/W	0	SSI Synchronous Serial Port Enable Setting this bit enables SSI operation. The SSE values are defined as follows: Value Description 0 SSI operation disabled.
0	LBM	R/W	0	 SSI operation enabled. Note: This bit must be set to 0 before any control registers are reprogrammed. SSI Loopback Mode Setting this bit enables Loopback Test mode.
				The LBM values are defined as follows: Value Description

- 0 Normal serial port operation enabled.
- 1 Output of the transmit serial shift register is connected internally to the input of the receive serial shift register.

Register 3: SSI Data (SSIDR), offset 0x008

Important: This register is read-sensitive. See the register description for details.

SSIDR is the data register and is 16-bits wide. When **SSIDR** is read, the entry in the receive FIFO (pointed to by the current FIFO read pointer) is accessed. As data values are removed by the SSI receive logic from the incoming data frame, they are placed into the entry in the receive FIFO (pointed to by the current FIFO write pointer).

When **SSIDR** is written to, the entry in the transmit FIFO (pointed to by the write pointer) is written to. Data values are removed from the transmit FIFO one value at a time by the transmit logic. It is loaded into the transmit serial shifter, then serially shifted out onto the SSITx pin at the programmed bit rate.

When a data size of less than 16 bits is selected, the user must right-justify data written to the transmit FIFO. The transmit logic ignores the unused bits. Received data less than 16 bits is automatically right-justified in the receive buffer.

When the SSI is programmed for MICROWIRE frame format, the default size for transmit data is eight bits (the most significant byte is ignored). The receive data size is controlled by the programmer. The transmit FIFO and the receive FIFO are not cleared even when the SSE bit in the **SSICR1** register is set to zero. This allows the software to fill the transmit FIFO before enabling the SSI.

SSI Data (SSIDR) SSI0 base: 0x4000.8000 Offset 0x008

Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	1	1	1 1	rese	rved	ſ	I	1		1	ſ	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	I	I	1		1 1	DA	ATA		I	1	l			1
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:16		reser	ved	R	0	0x0000	com	patibility	with fut	ure prod		value of	erved bit a reserv on.	•	
	15:0		DAT	A	R/	W	0x0000	SSI	Receive	/Transm	it Data					
									ad opera		ds the re	eceive FI	FO. A w	rite opera	ation wri	tes the

Software must right-justify data when the SSI is programmed for a data size that is less than 16 bits. Unused bits at the top are ignored by the transmit logic. The receive logic automatically right-justifies the data.

Register 4: SSI Status (SSISR), offset 0x00C

SSISR is a status register that contains bits that indicate the FIFO fill status and the SSI busy status.

SSI0 Offse	base: 0x et 0x00C	(SSISF 4000.800	0														
Туре	RO, rese	et 0x0000. 30	.0003 29	28	27	26	25	24	23	22	21	20	19	18	17	16	
[1	1	1			1 1		T erved	1	1	1	1	1	1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
ſ		1	1	1		reserved	і і		ı	1	1	BSY	RFF	RNE	TNF	TFE	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	R0 1	
B	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription								
	31:5		reser	ved	R	RO 0x00		com	npatibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv			
	4		BS'	Y	R	RO 0		SSI Busy Bit The BSY values are defined as follows:									
								Val C 1	SSI i	s idle.		mitting a empty.	nd/or rec	eiving a	frame, c	or the	
	3		RF	F	R	0	0	The	ue Desc) Rece	ues are o	defined a	as follow [:] ull.	s:				
	2		RN	E	R	0	0	The	ue Desc) Rece	ues are o	defined D is emp	as follow ty.	s:				
	1		TN	F	R	0	1	The	ue Desc) Tran	ues are o	defined : O is full.		s:				

Bit/Field	Name	Туре	Reset	Description
0	TFE	R0	1	SSI Transmit FIFO Empty The TFE values are defined as follows:
				Value Description
				0 Transmit FIFO is not empty.

1 Transmit FIFO is empty.

Register 5: SSI Clock Prescale (SSICPSR), offset 0x010

SSICPSR is the clock prescale register and specifies the division factor by which the system clock must be internally divided before further use.

The value programmed into this register must be an even number between 2 and 254. The least-significant bit of the programmed number is hard-coded to zero. If an odd number is written to this register, data read back from this register has the least-significant bit as zero.

Offse	t 0x010	4000.800 et 0x0000														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[r	1		r r		r r	rese	rved	1		ï		ſ	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	rved		1 1			1		CPSI	DVSR	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Тур	e	Reset	Des	cription							
	31:8		reserv	ved	R	D	0x00	com	patibility	ould not with futu cross a r	ire prodi	ucts, the	value of	a reserv	•	
	7:0		CPSD	VSR	R۸	N	0x00	SSI	Clock P	rescale [Divisor					
										n ust be a fssiclk						on the

SSI Clock Prescale (SSICPSR)

Register 6: SSI Interrupt Mask (SSIIM), offset 0x014

The **SSIIM** register is the interrupt mask set or clear register. It is a read/write register and all bits are cleared to 0 on reset.

On a read, this register gives the current value of the mask on the relevant interrupt. A write of 1 to the particular bit sets the mask, enabling the interrupt to be read. A write of 0 clears the corresponding mask.

base: 0x4 et 0x014	4000.800	00)												
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1 1					rese	rved		1	1		1	1	'
RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
0	0	0	0	0				0	0	0				0	0
15	14	13	12	11	10	9	8	7	6	5	4	1	r	1	0
_								I							RORIM
RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
31:4		reserv	ved	R	0	0x00	com	patibility	with fut	ure produ	ucts, the	value of	a reserv		
3		TXI	N	R/	W	0				•		WS:			
							0	TX F	IFO half						
2		RXI	М	R/	W	0	SSI	Receive	FIFO In	terrupt N	lask				
-		1011				C C				•		ws:			
							Val	ue Desc	ription						
							0	RX F	IFO half	-full or m	nore con	dition int	errupt is	masked	l.
							1	RX F	IFO half	-full or m	nore con	dition int	errupt is	not mas	sked.
1		RTI	М	R/	W	0	SSI	Receive	Time-O	ut Interru	upt Mask	í.			
							Val	ue Desc	ription						
							0	RX F	IFO time	e-out inte	errupt is	masked.			
							1	RX F	IFO time	e-out inte	errupt is	not masl	ked.		
	base: 0x4 t 0x014 R/W, resu 31 RO 0 15 RO 0 31:4 3 3 2	base: 0x4000.800 t 0x014 R/W, reset 0x000 31 30 RO RO 0 0 15 14 RO RO 0 0 Bit/Field 31:4 3	base: 0x4000.8000 t 0x014 R/W, reset 0x0000.0000 31 30 29 RO RO RO 0 0 0 15 14 13 RO RO RO 0 0 0 31:4 reserved 3 TXII 2 RXII	at 0x014 RW, reset 0x0000.0000 31 30 29 28 RO RO RO RO 15 14 13 12 RO RO RO RO 0 0 0 0 15 14 13 12 RO RO RO RO 0 0 0 0 31:4 reserved 3 TXIM 2 RXIM	base: 0x4000.8000 t 0x014 R/W, reset 0x0000.0000 31 30 29 28 27 RO RO RO RO RO RO 0 0 0 0 0 15 14 13 12 11 RO RO RO RO RO 0 0 0 0 0 8it/Field Name Ty 31:4 reserved R 3 TXIM R/	base: 0x4000.8000 t 0x014 R/W, reset 0x0000.0000 31 30 29 28 27 26 RO RO RO RO RO RO RO 0 0 0 0 0 0 0 15 14 13 12 11 10 Freshold RO RO RO RO RO 0 0 0 0 0 0 0 8it/Field Name Type 31:4 reserved RO 3 TXIM R/W	base: 0x4000.8000 t 0x014 RWV, reset 0x0000.0000 31 30 29 28 27 26 25 RO RO RO RO RO RO RO O 15 14 13 12 11 10 9 RO RO RO RO RO RO RO O 15 14 13 12 11 10 9 RO RO RO RO RO RO O 15 14 13 12 11 0 9 RO RO RO RO RO RO O 15 14 13 12 11 0 9 RESERVED 15 14 13 12 11 0 9 RO RO RO RO RO O 15 14 13 12 11 0 9 RESERVED 15 14 13 12 11 0 9 RO RO RO RO RO O 15 14 13 12 11 0 9 RESERVED 15 14 13 12 11 0 9 RO RO RO RO RO RO O 15 14 13 12 11 0 9 RO RO RO RO RO O 15 14 13 12 11 0 9 RO RO RO RO RO O 15 14 13 12 11 0 9 RESERVED 16 RO RO RO RO O 17 RO RO RO RO RO O 18 RO RO RO RO RO RO O 18 RO RO RO RO RO RO O 19 RO RO RO RO RO RO RO RO 19 RO RO RO RO RO RO RO RO 19 RO RO RO RO RO RO RO RO 10 RO RO RO RO RO RO 10 RO RO RO RO RO RO 15 RO RO RO RO RO RO 16 RO RO RO RO RO RO 16 RO RO RO RO RO RO 17 RO RO RO RO RO RO 18 RO RO RO RO 18 RO RO RO RO 18 RO RO RO RO 18 RO RO RO 18 RO RO RO 18 RO RO RO 18 RO RO 18 RO RO 18 RO RO 18 RO	base: 0x4000.8000 t 0x014 RW, reset 0x0000.0000 31 30 29 28 27 26 25 24 reset RO RO RO RO RO RO RO RO RO RO 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 reserved RO RO RO RO RO RO RO RO RO RO 0 0 0 0 0 0 0 0 0 8it/Field Name Type Reset Des 31:4 reserved RO 0x00 Soft com pres 3 TXIM R/W 0 SSI The Value 1 RTIM R/W 0 SSI 1 RTIM R/W	base: 0x4000.8000 t 0x014 RW, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 reserved RO RO RO RO RO RO RO RO RO RO 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 reserved RO RO RO RO RO RO RO RO RO RO RO 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit/Field Name Type Reset Description 31:4 reserved RO 0x00 Software sho compatibility preserved at 3 TXIM R/W 0 SSI Transmi The TXIM va Value Desc 0 TX F 1 RTIM R/W 0 SSI Receive The RXIM va Value Desc 0 RX F 1 RTIM R/W 0 SSI Receive The RXIM va Value Desc 0 RX F 1 RTIM R/W 0 SSI Receive The RXIM va Value Desc 0 RX F 1 RTIM R/W 0 SSI Receive The RXIM va Value Desc 0 RX F 1 RTIM R/W 0 SSI Receive The RXIM va Value Desc 0 RX F 1 RTIM R/W 0 SSI Receive The RXIM va Value Desc 0 RX F	base: 0x4000.8000 t 0x014 RW, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 reserved RO RO RO RO RO RO RO RO RO RO RO 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 RO RO RO RO RO RO RO RO RO RO RO 0 0 0 0 0 0 0 0 0 0 0 0 0 8it/Field Name Type Reset Description 31:4 reserved RO 0x00 Software should not compatibility with fut preserved across a r 3 TXIM R/W 0 SSI Transmit FIFO In The TXIM values are Value Description 2 RXIM R/W 0 SSI Receive FIFO In The RXIM values are Value Description 0 RX FIFO half 1 RTIM R/W 0 SSI Receive FIFO In The RXIM values are Value Description 0 RX FIFO half 1 RTIM R/W 0 SSI Receive Time-O The RTIM values are Value Description 0 RX FIFO half 1 RTIM R/W 0 SSI Receive Time-O The RTIM values are Value Description 0 RX FIFO half	base: 0x4000.8000 0x000 31 30 29 28 27 26 25 24 23 22 21 RO RO	Dase: Correction Correction </td <td>base: tox000.8000 tox014 TW, reserved 0000.0000 1 30 29 28 27 28 25 24 23 22 21 20 19 reserved RO RO R</td> <td>Base: 0x4000.8000 two1id RW, reset 0x0000.0000 29 28 27 26 25 24 23 22 21 20 19 18 RO RO</td> <td>14 30 29 28 27 26 25 24 23 22 21 20 19 18 17 14 13 12 11 10 9 8 7 6 5 4 3 2 1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 16 16 16 17 12 11 10 9 8 7 6 5 4 3 2 1 16 16 17 16 16 17 12 11 17 17 17 17 17 16 17 16 17 17 16</td>	base: tox000.8000 tox014 TW, reserved 0000.0000 1 30 29 28 27 28 25 24 23 22 21 20 19 reserved RO RO R	Base: 0x4000.8000 two1id RW, reset 0x0000.0000 29 28 27 26 25 24 23 22 21 20 19 18 RO RO	14 30 29 28 27 26 25 24 23 22 21 20 19 18 17 14 13 12 11 10 9 8 7 6 5 4 3 2 1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 16 16 16 17 12 11 10 9 8 7 6 5 4 3 2 1 16 16 17 16 16 17 12 11 17 17 17 17 17 16 17 16 17 17 16

0 RX FIFO overrun interrupt is masked. RX FIFO overrun interrupt is not masked.

Bit/Field	Name	Туре	Reset	Description
0	RORIM	R/W	0	SSI Receive Overrun Interrupt Mask The RORIM values are defined as follows:
				Value Description

1

SSI Raw Interrupt Status (SSIRIS)

Register 7: SSI Raw Interrupt Status (SSIRIS), offset 0x018

The **SSIRIS** register is the raw interrupt status register. On a read, this register gives the current raw status value of the corresponding interrupt prior to masking. A write has no effect.

Offse	SSI0 base: 0x4000.8000 Offset 0x018 Type RO, reset 0x0000.0008																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
[r	1	1 I	1	1		
Туре	RO 0	RO	RO	RO	RO	RO	RO	RO 0	RO	RO	RO	RO	RO 0	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		1	I	I	, ,	reserved					I	1	TXRIS	RXRIS	RTRIS	RORRIS	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	
Bit/Field 31:4		Name reserved		Tyj R(Reset 0x00	Soft com	Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.									
3			TXRIS		RO		1		SSI Transmit FIFO Raw Interrupt Status Indicates that the transmit FIFO is half empty or less, when set.								
2			RXRIS		RO		0		SSI Receive FIFO Raw Interrupt Status Indicates that the receive FIFO is half full or more, when set.								
	1		RTRIS		RO		0		SSI Receive Time-Out Raw Interrupt Status Indicates that the receive time-out has occurred, when set.								
0			RORRIS		RO		0		SSI Receive Overrun Raw Interrupt Status Indicates that the receive FIFO has overflowed, when set.								

July 14, 2014

Register 8: SSI Masked Interrupt Status (SSIMIS), offset 0x01C

The SSIMIS register is the masked interrupt status register. On a read, this register gives the current masked status value of the corresponding interrupt. A write has no effect.

SSI Masked Interrupt Status (SSIMIS)

SSI0 base: 0x4000.8000 Offset 0x01C Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	1		r	rese	rved			r	1			1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	I	I	rese	rved	1	I I				TXMIS	RXMIS	RTMIS	RORMIS
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit/Field	Name	Туре	Reset	Description
31:4	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
3	TXMIS	RO	0	SSI Transmit FIFO Masked Interrupt Status Indicates that the transmit FIFO is half empty or less, when set.
2	RXMIS	RO	0	SSI Receive FIFO Masked Interrupt Status Indicates that the receive FIFO is half full or more, when set.
1	RTMIS	RO	0	SSI Receive Time-Out Masked Interrupt Status Indicates that the receive time-out has occurred, when set.
0	RORMIS	RO	0	SSI Receive Overrun Masked Interrupt Status Indicates that the receive FIFO has overflowed, when set.

Register 9: SSI Interrupt Clear (SSIICR), offset 0x020

The **SSIICR** register is the interrupt clear register. On a write of 1, the corresponding interrupt is cleared. A write of 0 has no effect.

SSI	Interrup	ot Clear	· (SSIIC	R)															
Offse	base: 0x4 t 0x020 W1C, res																		
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
	reserved																		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
			•	•		•	reser	ved			•	•		•	RTIC	RORIC			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	W1C 0	W1C 0			
Bit/Field			Name		Туре		Reset	Des	Description										
31:2			reserved		R	RO 0x00		Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.											
	1		RTIC		W1C		0	SSI	SSI Receive Time-Out Interrupt Clear										
								The	RTIC Va	alues are	e defined	as follow	WS:						
								Val	Value Description										
							0 No effect on interrupt.												
								1	Clea	rs interru	ıpt.								
0			RORIC		W1C		0	SSI	Receive	Receive Overrun Interrupt Clear									
v							0		The RORIC values are defined as follows:										
								Val	ue Desc	ription									
								0	No e	ffect on i	nterrupt.								
1 Cle										Clears interrupt.									

Register 10: SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0

The **SSIPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 4 (SSIPeriphID4)

SSI0 base: 0x4000.8000 Offset 0xFD0 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1		1		rese	rved	1	•			1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
110001	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-	r	1	r	erved	r				r	1	PI	D4	r	r	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:8		reser	ved	R	0	0x00	com	ware sho patibility served ac	with fut	ure produ	ucts, the	value of	a reserv	•	vide nould be
	7:0		PID	4	R	0	0x00		Peripher be used		•	-	ne prese	nce of th	is periph	ieral.

Register 11: SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 5 (SSIPeriphID5)

SSI0 base: 0x4000.8000 Offset 0xFD4 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1		1		rese	rved	1	•			1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		I	1	rese	erved	1	1			I	1	PI	D5	1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:8		reser	ved	R	0	0x00	com	patibility	with fut	rely on tl ure produ ead-mod	ucts, the	value of	a reserv	•	vide nould be
	7:0		PID	5	R	0	0x00		•		egister[18 ware to i	-	ie prese	nce of th	is periph	ieral.

Register 12: SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8

The **SSIPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 6 (SSIPeriphID6)

SSI0 base: 0x4000.8000 Offset 0xFD8 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		•	•					rese	rved			•		1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset															0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•	•	rese	rved						•	PI	D6	•	•	·
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reser	ved	R	0	0x00	com	patibility	with futu	ure prod	he value ucts, the dify-write	value of	a reserv	•	vide nould be
	7:0		PID	6	R	0	0x00		Periphe be used			3:16] dentify th	ne prese	nce of th	is peripł	neral.

Register 13: SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 7 (SSIPeriphID7)

SSI0 base: 0x4000.8000 Offset 0xFDC Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
I							<u> </u>				1			1	1	
								rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•		rese	erved						1	PI	D7	1	1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8 reserve				R	0	0x00	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv	•	vide nould be
	7:0		PID	7	R	0	0x00		Periphe be used		••••	1:24] dentify th	ne prese	nce of th	is peripł	ieral.

Register 14: SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0

The **SSIPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 0 (SSIPeriphID0)

SSI0 base: 0x4000.8000 Offset 0xFE0 Type RO, reset 0x0000.0022

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	•			1		rese	rved			•			1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Ì	1	rese	rved	1	1 1					I Pl	D0	1	i	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0	RO 1	RO 0
E	Bit/Field	Name Type Reset D					Des	cription								
	31:8		reserv	ved	R	0	0	com		with futu	ure produ	ucts, the	value of	erved bit a reserv on.	•	
	7:0 PID0 RO 0x22 SS								Peripher be used		•	-	ne prese	nce of th	is periph	ieral.

Register 15: SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 1 (SSIPeriphID1)

SSI0 base: 0x4000.8000 Offset 0xFE4 Type RO, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					1	I		rese	erved							1
Type	RO 0	RO	RO	RO 0	RO 0	RO	RO 0	RO	RO 0	RO 0	RO 0	RO	RO 0	RO 0	RO	RO
Reset	U	0	0	U	U	0	U	0	U	0	U	0	0	U	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I			rese	erved	1					1	PI	D1	•	1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
					-		. .	-	. ,.							
В	Bit/Field		Nam	ie	Ty	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv	•	
	7:0		PID	1	R	0	0x00		Peripher		• •	5:8] dentify th	ne prese	nce of th	is periph	ieral.

Register 16: SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8

The **SSIPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 2 (SSIPeriphID2)

SSI0 base: 0x4000.8000 Offset 0xFE8 Type RO, reset 0x0000.0018

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1			1	1 1	rese	rved	ſ	1	1			ſ	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ		r	1	rese	erved	1	1 1			[1	I Pl	D2			1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
В	it/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv	•	
	7:0		PID	2	R	0	0x18		Peripher be used			3:16] dentify th	ne prese	nce of th	is periph	neral.

Register 17: SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 3 (SSIPeriphID3)

SSI0 base: 0x4000.8000 Offset 0xFEC Type RO, reset 0x0000.0001

-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1					rese	rved			1				
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I	1		rese	rved						1	PI	D3		I	·
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	8it/Field		Nam		τ.	20	Reset	Dee	cription							
	ni/Fielu		Indii	le	Ту	þe	Resel	Des	cription							
	31:8		reserv	/ed	R	0	0x00	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv	•	
7:0 PID3 RO 0x01 SSI Peripl								•		• •	-		<i>c</i>			
								Can	be used	by soft	ware to i	dentify th	ne prese	nce of th	is periph	neral.

Register 18: SSI PrimeCell Identification 0 (SSIPCelIID0), offset 0xFF0

The SSIPCeIIIDn registers are hard-coded, and the fields within the register determine the reset value.

SSI PrimeCell Identification 0 (SSIPCelIID0)

SSI0 base: 0x4000.8000 Offset 0xFF0 Type RO, reset 0x0000.000D

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1 1				1	rese	rved				1			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reber	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[15	17	1		rved		1		, 			1	D0	1		
				1030	l							01	L			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv	•	
	7:0 CID0 RO 0x0D								PrimeCe vides sof			-	eriphera	l identific	cation sy	stem.

Register 19: SSI PrimeCell Identification 1 (SSIPCelIID1), offset 0xFF4

The SSIPCeIIIDn registers are hard-coded, and the fields within the register determine the reset value.

SSI PrimeCell Identification 1 (SSIPCelIID1)

SSI0 base: 0x4000.8000 Offset 0xFF4 Type RO, reset 0x0000.00F0

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1				1 1	rese	erved					1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Resei															U	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved					•	1	CI	D1		1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
E	Bit/Field							Des	cription							
	31:8		reserv	/ed	R	0	0x00	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv	•	
	7:0 CID1 RO 0xF0 SSI F										gister [1: standard	5:8] I cross-p	eriphera	I identific	cation sy	stem.

Register 20: SSI PrimeCell Identification 2 (SSIPCelIID2), offset 0xFF8

The SSIPCeIIIDn registers are hard-coded, and the fields within the register determine the reset value.

SSI PrimeCell Identification 2 (SSIPCelIID2)

SSI0 base: 0x4000.8000 Offset 0xFF8 Type RO, reset 0x0000.0005

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1 1				1	rese	rved					1		1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Resei															0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved							CI	D2	•		'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv	•	
	7:0		CID	2	R	0	0x05		PrimeCe vides sof			-	eriphera	l identifio	ation sy	stem.

Register 21: SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC

The SSIPCeIIIDn registers are hard-coded, and the fields within the register determine the reset value.

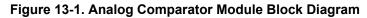
SSI PrimeCell Identification 3 (SSIPCelIID3)

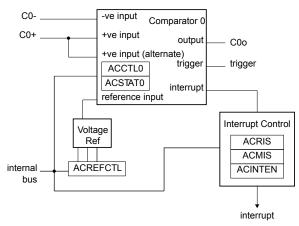
SSI0 base: 0x4000.8000 Offset 0xFFC Type RO, reset 0x0000.00B1

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			•					rese	rved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	r	rved		ر آر		, T	, <u> </u>		CI		1	· · ·	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	patibility	with futu	ure produ	ucts, the	value of	erved bit a reserv on.	•	
preserver 7:0 CID3 RO 0xB1 SSI Prim Provides												-	eriphera	l identific	cation sy	stem.

13 Analog Comparator

An analog comparator is a peripheral that compares two analog voltages, and provides a logical output that signals the comparison result.


Note: Not all comparators have the option to drive an output pin. See the Comparator Operating Mode tables in "Functional Description" on page 446 for more information.


The comparator can provide its output to a device pin, acting as a replacement for an analog comparator on the board, or it can be used to signal the application via interrupts or triggers to the ADC to cause it to start capturing a sample sequence. The interrupt generation and ADC triggering logic is separate. This means, for example, that an interrupt can be generated on a rising edge and the ADC triggered on a falling edge.

The Stellaris[®] Analog Comparators module has the following features:

- One integrated analog comparator
- Configurable for output to drive an output pin, generate an interrupt, or initiate an ADC sample sequence
- Compare external pin input to external pin input or to internal programmable voltage reference
- Compare a test voltage against any one of these voltages
 - An individual external reference voltage
 - A shared single external reference voltage
 - A shared internal reference voltage

13.1 Block Diagram

13.2 Signal Description

Table 13-1 on page 446 lists the external signals of the Analog Comparators and describes the function of each. The Analog Comparator output signal is an alternate functions for a GPIO signal and default to be a GPIO signal at reset. The column in the table below titled "Pin Assignment" lists

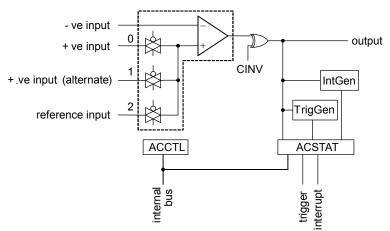
the possible GPIO pin placements for the Analog Comparator signals. The AFSEL bit in the **GPIO Alternate Function Select (GPIOAFSEL)** register (page 248) should be set to choose the Analog Comparator function. The positive and negative input signal are configured by clearing the DEN bit in the **GPIO Digital Enable (GPIODEN)** register. For more information on configuring GPIOs, see "General-Purpose Input/Outputs (GPIOs)" on page 229.

Table 13-1. Analog Comparators Signals (48QFP)

Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description
C0+	42	I	Analog	Analog comparator 0 positive input.
C0-	44	I	Analog	Analog comparator 0 negative input.
COo	43	0	TTL	Analog comparator 0 output.

a. The TTL designation indicates the pin has TTL-compatible voltage levels.

13.3 Functional Description


Important: It is recommended that the Digital-Input enable (the GPIODEN bit in the GPIO module) for the analog input pin be disabled to prevent excessive current draw from the I/O pads.

The comparator compares the VIN- and VIN+ inputs to produce an output, VOUT.

VIN- < VIN+, VOUT = 1 VIN- > VIN+, VOUT = 0

As shown in Figure 13-2 on page 446, the input source for VIN- is an external input. In addition to an external input, input sources for VIN+ can be the +ve input of comparator 0 or an internal reference.

Figure 13-2. Structure of Comparator Unit

A comparator is configured through two status/control registers (ACCTL and ACSTAT). The internal reference is configured through one control register (ACREFCTL). Interrupt status and control is configured through three registers (ACMIS, ACRIS, and ACINTEN). The operating modes of the comparators are shown in the Comparator Operating Mode tables.

Typically, the comparator output is used internally to generate controller interrupts. It may also be used to drive an external pin or generate an analog-to-digital converter (ADC) trigger.

Important: The ASRCP bits in the **ACCTLn** register must be set before using the analog comparators. The proper pad configuration for the comparator input and output pins are described in the Comparator Operating Mode tables.

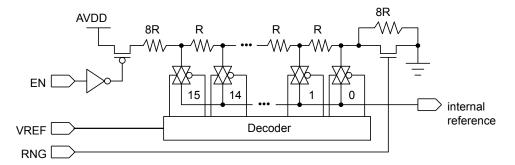

ACCTL0	Comparator 0	•													
ASRCP	VIN-	VIN+	Output	Interrupt	ADC Trigger										
00	C0-	C0+	C0o	yes	yes										
01	C0-	C0+	C0o	yes	yes										
10	C0-	Vref	C0o	yes	yes										
11	C0-	reserved	C0o	yes	yes										

Table 13-2. Comparator 0 Operating Modes

13.3.1 Internal Reference Programming

The structure of the internal reference is shown in Figure 13-3 on page 447. This is controlled by a single configuration register (**ACREFCTL**). Table 13-3 on page 447 shows the programming options to develop specific internal reference values, to compare an external voltage against a particular voltage generated internally.

Figure 13-3. Comparator Internal Reference Structure

Table 13-3. Internal Reference Voltage and ACREFCTL Field Values

ACREFCTL Regi		Output Reference Voltage Based on VREF Field Value					
EN Bit Value	RNG Bit Value	Julput Reference voltage based on VREF Field Value					
EN=0		0 V (GND) for any value of VREF; however, it is recommended that RNG=1 and VREF=0 for the least noisy ground reference.					

ACREFCTL Reg	ister	Output Reference Voltage Based on VREF Field Value							
EN Bit Value	RNG Bit Value	Output Reference voltage based on VREF Field value							
		Total resistance in ladder is 31 R. $V_{REF} = AV_{DD} \times \frac{RV_{REF}}{R_{T}}$ $V_{REF} = AV_{DD} \times \frac{(VREF + 8)}{31}$ $V_{REF} = 0.85 + 0.106 \times VREF$							
		The range of internal reference in this mode is 0.85-2.448 V.							
EN=1	RNG=1	Total resistance in ladder is 23 R. $V_{REF} = AV_{DD} \times \frac{R_{VREF}}{R_r}$ $V_{REF} = AV_{DD} \times \frac{VREF}{23}$ $V_{REF} = 0.143 \times VREF$ The range of internal reference for this mode is 0-2.152 V.							

Table 13-3. Internal Reference Voltage and ACREFCTL Field Values (continued)

13.4 Initialization and Configuration

The following example shows how to configure an analog comparator to read back its output value from an internal register.

- 1. Enable the analog comparator 0 clock by writing a value of 0x0010.0000 to the **RCGC1** register in the System Control module.
- 2. In the GPIO module, enable the GPIO port/pin associated with co- as a GPIO input.
- **3.** Configure the internal voltage reference to 1.65 V by writing the **ACREFCTL** register with the value 0x0000.030C.
- **4.** Configure comparator 0 to use the internal voltage reference and to *not* invert the output by writing the **ACCTL0** register with the value of 0x0000.040C.
- **5.** Delay for some time.
- 6. Read the comparator output value by reading the **ACSTAT0** register's OVAL value.

Change the level of the signal input on CO- to see the OVAL value change.

13.5 Register Map

Table 13-4 on page 449 lists the comparator registers. The offset listed is a hexadecimal increment to the register's address, relative to the Analog Comparator base address of 0x4003.C000.

Note that the analog comparator module clock must be enabled before the registers can be programmed (see page 197). There must be a delay of 3 system clocks after the ADC module clock is enabled before any ADC module registers are accessed.

Offset	Name	Туре	Reset	Description	See page
0x000	ACMIS	R/W1C	0x0000.0000	Analog Comparator Masked Interrupt Status	450
0x004	ACRIS	RO	0x0000.0000	Analog Comparator Raw Interrupt Status	451
0x008	ACINTEN	R/W	0x0000.0000	Analog Comparator Interrupt Enable	452
0x010	ACREFCTL	R/W	0x0000.0000	Analog Comparator Reference Voltage Control	453
0x020	ACSTAT0	RO	0x0000.0000	Analog Comparator Status 0	454
0x024	ACCTL0	R/W	0x0000.0000	Analog Comparator Control 0	455

Table 13-4. Analog Comparators Register Map

13.6 Register Descriptions

The remainder of this section lists and describes the Analog Comparator registers, in numerical order by address offset.

Register 1: Analog Comparator Masked Interrupt Status (ACMIS), offset 0x000

This register provides a summary of the interrupt status (masked) of the comparator.

Analog Comparator Masked Inf	terrupt Status (ACM	IS)
------------------------------	---------------------	-----

Base 0x4003.C000

Offset 0x000 Type R/W1C, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		1	1	1	1		1	reserved									
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		1	1	1	1		1 1	reserved	ı – – – – – – – – – – – – – – – – – – –			1	1	1	1	IN0	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W1C	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
E	Bit/Field Name Type Reset						Des	cription									
	31:1 reserved				R	0	0x00	com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should b preserved across a read-modify-write operation.								
	0 IN0			R/V	0	Con	Comparator 0 Masked Interrupt Status										
									es the ma ir the per		•	tate of th	is interru	upt. Write	e 1 to th	is bit to	

Register 2: Analog Comparator Raw Interrupt Status (ACRIS), offset 0x004

This register provides a summary of the interrupt status (raw) of the comparator.

Analog Comparator Raw Interrupt Status (ACRIS)

Base 0x4003.C000 Offset 0x004 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1				rese	rved				1		1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	T	T	1		1	reserved	ı		ſ		1	ſ	1	INO
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Name			ре	Reset	Des	Description							
	31:1 reserved			R	0	0x00	com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should b preserved across a read-modify-write operation.								
	0		IN	0	R	0	0	Con	nparator	0 Interru	pt Statu	s				
							Whe 0.	en set, ind	dicates tl	hat an in	terrupt ha	as been g	generate	ed by con	nparator	

Analog Comparator Interrupt Enable (ACINTEN)

Register 3: Analog Comparator Interrupt Enable (ACINTEN), offset 0x008

This register provides the interrupt enable for the comparator.

Offse	0x4003. t 0x008 R/W, res				, , , , , , , , , , , , , , , , , , ,		,									
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ĺ		1	1				1	rese	rved		1	1		1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ĺ														IN0		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	it/Field	eld Name			Ty	ре	Reset	Des	cription							
	31:1		reserved			0	0x00	com	patibility	with fu	ture prod	the value lucts, the dify-write	value of	a reserv	•	
	0		INO R/W		W	0		Comparator 0 Interrupt Enable When set, enables the controller interrupt from the comparator 0						0 output.		

July 14, 2014

Register 4: Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x010

This register specifies whether the resistor ladder is powered on as well as the range and tap.

Analog Comparator Reference Voltage Control (ACREFCTL)

Base 0x4003.C000 Offset 0x010 Type R/W, reset 0x0000.0000

,,	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Γ	ľ		1	1			1 1	rese	erved			1			1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
Reset	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Г	13	14	1	rved		10	EN	RNG	,	rese	1	1			r EF		
Туре	RO	RO	RO	RO	RO	RO	R/W	R/W	RO	RO	RO	RO	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Р	it/Field		Nam		т.	20	Reset	Dee	orintion								
D	il/Field		Indii	IE	Ту	þe	Resel	Des	Description								
31:10 reserved RO 0x00 Software should not rely on the value of a reserved bit. To compatibility with future products, the value of a reserved b preserved across a read-modify-write operation.													•				
9 EN R/W 0 Resistor Ladder Enable																	
The EN bit specifies whether the resistor ladder is powered resistor ladder is unpowered. If 1, the resistor ladder is con the analog V _{DD} .																	
												ne interna and prog			sumes th	ne least	
	8		RN	G	R/	W	0	Res	istor Lad	der Ran	ge						
								lado		total res		ge of the of 31 R. I			-		
7:4 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provid compatibility with future products, the value of a reserved bit sho preserved across a read-modify-write operation.																	
	3:0		VRE	F	R/	W	0x00	Res	istor Lad	der Volta	age Ref						
									The VREF bit field specifies the resistor ladder tap that is passed through an analog multiplexer. The voltage corresponding to the tap position is the internal reference voltage available for comparison. See Table 13-3 on page 447 for some output reference voltage examples.								

Register 5: Analog Comparator Status 0 (ACSTAT0), offset 0x020

This register specifies the current output value of the comparator.

Analog Comparator Status 0 (ACSTATC))
Base 0x4003.C000 Offset 0x020 Type RO, reset 0x0000.0000	

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1				1 1	rese	reserved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		ſ	1				rese	rved	r 1	I	ſ	I	1	1	OVAL	reserved
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	Bit/Field 31:2		Nam reserv		Ty R		Reset 0x00	Soft corr	Description Software should not rely on the value of a reserved bit. To p compatibility with future products, the value of a reserved bi preserved across a read-modify-write operation.							
	1 OVAL				R	0	0	Con	nparator	Output \	/alue					
								The	OVAL bi	t specifie	es the cu	urrent ou	tput valu	e of the	compara	ator.
	0			/ed	R	0	0	com	npatibility	with futu	ure prod	ucts, the	of a res value of operation	a reserv	•	vide hould be

Register 6: Analog Comparator Control 0 (ACCTL0), offset 0x024

This register configures the comparator's input and output.

Analog Comparator Control 0 (ACCTL0)

Offset	0x4003.C t 0x024 R/W, rese		0.0000														
г	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	•		•					rese	rved		•		1			•	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	•	rese	rved	•	TOEN	AS	RCP	reserved	TSLVAL	TS	EN	ISLVAL	IS	EN	CINV	reserved	
Type Reset	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	RO 0	
В	it/Field		Nan	ne	Ту	ре	Reset	Des	cription								
	31:12		reser	ved	R	0	0x00	com	patibility	with futu	ure prod	he value ucts, the dify-write	value of	a reserv			
	11		TOE	IN	R/W 0			Trigger Output Enable									
								The TOEN bit enables the ADC event transmission to the ADC. If 0, th event is suppressed and not sent to the ADC. If 1, the event is transmitted to the ADC.									
	10:9		ASRCP			W	0x00	Analog Source Positive									
										•		source of dings for	•	-		termina	
								Valu	ue Func	tion							
								0x0	Pin v	alue							
								0x1	Pin v	alue of C	C0+						
								0x2	0x2 Internal voltage reference								
								0x3	Rese	rved							
	8		reserved		RO		0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.									
	7		TSLVAL		R/W		0	Trig	ger Sens	e Level	Value						
		ISLVAL			1			The TSLVAL bit specifies the sense value of the input that generates an ADC event if in Level Sense mode. If 0, an ADC event is generate if the comparator output is Low. Otherwise, an ADC event is generate									

if the comparator output is High.

Bit/Field	Name	Туре	Reset	Description
6:5	TSEN	R/W	0x0	Trigger Sense The TSEN field specifies the sense of the comparator output that generates an ADC event. The sense conditioning is as follows:
				Value Function
				0x0 Level sense, see TSLVAL
				0x1 Falling edge
				0x2 Rising edge
				0x3 Either edge
4	ISLVAL	R/W	0	Interrupt Sense Level Value
				The ISLVAL bit specifies the sense value of the input that generates an interrupt if in Level Sense mode. If 0, an interrupt is generated if the comparator output is Low. Otherwise, an interrupt is generated if the comparator output is High.
3:2	ISEN	R/W	0x0	Interrupt Sense
				The ISEN field specifies the sense of the comparator output that generates an interrupt. The sense conditioning is as follows:
				Value Function
				0x0 Level sense, see ISLVAL
				0x1 Falling edge
				0x2 Rising edge
				0x3 Either edge
1	CINV	R/W	0	Comparator Output Invert
				The CINV bit conditionally inverts the output of the comparator. If 0, the output of the comparator is unchanged. If 1, the output of the comparator is inverted prior to being processed by hardware.
0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

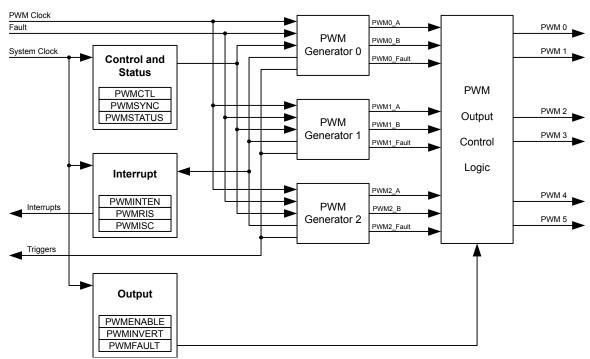
14 Pulse Width Modulator (PWM)

Pulse width modulation (PWM) is a powerful technique for digitally encoding analog signal levels. High-resolution counters are used to generate a square wave, and the duty cycle of the square wave is modulated to encode an analog signal. Typical applications include switching power supplies and motor control.

The Stellaris[®] PWM module consists of three PWM generator blocks and a control block. The control block determines the polarity of the PWM signals, and which signals are passed through to the pins.

Each PWM generator block produces two PWM signals that can either be independent signals (other than being based on the same timer and therefore having the same frequency) or a single pair of complementary signals with dead-band delays inserted. The output of the PWM generation blocks are managed by the output control block before being passed to the device pins.

The Stellaris PWM module provides a great deal of flexibility. It can generate simple PWM signals, such as those required by a simple charge pump. It can also generate paired PWM signals with dead-band delays, such as those required by a half-H bridge driver. Three generator blocks can also generate the full six channels of gate controls required by a 3-phase inverter bridge.


Each Stellaris PWM module has the following features:

- Three PWM generator blocks, each with one 16-bit counter, two PWM comparators, a PWM signal generator, a dead-band generator, and an interrupt/ADC-trigger selector
- One fault input in hardware to promote low-latency shutdown
- One 16-bit counter
 - Runs in Down or Up/Down mode
 - Output frequency controlled by a 16-bit load value
 - Load value updates can be synchronized
 - Produces output signals at zero and load value
- Two PWM comparators
 - Comparator value updates can be synchronized
 - Produces output signals on match
- PWM generator
 - Output PWM signal is constructed based on actions taken as a result of the counter and PWM comparator output signals
 - Produces two independent PWM signals
- Dead-band generator
 - Produces two PWM signals with programmable dead-band delays suitable for driving a half-H bridge
 - Can be bypassed, leaving input PWM signals unmodified

- Flexible output control block with PWM output enable of each PWM signal
 - PWM output enable of each PWM signal
 - Optional output inversion of each PWM signal (polarity control)
 - Optional fault handling for each PWM signal
 - Synchronization of timers in the PWM generator blocks
 - Interrupt status summary of the PWM generator blocks
- Can initiate an ADC sample sequence

14.1 Block Diagram

Figure 14-1 on page 458 provides the Stellaris PWM module unit diagram and Figure 14-2 on page 459 provides a more detailed diagram of a Stellaris PWM generator. The LM3S617 controller contains three generator blocks (PWM0, PWM1, and PWM2) and generates six independent PWM signals or three paired PWM signals with dead-band delays inserted.

Figure 14-1. PWM Unit Diagram

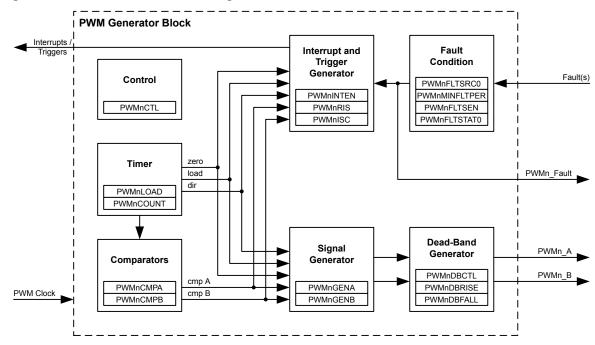


Figure 14-2. PWM Module Block Diagram

14.2 Signal Description

Table 14-1 on page 459 lists the external signals of the PWM module module and describes the function of each. The PWM controller signals are alternate functions for some GPIO signals and default to be GPIO signals at reset. The column in the table below titled "Pin Assignment" lists the possible GPIO pin placements for these PWM signals. The AFSEL bit in the **GPIO Alternate Function Select (GPIOAFSEL)** register (page 248) should be set to choose the PWM function. For more information on configuring GPIOs, see "General-Purpose Input/Outputs (GPIOs)" on page 229.

Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description
Fault	34	I	TTL	PWM Fault.
PWMO	25	0	TTL	PWM 0. This signal is controlled by PWM Generator 0.
PWM1	26	0	TTL	PWM 1. This signal is controlled by PWM Generator 0.
PWM2	29	0	TTL	PWM 2. This signal is controlled by PWM Generator 1.
PWM3	30	0	TTL	PWM 3. This signal is controlled by PWM Generator 1.
PWM4	35	0	TTL	PWM 4. This signal is controlled by PWM Generator 2.
PWM5	36	0	TTL	PWM 5. This signal is controlled by PWM Generator 2.

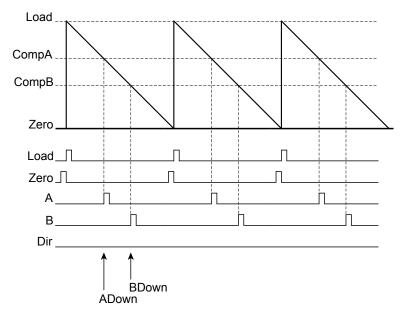
Table 14-1. PWM Signals (48QFP)

a. The TTL designation indicates the pin has TTL-compatible voltage levels.

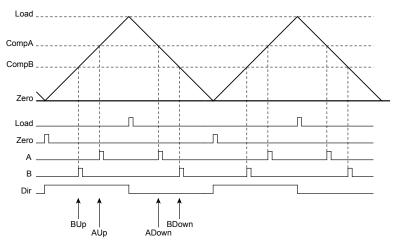
14.3 Functional Description

14.3.1 PWM Timer

The timer in each PWM generator runs in one of two modes: Count-Down mode or Count-Up/Down mode. In Count-Down mode, the timer counts from the load value to zero, goes back to the load value, and continues counting down. In Count-Up/Down mode, the timer counts from zero up to the load value, back down to zero, back up to the load value, and so on. Generally, Count-Down mode


is used for generating left- or right-aligned PWM signals, while the Count-Up/Down mode is used for generating center-aligned PWM signals.

The timers output three signals that are used in the PWM generation process: the direction signal (this is always Low in Count-Down mode, but alternates between Low and High in Count-Up/Down mode), a single-clock-cycle-width High pulse when the counter is zero, and a single-clock-cycle-width High pulse when the counter is equal to the load value. Note that in Count-Down mode, the zero pulse is immediately followed by the load pulse.


14.3.2 **PWM** Comparators

There are two comparators in each PWM generator that monitor the value of the counter; when either match the counter, they output a single-clock-cycle-width High pulse. When in Count-Up/Down mode, these comparators match both when counting up and when counting down; they are therefore qualified by the counter direction signal. These qualified pulses are used in the PWM generation process. If either comparator match value is greater than the counter load value, then that comparator never outputs a High pulse.

Figure 14-3 on page 460 shows the behavior of the counter and the relationship of these pulses when the counter is in Count-Down mode. Figure 14-4 on page 461 shows the behavior of the counter and the relationship of these pulses when the counter is in Count-Up/Down mode.

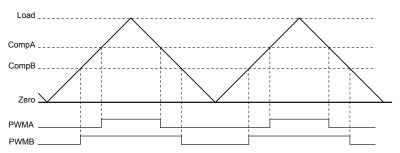
Figure 14-3. PWM Count-Down Mode

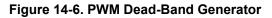
Figure 14-4. PWM Count-Up/Down Mode

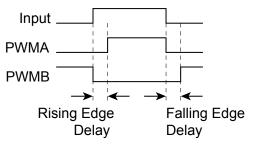
14.3.3 PWM Signal Generator

The PWM generator takes these pulses (qualified by the direction signal), and generates two PWM signals. In Count-Down mode, there are four events that can affect the PWM signal: zero, load, match A down, and match B down. In Count-Up/Down mode, there are six events that can affect the PWM signal: zero, load, match A down, match A up, match B down, and match B up. The match A or match B events are ignored when they coincide with the zero or load events. If the match A and match B events coincide, the first signal, PWMA, is generated based only on the match A event, and the second signal, PWMB, is generated based only on the match B event.

For each event, the effect on each output PWM signal is programmable: it can be left alone (ignoring the event), it can be toggled, it can be driven Low, or it can be driven High. These actions can be used to generate a pair of PWM signals of various positions and duty cycles, which do or do not overlap. Figure 14-5 on page 461 shows the use of Count-Up/Down mode to generate a pair of center-aligned, overlapped PWM signals that have different duty cycles.




Figure 14-5. PWM Generation Example In Count-Up/Down Mode


In this example, the first generator is set to drive High on match A up, drive Low on match A down, and ignore the other four events. The second generator is set to drive High on match B up, drive Low on match B down, and ignore the other four events. Changing the value of comparator A changes the duty cycle of the PWMA signal, and changing the value of comparator B changes the duty cycle of the PWMB signal.

14.3.4 Dead-Band Generator

The two PWM signals produced by the PWM generator are passed to the dead-band generator. If disabled, the PWM signals simply pass through unmodified. If enabled, the second PWM signal is lost and two PWM signals are generated based on the first PWM signal. The first output PWM signal is the input signal with the rising edge delayed by a programmable amount. The second output PWM signal is the inversion of the input signal with a programmable delay added between the falling edge of the input signal and the rising edge of this new signal.

This is therefore a pair of active High signals where one is always High, except for a programmable amount of time at transitions where both are Low. These signals are therefore suitable for driving a half-H bridge, with the dead-band delays preventing shoot-through current from damaging the power electronics. Figure 14-6 on page 462 shows the effect of the dead-band generator on an input PWM signal.

14.3.5 Interrupt/ADC-Trigger Selector

The PWM generator also takes the same four (or six) counter events and uses them to generate an interrupt or an ADC trigger. Any of these events or a set of these events can be selected as a source for an interrupt; when any of the selected events occur, an interrupt is generated. Additionally, the same event, a different event, the same set of events, or a different set of events can be selected as a source for an ADC trigger; when any of these selected events occur, an ADC trigger pulse is generated. The selection of events allows the interrupt or ADC trigger to occur at a specific position within the PWM signal. Note that interrupts and ADC triggers are based on the raw events; delays in the PWM signal edges caused by the dead-band generator are not taken into account.

14.3.6 Synchronization Methods

There is a global reset capability that can synchronously reset any or all of the counters in the PWM generators. If multiple PWM generators are configured with the same counter load value, this can be used to guarantee that they also have the same count value (this does imply that the PWM generators must be configured before they are synchronized). With this, more than two PWM signals can be produced with a known relationship between the edges of those signals since the counters always have the same values.

The counter load values and comparator match values of the PWM generator can be updated in two ways. The first is immediate update mode, where a new value is used as soon as the counter reaches zero. By waiting for the counter to reach zero, a guaranteed behavior is defined, and overly short or overly long output PWM pulses are prevented.

The other update method is synchronous, where the new value is not used until a global synchronized update signal is asserted, at which point the new value is used as soon as the counter reaches zero. This second mode allows multiple items in multiple PWM generators to be updated simultaneously without odd effects during the update; everything runs from the old values until a

point at which they all run from the new values. The Update mode of the load and comparator match values can be individually configured in each PWM generator block. It typically makes sense to use the synchronous update mechanism across PWM generator blocks when the timers in those blocks are synchronized, though this is not required in order for this mechanism to function properly.

14.3.7 Fault Conditions

There are two external conditions that affect the PWM block; the signal input on the Fault pin and the stalling of the controller by a debugger. There are two mechanisms available to handle such conditions: the output signals can be forced into an inactive state and/or the PWM timers can be stopped.

Each output signal has a fault bit. If set, a fault input signal causes the corresponding output signal to go into the inactive state. If the inactive state is a safe condition for the signal to be in for an extended period of time, this keeps the output signal from driving the outside world in a dangerous manner during the fault condition. A fault condition can also generate a controller interrupt.

Each PWM generator can also be configured to stop counting during a stall condition. The user can select for the counters to run until they reach zero then stop, or to continue counting and reloading. A stall condition does not generate a controller interrupt.

14.3.8 Output Control Block

With each PWM generator block producing two raw PWM signals, the output control block takes care of the final conditioning of the PWM signals before they go to the pins. Via a single register, the set of PWM signals that are actually enabled to the pins can be modified; this can be used, for example, to perform commutation of a brushless DC motor with a single register write (and without modifying the individual PWM generators, which are modified by the feedback control loop). Similarly, fault control can disable any of the PWM signals as well. A final inversion can be applied to any of the PWM signals, making them active Low instead of the default active High.

14.4 Initialization and Configuration

The following example shows how to initialize the PWM Generator 0 with a 25-KHz frequency, and with a 25% duty cycle on the PWM0 pin and a 75% duty cycle on the PWM1 pin. This example assumes the system clock is 20 MHz.

- 1. Enable the PWM clock by writing a value of 0x0010.0000 to the **RCGC0** register in the System Control module.
- 2. In the GPIO module, enable the appropriate pins for their alternate function using the **GPIOAFSEL** register.
- 3. Configure the **Run-Mode Clock Configuration (RCC)** register in the System Control module to use the PWM divide (USEPWMDIV) and set the divider (PWMDIV) to divide by 2 (000).
- 4. Configure the PWM generator for countdown mode with immediate updates to the parameters.
 - Write the **PWM0CTL** register with a value of 0x0000.0000.
 - Write the **PWM0GENA** register with a value of 0x0000.008C.
 - Write the **PWM0GENB** register with a value of 0x0000.080C.
- **5.** Set the period. For a 25-KHz frequency, the period = 1/25,000, or 40 microseconds. The PWM clock source is 10 MHz; the system clock divided by 2. This translates to 400 clock ticks per

period. Use this value to set the **PWM0LOAD** register. In Count-Down mode, set the Load field in the **PWM0LOAD** register to the requested period minus one.

- Write the **PWM0LOAD** register with a value of 0x0000.018F.
- 6. Set the pulse width of the PWM0 pin for a 25% duty cycle.
 - Write the **PWM0CMPA** register with a value of 0x0000.012B.
- 7. Set the pulse width of the PWM1 pin for a 75% duty cycle.
 - Write the **PWM0CMPB** register with a value of 0x0000.0063.
- 8. Start the timers in PWM generator 0.
 - Write the **PWM0CTL** register with a value of 0x0000.0001.
- 9. Enable PWM outputs.
 - Write the **PWMENABLE** register with a value of 0x0000.0003.

14.5 Register Map

Table 14-2 on page 464 lists the PWM registers. The offset listed is a hexadecimal increment to the register's address, relative to the PWM base address of 0x4002.8000. Note that the PWM module clock must be enabled before the registers can be programmed (see page 191). There must be a delay of 3 system clocks after the PWM module clock is enabled before any PWM module registers are accessed.

Offset	Name	Туре	Reset	Description	See page
0x000	PWMCTL	R/W	0x0000.0000	PWM Master Control	467
0x004	PWMSYNC	R/W	0x0000.0000	PWM Time Base Sync	468
0x008	PWMENABLE	R/W	0x0000.0000	PWM Output Enable	469
0x00C	PWMINVERT R/W		0x0000.0000	PWM Output Inversion	470
0x010	PWMFAULT	R/W	0x0000.0000	PWM Output Fault	471
0x014	PWMINTEN R/W		0x0000.0000	PWM Interrupt Enable	472
0x018	PWMRIS RO		0x0000.0000	PWM Raw Interrupt Status	473
0x01C	PWMISC	R/W1C	0x0000.0000	PWM Interrupt Status and Clear	474
0x020	PWMSTATUS	RO	0x0000.0000	PWM Status	475
0x040	PWM0CTL	R/W	0x0000.0000	PWM0 Control	476
0x044	PWM0INTEN	R/W	0x0000.0000	PWM0 Interrupt and Trigger Enable	478
0x048	PWMORIS	RO	0x0000.0000	PWM0 Raw Interrupt Status	481
0x04C	PWM0ISC R/W1C		0x0000.0000	PWM0 Interrupt Status and Clear	482
0x050	PWM0LOAD	R/W	0x0000.0000	PWM0 Load	483

Table 14-2. PWM Register Map

Offset	Name	Туре	Reset	Description	See page
0x054	PWM0COUNT	RO	0x0000.0000	PWM0 Counter	484
0x058	PWM0CMPA	R/W	0x0000.0000	PWM0 Compare A	485
0x05C	PWM0CMPB	R/W	0x0000.0000	PWM0 Compare B	486
0x060	PWM0GENA	R/W	0x0000.0000	PWM0 Generator A Control	487
0x064	PWM0GENB	R/W	0x0000.0000	PWM0 Generator B Control	490
0x068	PWM0DBCTL	R/W	0x0000.0000	PWM0 Dead-Band Control	493
0x06C	PWM0DBRISE	R/W	0x0000.0000	PWM0 Dead-Band Rising-Edge Delay	494
0x070	PWM0DBFALL	R/W	0x0000.0000	PWM0 Dead-Band Falling-Edge-Delay	495
0x080	PWM1CTL	R/W	0x0000.0000	PWM1 Control	476
0x084	PWM1INTEN	R/W	0x0000.0000	PWM1 Interrupt and Trigger Enable	478
0x088	PWM1RIS	RO	0x0000.0000	PWM1 Raw Interrupt Status	481
0x08C	PWM1ISC	R/W1C	0x0000.0000	PWM1 Interrupt Status and Clear	482
0x090	PWM1LOAD	R/W	0x0000.0000	PWM1 Load	483
0x094	PWM1COUNT	RO	0x0000.0000	PWM1 Counter	484
0x098	PWM1CMPA	R/W	0x0000.0000	PWM1 Compare A	485
0x09C	PWM1CMPB	R/W	0x0000.0000	PWM1 Compare B	486
0x0A0	PWM1GENA	R/W	0x0000.0000	PWM1 Generator A Control	487
0x0A4	PWM1GENB	R/W	0x0000.0000	PWM1 Generator B Control	490
0x0A8	PWM1DBCTL	R/W	0x0000.0000	PWM1 Dead-Band Control	493
0x0AC	PWM1DBRISE	R/W	0x0000.0000	PWM1 Dead-Band Rising-Edge Delay	494
0x0B0	PWM1DBFALL	R/W	0x0000.0000	PWM1 Dead-Band Falling-Edge-Delay	495
0x0C0	PWM2CTL	R/W	0x0000.0000	PWM2 Control	476
0x0C4	PWM2INTEN	R/W	0x0000.0000	PWM2 Interrupt and Trigger Enable	478
0x0C8	PWM2RIS	RO	0x0000.0000	PWM2 Raw Interrupt Status	481
0x0CC	PWM2ISC	R/W1C	0x0000.0000	PWM2 Interrupt Status and Clear	482
0x0D0	PWM2LOAD	R/W	0x0000.0000	PWM2 Load	483
0x0D4	PWM2COUNT	RO	0x0000.0000	PWM2 Counter	484
0x0D8	PWM2CMPA	R/W	0x0000.0000	PWM2 Compare A	485
0x0DC	PWM2CMPB	R/W	0x0000.0000	PWM2 Compare B	486
0x0E0	PWM2GENA	R/W	0x0000.0000	PWM2 Generator A Control	487
0x0E4	PWM2GENB	R/W	0x0000.0000	PWM2 Generator B Control	490
0x0E8	PWM2DBCTL	R/W	0x0000.0000	PWM2 Dead-Band Control	493

Table 14-2. PWM Register Map (continued)

Offset	Name	Туре	Reset	Description	See page
0x0EC	PWM2DBRISE	R/W	0x0000.0000	PWM2 Dead-Band Rising-Edge Delay	494
0x0F0	PWM2DBFALL	R/W	0x0000.0000	PWM2 Dead-Band Falling-Edge-Delay	495

Table 14-2. PWM Register Map (continued)

14.6 Register Descriptions

The remainder of this section lists and describes the PWM registers, in numerical order by address offset.

Register 1: PWM Master Control (PWMCTL), offset 0x000

This register provides master control over the PWM generation blocks.

Register 2: PWM Time Base Sync (PWMSYNC), offset 0x004

This register provides a method to perform synchronization of the counters in the PWM generation blocks. Writing a bit in this register to 1 causes the specified counter to reset back to 0; writing multiple bits resets multiple counters simultaneously. The bits auto-clear after the reset has occurred; reading them back as zero indicates that the synchronization has completed.

PWM Time Base Sync (PWMSYNC)

Base 0x4002.8000 Offset 0x004

Offset 0x004 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	reserved												1			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	ì	Î	ì I		reserved			1	i	Ì	1	Sync2	Sync1	Sync0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field 31:3			Name		Type Rese RO 0x00		Description Software should not rely on the value of a reserved bit. To provide								vide
							compatibility with future products, the value of a reserved bit preserved across a read-modify-write operation.						ed bit sł	nould be		
	2		Sync2		R/	R/W		Reset Generator 2 Counter								
							Performs a reset of the PWM generator 2 counter.									
1		Sync1 R/W		W	0	Reset Generator 1 Counter										
							Perf	orms a	reset of t	he PWN	/I generat	tor 1 cou	nter.			
	0 Sync0			R/	W	0	Reset Generator 0 Counter									
	5							Perf	Performs a reset of the PWM generator 0 counter.							

16

RO

0

0

PWM0Fn

R/W

0

17

RO

0

1

R/W

0

Register 3: PWM Output Enable (PWMENABLE), offset 0x008

This register provides a master control of which generated PWM signals are output to device pins. By disabling a PWM output, the generation process can continue (for example, when the time bases are synchronized) without driving PWM signals to the pins. When bits in this register are set, the corresponding PWM signal is passed through to the output stage, which is controlled by the **PWMINVERT** register. When bits are not set, the PWM signal is replaced by a zero value which is also passed to the output stage.

PWM Output Enable (PWMENABLE) Base 0x4002.8000 Offset 0x008 Type R/W, reset 0x0000.0000 31 30 28 25 22 29 27 26 24 23 21 20 19 18 reserved RO Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 PWM5En PWM4Fr PWM3Fr PWM2Fr PWM1Fr reserved Туре RO R/W R/W R/W R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Description Name Туре Reset 31:6 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 5 PWM5En R/W 0 PWM5 Output Enable When set, allows the generated PWM5 signal to be passed to the device pin. PWM4En R/W 0 PWM4 Output Enable 4 When set, allows the generated PWM4 signal to be passed to the device pin. 3 PWM3En R/W 0 PWM3 Output Enable When set, allows the generated PWM3 signal to be passed to the device pin. PWM2En 2 R/W 0 PWM2 Output Enable When set, allows the generated PWM2 signal to be passed to the device pin. 1 PWM1En R/W 0 **PWM1 Output Enable** When set, allows the generated PWM1 signal to be passed to the device pin. 0 PWM0En R/W 0 **PWM0 Output Enable** When set, allows the generated PWM0 signal to be passed to the device pin.

Register 4: PWM Output Inversion (PWMINVERT), offset 0x00C

This register provides a master control of the polarity of the PWM signals on the device pins. The PWM signals generated by the PWM generator are active High; they can optionally be made active Low via this register. Disabled PWM channels are also passed through the output inverter (if so configured) so that inactive channels maintain the correct polarity.

PWM Output Inversion (PWMINVERT)

Base 0x4002.8000 Offset 0x00C Type R/W, reset 0x0000.0000

-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1					rese	rved		1			1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[1	I	1	rese	rved	т т		· · · ·	1	PWM5Inv	PWM4Inv	PWM3Inv	PWM2Inv	PWM1Inv	PWM0Inv
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	8it/Field		0 0 0 0 Name reserved PWM5Inv		Ту	ре	Reset	Des	cription							
	31:6		reser	ved	R	0	0x00	com	ware sho patibility erved ac	with fut	ure prod	ucts, the	value of	a reserv		
	5			Elmi	R/	14/	0	Invo	rt PWM5 \$	Cianal						
	5		PVVIVI	VIIIC	K/	vv	0			0						
								Whe	en set, th	e gener	ated PWN	15 signal	is invert	ed.		
	4		PWM	4lnv	R/	W	0	Inve	rt PWM4 \$	Signal						
								Whe	en set, th	e dener	ated pwn	14 signal	is invert	ed		
								••••		e gener		i i olgilai		.00.		
	3		PWM:	3Inv	R/	W	0	Inve	rt PWM3	Signal						
								Whe	en set, th	e aener	ated PWN	13 sianal	is invert	ed.		
										5						
	2		PWM	2lnv	R/	W	0	Inve	rt PWM2 \$	Signal						
								Whe	en set, th	e gener	ated PWN	12 signal	is invert	ed.		
					_											
	1		PWM	1Inv	R/	W	0	Inve	rt PWM1	Signal						
								Whe	en set, th	e gener	ated PWN	11 signal	is invert	ed.		
	0		PWM	0lnv	R/	W	0	Inve	rt PWMO \$	Signal						
	•				10				en set, th	0	nuc hate		ie invor	bol		
								vvile	an sei, in	e gener		io signal	is inven	.cu.		

Register 5: PWM Output Fault (PWMFAULT), offset 0x010

This register controls the behavior of the PWM outputs in the presence of fault conditions. Both the fault inputs and debug events are considered fault conditions. On a fault condition, each PWM signal can be passed through unmodified or driven Low. For outputs that are configured for pass-through, the debug event handling on the corresponding PWM generator also determines if the PWM signal continues to be generated.

Fault condition control occurs before the output inverter, so PWM signals driven Low on fault are inverted if the channel is configured for inversion (therefore, the pin is driven High on a fault condition).

PWI	V Outp	ut Fault	t (PWMI	FAULT)												
Offse	0x4002.8 t 0x010 R/W, rese		0.0000													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ĺ			1	1				rese	erved		1	1		1	1	
І Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I		1	1	rese	rved					Fault5	Fault4	Fault3	Fault2	Fault1	Fault0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	lit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:6		reserv	ved	R	0	0x00	com	ware sho patibility served ac	with fut	ure prod	ucts, the	value of	a reserv		
	5		Faul	t5	R/	W	0		M5 Fault en set, th		output s	ignal is c	lriven Lo	w on a fa	ault conc	lition.
	4		Faul	t4	R/	W	0		M4 Fault en set, th		output s	ignal is c	lriven Lo	w on a fa	ault conc	lition.
	3		Faul	t3	R/	W	0		M3 Fault en set, th		output s	ignal is c	Iriven Lo	w on a fa	ault conc	lition.
	2		Faul	t2	R/	W	0		M2 Fault en set, th		output s	ignal is c	Iriven Lo	w on a fa	ault conc	lition.
	1		Faul	t1	R/	W	0		M1 Fault en set, th		output s	ignal is c	lriven Lo	w on a fa	ault conc	lition.
	0		Faul	tO	R/	W	0		M0 Fault en set, th		output s	ignal is c	Iriven Lo	w on a fa	ault conc	lition.

Register 6: PWM Interrupt Enable (PWMINTEN), offset 0x014

This register controls the global interrupt generation capabilities of the PWM module. The events that can cause an interrupt are the fault input and the individual interrupts from the PWM generators.

PWM Interrupt Enable (PWMINTEN)

Base 0x4002.8000 Offset 0x014 Type R/W, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	I		1				т т	reserved						1	[IntFault
І Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	r		1				reserved		 					IntPWM2	IntPWM1	IntPWM0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	it/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:17		reser	ved	R	0	0x00	com	patibility	with futu	ire prod	he value ucts, the dify-write	value of	f a reserv	•	
	16		IntFa	ult	R/	W	0	Faul	t Interrup	ot Enable	e					
								Whe	en set, ar	n interrup	ot occur	s when th	ne fault i	nput is a	sserted.	
	15:3		reserv	ved	R	0	0x00	Soft	ware sho	ould not	rely on t	he value	of a res	erved bit	. To prov	vide
									• •		•	ucts, the dify-write			ed bit sh	ould be
	2		IntPW	/M2	R/	W	0	PW	M2 Interr	upt Enal	ole					
									en set, an nterrupt.	interrup	ot occurs	when the	e PWM	generato	r 2 block	asserts
	1		IntPW	/M1	R/	W	0	PW	M1 Interr	upt Enal	ole					
									en set, an nterrupt.	n interrup	ot occurs	when the	e PWM	generato	r 1 block	asserts
	0		IntPW	/M0	R/	W	0	PW	M0 Interr	upt Enal	ole					

When set, an interrupt occurs when the PWM generator 0 block asserts an interrupt.

Register 7: PWM Raw Interrupt Status (PWMRIS), offset 0x018

This register provides the current set of interrupt sources that are asserted, regardless of whether they cause an interrupt to be asserted to the controller. The fault interrupt is latched on detection; it must be cleared through the **PWM Interrupt Status and Clear (PWMISC)** register (see page 474). The PWM generator interrupts simply reflect the status of the PWM generators; they are cleared via the interrupt status register in the PWM generator blocks. Bits set to 1 indicate the events that are active; zero bits indicate that the event in question is not active.

PWM Raw Interrupt Status (PWMRIS)

Base 0x4002.8000

Offset 0x018 Type RO, reset 0x0000.0000

	,															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1				1 1	reserved			1			1	1	IntFault
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1			I	reserved		. .		1	•		IntPWM2	IntPWM1	IntPWM0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:17 reserved 16 IntFault			ved	R	0	0x00	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv	•	
	16		IntFa	ult	R	0	0	Faul	lt Interrup	ot Asser	ted					
								Indic	cates tha	t the fau	ult input i	s asserti	ng.			
	15:3		reserv	ved	R	0	0x00	Soft	ware sho	ould not	rely on t	he value	of a res	erved bit	. To prov	/ide
									• •		•	ucts, the dify-write			ed bit sh	ould be
	2		IntPW	′M2	R	0	0	PW	M2 Interr	upt Ass	erted					
								Indic	cates tha	t the PV	VM gene	erator 2 b	lock is a	isserting	its interr	upt.
	1		IntPW	′M1	R	0	0	PW	M1 Interr	upt Ass	erted					
										•		erator 1 b	lock is a	isserting	its interr	upt.
	0		IntPW	′M0	R	0	0	PW	M0 Interr	upt Ass	erted					
								Indic	cates tha	t the PV	VM gene	rator 0 b	lock is a	isserting	its interr	upt.

Register 8: PWM Interrupt Status and Clear (PWMISC), offset 0x01C

This register provides a summary of the interrupt status of the individual PWM generator blocks. A bit set to 1 indicates that the corresponding generator block is asserting an interrupt. The individual interrupt status registers in each block must be consulted to determine the reason for the interrupt, and used to clear the interrupt. For the fault interrupt, a write of 1 to that bit position clears the latched interrupt status.

PWM Interrupt Status and Clear (PWMISC)

Offset 0x01C

Type R/W1C, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ĺ		1	1	1	, ,		1 1	reserved	1			· · ·		1		IntFault
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W1C
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	I	1	, ,		reserved		I	I		· ·		IntPWM2		IntPWM0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	Bit/Field		Nar	ne	Туј	pe	Reset	Desc	cription							
	31:17		reser	ved	R	0	0x00	Soft	ware sho	uld not r	ely on t	he value	of a res	erved bit	. To prov	/ide
								com	patibility	with futu	ire prod	ucts, the	value of	a reserv	ed bit sh	ould be
								pres	erved ac	ross a re	ead-mod	dify-write	operatio	on.		
												,				
	16		IntFa	ault	R/W	/1C	0	Faul	t Interrup	ot Assert	ed					
							· ·									
								Indic	cates that	t the fau	lt input i	s assertir	ng an in	terrupt.		
					_	_									_	
	15:3		reser	ved	R	0	0x00					he value			•	
												ucts, the			ed bit sr	ould be
								pres	erved ac	ross a re	ead-mod	dify-write	operatio	on.		
	2		IntPV	VM2	R	0	0	PWN	A2 Interro	upt Statu	IS					
								Indic	ates if th		aenerat	or 2 bloc	k is ass	ertina an	interrun	t
								marc			general		K 13 033	crung an	interrup	ι.
	1		IntPV	VM1	R	0	0		A1 Interro	unt Stati	19					
			iiiti V	* 1 * 1		0	0			•						
								Indic	cates if th	ie PWM	generat	or 1 bloc	k is ass	erting an	Interrup	t.
	0					~	0		10 1-1-							
	0		IntPV	VIVIU	R	0	0	PWN	A0 Interro	upt Statu	IS					
								Indic	ates if th	e PWM	generat	or 0 bloc	k is ass	erting an	interrup	t.
											-			-	•	

Base 0x4002.8000

Register 9: PWM Status (PWMSTATUS), offset 0x020

This register provides the status of the $\ensuremath{\mathtt{FAULT}}$ input signal.

Base Offse	M Statu 0x4002.8 tt 0x020 RO, rese	3000	MSTATU	JS)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1			1	rese	rved					1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	1			1	reserved						1	1	Fault
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:1		reserv	ved	R	0	0x00	com	ware sho patibility erved ac	with futu	ure produ	ucts, the	value of	a reserv	•	vide hould be
	0		Fau	ılt	R	0	0		lt Interrup en set, in			input is a	asserted			

Register 10: PWM0 Control (PWM0CTL), offset 0x040 Register 11: PWM1 Control (PWM1CTL), offset 0x080 Register 12: PWM2 Control (PWM2CTL), offset 0x0C0

These registers configure the PWM signal generation blocks (PWM0CTL controls the PWM generator 0 block, and so on). The Register Update mode, Debug mode, Counting mode, and Block Enable mode are all controlled via these registers. The blocks produce the PWM signals, which can be either two independent PWM signals (from the same counter), or a paired set of PWM signals with dead-band delays added.

The PWM0 block produces the PWM0 and PWM1 outputs, the PWM1 block produces the PWM2 and PWM3 outputs, and the PWM2 block produces the PWM4 and PWM5 outputs.

Base Offse	0x4002.8 0x4002.8 t 0x040 R/W, res	3000	VM0CT	L)												
r	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				•			• •	rese	rved		•					
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	1	rese	rved					CmpBUpd	CmpAUpo	d LoadUpd	Debug	Mode	Enable
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
B	Bit/Field	31:6 reserved RO 0x00 Software should not rely on the value of a reserved bit. To pro														
	31:6		reser	ved	R	0	patibility	with fut	ture produ	ucts, the	e of a rese value of e operatio	a reserv				
	5		CmpB	Upd	R/	W	0		•	•	te Mode	e compa	arator B re	egister.		
	4		CmpA	Upd	R/	W	0	Con	nparator	A Upda	te Mode	·		Ū		
								to th is 0. the o	e registe When s counter is	er are re et, upda s 0 after	eflected to ates to the a synchro	the cor e registe	A registe nparator t er are dela pdate has .) register	the next ayed unt been re	time the il the ne quested	counter ext time through
	3		Loadl	Jpd	R/	W	0	Loa	d Registe	er Upda	te Mode					
								regi set, is 0	ster are r updates after a s	eflected to the r ynchron	d to the co register a	ounter th re delay ate has l	er. When e next tim ed until th been requ	ne the co ne next t	unter is ime the	0. When counter
	2		Deb	ug	R/	W	0	Deb	ug Mode	9						
								stop	s running	g when i	it next rea	ches 0,	mode. W and contii the coun	nues run	ning aga	ain when

Bit/Field	Name	Туре	Reset	Description
1	Mode	R/W	0	Counter Mode
				The mode for the counter. When not set, the counter counts down from the load value to 0 and then wraps back to the load value (Count-Down mode). When set, the counter counts up from 0 to the load value, back down to 0, and then repeats (Count-Up/Down mode).
0	Enable	R/W	0	PWM Block Enable
				Master enable for the PWM generation block. When not set, the entire block is disabled and not clocked. When set, the block is enabled and

produces PWM signals.

Register 13: PWM0 Interrupt and Trigger Enable (PWM0INTEN), offset 0x044 Register 14: PWM1 Interrupt and Trigger Enable (PWM1INTEN), offset 0x084 Register 15: PWM2 Interrupt and Trigger Enable (PWM2INTEN), offset 0x0C4

These registers control the interrupt and ADC trigger generation capabilities of the PWM generators (**PWM0INTEN** controls the PWM generator 0 block, and so on). The events that can cause an interrupt or an ADC trigger are:

- The counter being equal to the load register
- The counter being equal to zero
- The counter being equal to the comparator A register while counting up
- The counter being equal to the comparator A register while counting down
- The counter being equal to the comparator B register while counting up
- The counter being equal to the comparator B register while counting down

Any combination of these events can generate either an interrupt, or an ADC trigger; though no determination can be made as to the actual event that caused an ADC trigger if more than one is specified.

PWM0 Interrupt and Trigger Enable (PWM0INTEN)

Offse	0x4002. t 0x044 R/W, res	.8000 set 0x000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		ï	1	ï	1	1 1		rese	rved	T	1	r	1	1	ſ	ſ
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[res	erved	TrCmpBD	TrCmpBU	TrCmpAD	TrCmpAU	TrCntLoad	TrCntZero	res	erved	IntCmpBD	IntCmpBU	IntCmpAD	IntCmpAU	IntCntLoad	IntCntZero
Type Reset	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:14		reser	ved	R	0	0x00	com	patibility	ould not / with futi cross a r	ure produ	ucts, the	value of	a reserv	•	
	13		TrCm	pBD	R/	W	0	Trig	ger for (Counter=	Compara	ator B Do	own			
								Vali	ue Des	cription						
								1		ADC trigg e in the F	•					
								0	No A	ADC trigg	ler is out	put.				

Bit/Field	Name	Туре	Reset	Description
12	TrCmpBU	R/W	0	Trigger for Counter=Comparator B Up
				Value Description
				1 An ADC trigger pulse is output when the counter matches the value in the PWMnCMPB register value while counting up.
				0 No ADC trigger is output.
11	TrCmpAD	R/W	0	Trigger for Counter=Comparator A Down
				Value Description
				1 An ADC trigger pulse is output when the counter matches the value in the PWMnCMPA register value while counting down.
				0 No ADC trigger is output.
10	TrCmpAU	R/W	0	Trigger for Counter=Comparator A Up
				Value Description
				1 An ADC trigger pulse is output when the counter matches the value in the PWMnCMPA register value while counting up.
				0 No ADC trigger is output.
9	TrCntLoad	R/W	0	Trigger for Counter=Load
				Value Description
				1 An ADC trigger pulse is output when the counter matches the PWMnLOAD register.
				0 No ADC trigger is output.
8	TrCntZero	R/W	0	Trigger for Counter=0
				Value Description
				1 An ADC trigger pulse is output when the counter is 0.
				0 No ADC trigger is output.
7:6	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
5	IntCmpBD	R/W	0	Interrupt for Counter=Comparator B Down
				Value Description
				1 A raw interrupt occurs when the counter matches the value in the PWMnCMPB register value while counting down.
				0 No interrupt.

Bit/Field	Name	Туре	Reset	Description
4	IntCmpBU	R/W	0	Interrupt for Counter=Comparator B Up
				Value Description
				 A raw interrupt occurs when the counter matches the value in the PWMnCMPB register value while counting up.
				0 No interrupt.
3	IntCmpAD	R/W	0	Interrupt for Counter=Comparator A Down
				Value Description
				1 A raw interrupt occurs when the counter matches the value in the PWMnCMPA register value while counting down.
				0 No interrupt.
2	IntCmpAU	R/W	0	Interrupt for Counter=Comparator A Up
				Value Description
				1 A raw interrupt occurs when the counter matches the value in the PWMnCMPA register value while counting up.
				0 No interrupt.
1	IntCntLoad	R/W	0	Interrupt for Counter=Load
				Value Description
				 A raw interrupt occurs when the counter matches the value in the PWMnLOAD register value.
				0 No interrupt.
0	IntCntZero	R/W	0	Interrupt for Counter=0
				Value Description
				1 A raw interrupt occurs when the counter is zero.
				0 No interrupt.

Register 16: PWM0 Raw Interrupt Status (PWM0RIS), offset 0x048 Register 17: PWM1 Raw Interrupt Status (PWM1RIS), offset 0x088 Register 18: PWM2 Raw Interrupt Status (PWM2RIS), offset 0x0C8

These registers provide the current set of interrupt sources that are asserted, regardless of whether they cause an interrupt to be asserted to the controller (**PWMORIS** controls the PWM generator 0 block, and so on). Bits set to 1 indicate the latched events that have occurred; bits set to 0 indicate that the event in question has not occurred.

PWM0 Raw Interrupt Status (PWM0RIS)

Base 0x4002.8000

Offset 0x048 Type RO, reset 0x0000.0000

Type	RO, lese	. 0.00000.	0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ	r		1	1			1 1	rese	rved		1		r	1		1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ		1		rese	rved					IntCmpBD	IntCmpBU	IntCmpAD	IntCmpAU	IntCntLoad	IntCntZero
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
В	sit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:6		reser	ved	R	0	0x00	com	patibility	with fut	rely on ti ure produ ead-mod	ucts, the	value of	a reserv	•	
	5		IntCm	pBD	R	0	0	Con	nparator	B Down	Interrup	t Status				
									cates than ting dow		unter has	s matche	ed the co	mparato	r B value	e while
	4		IntCm	рВU	R	0	0	Com	nparator	B Up In	terrupt S	tatus				
									cates than the stress that not in the stress that the stress term is t	it the co	unter has	s matche	ed the co	mparato	r B value	e while
	3		IntCm	pAD	R	0	0	Com	nparator	A Down	Interrup	t Status				
									cates than ting dow		unter has	s matche	ed the co	mparato	r A value	e while
	2		IntCm	pAU	R	0	0	Con	nparator	A Up In	terrupt S	tatus				
									cates tha nting up.	it the co	unter has	s matche	ed the co	mparato	r A value	e while
	1		IntCntl	_oad	R	0	0	Cou	nter=Loa	ad Interr	upt Statu	IS				
								Indio	cates tha	it the co	unter has	s matche	ed the PI	WMnLO/	AD regis	ter.
	0		IntCnt	Zero	R	0	0	Cou	nter=0 lı	nterrupt	Status					
								India	cates that	it the co	unter has	s matche	ed 0.			

Register 19: PWM0 Interrupt Status and Clear (PWM0ISC), offset 0x04C Register 20: PWM1 Interrupt Status and Clear (PWM1ISC), offset 0x08C Register 21: PWM2 Interrupt Status and Clear (PWM2ISC), offset 0x0CC

These registers provide the current set of interrupt sources that are asserted to the controller (**PWM0ISC** controls the PWM generator 0 block, and so on). Bits set to 1 indicate the latched events that have occurred; bits set to 0 indicate that the event in question has not occurred. These are R/W1C registers; writing a 1 to a bit position clears the corresponding interrupt reason.

PWM0 Interrupt Status and Clear (PWM0ISC)

Base 0x4002.8000

Offset 0x04C Type R/W1C, reset 0x0000.0000

1,900	101110,1	0001 0/00	000.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ĺ	1	[1			1	1 1	rese	rved	1	1	r	1			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					rese	rved				•	IntCmpBD	IntCmpBU	IntCmpAD	IntCmpAU	IntCntLoad	IntCntZero
Type	RO 0	RO 0	RO 0	RO 0	RO 0	RO	RO 0	RO 0	RO 0	RO 0	R/W1C 0	R/W1C 0	R/W1C 0	R/W1C 0	R/W1C 0	R/W1C
Reset	U	0	0	0	0	0	0	U	0	U	0	U	0	0	U	0
в	sit/Field		Nam		Ту	no	Reset	Des	cription							
			Inall		тy	þe	Reset	Des	cription							
	31:6		reserv	ved	R	0	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be								
									• •		ure produ ead-mod				ed bit sh	iould be
								•								
	5 IntCmpBD				R/W	V1C	0		•		Interrup					
									cates tha nting dov		unter has	s matche	ed the co	mparato	r B value	e while
									-							
	4		IntCmp	οBU	R/W	V1C	0			B Up Int					. .	
									Indicates that the counter has matched the comparator B va counting up.							while
	•						•		•							
	3		IntCmp	DAD	R/W	V1C	0		•		Interrup					
									nting dov		unter has	smatche	a the co	mparato	r A value	ewniie
	0		1-10	- 411		40	0		-							
	2		IntCmp	DAU	R/W	VIC	0		•	A Up Int	•					
									nting up.		unter has	matche	a the co	mparato	r A value	ewnie
	1		IntCntL	aad	R/W	110	0	Con	ntorel	ad Interr	unt					
	1		Intente	-080	K/W	VIC	0			ad Interr	upt unter has	matche	d the P			tor
								mult				matche			- regisi	
	0		IntCntZ	Zero	R/W	V1C	0		nter=0 Ir							
							Indicates that the counter has matched 0.									

Register 22: PWM0 Load (PWM0LOAD), offset 0x050 Register 23: PWM1 Load (PWM1LOAD), offset 0x090 Register 24: PWM2 Load (PWM2LOAD), offset 0x0D0

These registers contain the load value for the PWM counter (**PWM0LOAD** controls the PWM generator 0 block, and so on). Based on the counter mode, either this value is loaded into the counter after it reaches zero, or it is the limit of up-counting after which the counter decrements back to zero.

If the Load Value Update mode is immediate, this value is used the next time the counter reaches zero; if the mode is synchronous, it is used the next time the counter reaches zero after a synchronous update has been requested through the **PWM Master Control (PWMCTL)** register (see page 467). If this register is re-written before the actual update occurs, the previous value is never used and is lost.

PWM0 Load (PWM0LOAD) Base 0x4002.8000 Offset 0x050 Type R/W, reset 0x0000.0000 31 30 29 28 26 25 24 23 21 19 18 17 27 22 20 16 reserved RO RO Туре RO 0 0 0 Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 1 Load R/W Type Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Name Туре Reset Description 31:16 RO 0x00 Software should not rely on the value of a reserved bit. To provide reserved compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 15:0 R/W 0 Counter Load Value Load The counter load value.

Register 25: PWM0 Counter (PWM0COUNT), offset 0x054 Register 26: PWM1 Counter (PWM1COUNT), offset 0x094 Register 27: PWM2 Counter (PWM2COUNT), offset 0x0D4

These registers contain the current value of the PWM counter (**PWM0COUNT** is the value of the PWM generator 0 block, and so on). When this value matches the load register, a pulse is output; this can drive the generation of a PWM signal (via the **PWMnGENA/PWMnGENB** registers, see page 487 and page 490) or drive an interrupt or ADC trigger (via the **PWMnINTEN** register, see page 478). A pulse with the same capabilities is generated when this value is zero.

PWM0 Counter (PWM0COUNT)

Base 0x4002.8000

	et 0x054 RO, rese	et 0x0000	.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	I	1	1		1 1	rese	erved		1	1	1 1	I	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[1	I	1	r – – – – – – – – – – – – – – – – – – –		ı ı	Co	unt		1	1	1 1	1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO
	Bit/Field	Ū	Nan		Ту		Reset		scription	0	Ū	0	Ū	U	Ū	0
			0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.												
	15:0		Cou	int	R	0	0x00		unter Valu current		the cour	nter.				

Register 28: PWM0 Compare A (PWM0CMPA), offset 0x058 Register 29: PWM1 Compare A (PWM1CMPA), offset 0x098 Register 30: PWM2 Compare A (PWM2CMPA), offset 0x0D8

These registers contain a value to be compared against the counter (**PWM0CMPA** controls the PWM generator 0 block, and so on). When this value matches the counter, a pulse is output; this can drive the generation of a PWM signal (via the **PWMnGENA/PWMnGENB** registers) or drive an interrupt or ADC trigger (via the **PWMnINTEN** register). If the value of this register is greater than the **PWMnLOAD** register (see page 483), then no pulse is ever output.

If the comparator A update mode is immediate (based on the CmpAUpd bit in the **PWMnCTL** register), this 16-bit CompA value is used the next time the counter reaches zero. If the update mode is synchronous, it is used the next time the counter reaches zero after a synchronous update has been requested through the **PWM Master Control (PWMCTL)** register (see page 467). If this register is rewritten before the actual update occurs, the previous value is never used and is lost.

PWM0 Compare A (PWM0CMPA)

Offse	0x4002.8 t 0x058 R/W, res		0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[1	1		, , ,		1 1	rese	erved	1			r		1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		I	1		, ,		1 1	Cor	mpA	I			I		I	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Тур	be	Reset	Des	cription							
31:16 reserved RO 0x00 Software sh compatibilit preserved a				patibility	with futu	ure produ	ucts, the	value of	a reserv	•						
	15:0		Com	pА	R/	N	0x00	Con	nparator	A Value						
								The	value to	be com	pared ag	ainst the	e counter	r.		

Register 31: PWM0 Compare B (PWM0CMPB), offset 0x05C Register 32: PWM1 Compare B (PWM1CMPB), offset 0x09C Register 33: PWM2 Compare B (PWM2CMPB), offset 0x0DC

These registers contain a value to be compared against the counter (**PWM0CMPB** controls the PWM generator 0 block, and so on). When this value matches the counter, a pulse is output; this can drive the generation of a PWM signal (via the **PWMnGENA/PWMnGENB** registers) or drive an interrupt or ADC trigger (via the **PWMnINTEN** register). If the value of this register is greater than the **PWMnLOAD** register, no pulse is ever output.

If the comparator B update mode is immediate (based on the CmpBUpd bit in the **PWMnCTL** register), this 16-bit CompB value is used the next time the counter reaches zero. If the update mode is synchronous, it is used the next time the counter reaches zero after a synchronous update has been requested through the **PWM Master Control (PWMCTL)** register (see page 467). If this register is rewritten before the actual update occurs, the previous value is never used and is lost.

PWM0 Compare B (PWM0CMPB)

Offse	0x4002.8 t 0x05C R/W, res		0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	, , , , , , , , , , , , , , , , , , ,		1 1	rese	rved	1	1	1	r 1		1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		I	Ι	1	I				npB I	I	1	1	I		I	1
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset E	⁰ Bit/Field	0	o Nan	0 ne	o Ty	o pe	0 Reset	0 Des	0 cription	0	0	0	0	0	0	0
	31:16		reserved		R	0	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit shoul preserved across a read-modify-write operation.								
	15:0		Com	рВ	R/	W	0x00	Con	nparator	B Value						
			00p2					The	value to	be com	pared ag	gainst the	e counte	r.		

Register 34: PWM0 Generator A Control (PWM0GENA), offset 0x060 Register 35: PWM1 Generator A Control (PWM1GENA), offset 0x0A0 Register 36: PWM2 Generator A Control (PWM2GENA), offset 0x0E0

These registers control the generation of the PWMnA signal based on the load and zero output pulses from the counter, as well as the compare A and compare B pulses from the comparators (**PWM0GENA** controls the PWM generator 0 block, and so on). When the counter is running in Count-Down mode, only four of these events occur; when running in Count-Up/Down mode, all six occur. These events provide great flexibility in the positioning and duty cycle of the PWM signal that is produced.

The **PWM0GENA** register controls generation of the PWM0A signal; **PWM1GENA**, the PWM1A signal; and **PWM2GENA**, the PWM2A signal.

If a zero or load event coincides with a compare A or compare B event, the zero or load action is taken and the compare A or compare B action is ignored. If a compare A event coincides with a compare B event, the compare A action is taken and the compare B action is ignored.

Offse	t 0x4002.8 t 0x060 R/W, rese		0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	r		1	1	ı – – – –		1 1	rese	erved	[r	I	ı – – –		I	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[rese	l erved	1	ActCr	npBD	ActCn	npBU	ActCr	mpAD	ActC	i mpAU	ActL	oad	Act	l Zero
Type Reset	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
В	Bit/Field		Nan	ne	Ту	pe	Reset	Des	cription							
	31:12		reser	ved	R	0	0x00	com	patibility	with futu	ure prod	ucts, the	of a rese value of operation	a reserv	•	
	11:10		ActCm	ıpBD	R/	W	0x0	Acti	on for Co	omparate	or B Dov	vn				
									action to nting dov		en when	the cour	nter mato	hes com	parator	B while
								The	table be	low defin	nes the e	effect of	the even	t on the	output si	gnal.
								Val	ue Desc	ription						
								0x	0 Do n	othing.						
								0x	1 Inver	t the out	put sign	al.				
								0x	2 Set t	he outpu	t signal	to 0.				
								0x	3 Set t	he outpu	t signal	to 1.				

PWM0 Generator A Control (PWM0GENA)

Base 0x4002.8000

Bit/Field	Name	Туре	Reset	Description
9:8	ActCmpBU	R/W	0x0	Action for Comparator B Up
				The action to be taken when the counter matches comparator B while counting up. Occurs only when the Mode bit in the PWMnCTL register (see page 476) is set to 1.
				The table below defines the effect of the event on the output signal.
				Value Description
				0x0 Do nothing.
				0x1 Invert the output signal.
				0x2 Set the output signal to 0.
				0x3 Set the output signal to 1.
7:6	ActCmpAD	R/W	0x0	Action for Comparator A Down
	, etc., pr. 2		0.10	The action to be taken when the counter matches comparator A while counting down.
				The table below defines the effect of the event on the output signal.
				Value Description
				0x0 Do nothing.
				0x1 Invert the output signal.
				0x2 Set the output signal to 0.
				0x3 Set the output signal to 1.
5:4	ActCmpAU	R/W	0x0	Action for Comparator A Up
	·			The action to be taken when the counter matches comparator A while counting up. Occurs only when the Mode bit in the PWMnCTL register is set to 1.
				The table below defines the effect of the event on the output signal.
				Value Description
				0x0 Do nothing.
				0x1 Invert the output signal.
				0x2 Set the output signal to 0.
				0x3 Set the output signal to 1.
3:2	ActLoad	R/W	0x0	Action for Counter=Load
				The action to be taken when the counter matches the load value.
				The table below defines the effect of the event on the output signal.
				Value Description
				0x0 Do nothing.
				0x1 Invert the output signal.
				0x2 Set the output signal to 0.
				0x3 Set the output signal to 1.

Bit/Field	Name	Туре	Reset	Description
1:0	ActZero	R/W	0x0	Action for Counter=0 The action to be taken when the counter is zero. The table below defines the effect of the event on the output signal.
				 Value Description 0x0 Do nothing. 0x1 Invert the output signal. 0x2 Set the output signal to 0. 0x3 Set the output signal to 1.

Register 37: PWM0 Generator B Control (PWM0GENB), offset 0x064 Register 38: PWM1 Generator B Control (PWM1GENB), offset 0x0A4 Register 39: PWM2 Generator B Control (PWM2GENB), offset 0x0E4

These registers control the generation of the PWMnB signal based on the load and zero output pulses from the counter, as well as the compare A and compare B pulses from the comparators (**PWM0GENB** controls the PWM generator 0 block, and so on). When the counter is running in Down mode, only four of these events occur; when running in Up/Down mode, all six occur. These events provide great flexibility in the positioning and duty cycle of the PWM signal that is produced.

The **PWM0GENB** register controls generation of the **PWM0B** signal; **PWM1GENB**, the **PWM1B** signal; and **PWM2GENB**, the **PWM2B** signal.

If a zero or load event coincides with a compare A or compare B event, the zero or load action is taken and the compare A or compare B action is ignored. If a compare A event coincides with a compare B event, the compare B action is taken and the compare A action is ignored.

Base 0x4002.8000 Offset 0x064 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved RO Туре 0 0 0 0 0 Reset 0 0 0 0 0 0 0 0 0 0 0 15 12 7 14 13 11 10 9 8 6 5 4 3 2 1 0 ActCmpBD ActCmpAD ActCmpBU ActCmpAU reserved ActLoad ActZero RO R/W R/W R/W RO RO RO R/W R/W R/W R/W R/W R/W R/W R/W R/W Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Name Type Reset Description 31:12 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 11:10 ActCmpBD R/W 0x0 Action for Comparator B Down The action to be taken when the counter matches comparator B while counting down. The table below defines the effect of the event on the output signal. Value Description 0x0 Do nothing. Invert the output signal. 0x1 0x2 Set the output signal to 0. 0x3 Set the output signal to 1.

PWM0 Generator B Control (PWM0GENB)

490

Bit/Field	Name	Туре	Reset	Description
9:8	ActCmpBU	R/W	0x0	Action for Comparator B Up The action to be taken when the counter matches comparator B while counting up. Occurs only when the Mode bit in the PWMnCTL register is set to 1. The table below defines the effect of the event on the output signal.
				Value Description
				0x0 Do nothing.
				0x1 Invert the output signal.
				0x2 Set the output signal to 0.
				0x3 Set the output signal to 1.
7:6	ActCmpAD	R/W	0x0	Action for Comparator A Down
				The action to be taken when the counter matches comparator A while counting down.
				The table below defines the effect of the event on the output signal.
				Value Description
				0x0 Do nothing.
				0x1 Invert the output signal.
				0x2 Set the output signal to 0.
				0x3 Set the output signal to 1.
5:4	ActCmpAU	R/W	0x0	Action for Comparator A Up
				The action to be taken when the counter matches comparator A while counting up. Occurs only when the Mode bit in the PWMnCTL register is set to 1.
				The table below defines the effect of the event on the output signal.
				Value Description
				0x0 Do nothing.
				0x1 Invert the output signal.
				0x2 Set the output signal to 0.
				0x3 Set the output signal to 1.
3:2	ActLoad	R/W	0x0	Action for Counter=Load
				The action to be taken when the counter matches the load value.
				The table below defines the effect of the event on the output signal.
				Value Description
				0x0 Do nothing.
				0x1 Invert the output signal.
				0x2 Set the output signal to 0.
				0x3 Set the output signal to 1.

Bit/Field	Name	Туре	Reset	Description
1:0	ActZero	R/W	0x0	Action for Counter=0 The action to be taken when the counter is 0. The table below defines the effect of the event on the output signal.
				Value Description
				0x0 Do nothing.
				0x1 Invert the output signal.
				0x2 Set the output signal to 0.
				0x3 Set the output signal to 1.

Register 40: PWM0 Dead-Band Control (PWM0DBCTL), offset 0x068 Register 41: PWM1 Dead-Band Control (PWM1DBCTL), offset 0x0A8 Register 42: PWM2 Dead-Band Control (PWM2DBCTL), offset 0x0E8

The **PWM0DBCTL** register controls the dead-band generator, which produces the PWM0 and PWM1 signals based on the PWM0A and PWM0B signals. When disabled, the PWM0A signal passes through to the PWM0 signal and the PWM0B signal passes through to the PWM1 signal. When enabled and inverting the resulting waveform, the PWM0B signal is ignored; the PWM0 signal is generated by delaying the rising edge(s) of the PWM0A signal by the value in the **PWM0DBRISE** register (see page 494), and the PWM1 signal is generated by delaying the falling edge(s) of the PWM0A signal by the value in the **PWM0DBFALL** register (see page 495). In a similar manner, PWM2 and PWM3 are produced from the PWM1A and PWM1B signals, and PWM4 and PWM5 are produced from the PWM2A and PWM2B signals.

PWM0 Dead-Band Control (PWM0DBCTL)

Base 0x4002.8000 Offset 0x068

Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		I	1	· · · · ·		r 1	rese	rved						1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	1				reserved								Enable
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0
E	Bit/Field		Nan	ne	Ту	be	Reset	Des	cription							
			reserved RO		С	0x00	Software should not rely on the value of a reserved bit. To pr compatibility with future products, the value of a reserved bit preserved across a read-modify-write operation.									
	0		Enal	ble	R/	W	0	Dea	d-Band (Generate	or Enabl	е				
									-		•	nerator ir passes t				•

Register 43: PWM0 Dead-Band Rising-Edge Delay (PWM0DBRISE), offset 0x06C

Register 44: PWM1 Dead-Band Rising-Edge Delay (PWM1DBRISE), offset 0x0AC

Register 45: PWM2 Dead-Band Rising-Edge Delay (PWM2DBRISE), offset 0x0EC

The **PWM0DBRISE** register contains the number of clock ticks to delay the rising edge of the PWM0A signal when generating the PWM0 signal. If the dead-band generator is disabled through the **PWM0DBCTL** register, the **PWM0DBRISE** register is ignored. If the value of this register is larger than the width of a High pulse on the input PWM signal, the rising-edge delay consumes the entire High time of the signal, resulting in no High time on the output. Care must be taken to ensure that the input High time always exceeds the rising-edge delay. In a similar manner, PWM2 is generated from PWM1A with its rising edge delayed and PWM4 is produced from PWM2A with its rising edge delayed.

PWM0 Dead-Band Rising-Edge Delay (PWM0DBRISE)

Base 0x4002.8000 Offset 0x06C

Type R/W, reset 0x0000.0000

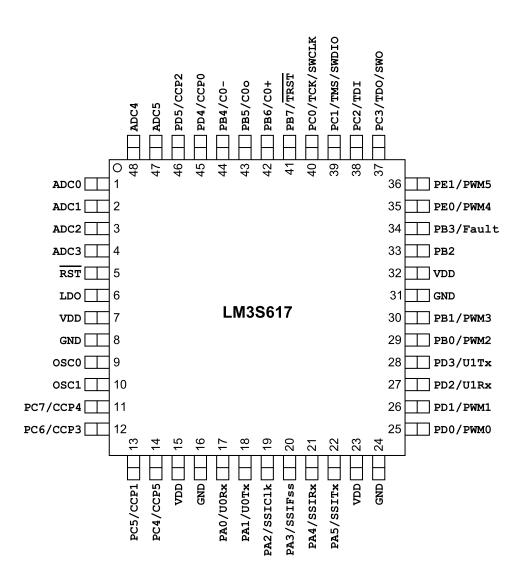
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	I	1	 	[I I	rese	erved					I	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		rese	rved	1						Rise	Delay			1	1	
Туре	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-			Nor		т.		Deest	Dee								
E	Bit/Field		Nam	ie	Ту	pe	Reset	Des	cription							
31:12			reserv	ved	R	0	0x00	com	patibility	with futu	ire prodi	he value ucts, the dify-write	value of	a reserv	•	
	11:0		RiseD	elay	R/	W	0	Dea	Id-Band I	Rise Del	ay					
	The Theodolay					The	number	of clock	ticks to	delay the	e rising e	edge.				

Register 46: PWM0 Dead-Band Falling-Edge-Delay (PWM0DBFALL), offset 0x070

Register 47: PWM1 Dead-Band Falling-Edge-Delay (PWM1DBFALL), offset 0x0B0

Register 48: PWM2 Dead-Band Falling-Edge-Delay (PWM2DBFALL), offset 0x0F0

The **PWM0DBFALL** register contains the number of clock ticks to delay the falling edge of the PWM0A signal when generating the PWM1 signal. If the dead-band generator is disabled, this register is ignored. If the value of this register is larger than the width of a Low pulse on the input PWM signal, the falling-edge delay consumes the entire Low time of the signal, resulting in no Low time on the output. Care must be taken to ensure that the input Low time always exceeds the falling-edge delay. In a similar manner, PWM3 is generated from PWM1A with its falling edge delayed and PWM5 is produced from PWM2A with its falling edge delayed.


PWM0 Dead-Band Falling-Edge-Delay (PWM0DBFALL)

Base 0x4002.8000 Offset 0x070 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 16 19 18 17 reserved RO Туре RO 0 0 0 0 0 0 0 0 0 Reset 0 0 0 0 0 0 0 15 14 13 12 10 9 8 7 6 3 2 0 11 5 1 FallDelay reserved RO RO RO RO R/W Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Name Reset Description Type RO 0x00 Software should not rely on the value of a reserved bit. To provide 31:12 reserved compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 11:0 FallDelay R/W 0x00 Dead-Band Fall Delay The number of clock ticks to delay the falling edge.

15 Pin Diagram

The LM3S617 microcontroller pin diagrams are shown below.

Figure 15-1. 48-Pin QFP Package Pin Diagram

16 Signal Tables

Important: All multiplexed pins are GPIOs by default, with the exception of the five JTAG pins (PB7 and PC[3:0]) which default to the JTAG functionality.

The following tables list the signals available for each pin. Functionality is enabled by software with the **GPIOAFSEL** register. All digital inputs are Schmitt triggered.

- Signals by Pin Number
- Signals by Signal Name
- Signals by Function, Except for GPIO
- GPIO Pins and Alternate Functions
- Connections for Unused Signals

16.1 Signals by Pin Number

Table 16-1. Signals by Pin Number

Pin Number	Pin Name	Pin Type	Buffer Type ^a	Description
1	ADC0	l	Analog	Analog-to-digital converter input 0.
2	ADC1	I	Analog	Analog-to-digital converter input 1.
3	ADC2	I	Analog	Analog-to-digital converter input 2.
4	ADC3	I	Analog	Analog-to-digital converter input 3.
5	RST	I	TTL	System reset input.
6	LDO	-	Power	Low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 μF or greater.
7	VDD	-	Power	Positive supply for I/O and some logic.
8	GND	-	Power	Ground reference for logic and I/O pins.
9	OSC0	I	Analog	Main oscillator crystal input or an external clock reference input.
10	OSC1	0	Analog	Main oscillator crystal output. Leave unconnected when using a single-ended clock source.
11	PC7	I/O	TTL	GPIO port C bit 7.
11	CCP4	I/O	TTL	Capture/Compare/PWM 4.
12	PC6	I/O	TTL	GPIO port C bit 6.
12	CCP3	I/O	TTL	Capture/Compare/PWM 3.
13	PC5	I/O	TTL	GPIO port C bit 5.
15	CCP1	I/O	TTL	Capture/Compare/PWM 1.
14	PC4	I/O	TTL	GPIO port C bit 4.
14	CCP5	I/O	TTL	Capture/Compare/PWM 5.
15	VDD	-	Power	Positive supply for I/O and some logic.
16	GND	-	Power	Ground reference for logic and I/O pins.
17	PA0	I/O	TTL	GPIO port A bit 0.
17	UORx	I	TTL	UART module 0 receive.
18	PA1	I/O	TTL	GPIO port A bit 1.
10	UOTx	0	TTL	UART module 0 transmit.
19	PA2	I/O	TTL	GPIO port A bit 2.
19	SSIClk	I/O	TTL	SSI clock.

Pin Number	Pin Name	Pin Type	Buffer Type ^a	Description	
20	PA3	I/O	TTL	GPIO port A bit 3.	
20 —	SSIFss	I/O	TTL	SSI frame.	
21	PA4	I/O	TTL	GPIO port A bit 4.	
21	SSIRx	I	TTL	SSI receive.	
22	PA5	I/O	TTL	GPIO port A bit 5.	
22	SSITx	0	TTL	SSI transmit.	
23	VDD	-	Power	Positive supply for I/O and some logic.	
24	GND	-	Power	Ground reference for logic and I/O pins.	
25 —	PD0	I/O	TTL	GPIO port D bit 0.	
25	PWM0	0	TTL	PWM 0. This signal is controlled by PWM Generator 0.	
26	PD1	I/O	TTL	GPIO port D bit 1.	
26	PWM1	0	TTL	PWM 1. This signal is controlled by PWM Generator 0.	
27	PD2	I/O	TTL	GPIO port D bit 2.	
27	UlRx	I	TTL	UART module 1 receive.	
29	PD3	I/O	TTL	GPIO port D bit 3.	
28 —	UlTx	0	TTL	UART module 1 transmit.	
20	PB0	I/O	TTL	GPIO port B bit 0.	
29 —	PWM2	0	TTL	PWM 2. This signal is controlled by PWM Generator 1.	
30 —	PB1	I/O	TTL	GPIO port B bit 1.	
30	PWM3	0	TTL	PWM 3. This signal is controlled by PWM Generator 1.	
31	GND	-	Power	Ground reference for logic and I/O pins.	
32	VDD	-	Power	Positive supply for I/O and some logic.	
33	PB2	I/O	TTL	GPIO port B bit 2.	
34 —	PB3	I/O	TTL	GPIO port B bit 3.	
34	Fault	I	TTL	PWM Fault.	
35 —	PEO	I/O	TTL	GPIO port E bit 0.	
35	PWM4	0	TTL	PWM 4. This signal is controlled by PWM Generator 2.	
36 —	PE1	I/O	TTL	GPIO port E bit 1.	
50	PWM5	0	TTL	PWM 5. This signal is controlled by PWM Generator 2.	
	PC3	I/O	TTL	GPIO port C bit 3.	
37	SWO	0	TTL	JTAG TDO and SWO.	
	TDO	0	TTL	JTAG TDO and SWO.	
38 —	PC2	I/O	TTL	GPIO port C bit 2.	
30	TDI	I	TTL	JTAG TDI.	
	PC1	I/O	TTL	GPIO port C bit 1.	
39	SWDIO	I/O	TTL	JTAG TMS and SWDIO.	
	TMS	I/O	TTL	JTAG TMS and SWDIO.	
	PC0	I/O	TTL	GPIO port C bit 0.	
40	SWCLK	I	TTL	JTAG/SWD CLK.	
	TCK	1	TTL	JTAG/SWD CLK.	

Table 16-1. Signals by Pin Number (continued)

Pin Number	Pin Name	Pin Type	Buffer Type ^a	Description
41	PB7	I/O	TTL	GPIO port B bit 7.
41	TRST	I	TTL	JTAG TRST.
42	PB6	I/O	TTL	GPIO port B bit 6.
42	C0+	1	Analog	Analog comparator 0 positive input.
43	PB5	I/O	TTL	GPIO port B bit 5.
40	C00	0	TTL	Analog comparator 0 output.
44	PB4	I/O	TTL	GPIO port B bit 4.
44	C0-	I	Analog	Analog comparator 0 negative input.
45	PD4	I/O	TTL	GPIO port D bit 4.
40	CCP0	I/O	TTL	Capture/Compare/PWM 0.
46	PD5	I/O	TTL	GPIO port D bit 5.
40	CCP2	I/O	TTL	Capture/Compare/PWM 2.
47	ADC5		Analog	Analog-to-digital converter input 5.
48	ADC4	I	Analog	Analog-to-digital converter input 4.

Table 16-1. Signals by Pin Number (continued)

a. The TTL designation indicates the pin has TTL-compatible voltage levels.

16.2 Signals by Signal Name

Table 16-2. Signals by Signal Name

Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description
ADC0	1	I	Analog	Analog-to-digital converter input 0.
ADC1	2	I	Analog	Analog-to-digital converter input 1.
ADC2	3	I	Analog	Analog-to-digital converter input 2.
ADC3	4	I	Analog	Analog-to-digital converter input 3.
ADC4	48	I	Analog	Analog-to-digital converter input 4.
ADC5	47	I	Analog	Analog-to-digital converter input 5.
C0+	42	I	Analog	Analog comparator 0 positive input.
C0-	44	I	Analog	Analog comparator 0 negative input.
COo	43	0	TTL	Analog comparator 0 output.
CCP0	45	I/O	TTL	Capture/Compare/PWM 0.
CCP1	13	I/O	TTL	Capture/Compare/PWM 1.
CCP2	46	I/O	TTL	Capture/Compare/PWM 2.
CCP3	12	I/O	TTL	Capture/Compare/PWM 3.
CCP4	11	I/O	TTL	Capture/Compare/PWM 4.
CCP5	14	I/O	TTL	Capture/Compare/PWM 5.
Fault	34	I	TTL	PWM Fault.
GND	8 16 24 31	-	Power	Ground reference for logic and I/O pins.
LDO	6	-	Power	Low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 μF or greater.

Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description
OSC0	9	I	Analog	Main oscillator crystal input or an external clock reference input.
OSC1	10	0	Analog	Main oscillator crystal output. Leave unconnected when using a single-ended clock source.
PAO	17	I/O	TTL	GPIO port A bit 0.
PA1	18	I/O	TTL	GPIO port A bit 1.
PA2	19	I/O	TTL	GPIO port A bit 2.
PA3	20	I/O	TTL	GPIO port A bit 3.
PA4	21	I/O	TTL	GPIO port A bit 4.
PA5	22	I/O	TTL	GPIO port A bit 5.
PB0	29	I/O	TTL	GPIO port B bit 0.
PB1	30	I/O	TTL	GPIO port B bit 1.
PB2	33	I/O	TTL	GPIO port B bit 2.
PB3	34	I/O	TTL	GPIO port B bit 3.
PB4	44	I/O	TTL	GPIO port B bit 4.
PB5	43	I/O	TTL	GPIO port B bit 5.
PB6	42	I/O	TTL	GPIO port B bit 6.
PB7	41	I/O	TTL	GPIO port B bit 7.
PC0	40	I/O	TTL	GPIO port C bit 0.
PC1	39	I/O	TTL	GPIO port C bit 1.
PC2	38	I/O	TTL	GPIO port C bit 2.
PC3	37	I/O	TTL	GPIO port C bit 3.
PC4	14	I/O	TTL	GPIO port C bit 4.
PC5	13	I/O	TTL	GPIO port C bit 5.
PC6	12	I/O	TTL	GPIO port C bit 6.
PC7	11	I/O	TTL	GPIO port C bit 7.
PD0	25	I/O	TTL	GPIO port D bit 0.
PD1	26	I/O	TTL	GPIO port D bit 1.
PD2	27	I/O	TTL	GPIO port D bit 2.
PD3	28	I/O	TTL	GPIO port D bit 3.
PD4	45	I/O	TTL	GPIO port D bit 4.
PD5	46	I/O	TTL	GPIO port D bit 5.
PE0	35	I/O	TTL	GPIO port E bit 0.
PE1	36	I/O	TTL	GPIO port E bit 1.
PWM0	25	0	TTL	PWM 0. This signal is controlled by PWM Generator 0.
PWM1	26	0	TTL	PWM 1. This signal is controlled by PWM Generator 0.
PWM2	29	0	TTL	PWM 2. This signal is controlled by PWM Generator 1.
PWM3	30	0	TTL	PWM 3. This signal is controlled by PWM Generator 1.
PWM4	35	0	TTL	PWM 4. This signal is controlled by PWM Generator 2.
PWM5	36	0	TTL	PWM 5. This signal is controlled by PWM Generator 2.
RST	5	I	TTL	System reset input.
SSIClk	19	I/O	TTL	SSI clock.

Table 16-2. Signals by Signal Name (continued)

Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description
SSIFss	20	I/O	TTL	SSI frame.
SSIRx	21	I	TTL	SSI receive.
SSITx	22	0	TTL	SSI transmit.
SWCLK	40	I	TTL	JTAG/SWD CLK.
SWDIO	39	I/O	TTL	JTAG TMS and SWDIO.
SWO	37	0	TTL	JTAG TDO and SWO.
TCK	40	I	TTL	JTAG/SWD CLK.
TDI	38	I	TTL	JTAG TDI.
TDO	37	0	TTL	JTAG TDO and SWO.
TMS	39	I/O	TTL	JTAG TMS and SWDIO.
TRST	41	I	TTL	JTAG TRST.
UORx	17	I	TTL	UART module 0 receive.
UOTx	18	0	TTL	UART module 0 transmit.
UlRx	27	I	TTL	UART module 1 receive.
UlTx	28	0	TTL	UART module 1 transmit.
VDD	7	-	Power	Positive supply for I/O and some logic.
	15 23			
	23 32			

Table 16-2. Signals by Signal Name (continued)

a. The TTL designation indicates the pin has TTL-compatible voltage levels.

16.3 Signals by Function, Except for GPIO

Function	Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description
	ADC0	1	I	Analog	Analog-to-digital converter input 0.
	ADC1	2	I	Analog	Analog-to-digital converter input 1.
ADC	ADC2	3	I	Analog	Analog-to-digital converter input 2.
ADC	ADC3	4	I	Analog	Analog-to-digital converter input 3.
	ADC4	48	I	Analog	Analog-to-digital converter input 4.
	ADC5	47	I	Analog	Analog-to-digital converter input 5.
	C0+	42	I	Analog	Analog comparator 0 positive input.
Analog Comparators	C0-	44	I	Analog	Analog comparator 0 negative input.
	C0o	43	0	TTL	Analog comparator 0 output.
	CCP0	45	I/O	TTL	Capture/Compare/PWM 0.
	CCP1	13	I/O	TTL	Capture/Compare/PWM 1.
General-Purpose	CCP2	46	I/O	TTL	Capture/Compare/PWM 2.
Timers	CCP3	12	I/O	TTL	Capture/Compare/PWM 3.
	CCP4	11	I/O	TTL	Capture/Compare/PWM 4.
	CCP5	14	I/O	TTL	Capture/Compare/PWM 5.

Function	Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description
	SWCLK	40	I	TTL	JTAG/SWD CLK.
	SWDIO	39	I/O	TTL	JTAG TMS and SWDIO.
	SWO	37	0	TTL	JTAG TDO and SWO.
	TCK	40	I	TTL	JTAG/SWD CLK.
JTAG/SWD/SWO	TDI	38	I	TTL	JTAG TDI.
	TDO	37	0	TTL	JTAG TDO and SWO.
	TMS	39	I/O	TTL	JTAG TMS and SWDIO.
	TRST	41	I	TTL	JTAG TRST.
	Fault	34	I	TTL	PWM Fault.
	римо	25	0	TTL	PWM 0. This signal is controlled by PWM Generator 0.
	PWM1	26	0	TTL	PWM 1. This signal is controlled by PWM Generator 0.
PWM	PWM2	29	0	TTL	PWM 2. This signal is controlled by PWM Generator 1.
	PWM3	30	0	TTL	PWM 3. This signal is controlled by PWM Generator 1.
	PWM4	35	0	TTL	PWM 4. This signal is controlled by PWM Generator 2.
	PWM5	36	0	TTL	PWM 5. This signal is controlled by PWM Generator 2.
	GND	8 16 24 31	-	Power	Ground reference for logic and I/O pins.
Power	LDO	6	-	Power	Low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 μ F or greater.
	VDD	7 15 23 32	-	Power	Positive supply for I/O and some logic.
	SSIClk	19	I/O	TTL	SSI clock.
SSI	SSIFss	20	I/O	TTL	SSI frame.
551	SSIRx	21	I	TTL	SSI receive.
	SSITx	22	0	TTL	SSI transmit.
Custom Control 8	OSC0	9	Ι	Analog	Main oscillator crystal input or an external clock reference input.
System Control & Clocks	OSC1	10	0	Analog	Main oscillator crystal output. Leave unconnected when using a single-ended clock source.
	RST	5	Ι	TTL	System reset input.
	UORx	17		TTL	UART module 0 receive.
UART	UOTx	18	0	TTL	UART module 0 transmit.
C. III	UlRx	27		TTL	UART module 1 receive.
	UlTx	28	0	TTL	UART module 1 transmit.

Table 16-3. Signals by Function, Except for GPIO (continued)

a. The TTL designation indicates the pin has TTL-compatible voltage levels.

16.4 GPIO Pins and Alternate Functions

 Table 16-4. GPIO Pins and Alternate Functions

IO	Pin Number	Multiplexed Function	Multiplexed Function
PAO	17	UORx	
PA1	18	UOTx	
PA2	19	SSIClk	
PA3	20	SSIFss	
PA4	21	SSIRx	
PA5	22	SSITx	
PB0	29	PWM2	
PB1	30	PWM3	
PB2	33		
PB3	34	Fault	
PB4	44	C0-	
PB5	43	COo	
PB6	42	C0+	
PB7	41	TRST	
PC0	40	TCK	SWCLK
PC1	39	TMS	SWDIO
PC2	38	TDI	
PC3	37	TDO	SWO
PC4	14	CCP5	
PC5	13	CCP1	
PC6	12	CCP3	
PC7	11	CCP4	
PDO	25	PWM0	
PD1	26	PWM1	
PD2	27	UlRx	
PD3	28	UlTx	
PD4	45	CCP0	
PD5	46	CCP2	
PEO	35	PWM4	
PE1	36	PWM5	

16.5 Connections for Unused Signals

Table 16-5 on page 504 show how to handle signals for functions that are not used in a particular system implementation. Two options are shown in the table: an acceptable practice and a preferred practice for reduced power consumption and improved EMC characteristics.

Function	Signal Name	Pin Number	Acceptable Practice	Preferred Practice
ADC	ADC0	1	NC	GNDA
	ADC1	2		
	ADC2	3		
	ADC3	4		
	ADC4	48		
	ADC5	47		
GPIO	All unused GPIOs	-	NC	GND
	OSC0	9	NC	GND
System Control	OSC1	10	NC	NC
	RST	5	Pull up as shown in Figure 5-1 on page 155	Connect through a capacitor to GND as close to pin as possible

Table 16-5. Connections for Unused Signals

17 Operating Characteristics

Table 17-1. Temperature Characteristics

Characteristic	Symbol	Value	Unit
Industrial operating temperature range	T _A	-40 to +85	°C
Extended operating temperature range	T _A	-40 to +105	°C
Unpowered storage temperature range	Τ _S	-65 to +150	٦°

Table 17-2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal resistance (junction to ambient) ^a	Θ _{JA}	50 (48-pin QFP)	°C/W
Junction temperature ^b	TJ	$T_A + (P \bullet \Theta_{JA})$	°C
Maximum junction temperature	T _{JMAX}	115 c	°C

a. Junction to ambient thermal resistance θ_{JA} numbers are determined by a package simulator.

b. Power dissipation is a function of temperature.

c. T_{JMAX} calculation is based on power consumption values and conditions as specified in "Power Specifications".

Table 17-3. ESD Absolute Maximum Ratings^a

Parameter Name	Min	Nom	Мах	Unit
V _{ESDHBM}	-	-	2.0	kV
V _{ESDCDM}	-	-	1.0	kV
V _{ESDMM}	-	-	100	V

a. All Stellaris parts are ESD tested following the JEDEC standard.

18 Electrical Characteristics

18.1 DC Characteristics

18.1.1 Maximum Ratings

The maximum ratings are the limits to which the device can be subjected without permanently damaging the device.

Note: The device is not guaranteed to operate properly at the maximum ratings.

Table 18-1. Maximum Ratings

Characteristic ^a	Symbol	Value	Unit
Supply voltage range (V _{DD})	V _{DD}	0.0 to +3.6	V
Input voltage	V	-0.3 to 5.5	V
Input voltage for a GPIO configured as an analog input	V _{IN}	-0.3 to V _{DD} + 0.3	V
Maximum current for pins, excluding pins operating as GPIOs	l	100	mA
Maximum current for GPIO pins	I	100	mA
Maximum input voltage on a non-power pin when the microcontroller is unpowered	V _{NON}	300	mV

a. Voltages are measured with respect to GND.

Important: This device contains circuitry to protect the inputs against damage due to high-static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (for example, either GND or V_{DD}).

18.1.2 Recommended DC Operating Conditions

Table 18-2. Recommended DC Operating Conditions

Parameter	Parameter Name	Min	Nom	Мах	Unit		
V _{DD}	Supply voltage	3.0	3.3	3.6	V		
V _{IH}	High-level input voltage	2.0	-	5.0	V		
V _{IL}	Low-level input voltage	-0.3	-	1.3	V		
V _{OH}	High-level output voltage	2.4	-	-	V		
V _{OL}	Low-level output voltage	-	-	0.4	V		
	High-level source current, V _{OH} =2.4 V						
lau	2-mA Drive	2.0	-	-	mA		
I _{OH}	4-mA Drive	4.0	-	-	mA		
	8-mA Drive	8.0	-	-	mA		
	Low-level sink current, V_{OL} =0.4 V						
I _{OL}	2-mA Drive	2.0	-	-	mA		
'OL	4-mA Drive	4.0	-	-	mA		
	8-mA Drive	8.0	-	-	mA		

18.1.3 On-Chip Low Drop-Out (LDO) Regulator Characteristics

Table 18-3. LDO Regulator Charac	teristics
----------------------------------	-----------

Parameter	Parameter Name	Min	Nom	Мах	Unit
V _{LDOOUT}	Programmable internal (logic) power supply output value	2.25	-	2.75	V
	Output voltage accuracy	-	2%	-	%
t _{PON}	Power-on time	-	-	100	μs
t _{ON}	Time on	-	-	200	μs
t _{OFF}	Time off	-	-	100	μs
V _{STEP}	Step programming incremental voltage	-	50	-	mV
C _{LDO}	External filter capacitor size for internal power supply	1.0	-	3.0	μF

18.1.4 GPIO Module Characteristics

Table 18-4. GPIO Module DC Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
R _{GPIOPU}	GPIO internal pull-up resistor	50	-	110	kΩ
R _{GPIOPD}	GPIO internal pull-down resistor	55	-	180	kΩ
I _{LKG}	GPIO input leakage current ^a	-	-	2	μA

a. The leakage current is measured with GND or V_{DD} applied to the corresponding pin(s). The leakage of digital port pins is measured individually. The port pin is configured as an input and the pullup/pulldown resistor is disabled.

18.1.5 Power Specifications

The power measurements specified in the tables that follow are run on the core processor using SRAM with the following specifications (except as noted):

- V_{DD} = 3.3 V
- Temperature = 25°C

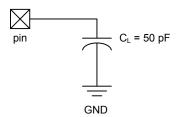
Parameter	Parameter Name	Conditions	Nom	Max	Unit
	Run mode 1 (Flash loop)	LDO = 2.50 V	95	110	mA
		Code = while(1){} executed out of Flash			
		Peripherals = All clock-gated ON			
		System Clock = 50 MHz (with PLL)			
	Run mode 2 (Flash loop)	LDO = 2.50 V	60	75	mA
		Code = while(1){} executed out of Flash			
		Peripherals = All clock-gated OFF			
		System Clock = 50 MHz (with PLL)			
	Run mode 1 (SRAM	LDO = 2.50 V	85	95	mA
	loop)	Code = while(1){} executed in SRAM			
		Peripherals = All clock-gated ON			
		System Clock = 50 MHz (with PLL)			
	Run mode 2 (SRAM	LDO = 2.50 V	50	60	mA
	loop)	Code = while(1){} executed in SRAM			
		Peripherals = All clock-gated OFF			
		System Clock = 50 MHz (with PLL)			
IDD SLEEP	Sleep mode	LDO = 2.50 V	19	22	mA
-		Peripherals = All clock-gated OFF			
		System Clock = 50 MHz (with PLL)			
DD_DEEPSLEEP	Deep-Sleep mode	LDO = 2.25 V	950	1150	μA
_		Peripherals = All OFF			
		System Clock = MOSC/16			

Table 18-5. Detailed Power Specifications

18.1.6 Flash Memory Characteristics

Table 18-6. Flash Memory Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
PE _{CYC}	Number of guaranteed program/erase cycles before failure ^a	10,000	100,000	-	cycles
T _{RET}	Data retention at average operating temperature of 85°C (industrial) or 105°C (extended)	10	-	-	years
T _{PROG}	Word program time	20	-	-	μs
T _{ERASE}	Page erase time	20	-	-	ms
T _{ME}	Mass erase time	-	-	250	ms


a. A program/erase cycle is defined as switching the bits from 1-> 0 -> 1.

18.2 AC Characteristics

18.2.1 Load Conditions

Unless otherwise specified, the following conditions are true for all timing measurements. Timing measurements are for 4-mA drive strength.

Figure 18-1. Load Conditions

18.2.2 Clocks

Table 18-7. Phase Locked Loop (PLL) Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
f _{ref_crystal}	Crystal reference ^a	3.579545	-	8.192	MHz
f _{ref_ext}	External clock reference ^a	3.579545	-	8.192	MHz
f _{pll}	PLL frequency ^b	-	200	-	MHz
T _{READY}	PLL lock time	-	-	0.5	ms

a. The exact value is determined by the crystal value programmed into the XTAL field of the Run-Mode Clock Configuration (RCC) register.

b. PLL frequency is automatically calculated by the hardware based on the XTAL field of the RCC register.

Table 18-8. Clock Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
f _{IOSC}	Internal oscillator frequency	7	12	22	MHz
f _{MOSC}	Main oscillator frequency	1	-	8	MHz
t _{MOSC_per}	Main oscillator period	125	-	1000	ns
f _{ref_crystal_bypass}	Crystal reference using the main oscillator (PLL in BYPASS mode) ^a	1	-	8	MHz
f _{ref_ext_bypass}	External clock reference (PLL in BYPASS mode) ^a	0	-	50	MHz
f _{system_clock}	System clock	0	-	50	MHz

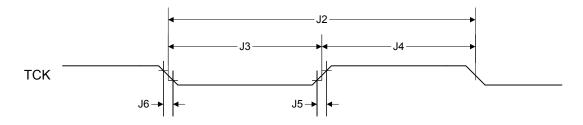
a. The ADC must be clocked from the PLL or directly from a 16.667-MHz clock source to operate properly.

18.2.2.1 System Clock Specifications with ADC Operation

Table 18-9. System Clock Characteristics with ADC Operation

Parameter	Parameter Name	Min	Nom	Мах	Unit
Sysauc	System clock frequency when the ADC module is operating (when PLL is bypassed)	16	-	-	MHz

18.2.3 JTAG and Boundary Scan


Table 18-10. JTAG Characteristics

Parameter No.	Parameter	Parameter Name	Min	Nom	Мах	Unit
J1	f _{тСК}	TCK operational clock frequency	0	-	10	MHz
J2	t _{TCK}	TCK operational clock period	100	-	-	ns

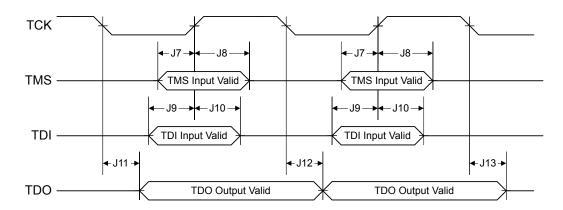

Parameter No.	Parameter	Parameter Name	Min	Nom	Max	Unit
J3	t _{TCK_LOW}	TCK clock Low time	-	t _{TCK} /2	-	ns
J4	t _{TCK_HIGH}	TCK clock High time	-	t _{TCK} /2	-	ns
J5	t _{TCK_R}	TCK rise time	0	-	10	ns
J6	t _{TCK_F}	TCK fall time	0	-	10	ns
J7	t _{TMS_SU}	TMS setup time to TCK rise	20	-	-	ns
J8	t _{TMS_HLD}	TMS hold time from TCK rise	20	-	-	ns
J9	t _{TDI_SU}	TDI setup time to TCK rise	25	-	-	ns
J10	t _{TDI_HLD}	TDI hold time from TCK rise	25	-	-	ns
		2-mA drive		23	35	ns
J11	тск fall to Data Valid from High-Z	4-mA drive	1	15	26	ns
t _{TDO_ZDV}		8-mA drive	1 -	14	25	ns
		8-mA drive with slew rate control	1	18	29	ns
		2-mA drive		21	35	ns
J12	TCK fall to Data	4-mA drive	1	14	25	ns
t _{TDO_DV}	Valid Itom Data	8-mA drive] -	13	24	ns
		8-mA drive with slew rate control	1	18	28	ns
		2-mA drive		9	11	ns
J13	TCK fall to High-Z	4-mA drive	1	7	9	ns
t _{TDO_DVZ}	from Data Valid	8-mA drive] -	6	8	ns
		8-mA drive with slew rate control]	7	9	ns
J14	t _{TRST}	TRST assertion time	100	-	-	ns
J15	t _{TRST_SU}	TRST setup time to TCK rise	10	-	-	ns

Table 18-10. JTAG Characteristics (continued)

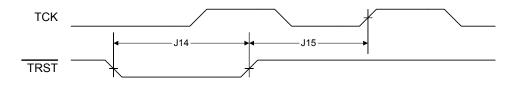

Figure 18-2. JTAG Test Clock Input Timing

Figure 18-4. JTAG TRST Timing

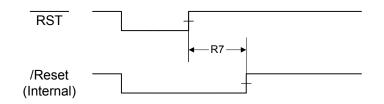
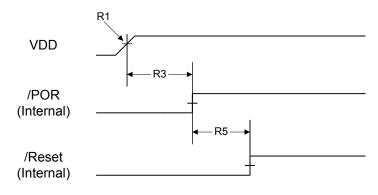
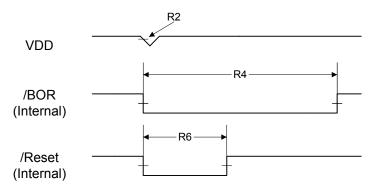
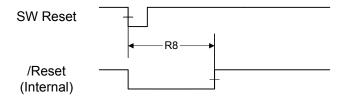

18.2.4 Reset

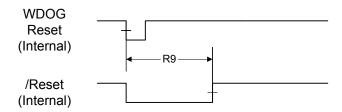
Table 18-11. Reset Characteristics


Parameter No.	Parameter	Parameter Name	Min	Nom	Мах	Unit
R1	V _{TH}	Reset threshold	-	2.0	-	V
R2	V _{BTH}	Brown-Out threshold	2.85	2.9	2.95	V
R3	T _{POR}	Power-On Reset timeout	-	10	-	ms
R4	T _{BOR}	Brown-Out timeout	-	500	-	μs
R5	T _{IRPOR}	Internal reset timeout after POR	15	-	30	ms
R6	T _{IRBOR}	Internal reset timeout after BOR ^a	2.5	-	20	μs
R7	T _{IRHWR}	Internal reset timeout after hardware reset (RST pin)	2.9	-	29	μs
R8	T _{IRSWR}	Internal reset timeout after software-initiated system reset ^a	2.5	-	20	μs
R9	T _{IRWDR}	Internal reset timeout after watchdog reset ^a	2.5	-	20	μs
R10	T _{IRLDOR}	Internal reset timeout after LDO reset ^a	2.5	-	20	μs
R11	T _{VDDRISE}	Supply voltage (V _{DD}) rise time (0 V-3.3 V)	-	-	100	ms

a. 20 * t _{MOSC_per}


Figure 18-5. External Reset Timing (RST)


Figure 18-6. Power-On Reset Timing


Figure 18-7. Brown-Out Reset Timing

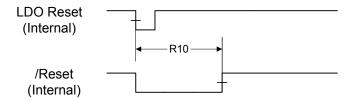

Figure 18-8. Software Reset Timing

Figure 18-9. Watchdog Reset Timing

Figure 18-10. LDO Reset Timing

18.2.5 Sleep Modes

Table 18-12. Sleep Modes AC Characteristics^a

Parameter No	Parameter	Parameter Name	Nom	Max	Unit	
D1	t _{WAKE_S}	Time to wake from interrupt in sleep or deep-sleep mode, not using the PLL	-	-	7	system clocks
D2	t _{WAKE_PLL_S}	Time to wake from interrupt in sleep or deep-sleep mode when using the PLL	-	-	T _{READY}	ms

a. Values in this table assume the IOSC is the clock source during sleep or deep-sleep mode.

18.2.6 General-Purpose I/O (GPIO)

Note: All GPIOs are 5 V-tolerant.

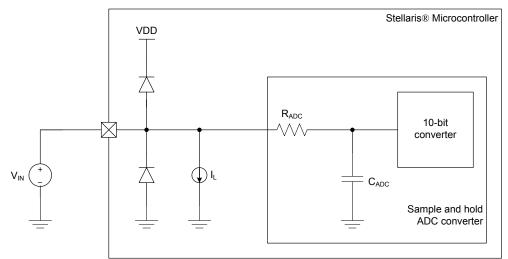
Parameter	Parameter Name	Condition	Min	Nom	Max	Unit
		2-mA drive		17	26	ns
+	GPIO Rise Time (from 20% to 80% of V _{DD})	4-mA drive		9	13	ns
GFION		8-mA drive		6	9	ns
		8-mA drive with slew rate control		10	12	ns
		2-mA drive		17	25	ns
+	GPIO Fall Time (from 80% to 20%	4-mA drive		8	12	ns
GFIOI	of V _{DD})	8-mA drive		6	10	ns
		8-mA drive with slew rate control	1	11	13	ns

Table 18-13. GPIO Characteristics

18.2.7 Analog-to-Digital Converter

Table 18-14. ADC Characteristics^a

Parameter	Parameter Name	Min	Nom	Мах	Unit
	Maximum single-ended, full-scale analog input voltage	-	-	3.0	V
V _{ADCIN}	Minimum single-ended, full-scale analog input voltage	0.0	-	-	V
	Maximum differential, full-scale analog input voltage	-	-	1.5	V
	Minimum differential, full-scale analog input voltage	0.0	-	-	V
Ν	Resolution		10		bits
f _{ADC}	ADC internal clock frequency ^b	14	16.667	18	MHz
t _{ADCCONV}	Conversion time ^c		2		μs
f ADCCONV	Conversion rate ^c		520.833		k samples/s
t _{LT}	Latency from trigger to start of conversion	-	2	-	system clocks
١ _L	ADC input leakage	-	-	±3.0	μΑ
R _{ADC}	ADC equivalent resistance	-	-	10	kΩ
C _{ADC}	ADC equivalent capacitance	0.9	1.0	1.1	pF
EL	Integral nonlinearity error	-	-	±3	LSB
ED	Differential nonlinearity error	-	-	±2	LSB
E _O	Offset error	-	-	+6 ^d	LSB
E _G	Full-scale gain error	-	-	±3	LSB
E _{TS}	Temperature sensor accuracy	-	-	±5	°C


a. The ADC reference voltage is 3.0 V. This reference voltage is internally generated from the 3.3 VDDA supply by a band gap circuit.

b. The ADC must be clocked from the PLL or directly from an external clock source to operate properly.

c. The conversion time and rate scale from the specified number if the ADC internal clock frequency is any value other than 16.667 MHz.

d. The offset error listed above is the conversion result with 0 V applied to the ADC input.

Figure 18-11. ADC Input Equivalency Diagram

Table 18-15. ADC Module Internal Reference Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
V _{REFI}	Internal voltage reference for ADC	-	3.0	-	V
E _{IR}	Internal voltage reference error	-	-	±2.5	%

18.2.8 Synchronous Serial Interface (SSI)

Table 18-16. SSI Characteristics

Parameter No.	Parameter	Parameter Name	Min	Nom	Max	Unit
S1	t _{clk_per}	SSIClk cycle time	2	-	65024	system clocks
S2	t _{clk_high}	SSIClk high time	-	0.5	-	t clk_per
S3	t _{clk_low}	SSIClk low time	-	0.5	-	t clk_per
S4	t _{clkrf}	SSIClk rise/fall time ^a	-	6	10	ns
S5	t _{DMd}	Data from master valid delay time	0	-	1	system clocks
S6	t _{DMs}	Data from master setup time	1	-	-	system clocks
S7	t _{DMh}	Data from master hold time	2	-	-	system clocks
S8	t _{DSs}	Data from slave setup time	1	-	-	system clocks
S9	t _{DSh}	Data from slave hold time	2	-	-	system clocks

a. Note that the delays shown are using 8-mA drive strength.

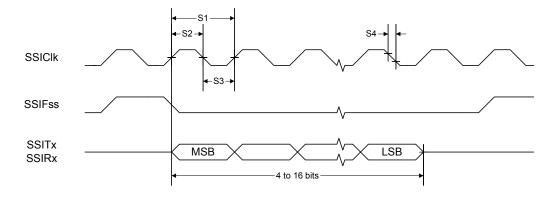
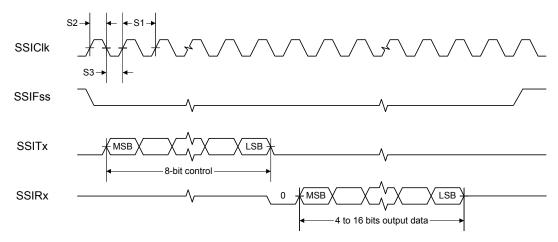



Figure 18-12. SSI Timing for TI Frame Format (FRF=01), Single Transfer Timing Measurement

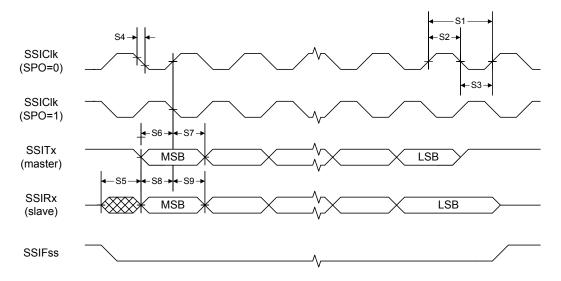


Figure 18-14. SSI Timing for SPI Frame Format (FRF=00), with SPH=1

18.2.9 Analog Comparator

Table 18-17. Analog Comparator Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
V _{OS}	Input offset voltage	-	±10	±25	mV
V _{CM}	Input common mode voltage range	0	-	V _{DD} -1.5	V
C _{MRR}	Common mode rejection ratio	50	-	-	dB
T _{RT}	Response time	-	-	1	μs
T _{MC}	Comparator mode change to Output Valid	-	-	10	μs

Table 18-18. Analog Comparator Voltage Reference Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
R _{HR}	Resolution high range	-	V _{DD} /31	-	LSB
R _{LR}	Resolution low range	-	V _{DD} /23	-	LSB
A _{HR}	Absolute accuracy high range	-	-	±1/2	LSB
A _{LR}	Absolute accuracy low range	-	-	±1/4	LSB

A Serial Flash Loader

A.1 Serial Flash Loader

The Stellaris[®] serial flash loader is a preprogrammed flash-resident utility used to download code to the flash memory of a device without the use of a debug interface. The serial flash loader uses a simple packet interface to provide synchronous communication with the device. The flash loader runs off the crystal and does not enable the PLL, so its speed is determined by the crystal used. The two serial interfaces that can be used are the UART0 and SSI0 interfaces. For simplicity, both the data format and communication protocol are identical for both serial interfaces.

A.2 Interfaces

Once communication with the flash loader is established via one of the serial interfaces, that interface is used until the flash loader is reset or new code takes over. For example, once you start communicating using the SSI port, communications with the flash loader via the UART are disabled until the device is reset.

A.2.1 UART

The Universal Asynchronous Receivers/Transmitters (UART) communication uses a fixed serial format of 8 bits of data, no parity, and 1 stop bit. The baud rate used for communication is automatically detected by the flash loader and can be any valid baud rate supported by the host and the device. The auto detection sequence requires that the baud rate should be no more than 1/32 the crystal frequency of the board that is running the serial flash loader. This is actually the same as the hardware limitation for the maximum baud rate for any UART on a Stellaris device which is calculated as follows:

Max Baud Rate = System Clock Frequency / 16

In order to determine the baud rate, the serial flash loader needs to determine the relationship between its own crystal frequency and the baud rate. This is enough information for the flash loader to configure its UART to the same baud rate as the host. This automatic baud-rate detection allows the host to use any valid baud rate that it wants to communicate with the device.

The method used to perform this automatic synchronization relies on the host sending the flash loader two bytes that are both 0x55. This generates a series of pulses to the flash loader that it can use to calculate the ratios needed to program the UART to match the host's baud rate. After the host sends the pattern, it attempts to read back one byte of data from the UART. The flash loader returns the value of 0xCC to indicate successful detection of the baud rate. If this byte is not received after at least twice the time required to transfer the two bytes, the host can resend another pattern of 0x55, 0x55, and wait for the 0xCC byte again until the flash loader acknowledges that it has received a synchronization pattern correctly. For example, the time to wait for data back from the flash loader should be calculated as at least 2*(20(bits/sync)/baud rate (bits/sec)). For a baud rate of 115200, this time is 2*(20/115200) or 0.35 ms.

A.2.2 SSI

The Synchronous Serial Interface (SSI) port also uses a fixed serial format for communications, with the framing defined as Motorola format with SPH set to 1 and SPO set to 1. See "Frame Formats" on page 409 in the SSI chapter for more information on formats for this transfer protocol. Like the UART, this interface has hardware requirements that limit the maximum speed that the SSI clock can run. This allows the SSI clock to be at most 1/12 the crystal frequency of the board running

the flash loader. Since the host device is the master, the SSI on the flash loader device does not need to determine the clock as it is provided directly by the host.

A.3 Packet Handling

All communications, with the exception of the UART auto-baud, are done via defined packets that are acknowledged (ACK) or not acknowledged (NAK) by the devices. The packets use the same format for receiving and sending packets, including the method used to acknowledge successful or unsuccessful reception of a packet.

A.3.1 Packet Format

All packets sent and received from the device use the following byte-packed format.

```
struct
{
 unsigned char ucSize;
 unsigned char ucCheckSum;
 unsigned char Data[];
};
ucSize
                               The first byte received holds the total size of the transfer including
                               the size and checksum bytes.
ucChecksum
                               This holds a simple checksum of the bytes in the data buffer only.
                               The algorithm is Data[0]+Data[1]+...+ Data[ucSize-3].
                               This is the raw data intended for the device, which is formatted in
Data
                               some form of command interface. There should be ucSize-2
                               bytes of data provided in this buffer to or from the device.
```

A.3.2 Sending Packets

The actual bytes of the packet can be sent individually or all at once; the only limitation is that commands that cause flash memory access should limit the download sizes to prevent losing bytes during flash programming. This limitation is discussed further in the section that describes the serial flash loader command, COMMAND_SEND_DATA (see "COMMAND_SEND_DATA (0x24)" on page 521).

Once the packet has been formatted correctly by the host, it should be sent out over the UART or SSI interface. Then the host should poll the UART or SSI interface for the first non-zero data returned from the device. The first non-zero byte will either be an ACK (0xCC) or a NAK (0x33) byte from the device indicating the packet was received successfully (ACK) or unsuccessfully (NAK). This does not indicate that the actual contents of the command issued in the data portion of the packet were valid, just that the packet was received correctly.

A.3.3 Receiving Packets

The flash loader sends a packet of data in the same format that it receives a packet. The flash loader may transfer leading zero data before the first actual byte of data is sent out. The first non-zero byte is the size of the packet followed by a checksum byte, and finally followed by the data itself. There is no break in the data after the first non-zero byte is sent from the flash loader. Once the device communicating with the flash loader receives all the bytes, it must either ACK or NAK the packet to indicate that the transmission was successful. The appropriate response after sending a NAK to the flash loader is to resend the command that failed and request the data again. If needed, the host may send leading zeros before sending down the ACK/NAK signal to the flash loader, as the

flash loader only accepts the first non-zero data as a valid response. This zero padding is needed by the SSI interface in order to receive data to or from the flash loader.

A.4 Commands

The next section defines the list of commands that can be sent to the flash loader. The first byte of the data should always be one of the defined commands, followed by data or parameters as determined by the command that is sent.

A.4.1 COMMAND_PING (0X20)

This command simply accepts the command and sets the global status to success. The format of the packet is as follows:

```
Byte[0] = 0x03;
Byte[1] = checksum(Byte[2]);
Byte[2] = COMMAND_PING;
```

The ping command has 3 bytes and the value for COMMAND_PING is 0x20 and the checksum of one byte is that same byte, making Byte[1] also 0x20. Since the ping command has no real return status, the receipt of an ACK can be interpreted as a successful ping to the flash loader.

A.4.2 COMMAND_GET_STATUS (0x23)

This command returns the status of the last command that was issued. Typically, this command should be sent after every command to ensure that the previous command was successful or to properly respond to a failure. The command requires one byte in the data of the packet and should be followed by reading a packet with one byte of data that contains a status code. The last step is to ACK or NAK the received data so the flash loader knows that the data has been read.

```
Byte[0] = 0x03
Byte[1] = checksum(Byte[2])
Byte[2] = COMMAND_GET_STATUS
```

A.4.3 COMMAND_DOWNLOAD (0x21)

This command is sent to the flash loader to indicate where to store data and how many bytes will be sent by the COMMAND_SEND_DATA commands that follow. The command consists of two 32-bit values that are both transferred MSB first. The first 32-bit value is the address to start programming data into, while the second is the 32-bit size of the data that will be sent. This command also triggers an erase of the full area to be programmed so this command takes longer than other commands. This results in a longer time to receive the ACK/NAK back from the board. This command should be followed by a COMMAND_GET_STATUS to ensure that the Program Address and Program size are valid for the device running the flash loader.

The format of the packet to send this command is a follows:

```
Byte[0] = 11
Byte[1] = checksum(Bytes[2:10])
Byte[2] = COMMAND_DOWNLOAD
Byte[3] = Program Address [31:24]
Byte[4] = Program Address [23:16]
Byte[5] = Program Address [15:8]
Byte[6] = Program Address [7:0]
Byte[7] = Program Size [31:24]
```

```
Byte[8] = Program Size [23:16]
Byte[9] = Program Size [15:8]
Byte[10] = Program Size [7:0]
```

A.4.4 COMMAND_SEND_DATA (0x24)

This command should only follow a COMMAND_DOWNLOAD command or another COMMAND_SEND_DATA command if more data is needed. Consecutive send data commands automatically increment address and continue programming from the previous location. The caller should limit transfers of data to a maximum 8 bytes of packet data to allow the flash to program successfully and not overflow input buffers of the serial interfaces. The command terminates programming once the number of bytes indicated by the COMMAND_DOWNLOAD command has been received. Each time this function is called it should be followed by a COMMAND_GET_STATUS to ensure that the data was successfully programmed into the flash. If the flash loader sends a NAK to this command, the flash loader does not increment the current address to allow retransmission of the previous data.

```
Byte[0] = 11
Byte[1] = checksum(Bytes[2:10])
Byte[2] = COMMAND_SEND_DATA
Byte[3] = Data[0]
Byte[4] = Data[1]
Byte[5] = Data[2]
Byte[6] = Data[2]
Byte[6] = Data[3]
Byte[7] = Data[4]
Byte[8] = Data[5]
Byte[9] = Data[6]
Byte[10] = Data[7]
```

A.4.5 COMMAND_RUN (0x22)

This command is used to tell the flash loader to execute from the address passed as the parameter in this command. This command consists of a single 32-bit value that is interpreted as the address to execute. The 32-bit value is transmitted MSB first and the flash loader responds with an ACK signal back to the host device before actually executing the code at the given address. This allows the host to know that the command was received successfully and the code is now running.

```
Byte[0] = 7
Byte[1] = checksum(Bytes[2:6])
Byte[2] = COMMAND_RUN
Byte[3] = Execute Address[31:24]
Byte[4] = Execute Address[23:16]
Byte[5] = Execute Address[15:8]
Byte[6] = Execute Address[7:0]
```

A.4.6 COMMAND_RESET (0x25)

This command is used to tell the flash loader device to reset. This is useful when downloading a new image that overwrote the flash loader and wants to start from a full reset. Unlike the COMMAND_RUN command, this allows the initial stack pointer to be read by the hardware and set up for the new code. It can also be used to reset the flash loader if a critical error occurs and the host device wants to restart communication with the flash loader.

Byte[0] = 3
Byte[1] = checksum(Byte[2])
Byte[2] = COMMAND_RESET

The flash loader responds with an ACK signal back to the host device before actually executing the software reset to the device running the flash loader. This allows the host to know that the command was received successfully and the part will be reset.

B Register Quick Reference

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	rtex-M3							<u> </u>	-	-		-			-
KU, LYPE I	R/W, , reset	- (see pay	e 50)				DA	ATA							
								ATA							
R1, type F	R/W, , reset	- (see pag	e 50)												
							DA	ATA							
							DA	ATA							
R2, type F	R/W, , reset	- (see pag	e 50)												
								ATA							
		,	50)				DA	ATA							
R3, type I	R/W, , reset	- (see pag	e 50)					ATA							
R4. type F	R/W, , reset	- (see pag	e 50)												
,	,	(3	,				DA	ATA							
								ATA							
R5, type F	R/W, , reset	- (see pag	e 50)												
							DA	ATA							
							DA	ATA							
R6, type F	R/W, , reset	- (see pag	e 50)												
								ATA							
D7. 6	D001	(- 50)				DA	ATA							
R7, type i	R/W, , reset	- (see pag	e 50)					ATA							
								ATA ATA							
R8, type F	R/W, , reset	- (see pag	e 50)												
			,				DA	ATA							
							DA	ATA							
R9, type F	R/W, , reset	- (see pag	e 50)												
								ATA							
							DA	ATA							
R10, type	R/W, , rese	et - (see pa	ge 50)												
R11, type	R/W, , rese	t - (see na	ge 50)				Di	ATA							
, type	,,1030	(000 pa	30 00/				DA	ATA							
								ATA							
R12, type	R/W, , rese	et - (see pa	ge 50)												
							DA	ATA							
							DA	ATA							
SP, type F	R/W, , reset	- (see pag	e 51)												
								SP							
	DAM	0×FFFF -		an E()			5	8P							
LR, type I	ĸ/W,,reset	UXFFFF.F	FFF (see pa	ge 52)											
								NK NK							
PC, type I	R/W, , reset	- (see nac	ie 53)				LI								
, ., pa	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. (000 pag	,,				F	°C							
								2° 20							

31															
45	30 14	29 13	28 12	27	26	25	24	23 7	22	21	20	19	18 2	17	16
15		-		11	10	9	8	1	6	5	4	3	2	1	0
	Z	C	0000 (see pa	age 54)	ICI	/ 17	THUMB								
N	Z		V I/IT			/ 11	THUMB					ISE	RNUM		
PRIMASK	type R/W		0000.0000 (500 nage 5	3)							101			
	ц, сурс те н ,	, 10001 04			5,										
															PRIMASK
FAULTMA	ASK, type R	/W,,reset	0x0000.000	I IO (see pag	e 59)										
					,										
															FAULTMASH
BASEPRI	, type R/W,	, reset 0x0) 0000.0000 (s	see page 60))										
									BASEPRI						
CONTRO	L, type R/W	, , reset 0x	(0000.0000 ((see page 6	;1)										
														ASP	TMPL
Cortex-	-M3 Perij	oherals													
) Registe	ers											
	E000.E000														
STCTRL,	type R/W, c	offset 0x01	0, reset 0x0	000.0000											
															COUNT
													CLK_SRC	INTEN	ENABLE
STRELOA	AD, type R/\	N, offset 0	x014, reset	0x0000.00	00										
											REL	OAD			
							REL	DAD							
070UDD5															
SICURRE	ENT, type R	/WC, offse	t 0x018, res	et 0x0000.	0000										
SICURRE	ENT, type R	/WC, offse	t 0x018, res	set 0x0000.	0000						CURI	RENT			
			t 0x018, res	set 0x0000.	0000		CURF	RENT			CUR	RENT			
Cortex-	-M3 Perij	oherals						RENT			CUR	RENT			
Cortex- Nested	-M3 Perij Vectore	oherals d Interre			⁰⁰⁰⁰ VIC) Reg	isters		RENT			CURI	RENT			
Cortex- Nested Base 0xE	-M3 Perij Vectore E000.E000	oherals d Interro	upt Cont	roller (N		jisters		RENT			CUR	RENT			
Cortex- Nested Base 0xE	-M3 Perij Vectore E000.E000	oherals d Interro		roller (N		isters					CUR	RENT			
Cortex- Nested Base 0xE	-M3 Perij Vectore E000.E000	oherals d Interro	upt Cont	roller (N		isters	CURF		NT		CUR	RENT			
Cortex- Nested Base 0xE EN0, type	-M3 Perij Vectore E000.E000 R/W, offse	oherals d Interro) t 0x100, re	upt Contr set 0x0000.	roller (N 0000		isters			NT		CUR	RENT			
Cortex- Nested Base 0xE EN0, type	-M3 Perij Vectore E000.E000 R/W, offse	oherals d Interro) t 0x100, re	upt Cont	roller (N 0000		isters	CURF	I T			CUR	RENT			
Cortex- Nested Base 0xE EN0, type	-M3 Perij Vectore E000.E000 R/W, offse	oherals d Interro) t 0x100, re	upt Contr set 0x0000.	roller (N 0000		isters	CURF	T I	NT		CUR	RENT			
Cortex- Nested Base 0xt EN0, type DIS0, type	-M3 Perij Vectore E000.E000 R/W, offse e R/W, offse	oherais d Interro) t 0x100, re et 0x180, re	upt Contr eset 0x0000. eset 0x0000	roller (N .0000		isters	CURF	T I			CUR	RENT			
Cortex- Nested Base 0xt EN0, type DIS0, type	-M3 Perij Vectore E000.E000 R/W, offse e R/W, offse	oherais d Interro) t 0x100, re et 0x180, re	upt Contr set 0x0000.	roller (N .0000		isters	CURF	T T T	NT		CUR	RENT			
Cortex- Nested Base 0xt EN0, type DIS0, type	-M3 Perij Vectore E000.E000 R/W, offse e R/W, offse	oherais d Interro) t 0x100, re et 0x180, re	upt Contr eset 0x0000. eset 0x0000	roller (N .0000		isters	CURF	т Т Т			CUR	RENT			
Cortex- Nested Base 0xt EN0, type DIS0, type PEND0, ty	-M3 Perij Vectore E000.E000 PR/W, offse e R/W, offse	oherals d Interro) t 0x100, re st 0x180, ro fset 0x200	upt Contr set 0x0000. eset 0x0000	roller (N .0000	VIC) Reg	isters	CURF	т Т Т	NT		CUR	RENT			
Cortex- Nested Base 0xt EN0, type DIS0, type PEND0, ty	-M3 Perij Vectore E000.E000 PR/W, offse e R/W, offse	oherals d Interro) t 0x100, re st 0x180, ro fset 0x200	upt Contr eset 0x0000. eset 0x0000	roller (N .0000	VIC) Reg	isters	CURF	т Т Т Т	NT		CUR	RENT			
Cortex- Nested Base 0xt EN0, type DIS0, type PEND0, ty	-M3 Perij Vectore E000.E000 PR/W, offse e R/W, offse	oherals d Interro) t 0x100, re st 0x180, ro fset 0x200	upt Contr set 0x0000. eset 0x0000	roller (N .0000	VIC) Reg	isters		T T T	NT		CUR	RENT			
Cortex- Nested Base 0xE EN0, type DIS0, type PEND0, ty UNPEND0	-M3 Perij Vectore E000.E000 R/W, offse e R/W, offse ype R/W, of 0, type R/W,	oherals d Interre) t 0x100, re et 0x180, re fset 0x200	upt Contr set 0x0000. eset 0x0000 , reset 0x000	roller (N .0000 .0000	VIC) Reg	isters	CURF	T T T	NT		CUR	RENT			
Cortex- Nested Base 0xE EN0, type DIS0, type PEND0, ty UNPEND0	-M3 Perij Vectore E000.E000 R/W, offse e R/W, offse ype R/W, of 0, type R/W,	oherals d Interre) t 0x100, re et 0x180, re fset 0x200	upt Contr set 0x0000. eset 0x0000	roller (N .0000 .0000	VIC) Reg	isters		T T T T T	NT NT		CUR	RENT			
Cortex- Nested Base 0xE EN0, type DIS0, type PEND0, ty UNPEND0	-M3 Perij Vectore E000.E000 R/W, offse e R/W, offse ype R/W, of 0, type R/W,	oherals d Interre) t 0x100, re et 0x180, re fset 0x200	upt Contr set 0x0000. eset 0x0000 , reset 0x000	roller (N .0000 .0000	VIC) Reg	jisters		T T T T T	NT		CUR	RENT			
Cortex- Nested Base 0xt EN0, type DIS0, type PEND0, ty UNPEND0 ACTIVE0,	-M3 Perij Vectore E000.E000 PR/W, offse e R/W, offse e R/W, offse ype R/W, of 0, type R/W, type R/W,	oherais d Interro) t 0x100, re st 0x180, ro fset 0x200 , offset 0x200	upt Contr eset 0x0000 eset 0x0000 , reset 0x00 280, reset 0 0, reset 0x0	roller (N .0000 .0000 .0000 .0000 .0000.0000	VIC) Reg	jisters		T T T T T	NT NT			RENT			
Cortex- Nested Base 0xt EN0, type DIS0, type PEND0, ty UNPEND0 ACTIVE0,	-M3 Perij Vectore E000.E000 PR/W, offse e R/W, offse ype R/W, of 0, type R/W, type RO, o	oherais d Interro) t 0x100, re st 0x180, ro fset 0x200 , offset 0x200	upt Contr set 0x0000. eset 0x0000 , reset 0x000	roller (N .0000 .0000 .0000 .0000 .0000.0000	VIC) Reg	jisters		T T T T T	NT NT NT			RENT			
Cortex- Nested Base 0xt EN0, type DIS0, type PEND0, ty UNPEND0 ACTIVE0,	-M3 Perij Vectore E000.E000 PR/W, offse e R/W, offse e R/W, offse 0, type R/W, of 0, type R/W, type RO, o e R/W, offse INTD	oherais d Interro) t 0x100, re st 0x180, ro fset 0x200 , offset 0x200	upt Contr eset 0x0000 eset 0x0000 , reset 0x00 280, reset 0 0, reset 0x0	roller (N .0000 .0000 .0000 .0000 .0000.0000	VIC) Reg	isters		T T T T T	NT NT NT INTC			RENT			
Cortex- Nested Base 0xE EN0, type DIS0, type PEND0, ty UNPEND0 ACTIVE0, PRI0, type	-M3 Perij Vectore E000.E000 PR/W, offse e R/W, offse e R/W, offse 0, type R/W, of 0, type R/W, type RO, o e R/W, offse INTD INTB	oherals d Intern) t 0x100, re at 0x180, re fset 0x200 fset 0x200 ffset 0x30 ffset 0x30	upt Conti set 0x0000. eset 0x0000 , reset 0x000 280, reset 0x00 0, reset 0x0000	roller (N .0000 .0000 .0000 .0000 .0000	VIC) Reg	isters		T T T T T	NT NT NT			RENT			
Cortex- Nested Base 0xt EN0, type DIS0, type PEND0, ty UNPEND0 ACTIVE0, PRI0, type	-M3 Perij Vectore E000.E000 PR/W, offse e R/W, offse e R/W, offse 0, type R/W, of 0, type R/W, type RO, o e R/W, offse INTD INTB	oherals d Intern) t 0x100, re at 0x180, re fset 0x200 , offset 0x20 ffset 0x200	upt Contr eset 0x0000 eset 0x0000 , reset 0x00 280, reset 0 0, reset 0x0	roller (N .0000 .0000 .0000 .0000 .0000	VIC) Reg	isters		T T T T T	NT NT NT INTC			RENT			

31	30			27				1 22	22		20				16
15	14	29 13	28 12	11	26 10	25 9	24 8	23 7	22 6	21 5	4	19 3	18 2	17 1	0
	e R/W, offse				10	3	0		0	5	4	5	2	1	0
F K12, typ	INTD	st 0x400, 16	Sel 0x0000						INTC						
	INTB								INTA						
DDI2 typ	e R/W, offse	+ 0×40C m	ne ot 0x0000	0000											
11(10, typ)	INTD								INTC						
	INTB								INTO						
PRIA type	e R/W, offse	ot 0x410 rd	set 0x0000	0000											
F (X)4, typ	INTD	, 0, 410, 16	Sel 0x0000						INTC						
	INTB								INTA						
PRIS type	e R/W, offse	ot 0x414 rd	set 0x0000	0000											
1110, 199	INTD								INTC						
	INTB								INTA						
PRI6 type	e R/W, offse	of 0x418 re	set 0x0000	0000											
, i i i i i i i i i i i i i i i i i i i	INTD								INTC						
	INTB								INTA						
PRI7 type	e R/W, offse	at 0x41C m	eset 0x0000	0.0000				1							
,	INTD								INTC						
	INTB								INTA						
SWTRIG	type WO, o	ffset 0xF0), reset 0x0	000.0000				1				I			
,	.,,.		,												
													INTID		
System Base 0xl	-M3 Periț n Control E000.E000	Block (1				
System Base 0xl	n Control	Block (reset 0x410	F.C231						R			00		
System Base 0xl	n Control E000.E000	Block (F.C231	PAF	RTNO			VA	R			CC		
System Base 0xl CPUID, ty	n Control E000.E000 vpe RO, offs	Block () set 0xD00,	reset 0x410 IM	IF.C231 IP		RTNO			VA	R					
System Base 0xl CPUID, ty	n Control E000.E000	Block () set 0xD00,	reset 0x410 IM 04, reset 0x	0000.0000		RTNO		ISRPRE	VA	R					PEND
System Base 0xl CPUID, ty	n Control E000.E000 vpe RO, offs	Block () set 0xD00, offset 0xD	reset 0x410 IM 04, reset 0x	0000.0000	PENDSTSET			ISRPRE		R		VEC		EV	PEND
System Base 0xl CPUID, ty INTCTRL, NMISET	n Control E000.E000 ype RO, offs , type R/W, VECF	Block () set 0xD00, offset 0xD0	reset 0x410 IM 04, reset 0x PENDSV	IF.C231 IP 0000.0000 UNPENDSV RETBASE	PENDSTSET			ISRPRE		R		VEC	RI	EV	PEND
System Base 0xl CPUID, ty INTCTRL, NMISET	n Control E000.E000 /pe RO, offs , type R/W, (Block () set 0xD00, offset 0xD0	reset 0x410 IM 04, reset 0x PENDSV	IF.C231 IP 0000.0000 UNPENDSV RETBASE	PENDSTSET			ISRPRE		R		VEC	RI	EV	PEND
System Base 0xl CPUID, ty INTCTRL, NMISET	n Control E000.E000 ype RO, offs , type R/W, VECF	Block () set 0xD00, offset 0xD0 PEND offset 0xD0	reset 0x410 IM 04, reset 0x0 PENDSV 8, reset 0x0	IF.C231 IP 0000.0000 UNPENDSV RETBASE	PENDSTSET			ISRPRE	ISRPEND	R		VEC	RI	EV	PEND
System Base 0xl CPUID, ty INTCTRL, NMISET VTABLE,	n Control E000.E000 ype RO, offs , type R/W, VECF	Block () eet 0xD00, offset 0xD0 PEND ffset 0xD0 BASE	reset 0x410 IM 04, reset 0x0 PENDSV 8, reset 0x0 OFF	F.C231 IP 0000.0000 UNPENDSV RETBASE 0000.0000 SET	PENDSTSET			ISRPRE	ISRPEND	R		VEC	RI	EV	PEND
System Base 0xl CPUID, ty INTCTRL, NMISET VTABLE,	n Control E000.E000 /pe RO, offs , type R/W, o VECF type R/W, o	Block () eet 0xD00, offset 0xD0 PEND ffset 0xD0 BASE	reset 0x410 IM 04, reset 0x0 PENDSV 8, reset 0x0 OFF	F.C231 IP 0000.0000 UNPENDSV RETBASE 0000.0000 SET	PENDSTSET		VEC	ISRPRE	ISRPEND	R		VEC	RI	EV	PEND
System Base 0xl CPUID, ty INTCTRL, NMISET VTABLE, APINT, ty	n Control E000.E000 (pe RO, offs , type R/W, offs type R/W, offs	Block () eet 0xD00, offset 0xD0 PEND ffset 0xD0 BASE	reset 0x410 IM 04, reset 0x0 PENDSV 8, reset 0x0 OFF	F.C231 IP 0000.0000 UNPENDSV RETBASE 0000.0000 SET	PENDSTSET				ISRPEND	R		VEC	RE	EV	
System Base 0xl CPUID, ty INTCTRL, NMISET VTABLE, APINT, ty ENDIANESS	n Control E000.E000 (pe RO, offs , type R/W, offs type R/W, offs	Block () eet 0xD00, offset 0xD0 PEND offset 0xD0 BASE set 0xD0C,	reset 0x410 IM 04, reset 0x PENDSV 8, reset 0x0 0FF reset 0xFA	IF.C231 IP 00000.0000 UNPENDSV RETBASE 0000.0000 SET .05.0000	PENDSTSET	PENDSTCLR			ISRPEND	R		VEC	RE	VECF	
System Base 0xl CPUID, ty INTCTRL, NMISET VTABLE, APINT, ty ENDIANESS	n Control E000.E000 (pe RO, offs , type R/W, offs type R/W, offs pe R/W, offs	Block () eet 0xD00, offset 0xD0 PEND offset 0xD0 BASE set 0xD0C,	reset 0x410 IM 04, reset 0x PENDSV 8, reset 0x0 0FF reset 0xFA	IF.C231 IP 00000.0000 UNPENDSV RETBASE 0000.0000 SET .05.0000	PENDSTSET	PENDSTCLR			ISRPEND	R		VEC	RE	VECF	
System Base 0xl CPUID, ty INTCTRL, NMISET VTABLE, APINT, ty ENDIANESS	n Control E000.E000 (pe RO, offs , type R/W, offs type R/W, offs pe R/W, offs	Block () eet 0xD00, offset 0xD0 PEND offset 0xD0 BASE set 0xD0C,	reset 0x410 IM 04, reset 0x PENDSV 8, reset 0x0 0FF reset 0xFA	IF.C231 IP 00000.0000 UNPENDSV RETBASE 0000.0000 SET .05.0000	PENDSTSET	PENDSTCLR			ISRPEND	R	SEVONPEND	VEC	RE	EV VECF	
System Base 0xl CPUID, ty INTCTRL, NMISET VTABLE, APINT, ty ENDIANESS SYSCTRL	n Control E000.E000 (pe RO, offs , type R/W, offs type R/W, offs pe R/W, offs	Block () eet 0xD00, offset 0xD0 PEND ffset 0xD0 BASE set 0xD0C, offset 0xE	reset 0x410 IM 04, reset 0x PENDSV 8, reset 0x0 OFF reset 0xFA	F.C231 IP 0000.0000 UNPENDSV RETBASE 0000.0000 SET 05.0000 x0000.0000	PENDSTSET	PENDSTCLR			ISRPEND	R	SEVONPEND	VEC	RI	EV VECF	
System Base 0xl CPUID, ty INTCTRL, NMISET VTABLE, APINT, ty ENDIANESS SYSCTRL	n Control E000.E000 /pe RO, offs , type R/W, o VECF type R/W, offs , type R/W, offs	Block () eet 0xD00, offset 0xD0 PEND ffset 0xD0 BASE set 0xD0C, offset 0xE	reset 0x410 IM 04, reset 0x PENDSV 8, reset 0x0 OFF reset 0xFA	F.C231 IP 0000.0000 UNPENDSV RETBASE 0000.0000 SET 05.0000 x0000.0000	PENDSTSET	PENDSTCLR			ISRPEND	R			RI	EV VECF VECTCLRACT SLEEPEXIT	VECTRES
System Base 0xl CPUID, ty INTCTRL, NMISET VTABLE, VTABLE, APINT, ty ENDIANESS SYSCTRL CFGCTRI	n Control E000.E000 (pe RO, offs , type R/W, offs type R/W, offs 	Block () eiet 0xD00, offset 0xD00 PEND BASE set 0xD0C, offset 0xC	reset 0x410 IM 04, reset 0x PENDSV 8, reset 0x0 OFF reset 0xFA 10, reset 0 014, reset 0	IF.C231 IP 0000.0000 UNPENDSV RETBASE 0000.0000 SET 005.0000 x0000.0000 x0000.0000	PENDSTSET	PENDSTCLR			ISRPEND	R	SEVONPEND	VEC	RI	EV VECF	VECTRES
System Base 0xl CPUID, ty INTCTRL, NMISET VTABLE, VTABLE, APINT, ty ENDIANESS SYSCTRL CFGCTRI	n Control E000.E000 /pe RO, offs , type R/W, o VECF type R/W, offs , type R/W, offs	Block () eiet 0xD00, offset 0xD00 PEND BASE set 0xD0C, offset 0xC	reset 0x410 IM 04, reset 0x PENDSV 8, reset 0x0 OFF reset 0xFA 10, reset 0 014, reset 0	IF.C231 IP 0000.0000 UNPENDSV RETBASE 0000.0000 SET 005.0000 x0000.0000 x0000.0000	PENDSTSET	PENDSTCLR			ISRPEND OFFSET	R			RI	EV VECF VECTCLRACT SLEEPEXIT	VECTRES
System Base 0xl CPUID, ty INTCTRL, NMISET VTABLE, VTABLE, APINT, ty ENDIANESS SYSCTRL CFGCTRI	n Control E000.E000 (pe RO, offs , type R/W, o VECF type R/W, o pe R/W, offs 	Block () eiet 0xD00, offset 0xD00 PEND BASE set 0xD0C, offset 0xC	reset 0x410 IM 04, reset 0x PENDSV 8, reset 0x0 OFF reset 0xFA 10, reset 0 014, reset 0	IF.C231 IP 0000.0000 UNPENDSV RETBASE 0000.0000 SET 005.0000 x0000.0000 x0000.0000	PENDSTSET	PENDSTCLR			USAGE	R			RI	EV VECF VECTCLRACT SLEEPEXIT	VECTRES
System Base 0xl CPUID, ty INTCTRL, NMISET VTABLE, VTABLE, APINT, ty ENDIANESS SYSCTRL CFGCTRI SYSPRI1,	n Control E000.E000 (pe RO, offs vecf type R/W, offs pe R/W, offs pe R/W, offs pe R/W, offs L, type R/W, type R/W, bus	Block () eiet 0xD00, offset 0xD0 PEND BASE set 0xD0C, offset 0xC offset 0xC	reset 0x410 IM 04, reset 0x PENDSV 8, reset 0x0 0FF reset 0xFA 10, reset 0 014, reset 0x 18, reset 0x0	IF.C231 IP 0000.0000 UNPENDSV RETBASE 0000.0000 SSET 05.0000 X0000.0000 X0000.0000	PENDSTSET	PENDSTCLR			ISRPEND OFFSET	R			RI	EV VECF VECTCLRACT SLEEPEXIT	VECTRES
System Base 0xl CPUID, ty INTCTRL, NMISET VTABLE, VTABLE, APINT, ty ENDIANESS SYSCTRL CFGCTRI SYSPRI1,	n Control E000.E000 (pe RO, offs vecc type R/W, offs pe R/W, offs pe R/W, offs c, type R/W, type R/W, bus bus type R/W, offs	Block () eiet 0xD00, offset 0xD0 PEND BASE set 0xD0C, offset 0xC offset 0xC	reset 0x410 IM 04, reset 0x PENDSV 8, reset 0x0 0FF reset 0xFA 10, reset 0 014, reset 0x 18, reset 0x0	IF.C231 IP 0000.0000 UNPENDSV RETBASE 0000.0000 SSET 05.0000 X0000.0000 X0000.0000	PENDSTSET	PENDSTCLR			USAGE	R			RI	EV VECF VECTCLRACT SLEEPEXIT	VECTRES
System Base 0xl CPUID, ty INTCTRL, NMISET VTABLE, VTABLE, APINT, ty ENDIANESS SYSCTRL CFGCTRI SYSPRI1,	n Control E000.E000 (pe RO, offs vecf type R/W, offs pe R/W, offs pe R/W, offs pe R/W, offs L, type R/W, type R/W, bus	Block () eiet 0xD00, offset 0xD0 PEND BASE set 0xD0C, offset 0xC offset 0xC	reset 0x410 IM 04, reset 0x PENDSV 8, reset 0x0 0FF reset 0xFA 10, reset 0 014, reset 0x 18, reset 0x0	IF.C231 IP 0000.0000 UNPENDSV RETBASE 0000.0000 SSET 05.0000 X0000.0000 X0000.0000	PENDSTSET	PENDSTCLR			USAGE	R			RI	EV VECF VECTCLRACT SLEEPEXIT	VECTRES
System Base 0xl CPUID, ty INTCTRL, NMISET VTABLE, APINT, ty ENDIANESS SYSCTRL CFGCTRI SYSPRI1, SYSPRI2,	Control E000.E000 (pe RO, offs VECF type R/W, offs pe R/W, offs , type R/W, offs L, type R/W, offs BUS , type R/W, offs BUS	Block () eet 0xD00, offset 0xD0 END ffset 0xD0 BASE set 0xD0C, offset 0xC offset 0xD	reset 0x410 IM 04, reset 0x PENDSV 8, reset 0x0 OFF reset 0xFA 10, reset 0x 014, reset 0x 18, reset 0x	F.C231 IP 0000.0000 UNPENDSV RETBASE 0000.0000 SET 05.0000 x0000.0000 x0000.0000 0000.0000	PENDSTSET	PENDSTCLR			USAGE	R			RI	EV VECF VECTCLRACT SLEEPEXIT	VECTRES
System Base 0xl CPUID, ty INTCTRL, NMISET VTABLE, APINT, ty ENDIANESS SYSCTRL CFGCTRI SYSPRI1, SYSPRI2,	Control E000.E000 (pe RO, offs vECF type R/W, offs pe R/W, offs , type R/W, offs L, type R/W, offs BUS , type R/W, offs SVC , type R/W, offs	Block () eet 0xD00, offset 0xD0 END ffset 0xD0 BASE set 0xD0C, offset 0xC offset 0xD	reset 0x410 IM 04, reset 0x PENDSV 8, reset 0x0 OFF reset 0xFA 10, reset 0x 014, reset 0x 18, reset 0x	F.C231 IP 0000.0000 UNPENDSV RETBASE 0000.0000 SET 05.0000 x0000.0000 x0000.0000 0000.0000	PENDSTSET	PENDSTCLR			ISRPEND OFFSET	R			RI	EV VECF VECTCLRACT SLEEPEXIT	VECTRESE
System Base 0xl CPUID, ty INTCTRL, NMISET VTABLE, APINT, ty ENDIANESS SYSCTRL CFGCTRI SYSPRI1, SYSPRI2,	Control E000.E000 (pe RO, offs VECF type R/W, offs pe R/W, offs , type R/W, offs L, type R/W, offs BUS , type R/W, offs BUS	Block () set 0xD00, offset 0xD0 BASE set 0xD0C, offset 0xC offset 0xD	reset 0x410 IM 04, reset 0x PENDSV 8, reset 0x0 OFF reset 0xFA 10, reset 0x 014, reset 0x 18, reset 0x	F.C231 IP 0000.0000 UNPENDSV RETBASE 0000.0000 SET 05.0000 x0000.0000 x0000.0000 0000.0000	PENDSTSET	PENDSTCLR			USAGE	R			RI	EV VECF VECTCLRACT SLEEPEXIT	VECTRES

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	25 9	8	7	6	5	4	3	2	17	0
	CTRL, type				-	0	Ū			0			_		
	<u>.</u> , .,po	,											USAGE	BUS	MEM
SVC	BUSP	MEMP	USAGEP	TICK	PNDSV		MON	SVCA				USGA		BUSA	MEMA
FAULTST	AT, type R/V	V1C, offset	t 0xD28, res	set 0x0000.	0000										
						DIV0	UNALIGN					NOCP	INVPC	INVSTAT	UNDEF
BFARV			BSTKE	BUSTKE	IMPRE	PRECISE	IBUS	MMARV			MSTKE	MUSTKE		DERR	IERR
HFAULTS	STAT, type R	/W1C, offs	et 0xD2C, r	reset 0x000	0.0000										
DBG	FORCED														
														VECT	
MMADDR	R, type R/W,	offset 0xD	34, reset -												
							AD								
							AD	DR							
FAULTAD	DR, type R	w, offset 0	IXD38, rese	t -											
							AD AD								
Carter	M2 Dart						AD								
	-M3 Perip			Dogistar											
	y Protect E000.E000		t (MPU)	Register	5										
	E, type RO,		90. reset 0x	(0000.0800											
	_, () po ito,	onset exp									IRE	GION			
			DRE	I GION											SEPARAT
MPUCTR	L, type R/W	, offset 0xI	094, reset 0	x0000.0000)										
													PRIVDEFEN	HFNMIENA	ENABLE
MPUNUM	IBER, type I	R/W, offset	0xD98, res	et 0x0000.0	000	1		L							
														NUMBER	
MPUBAS	E, type R/W	, offset 0xl	D9C, reset	0x0000.000	0										
							AD	DR							
					ADDR						VALID			REGION	
MPUBAS	E1, type R/\	N, offset 0	xDA4, reset	t 0x0000.00	00										
							AD	DR				1			
					ADDR						VALID			REGION	
MPUBAS	E2, type R/\	N, offset 0	kDAC, rese	t 0x0000.00	00										
					ADDR		AD	υK			VALID			REGION	
MDIIDAG	E3 type PA	N offect 0	DB4 rosof								VALID			REGIUN	
WFUDAS	E3, type R/\	w, onset 0)	, reset		00		۸۵	DR							
					ADDR		AD				VALID			REGION	
MPUATT	R, type R/W	offset 0xD	OA0, reset 0)x0000.000									1		
			XN			AP					TEX		S	С	В
				I RD								SIZE	1	-	ENABLE
MPUATT	R1, type R/V	V, offset 0x	DA8, reset	0x0000.000	00										
			XN			AP					TEX		S	С	В
			SF	RD								SIZE		1	ENABLE
MPUATT	R2, type R/V	V, offset 0x	DB0, reset	0x0000.000	00										
			XN			AP					TEX		S	С	В
			SF	RD								SIZE			ENABLE
	P3 type P/V	V. offset 0x	DB8, reset	0x0000.000	00										
MPUATT	NJ, type N/	,													
MPUATTI		,	XN			AP					TEX		S	С	В

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	1 Control 400F.E000														
DID0, typ	e RO, offset	t 0x000, res	et - (see pa	age 165)											
		VER													
			MA	JOR							MIN	IOR			
PBORCT	L, type R/W,	offset 0x0	30, reset 0	x0000.7FFC) (see page	e 167)									
							RTIM							BORIOR	BORWT
LDOPCTI	L, type R/W,	offset 0x03	34, reset 0	x0000.0000	(see page	168)									
													DI		
	DO offect (W050 #000	4 0×0000 0	000 (222 22	an 160)							VA	/DJ		
RIS, type	RO, offset (Jx050, rese	t 0x0000.0	uuu (see pa	ige 169)										
									PLLLRIS	CLRIS	IOFRIS	MOFRIS	LDORIS	BORRIS	PLLFRIS
IMC type	R/W, offset	0x054 res	et 0x0000	0000 (see n	age 170)				TELENIO	OLIVIO	1011110		EDOIG	BORRIO	TEETRIO
inio, type	i i i i i i i i i i i i i i i i i i i	0,004,100		(366 p	uge 170)										
									PLLLIM	CLIM	IOFIM	MOFIM	LDOIM	BORIM	PLLFIM
MISC, typ	e R/W1C, o	ffset 0x058	, reset 0x0	000.0000 (s	see page 1	71)						-		_	
						,									
									PLLLMIS	CLMIS	IOFMIS	MOFMIS	LDOMIS	BORMIS	
RESC, ty	pe R/W, offs	et 0x05C, r	eset - (see	page 172)											1
										LDO	SW	WDT	BOR	POR	EXT
RCC, typ	e R/W, offse	t 0x060, res	set 0x078E	.3AC0 (see	page 173)										
				ACG		SY	SDIV		USESYSDIV		USEPWMDIV		PWMDIV		
		PWRDN	OEN	BYPASS	PLLVER		X	TAL		osc	SRC	IOSCVER	MOSCVER	IOSCDIS	MOSCDIS
PLLCFG,	type RO, of	fset 0x064,	reset - (se	e page 177)										
	DD					F							R		
DSLPCL	(CFG, type	R/W, offset	0x144, res	set 0x0780.0	0000 (see	bage 178)		1							
															IOSC
	a tuno D/M/	offeet 0x1	E0. rooot 0	×0000 0000	(000 0000	170)									1030
CLKVCLI	R, type R/W,	Unset ux is	o, reset o	20000.0000	(see page	179)									
															VERCLR
I DOARS	T, type R/W,	offset 0x16	60. reset 0	x0000.0000	(see page	180)									TERROER
	,,		,			/									
															LDOARST
DID1, typ	e RO, offset	0x004, res	et - (see p	age 181)				1							
	VE			- /	F.	AM					PAR	TNO			
									TEMP		Pł	٢G	ROHS	QL	JAL
DC0, type	e RO, offset	0x008, rese	et 0x001F.(DOOF (see pa	age 183)										
							SRA	AMSZ							
							FLA	SHSZ							
DC1, type	e RO, offset	0x010, rese	ət 0x0011.3	32BF (see p	age 184)										
											PWM				ADC
	MINSY	YSDIV				MAXA	DCSPD	MPU		TEMPSNS	PLL	WDT	SWO	SWD	JTAG
		0.014	et 0x0107./	0013 (see pa	age 186)										
DC2, type	e RO, offset	0x014, rese					COMP0						TIMER2	TIMER1	TIMER0
DC2, type	e RO, offset	0x014, rese					COIVIPU						TIMERZ		
DC2, type	e RO, offset	0x014, rese					COMPU				SSI0		TIMERZ	UART1	UART0
	RO, offset			01FF (see p	page 188)		COMPU				SSI0		TIMERZ		UART0
				01FF (see p	age 188) CCP2	CCP1	CCP0 C00		COMINUS	ADC5 PWM5	SSI0 ADC4 PWM4	ADC3 PWM3	ADC2 PWM2		UART0 ADC0 PWM0

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RO, offset			1			Ŭ		Ū	0			-	•	Ŭ
,-,,					-g,										
											GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
RCGC0, t	ype R/W, of	fset 0x100.	, reset 0x00	1 0000040 (se	e page 191)						I			
			, 		10	·					PWM				ADC
						MAXA	DCSPD					WDT			
SCGC0, t	ype R/W, off	iset 0x110,	, reset 0x00) 0000040 (se	e page 193))						1			
											PWM				ADC
						MAXA	DCSPD					WDT			
DCGC0, t	ype R/W, of	fset 0x120	, reset 0x00	0000040 (se	e page 195)									
											PWM				ADC
												WDT			
RCGC1, t	ype R/W, of	fset 0x104	, reset 0x00	0000000 (se	e page 197)							-		
							COMP0						TIMER2	TIMER1	TIMER0
											SSI0			UART1	UART0
SCGC1, t	ype R/W, off	iset 0x114,	reset 0x00	000000 (se	e page 199)										
							COMP0						TIMER2	TIMER1	TIMER0
											SSI0			UART1	UART0
DCGC1, t	ype R/W, of	fset 0x124	, reset 0x00	0000000 (se	e page 201)									
							COMP0						TIMER2	TIMER1	TIMER0
											SSI0			UART1	UART0
RCGC2, t	ype R/W, of	fset 0x108	, reset 0x00	0000000 (se	e page 203)									
											GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
SCGC2, t	ype R/W, off	set 0x118,	, reset 0x00	0000000 (se	e page 204)										
											GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
DCGC2, t	ype R/W, of	iset 0x128	, reset 0x00	0000000 (se	e page 206)									
											00105	00100	00100	ODIOD	00104
00000 4	DAM of	4 0 - 0 40									GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
SRCRU, t	ype R/W, off	set uxu4u,	, reset uxuu	1000000 (se	e page 208)	1					PWM				400
											PVVIVI	WDT			ADC
SPCP4 +	ype R/W, off	in at 0x044	rooot 0x00		0 0000 200)										
SKCKI, I	ype k/w, on	501 0X044,	, reset uxut		e page 209)		COMP0						TIMER2	TIMER1	TIMER0
							CONF U				SSI0		T IIVILINZ	UART1	UART0
SRCR2 t	ype R/W, off	set 0x048	reset 0x00	000000 (se	e page 210)	1					2010				27.1.10
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				- page 210)										
											GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
Interna	I Memory	,									-	-			
Flash M	lemory C		Register	s (Flash	Control	Offset)									
	400F.D000														
⊢MA, typ	e R/W, offse	t 0x000, re	set 0x0000	.0000											
								OFFORT							
	DAN -#	6 0×00 4		0000				OFFSET							
-мо, тур	e R/W, offse	t UXUU4, re	set ux0000	.0000			P 4	ТА							
							DA								
	- DAM - #	1 0×000		0000			DA	IA							
гмс, тур	e R/W, offse	ι υχυυ8, re	set uxuu00												
							WR					CONT	MEDAOE	EDAGE	MDITE
												COMT	MERASE	ERASE	WRITE

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-CRIS, typ	e RO, offse	et 0x00C, r	eset 0x000	0.0000				1				1			
														PRIS	ARIS
FCIM, type	R/W, offse	et 0x010, re	eset 0x0000	.0000											
														PMASK	AMAS
FCMISC, ty	pe R/W1C	, offset 0x	014, reset 0	x0000.000	0										
														PMISC	AMIS
Internal	Memory	/													
	-	Protectio	on Regis	ters (Sy	stem Co	ontrol Of	fset)								
Base 0x4															
USECRL, t	ype R/W, o	ffset 0x14	0, reset 0x3	51											
											U	SEC			
-	-	rset 0x130,	reset 0x80	UO.FFFF					-						
DB	G								ENABLE						
		in at 0-121	roadt Outon	00 5555			READ_	ENABLE							
FWIPPE, ty	pe r./w, off	5et 0X134,	reset 0x00	UU.FFFF			PPOC								
								ENABLE ENABLE							
GPIO Por GPIO Por	t B base: t C base: t D base:	0x4000.6 0x4000.7	000 000 000												
GPIO Por GPIO Por GPIO Por	t B base: t C base: t D base: t E base:	0x4000.5 0x4000.6 0x4000.7 0x4002.4	000 000 000 000	*0000 000) (see page	230)									
GPIO Por GPIO Por GPIO Por	t B base: t C base: t D base: t E base:	0x4000.5 0x4000.6 0x4000.7 0x4002.4	000 000 000	×0000.000	0 (see page	e 239)		1				1			
GPIO Por GPIO Por GPIO Por	t B base: t C base: t D base: t E base:	0x4000.5 0x4000.6 0x4000.7 0x4002.4	000 000 000 000	x0000.000	0 (see page	239)					D				
GPIO Por GPIO Por GPIO Por GPIODATA	t B base: t C base: t D base: t E base: a, type R/W	0x4000.5 0x4000.6 0x4000.7 0x4002.4 , offset 0x4	000 000 000 000								D	 ATA			
GPIO Por GPIO Por GPIO Por GPIODATA	t B base: t C base: t D base: t E base: a, type R/W	0x4000.5 0x4000.6 0x4000.7 0x4002.4 , offset 0x4	000 000 000 000 000, reset 0								D	 ATA			
GPIO Por GPIO Por GPIO Por GPIODATA	t B base: t C base: t D base: t E base: a, type R/W	0x4000.5 0x4000.6 0x4000.7 0x4002.4 , offset 0x4	000 000 000 000 000, reset 0									ATA			
GPIO Por GPIO Por GPIO Por GPIODATA GPIODIR, 1	t B base: t C base: t D base: t E base: a, type R/W, type R/W, c	0x4000.5 0x4000.6 0x4000.7 0x4002.4 , offset 0x4	000 000 000 000 000, reset 0	0000.0000 (see page 2	240)									
GPIO Por GPIO Por GPIO Por GPIODATA GPIODIR, 1	t B base: t C base: t D base: t E base: a, type R/W, type R/W, c	0x4000.5 0x4000.6 0x4000.7 0x4002.4 , offset 0x4	000 000 000 000, reset 0 0, reset 0x0	0000.0000 (see page 2	240)									
GPIO Por GPIO Por GPIO Por GPIODATA GPIODIR, 1	t B base: t C base: t D base: t E base: a, type R/W, type R/W, c	0x4000.5 0x4000.6 0x4000.7 0x4002.4 , offset 0x4	000 000 000 000, reset 0 0, reset 0x0	0000.0000 (see page 2	240)					C				
GPIO Por GPIO Por GPIODATA GPIODATA GPIODIR, 1	t B base: t C base: t D base: t E base: , type R/W, c type R/W, off	0x4000.5 0x4000.6 0x4000.7 0x4002.4 , offset 0x40 offset 0x404,	000 000 000 000, reset 0 0, reset 0x0	0000.0000 (00.0000 (se	isee page 2	240) 1)					C	DIR			
GPIO Por GPIO Por GPIODATA GPIODATA GPIODIR, 1	t B base: t C base: t D base: t E base: , type R/W, c type R/W, off	0x4000.5 0x4000.6 0x4000.7 0x4002.4 , offset 0x40 offset 0x404,	000 000 000 000, reset 0 0, reset 0x00 reset 0x00	0000.0000 (00.0000 (se	isee page 2	240) 1)						IS			
GPIO Por GPIO Por GPIODATA GPIODIR, 1 GPIOIS, ty GPIOIBE, 1	t B base: t C base: t D base: t E base: , type R/W, c type R/W, off	0x4000.5 0x4000.6 0x4000.7 0x4002.4 offset 0x40 offset 0x40 iset 0x404,	000 000 000 000 000, reset 0 0, reset 0x00 reset 0x00 8, reset 0x0	0000.0000 (s	isee page 2 ee page 24 see page 2	240)						DIR			
GPIO Por GPIO Por GPIODATA GPIODIR, 1 GPIOIS, ty GPIOIBE, 1	t B base: t C base: t D base: t E base: , type R/W, c type R/W, off	0x4000.5 0x4000.6 0x4000.7 0x4002.4 offset 0x40 offset 0x40 iset 0x404,	000 000 000 000, reset 0 0, reset 0x00 reset 0x00	0000.0000 (s	isee page 2 ee page 24 see page 2	240)						IS			
GPIO Por GPIO Por GPIODATA GPIODIR, 1 GPIOIS, ty GPIOIBE, 1	t B base: t C base: t D base: t E base: , type R/W, c type R/W, off	0x4000.5 0x4000.6 0x4000.7 0x4002.4 offset 0x40 offset 0x40 iset 0x404,	000 000 000 000, reset 0 0, reset 0x00 reset 0x00 8, reset 0x0	0000.0000 (s	isee page 2 ee page 24 see page 2	240)					2 2 1 1	IR IR IS BE			
GPIO Por GPIO Por GPIODATA GPIODATA GPIOIR, t GPIOIS, ty GPIOIBE, t	t B base: t C base: t D base: t E base: , type R/W, c pe R/W, off	0x4000.5 0x4000.6 0x4000.7 0x4002.4 offset 0x40 offset 0x40 ffset 0x404, ffset 0x404	000 000 000 000 000, reset 0 0, reset 0x0 reset 0x00 8, reset 0x0	0000.0000 (si 000.0000 (si 0000.0000 (see page 24 see page 24 see page 2	240) 11) 242) 243)					2 2 1 1	IS			
GPIO Por GPIO Por GPIODATA GPIODATA GPIOIR, t GPIOIS, ty GPIOIBE, t	t B base: t C base: t D base: t E base: , type R/W, c pe R/W, off	0x4000.5 0x4000.6 0x4000.7 0x4002.4 offset 0x40 offset 0x40 ffset 0x404, ffset 0x404	000 000 000 000, reset 0 0, reset 0x00 reset 0x00 8, reset 0x0	0000.0000 (si 000.0000 (si 0000.0000 (see page 24 see page 24 see page 2	240) 11) 242) 243)					2 2 1 1	IR IR IS BE			
GPIO Por GPIO Por GPIODATA GPIODATA GPIOIR, t GPIOIS, ty GPIOIBE, t	t B base: t C base: t D base: t E base: , type R/W, c pe R/W, off	0x4000.5 0x4000.6 0x4000.7 0x4002.4 offset 0x40 offset 0x40 ffset 0x404, ffset 0x404	000 000 000 000 000, reset 0 0, reset 0x0 reset 0x00 8, reset 0x0	0000.0000 (si 000.0000 (si 0000.0000 (see page 24 see page 24 see page 2	240) 11) 242) 243)						IR IR IS BE			
GPIO Por GPIO Por GPIODATA GPIODATA GPIOIR, 1 GPIOIS, ty GPIOIE, t GPIOIE, t	t B base: t C base: t D base: t E base: , type R/W, off pe R/W, off ype R/W, of pe R/W, of	0x4000.5 0x4000.6 0x4000.7 0x4002.4 offset 0x40 offset 0x40 ffset 0x404, ffset 0x404, ffset 0x404	000 000 000 000, reset 0 0, reset 0x00 reset 0x00 8, reset 0x00 c, reset 0x00	0000.0000 (si 00000000 (si 0000.0000 (0000.0000 (si	isee page 24 see page 24 see page 2 see page 2 see page 2	240) 1) 242) 243) 243) 243) 244)						I I I I I I I I I I I I I I I I I I I			
GPIO Por GPIO Por GPIODATA GPIODATA GPIOIR, 1 GPIOIS, ty GPIOIE, t GPIOIE, t	t B base: t C base: t D base: t E base: , type R/W, off pe R/W, off ype R/W, of pe R/W, of	0x4000.5 0x4000.6 0x4000.7 0x4002.4 offset 0x40 offset 0x40 ffset 0x404, ffset 0x404, ffset 0x404	000 000 000 000 000, reset 0 0, reset 0x0 reset 0x00 8, reset 0x0	0000.0000 (si 00000000 (si 0000.0000 (0000.0000 (si	isee page 24 see page 24 see page 2 see page 2 see page 2	240) 1) 242) 243) 243) 243) 244)						I I I I I I I I I I I I I I I I I I I			
GPIO Por GPIO Por GPIODATA GPIODATA GPIOIR, 1 GPIOIS, ty GPIOIE, t GPIOIE, t	t B base: t C base: t D base: t E base: , type R/W, off pe R/W, off ype R/W, of pe R/W, of	0x4000.5 0x4000.6 0x4000.7 0x4002.4 offset 0x40 offset 0x40 ffset 0x404, ffset 0x404, ffset 0x404	000 000 000 000, reset 0 0, reset 0x00 reset 0x00 8, reset 0x00 c, reset 0x00	0000.0000 (si 00000000 (si 0000.0000 (0000.0000 (si	isee page 24 see page 24 see page 2 see page 2 see page 2	240) 1) 242) 243) 243) 243) 244)						I I I I I I I I I I I I I I I I I I I			
GPIO Por GPIO Por GPIODATA GPIODATA GPIOIS, ty GPIOIS, ty GPIOIEV, t GPIOIEV, t	t B base: t C base: t D base: t E base: , type R/W, of pe R/W, off ype R/W, of ype R/W, of pe R/W, of	0x4000.5 0x4000.6 0x4000.7 0x4002.4 offset 0x40 offset 0x40 iset 0x404, ifset 0x404 ffset 0x404 ffset 0x404	000 000 000 000, reset 0 0, reset 0x00 reset 0x00 8, reset 0x00 c, reset 0x00	0000.0000 (si 0000.0000 (si 0000.0000 (si 0000.0000 (si	see page 24 see page 24 see page 24 see page 24 see page 24 see page 24	240) 1) 1242) 243) 243) 144) 145)						 IR S S 			
GPIO Por GPIO Por GPIODATA GPIODATA GPIOIS, ty GPIOIS, ty GPIOIEV, t GPIOIEV, t	t B base: t C base: t D base: t E base: , type R/W, of pe R/W, off ype R/W, of ype R/W, of pe R/W, of	0x4000.5 0x4000.6 0x4000.7 0x4002.4 offset 0x40 offset 0x40 iset 0x404, ifset 0x404 ffset 0x404 ffset 0x404	000 000 000 000, reset 0 0, reset 0x00 8, reset 0x00 c, reset 0x00 , reset 0x00	0000.0000 (si 0000.0000 (si 0000.0000 (si 0000.0000 (si	see page 24 see page 24 see page 24 see page 24 see page 24 see page 24	240) 1) 1242) 243) 243) 144) 145)						 IR S S 			
GPIO Por GPIO Por GPIO Por GPIODATA GPIOIA, 1 GPIOIS, ty GPIOIEV, t GPIOIEV, t GPIOIEV, t	t B base: t C base: t D base: t E base: , type R/W, of pe R/W, off ype R/W, of ype R/W, of pe R/W, of	0x4000.5 0x4000.6 0x4000.7 0x4002.4 offset 0x40 offset 0x40 iset 0x404, ifset 0x404 ffset 0x404 ffset 0x404	000 000 000 000, reset 0 0, reset 0x00 8, reset 0x00 c, reset 0x00 , reset 0x00	0000.0000 (si 0000.0000 (si 0000.0000 (si 0000.0000 (si	see page 24 see page 24 see page 24 see page 24 see page 24 see page 24	240) 1) 1242) 243) 243) 144) 145)						 IR S S 			
GPIOIEV, t GPIOIEV, t GPIOIEV, t GPIOIEV, t GPIOIEV, t GPIOIEV, t	t B base: t C base: t D base: t E base: , type R/W, off pe R/W, off pe R/W, off ype R/W, of pe R/W, of ype R/W, of ype R/W, of type R/W, of	0x4000.5 0x4000.6 0x4000.7 0x4002.4 inffset 0x400 inffset 0x404 iffset 0x404 iffset 0x404 iffset 0x404 iffset 0x400 iffset 0x410 iffset 0x414	000 000 000 000, reset 0 0, reset 0x00 reset 0x00 8, reset 0x00 , reset 0x00 , reset 0x00	0000.0000 (si 000.0000 (si 0000.0000 (si 0000.0000 (si 000.0000 (si 0000.0000 (si	see page 24 see page 24	240) 1) 242) 243) 243) 243) 45) 46)						 IR IS IS BE EV EV ME RIS I I I I I I I I I I I I I			
GPIOIEV, t GPIOIEV, t GPIOIEV, t GPIOIEV, t GPIOIEV, t GPIOIEV, t	t B base: t C base: t D base: t E base: , type R/W, off pe R/W, off pe R/W, off ype R/W, of pe R/W, of ype R/W, of ype R/W, of type R/W, of	0x4000.5 0x4000.6 0x4000.7 0x4002.4 inffset 0x400 inffset 0x404 iffset 0x404 iffset 0x404 iffset 0x404 iffset 0x400 iffset 0x410 iffset 0x414	000 000 000 000, reset 0 0, reset 0x00 8, reset 0x00 c, reset 0x00 1, reset 0x00 8, reset 0x00 1, reset 0x00	0000.0000 (si 000.0000 (si 0000.0000 (si 0000.0000 (si 000.0000 (si 0000.0000 (si	see page 24 see page 24	240) 1) 242) 243) 243) 243) 45) 46)						 IR IS IS BE EV EV ME RIS I I I I I I I I I I I I I			

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
GPIOAFS	EL, type R/\	N, offset 0	x420, reset	t - (see page	e 248)										
										1	AFS	SEL			
GPIODR2	R, type R/W	, offset 0x	500, reset (0x0000.00F	F (see pag	je 250)									
											DR	2V2			
GPIODR4	R, type R/W	, offset 0x	504, reset (0x0000.000	0 (see pag	je 251)									
											DR	2V4			
GPIODR8	R, type R/W	, offset 0x	508, reset (0x0000.000	0 (see pag	je 252)									
000000			00			. 050)					DR	(V8			
GPIOODR	, type R/W,	onset 0x5	oc, reset o	20000.0000	l (see page	203)									
											0	DE			
GPIOPUR	, type R/W,	offset 0x5	10. reset 0x		(see page	254)		1				-			
	, .,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(page	,									
											Pl	JE			
GPIOPDR	, type R/W,	offset 0x5	14, reset 0x	k0000.0000	(see page	255)		1							
										1	P	DE			
GPIOSLR	, type R/W,	offset 0x5 [,]	18, reset 0x	(0000.0000	(see page	256)									
											SF	٦L			
GPIODEN	, type R/W,	offset 0x5	1C, reset 0	x0000.00FF	(see page	e 257)									
											DE	EN			
GPIOPeri	phID4, type	RO, offset	t 0xFD0, re:	set 0x0000	.0000 (see	page 258)									
											DI	D4			
		DO	0.504		0000 (PI	D4			
GPIOPeri	ohID5, type	RO, offset	UXFD4, res	set uxuuuu	.0000 (see	page 259)									
											PI	D5			
GPIOPeri	phID6, type	RO. offset	t 0xFD8, re:	set 0x0000	.0000 (see	page 260)									
						,									
											PI	D6			
GPIOPeri	phID7, type	RO, offset	t 0xFDC, re	set 0x0000	.0000 (see	page 261)		1							
-															
											PI	D7			
GPIOPeri	phID0, type	RO, offset	t 0xFE0, res	set 0x0000.	.0061 (see	page 262)									
											PI	D0			
GPIOPeri	phID1, type	RO, offset	t 0xFE4, res	set 0x0000.	.0000 (see	page 263)									
											PI	D1			
GPIOPeri	phID2, type	RO, offset	t 0xFE8, res	set 0x0000.	.0018 (see	page 264)									
												2			
CDICD		DO			0004 /	none 005)					PI	D2			
GPIOPeri	ohID3, type	RU, offset	UXFEC, re	set 0x0000	.vuu1 (see	page 265)									
											DI	D3			
											FI	55			

04															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
GPIOPCell	IID0, type R	O, offset 0	xFF0, reset	t 0x0000.00	00D (see pa	age 266)									
											CI	D0			
GPIOPCell	IID1, type R	O, offset 0	xFF4, reset	t 0x0000.00	0F0 (see pa	age 267)									
											CI	D1			
GPIOPCell	IID2 type R	O offset (xFF8, reset	t 0x0000 00	005 (see na	age 268)									
0110100					(000 pc	.go 200)									
											CI	D2			
CDIODCAI		0 offeet (4.0.0000.00	001 (000 0	260)					01	02			
GPIOPCell	прз, туре к	O, onset u	xFFC, rese		UB1 (see p	age 269)									
											CI	D3			
Timer0 ba Timer1 ba Timer2 ba	-Purpos ase: 0x400 ase: 0x400 ase: 0x400)3.0000)3.1000)3.2000													
3PTMCFG	i, type R/W,	offset 0x0	00, reset 0	x0000.0000	(see page	282)									
														GPTMCFG	
GPTMTAM	IR, type R/V	V, offset 0x	004, reset	0x0000.000	00 (see pag	je 283)									
												TAAMS	TACMR	TAI	MR
GPTMTBM	IR, type R/V	N, offset 0	(008, reset	0x0000.000	00 (see pag	ge 285)									
												TBAMS	TBCMR	ТВ	MR
GPTMCTI	type R/W	offeet 0v0	0C reset 0	×0000 0000		287)						TBAMS	TBCMR	TBI	MR
GPTMCTL	, type R/W,	offset 0x0	0C, reset 0x	×0000.0000) (see page	287)						TBAMS	TBCMR	TBI	MR
			OC, reset 0				TREN		TADWMI	TAOTE	PTCEN				
	TBPWML	TBOTE		TBEV	/ENT	TBSTALL	TBEN		TAPWML	TAOTE	RTCEN		TBCMR	TASTALL	
	TBPWML	TBOTE	0C, reset 0x	TBEV	/ENT	TBSTALL	TBEN		TAPWML	TAOTE	RTCEN				
	TBPWML	TBOTE		TBEV	/ENT (see page	TBSTALL 290)			TAPWML	TAOTE	RTCEN	TAE	/ENT	TASTALL	TAEN
GPTMIMR,	TBPWML , type R/W,	TBOTE offset 0x0	18, reset 0x	TBEV <0000.0000	/ENT (see page CBEIM	TBSTALL 290) CBMIM	TBEN		TAPWML	TAOTE	RTCEN				TAEN
GPTMIMR,	TBPWML , type R/W,	TBOTE offset 0x0		TBEV <0000.0000	/ENT (see page CBEIM	TBSTALL 290) CBMIM			TAPWML	TAOTE	RTCEN	TAE	/ENT	TASTALL	TAEN
GPTMIMR,	TBPWML , type R/W,	TBOTE offset 0x0	18, reset 0x	TBEV <0000.0000	/ENT (see page CBEIM	TBSTALL 290) CBMIM			TAPWML	TAOTE	RTCEN	TAE	/ENT	TASTALL	TAEN
GPTMIMR,	TBPWML , type R/W,	TBOTE offset 0x0	18, reset 0x	TBEV <0000.0000	/ENT (see page CBEIM	TBSTALL 290) CBMIM 292)			TAPWML	TAOTE	RTCEN	TAE	/ENT	TASTALL	TAEN
gptmimr, gptmris,	TBPWML , type R/W, type RO, o	TBOTE offset 0x0	18, reset 0x	TBEV «0000.0000 0000.0000 (/ENT (see page CBEIM (see page 2 CBERIS	TBSTALL 290) CBMIM 292) CBMRIS	TBTOIM		TAPWML	TAOTE	RTCEN	TAE	/ENT CAEIM	TASTALL	TAEN
gptmimr, gptmris,	TBPWML , type R/W, type RO, o	TBOTE offset 0x0	18, reset 0x C, reset 0x0	TBEV «0000.0000 0000.0000 (/ENT (see page CBEIM (see page 2 CBERIS	TBSTALL 290) CBMIM 292) CBMRIS	TBTOIM		TAPWML	TAOTE	RTCEN	TAE	/ENT CAEIM	TASTALL	TAEN
gptmimr, gptmris,	TBPWML , type R/W, type RO, o	TBOTE offset 0x0	18, reset 0x C, reset 0x0	TBEV «0000.0000 0000.0000 (/ENT (see page CBEIM (see page 2 CBERIS (see page 2	TBSTALL 290) CBMIM 292) CBMRIS 293)	TBTOIM		TAPWML	TAOTE	RTCEN	RTCIM	ZAEIM CAEIS	TASTALL	TAEN
gptmimr, gptmris, gptmmis,	TBPWML , type R/W, type RO, c	TBOTE offset 0x01 ffset 0x010	18, reset 0x C, reset 0x0	TBEV (0000.0000 0000.0000 (0000.0000 (/ENT (see page CBEIM (see page 2 CBERIS see page 2 CBEMIS	TBSTALL 290) CBMIM 292) CBMRIS 293) CBMMIS	TBTOIM		TAPWML	TAOTE	RTCEN	RTCIM	ZAEIM CAEIS	CAMIM	TAEN
gptmimr, gptmris, gptmmis,	TBPWML , type R/W, type RO, c	TBOTE offset 0x01 ffset 0x010	18, reset 0x C, reset 0x0 0, reset 0x0	TBEV (0000.0000 0000.0000 (0000.0000 (/ENT (see page CBEIM (see page 2 CBERIS see page 2 CBEMIS	TBSTALL 290) CBMIM 292) CBMRIS 293) CBMMIS	TBTOIM		TAPWML	TAOTE	RTCEN	RTCIM	ZAEIM CAEIS	CAMIM	TAEN
gptmimr, gptmris, gptmmis,	TBPWML , type R/W, type RO, c	TBOTE offset 0x01 ffset 0x010	18, reset 0x C, reset 0x0 0, reset 0x0	TBEV (0000.0000 0000.0000 (0000.0000 (0000.0000 (/ENT (see page CBEIM (see page 2 CBERIS see page 2 CBEMIS) (see page	TBSTALL 290) CBMIM 292) CBMRIS 293) CBMMIS	TBTOIM		TAPWML	TAOTE	RTCEN	TAE' RTCIM RTCRIS RTCMIS	CAEIM CAEIM CAERIS CAEMIS	CAMIM	TAEN TATOIN TATOR TATOR
GPTMIMR, GPTMRIS, GPTMMIS, GPTMICR,	TBPWML , type R/W, type RO, o , type RO, o	TBOTE offset 0x0 ffset 0x010 offset 0x02 offset 0x02	18, reset 0x C, reset 0x0 0, reset 0x0 24, reset 0	TBEV (0000.0000 0000.0000 (0000.0000 (0000.0000 (/ENT (see page CBEIM (see page 2 CBERIS See page 2 CBEMIS) (see page CBECINT	CBMMIS 290) CBMIM 2922) CBMRIS 293) 294) CBMCINT	TBTOIM		TAPWML	TAOTE	RTCEN	TAE' RTCIM RTCRIS RTCMIS	CAEIM CAEIM CAERIS CAEMIS	CAMRIS	TAEN TATOIN TATOR TATOR
GPTMIMR, GPTMRIS, GPTMMIS, GPTMICR,	TBPWML , type R/W, type RO, o , type RO, o	TBOTE offset 0x0 ffset 0x010 offset 0x02 offset 0x02	18, reset 0x C, reset 0x0 0, reset 0x0	TBEV (0000.0000 0000.0000 (0000.0000 (0000.0000 (/ENT (see page CBEIM (see page 2 CBERIS See page 2 CBEMIS) (see page CBECINT	CBMMIS 290) CBMIM 2922) CBMRIS 293) 294) CBMCINT	TBTOIM TBTORIS TBTOMIS TBTOMIS	RH	TAPWML	TAOTE	RTCEN	TAE' RTCIM RTCRIS RTCMIS	CAEIM CAEIM CAERIS CAEMIS	CAMRIS	TAEN TATOIN TATOR TATOR
GPTMIMR, GPTMRIS, GPTMMIS, GPTMICR,	TBPWML , type R/W, type RO, o , type RO, o	TBOTE offset 0x0 ffset 0x010 offset 0x02 offset 0x02	18, reset 0x C, reset 0x0 0, reset 0x0 24, reset 0	TBEV (0000.0000 0000.0000 (0000.0000 (0000.0000 (/ENT (see page CBEIM (see page 2 CBERIS See page 2 CBEMIS) (see page CBECINT	CBMMIS 290) CBMIM 2922) CBMRIS 293) 294) CBMCINT	TBTOIM TBTORIS TBTOMIS TBTOCINT		TAPWML	TAOTE	RTCEN	TAE' RTCIM RTCRIS RTCMIS	CAEIM CAEIM CAERIS CAEMIS	CAMRIS	TAEN TATOIN TATOR TATOR
gptminr, gptmris, gptmicr, gptmicr,	TBPWML type R/W, type RO, o type RO, c type W1C, R, type R/M	TBOTE offset 0x01 ffset 0x01 ffset 0x02 offset 0x02 v, offset 0x0	18, reset 0x C, reset 0x0 0, reset 0x0 24, reset 0x0 c028, reset	TBEV (0000.0000 0000.0000 (0000.0000 (0000.00000 (0000.0000000000	/ENT (see page CBEIM (see page 2 CBERIS (see page CBECINT FF (see page	TBSTALL 290) CBMIM 292) CBMRIS 293) CBMRIS 294) CBMCINT ge 296)	TBTOIM TBTORIS TBTOMIS TBTOMIS		TAPWML	TAOTE	RTCEN	TAE' RTCIM RTCRIS RTCMIS	CAEIM CAEIM CAERIS CAEMIS	CAMRIS	TAEN TATOIN TATOR TATOR
gptminr, gptmris, gptmicr, gptmicr,	TBPWML type R/W, type RO, o type RO, c type W1C, R, type R/M	TBOTE offset 0x01 ffset 0x01 ffset 0x02 offset 0x02 v, offset 0x0	18, reset 0x C, reset 0x0 0, reset 0x0 24, reset 0	TBEV (0000.0000 0000.0000 (0000.0000 (0000.00000 (0000.0000000000	/ENT (see page CBEIM (see page 2 CBERIS (see page CBECINT FF (see page	TBSTALL 290) CBMIM 292) CBMRIS 293) CBMRIS 294) CBMCINT ge 296)	TBTOIM TBTORIS TBTOMIS TBTOCINT		TAPWML	TAOTE	RTCEN	TAE' RTCIM RTCRIS RTCMIS	CAEIM CAEIM CAERIS CAEMIS	CAMRIS	TAEN TATOIN TATOR TATOR
gptminr, gptmris, gptmicr, gptmicr,	TBPWML type R/W, type RO, o type RO, c type W1C, R, type R/M	TBOTE offset 0x01 ffset 0x01 ffset 0x02 offset 0x02 v, offset 0x0	18, reset 0x C, reset 0x0 0, reset 0x0 24, reset 0x0 c028, reset	TBEV (0000.0000 0000.0000 (0000.0000 (0000.00000 (0000.0000000000	/ENT (see page CBEIM (see page 2 CBERIS (see page CBECINT FF (see page	TBSTALL 290) CBMIM 292) CBMRIS 293) CBMRIS 294) CBMCINT ge 296)	TBTORIS TBTORIS TBTOMIS TBTOCINT TAIL TAIL	LRL	TAPWML	TAOTE	RTCEN	TAE' RTCIM RTCRIS RTCMIS	CAEIM CAEIM CAERIS CAEMIS	CAMRIS	TAEN TATOIN TATOR TATOR
GPTMINR, GPTMRIS, GPTMICR, GPTMICR, GPTMTAIL	TBPWML , type R/W, type RO, c , type RO, c , type W1C, R, type R/M R, type R/M	TBOTE offset 0x01 ffset 0x011 offset 0x02 offset 0x02 V, offset 0x0	18, reset 0x C, reset 0x0 0, reset 0x0 24, reset 0x (028, reset (022C, reset	TBEV (0000.0000 0000.0000 (0000.0000 (0000.000 (0000.000 (0000.000 (0000.0000 (0000.0000 (0000.000 (0000.000 (0000.000 (0000.0000 (0000.000 (0000.000 (0000.0000 (0000.000 (0000.0000 (0000.000 (0000.0000 (0000.0000 (0000.0000 (0000.000 (0000.0000 (0000.0000 (0000.0000 (0000.0000 (0000.000 (0000.0000 (0000.000 (0000.0000 (0000.0000 (0000.000 (0000.0000 (0000.000 (0000.0000 (0000.000 (0000.000 (0000.000 (0000.000 (0000.0000 (0000.0000 (0000.0000 (0000.0000 (0000.0000 (0000.000 (0000.000 (0000.0000 (0000.000 (0000.0000 (0000.00000000 (000000000 (000000000 (00000	/ENT (see page CBEIM (see page 2 CBERIS see page 2 CBEMIS) (see page CBECINT FF (see pa	CBMRIS 290) CBMIM 292) CBMRIS 293) CBMMIS 294) CBMCINT ge 296) ge 297)	TBTOIM TBTORIS TBTOMIS TBTOCINT TBTOCINT TAIL TAIL TAIL	LRL	TAPWML	TAOTE	RTCEN	TAE' RTCIM RTCRIS RTCMIS	CAEIM CAEIM CAERIS CAEMIS	CAMRIS	TAEN TATOIN TATORI TATORI
GPTMINR, GPTMRIS, GPTMICR, GPTMICR, GPTMTAIL	TBPWML , type R/W, type RO, c , type RO, c , type W1C, R, type R/M R, type R/M	TBOTE offset 0x01 ffset 0x011 offset 0x02 offset 0x02 V, offset 0x0	18, reset 0x C, reset 0x0 0, reset 0x0 24, reset 0x0 c028, reset	TBEV (0000.0000 0000.0000 (0000.0000 (0000.000 (0000.000 (0000.000 (0000.0000 (0000.0000 (0000.000 (0000.000 (0000.000 (0000.0000 (0000.000 (0000.000 (0000.0000 (0000.000 (0000.0000 (0000.000 (0000.0000 (0000.0000 (0000.0000 (0000.000 (0000.0000 (0000.0000 (0000.0000 (0000.0000 (0000.000 (0000.0000 (0000.000 (0000.0000 (0000.0000 (0000.000 (0000.0000 (0000.000 (0000.0000 (0000.000 (0000.000 (0000.000 (0000.000 (0000.0000 (0000.0000 (0000.0000 (0000.0000 (0000.0000 (0000.000 (0000.000 (0000.0000 (0000.000 (0000.0000 (0000.00000000 (000000000 (000000000 (00000	/ENT (see page CBEIM (see page 2 CBERIS see page 2 CBEMIS) (see page CBECINT FF (see pa	CBMRIS 290) CBMIM 292) CBMRIS 293) CBMMIS 294) CBMCINT ge 296) ge 297)	TBTOIM TBTORIS TBTOMIS TBTOCINT TBTOCINT TAIL TAIL TAIL	LRL	TAPWML	TAOTE	RTCEN	TAE' RTCIM RTCRIS RTCMIS	CAEIM CAEIM CAERIS CAEMIS	CAMRIS	TAEN TATOIN TATOR TATOR
GPTMIMR, GPTMRIS, GPTMICR, GPTMICR, GPTMTAIL	TBPWML , type R/W, type RO, c , type RO, c , type W1C, R, type R/M R, type R/M	TBOTE offset 0x01 ffset 0x011 offset 0x02 offset 0x02 V, offset 0x0	18, reset 0x C, reset 0x0 0, reset 0x0 24, reset 0x (028, reset (022C, reset	TBEV (0000.0000 0000.0000 (0000.0000 (0000.000 (0000.000 (0000.000 (0000.0000 (0000.0000 (0000.000 (0000.000 (0000.000 (0000.0000 (0000.000 (0000.000 (0000.0000 (0000.000 (0000.0000 (0000.000 (0000.0000 (0000.0000 (0000.0000 (0000.000 (0000.0000 (0000.0000 (0000.0000 (0000.0000 (0000.000 (0000.0000 (0000.000 (0000.0000 (0000.0000 (0000.000 (0000.0000 (0000.000 (0000.0000 (0000.000 (0000.000 (0000.000 (0000.000 (0000.0000 (0000.0000 (0000.0000 (0000.0000 (0000.0000 (0000.000 (0000.000 (0000.0000 (0000.000 (0000.0000 (0000.00000000 (000000000 (000000000 (00000	/ENT (see page CBEIM (see page 2 CBERIS see page 2 CBEMIS) (see page CBECINT FF (see pa	CBMRIS 290) CBMIM 292) CBMRIS 293) CBMMIS 294) CBMCINT ge 296) ge 297)	TBTOIM TBTORIS TBTOMIS TBTOCINT TBTOCINT TAIL TAIL TAIL	LRL	TAPWML I <td>TAOTE</td> <td>RTCEN</td> <td>TAE' RTCIM RTCRIS RTCMIS</td> <td>CAEIM CAEIM CAERIS CAEMIS</td> <td>CAMRIS</td> <td>TAEN TATOIN TATOR TATOR</td>	TAOTE	RTCEN	TAE' RTCIM RTCRIS RTCMIS	CAEIM CAEIM CAERIS CAEMIS	CAMRIS	TAEN TATOIN TATOR TATOR
GPTMIMR, GPTMRIS, GPTMICR, GPTMICR, GPTMTAIL	TBPWML , type R/W, type RO, c , type RO, c , type W1C, R, type R/M R, type R/M	TBOTE offset 0x01 ffset 0x011 offset 0x02 offset 0x02 V, offset 0x0	18, reset 0x C, reset 0x0 0, reset 0x0 24, reset 0x (028, reset (022C, reset	TBEV (0000.0000 0000.0000 (0000.0000 (0000.000 (0000.000 (0000.000 (0000.0000 (0000.000 (0000.0000 (0000.000 (0000.000 (0000.0000 (0000.000 (0000.0000 (/ENT (see page CBEIM (see page 2 CBERIS see page 2 CBEMIS) (see page CBECINT FF (see pa	CBMRIS 290) CBMIM 292) CBMRIS 293) CBMMIS 294) CBMCINT ge 296) ge 297)	TBTOIM TBTORIS TBTOMIS TBTOCINT TBTOCINT TAIL TAIL TAIL TAIL	LRL LRL	TAPWML Image: Control of the second	TAOTE	RTCEN	TAE' RTCIM RTCRIS RTCMIS	CAEIM CAEIM CAERIS CAEMIS	CAMRIS	TAEN TATOIN TATOR TATOR
GPTMIMR, GPTMRIS, GPTMICR, GPTMTAIL GPTMTBIL	TBPWML , type R/W, type RO, o , type RO, o ,	TBOTE offset 0x01 iffset 0x011 offset 0x02 offset 0x02 offset 0x00 V, offset 0x0 V, offset 0x0	18, reset 0x C, reset 0x0 0, reset 0x0 24, reset 0x (028, reset (022C, reset	TBEV (0000.0000 0000.0000 (0000.0000 (0000.000 (0000.0000 (0000000 (0000000 (000000000 (0000000000	/ENT (see page CBEIM (see page 2 CBERIS see page 2 CBEMIS (see page CBECINT FF (see pa FF (see pa	CBMIN 290) CBMIM 292) CBMRIS 293) CBMMIS 294) CBMCINT ge 296) age 297) age 297)	TBTOIM TBTORIS TBTOMIS TBTOCINT TBTOCINT TAIL TAIL TBIL 28) TAM TAM	LRL LRL	TAPWML I <td>TAOTE</td> <td>RTCEN</td> <td>TAE' RTCIM RTCRIS RTCMIS</td> <td>CAEIM CAEIM CAERIS CAEMIS</td> <td>CAMRIS</td> <td>TAEN TATOIN TATOR TATOR</td>	TAOTE	RTCEN	TAE' RTCIM RTCRIS RTCMIS	CAEIM CAEIM CAERIS CAEMIS	CAMRIS	TAEN TATOIN TATOR TATOR
GPTMIMR, GPTMRIS, GPTMICR, GPTMTAIL GPTMTBIL	TBPWML , type R/W, type RO, o , type RO, o ,	TBOTE offset 0x01 iffset 0x011 offset 0x02 offset 0x02 offset 0x00 V, offset 0x0 V, offset 0x0	18, reset 0x C, reset 0x0 0, reset 0x0 24, reset 0x (028, reset (022C, reset (022C, reset (022C, reset)	TBEV (0000.0000 0000.0000 (0000.0000 (0000.000 (0000.0000 (0000000 (0000000 (000000000 (0000000000	/ENT (see page CBEIM (see page 2 CBERIS see page 2 CBEMIS (see page CBECINT FF (see pa FF (see pa	CBMIN 290) CBMIM 292) CBMRIS 293) CBMMIS 294) CBMCINT ge 296) age 297) age 297)	TBTOIM TBTORIS TBTOMIS TBTOCINT TBTOCINT TAIL TAIL TBIL 28) TAM TAM	LRL LRL	TAPWML Image: Control of the sector of th		RTCEN	TAE' RTCIM RTCRIS RTCMIS	CAEIM CAEIM CAERIS CAEMIS	CAMRIS	TAEN TATOIN TATORI TATORI

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
GPTMTA	PR, type R/	N, offset 0	x038, reset	0x0000.000	00 (see pag	e 300)		-				-			
											TA	PSR			
GPTMTB	PR, type R/	W, offset 0	x03C, reset	t 0x0000.00	00 (see pag	ge 301)		-				-			
											TBI	PSR			
GPTMTA	PMR, type F	R/W, offset	0x040, res	et 0x0000.0	000 (see pa	age 302)		-							
											TAP	SMR			
GPTMTE	PMR, type F	R/W, offset	0x044, res	et 0x0000.0	0000 (see pa	age 303)									
											TBP	SMR			
GPTMTA	R, type RO,	offset 0x0	48, reset 0)	CEFFF.FFFF	(see page	304)									
								RH							
							TA	RL							
GPTMTB	R, type RO,	offset 0x0	4C, reset 0	x0000.FFFF	(see page	305)									
							TE	BRL							
	dog Time														
Base 0x	4000.0000	1													
WDTLOA	AD, type R/W	l, offset 0x	000, reset (0xFFFF.FFF	F (see pag	e 310)									
								FLoad							
							WDT	FLoad							
WDTVAL	UE, type RC), offset 0x	004, reset	0xFFFF.FFF	FF (see pag	e 311)									
								Value							
							WDT	Value							
WDTCTL	, type R/W,	offset 0x00	08, reset 0x	0000.0000	(see page 3	12)		1							
														RESEN	INTEN
WDTICR	, type WO, o	ffset 0x00	C, reset - (s	ee page 31	3)										
								TIntClr							
							WDT	IntClr							
WDTRIS	, type RO, o	ffset 0x010), reset 0x0	000.0000 (s	ee page 31	4)									
															MOTOIO
						-									WDTRIS
WDTMIS	, type RO, o	iiset 0x014	+, reset ux0	000.0000 (s	ee page 31	5)									
															WDTMIS
WDTTE		offect 0-	118 react 0	×0000 0000	(600 0000	316)									WD I WIS
WDITES	T, type R/W	, onset ux4	rio, reset U		совее раде	510)									
							STALL								
WDTLOG	CK, type R/W	l offect or	C00 reset	0x0000.000	0 (800 000)	317)	UTALL								
, WEILOU	, ype r/w	, onset ux	, 1858[v (see page		\M/D1	FLock							
								FLock							
WDTPor	phID4, type			of 0x0000	0000 /000 7	1909 3191	vvD	LOOK							
WD I Fell	ршоч, туре	ito, onsei	UNI DU, IES		oooo (see p	age 310)									
											PI	D4			
WDTPor	phID5, type	RO offect	0xED4 ros	et 0x0000	0000 /see r	age 310)		1			FI				
and in en	prineo, type	, 511501				age 519)									
											PI	D5			
WDTPor	phID6, type	RO offect		et 0x0000	0000 /see r	age 320)		1			r I				
and in en	prineo, type	, 511501	. JAI DO, 100			age 520)									
											PI	 D6			
								1			FI				

24	20	20	20	07	26	25	24	22	22	21	20	10	10	17	10
31 15	30 14	29 13	28 12	27	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0
							0	/	0	5	4	3	2		0
wDTPerip	niD7, type	RO, onset	0xFDC, res		uuuu (see p	Dage 521)									
												D7			
WDTDerin			0.4550		005 (000 0	222					FI	זט			
wbiPerip	піро, туре	RO, onset	0xFE0, res		Juus (see p	age szz)									
												D0			
						000					PI	DU			
WDTPerip	niD1, type	RO, offset	0xFE4, res	et 0x0000.0	JU18 (see p	age 323)									
											PI	D1			
WDTPerip	hiD2, type	RO, offset	0xFE8, res	et 0x0000.0	JU18 (see p	age 324)									
											PI	D2			
WDTPerip	hID3, type	RO, offset	0xFEC, res	set 0x0000.	0001 (see p	bage 325)		1				1			
											PI	D3			
WDTPCell	ID0, type R	O, offset (0xFF0, rese	t 0x0000.00	00D (see pa	ige 326)		1				1			
											CI	ID0			
WDTPCell	ID1, type R	O, offset (0xFF4, rese	t 0x0000.00)F0 (see pa	ge 327)		1							
											CI	ID1			
WDTPCell	ID2, type R	O, offset (0xFF8, reset	t 0x0000.00	005 (see pa	ge 328)									
											CI	ID2			
WDTPCell	ID3, type R	O, offset (0xFFC, rese	et 0x0000.00	0 B1 (see pa	age 329)									
											CI	ID3			
Analog-	to-Digita	al Conv	erter (AD	DC)											
Base 0x4	003.8000														
ADCACTS	S, type R/V	V, offset 0	x000, reset	0x0000.000	00 (see pag	e 340)									
												ASEN3	ASEN2	ASEN1	ASEN0
ADCRIS, ty	ype RO, of	fset 0x004	, reset 0x00	000.0000 (se	ee page 34	1)			-						
												INR3	INR2	INR1	INR0
ADCIM, ty	pe R/W, off	set 0x008,	, reset 0x00	00.0000 (se	e page 342	2)			-						
												MASK3	MASK2	MASK1	MASK0
ADCISC, ty	ype R/W1C	, offset 0x	00C, reset (0x0000.000	0 (see page	e 343)									
					_										
												IN3	IN2	IN1	IN0
ADCOSTA	T, type R/M	/1C, offset	t 0x010, res	et 0x0000.0	0000 (see p	age 344)							1	1	
												OV3	OV2	OV1	OV0
ADCEMUX	(, type R/W	, offset 0x	014, reset 0)x0000.000) (see page	: 345)							1	1	
	EN	//3			EI	M2			E	M1			EI	MO	
ADCUSTA			0x018, res	et 0x0000.0				1				1			
		,	,			5,									
												UV3	UV2	UV1	UV0
	type R/M	offset fr	:020, reset 0	1x0000 324		350)							UVL		
AD000F R	., נקוףפ וגיעע	, onset UX			e (see page	, 550)									
		-	63			-	\$2			-	21			-	50
		S	S3			S	S2			S	S1			s	S0

04	00		00	07	00	05	04	00	00	04		10	10	47	40
31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17	16 0
	I, type WO, o					0	ů			0	•		-		0
	., ., .,														
												SS3	SS2	SS1	SS0
ADCSAC	, type R/W,	offset 0x03	0, reset 0x	0000.0000	(see page 3	353)						1			
														AVG	
ADCSSM	IUX0, type R	/W, offset	0x040, rese	et 0x0000.0	000 (see p	age 354)									
		М	JX7			М	JX6			ML	JX5			MU	IX4
		MU	JX3			M	JX2			ML	JX1			MU	IX0
ADCSSC	TL0, type R	/W, offset ()x044, rese	t 0x0000.00	000 (see pa	ge 356)									
TS7	IE7	END7	D7	TS6	IE6	END6	D6	TS5	IE5	END5	D5	TS4	IE4	END4	D4
TS3	IE3	END3	D3	TS2	IE2	END2	D2	TS1	IE1	END1	D1	TS0	IE0	END0	D0
ADCSSFI	IFO0, type R	RO, offset 0	x048, reset	t - (see pag	e 359)										
										DA	TA				
ADCSSFI	IFO1, type R	ιΟ, offset (x068, reset	t - (see pag	e 359)										
										D/	ТА				
ADCOOF	E02 hr = 5	0 645-14	V000	(000	0.250)					DA	TA				
ADCSSFI	IFO2, type R	ιΟ, onset ι	1xu88, reset	t - (see pag	e 359)										
										D/	TA				
	IFO3, type R	20 offset (V048 rese	t - (see nag	e 359)					DF					
ADCOOR	n os, type r	to, onser t	INDAO, TESE	i - (see pag	e 339)										
										DA	TA				
ADCSSE	STAT0, type	RO, offset	0x04C, res	set 0x0000.	0100 (see	nage 360)				5,					
	•					page eee)									
			FULL				EMPTY		HF	PTR			TF	PTR	
ADCSSF	STAT1, type	RO, offset	t 0x06C, res	set 0x0000.	0100 (see	page 360)									
					•										
			FULL				EMPTY		HF	PTR			TF	PTR	
ADCSSF	STAT2, type	RO, offset	t 0x08C, res	set 0x0000.	0100 (see	page 360)									
			FULL				EMPTY		HF	PTR			TF	PTR	
ADCSSF	STAT3, type	RO, offset	0x0AC, re	set 0x0000.	.0100 (see	page 360)									
			FULL				EMPTY		HF	PTR			TF	PTR	
ADCSSM	IUX1, type R	/W, offset	0x060, rese	et 0x0000.0	000 (see p	age 361)									
		MUX3				MUX2				MUX1				MUX0	
ADCSSM	IUX2, type R	/W, offset	0x080, rese	et 0x0000.0	000 (see p	age 361)									
		MUX3				MUX2				MUX1				MUX0	
ADCSSC	TL1, type R	/W, offset ()x064, rese	t 0x0000.00	000 (see pa	ge 362)									
		_								_					
TS3	IE3	END3	D3	TS2	IE2	END2	D2	TS1	IE1	END1	D1	TS0	IE0	END0	D0
ADCSSC	TL2, type R	/W, offset ()x084, rese	t 0x0000.00	000 (see pa	ge 362)									
	155				1555				177.1				1000		
TS3	IE3	END3	D3	TS2	IE2	END2	D2	TS1	IE1	END1	D1	TS0	IE0	END0	D0
ADCSSM	IUX3, type R	/W, offset	0x0A0, rese	et 0x0000.0	000 (see p	age 364)									
														MUX0	

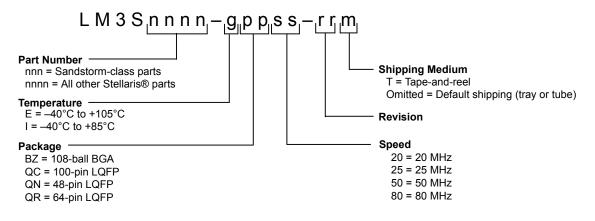
								1							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ADCSSCT	L3, type R/	W, offset 0	x0A4, rese	t 0x0000.00	002 (see pa	ige 365)									
												TS0	IE0	END0	D0
												130	ILU	LINDO	DU
ADCTMLB	, type R/W,	offset 0x1	00, reset 0:	x0000.0000) (see page	366)		1							
															LB
UART0 ba	al Asyn ase: 0x40 ase: 0x40	00.C000	s Receiv	vers/Tra	nsmitter	s (UAR	ſs)		·						
UARTDR, 1	type R/W, c	offset 0x00	0, reset 0x0	0000.0000	(see page 3	575)									
				OE	BE	PE	FE				DA				
		ture DO	offeet Ov00					7)			5,				
UARIRSK	UARIECR	, туре ко,	offset 0x00	J4, reset us		(Reads) (S	ee page 37	<i>(</i>)							
												OE	BE	PE	FE
UARTRSR	UARTECR	, type WO,	offset 0x0	04, reset 0	x0000.0000	(Writes) (see page 3	77)							
											D4	I			
		Fact 0-040				(0)					57				
UAKIFR, t	upe RO, of	iset UXU18	, reset 0x00	000.0090 (s	ee page 37	ອ)									
								TXFE	RXFF	TXFF	RXFE	BUSY			
UARTIBRE	D, type R/W	, offset 0x	024, reset 0	x0000.000	0 (see page	e 381)									
		·													
							DIV	/INT							
UARTFBR	D, type R/V	V, offset 0x	028, reset	0x0000.000	00 (see pag	e 382)		_				_			
												DIVE	RAC		
UARTI CRI	H. type R/V	V. offset 0x	02C, reset	0x0000.00	00 (see pac	ne 383)									
0/ 11 1 2 0 1 1	,	.,			•• (000 pag	je ecc)									
								SPS	W	EN	FEN	STP2	EPS	PEN	BRK
UARTCTL,	, type R/W,	offset 0x0	30, reset 0x	0000.0300	(see page	385)									
						RXE	TXE	LBE							UARTE
	type R/M	offset 0v0	34, reset 0:	x0000 0043				1							
	, ype 10 w,	Shaet UXU			, see page	501)									
											RXIFLSEL			TXIFLSEL	-
UARTIM, ty	ype R/W, o	fset 0x038	, reset 0x0	000.000 (see page 38	39)									
					OEIM	BEIM	PEIM	FEIM	RTIM	TXIM	RXIM				
	tuno DO -	ffoot 0-00	C #00-54 05												
UARTRIS,	type RO, o	inset 0x030	C, reset 0x0	.000.0000	see page 3	iei)									
					OERIS	BERIS	PERIS	FERIS	RTRIS	TXRIS	RXRIS				
UARTMIS,	type RO, c	ffset 0x04	0, reset 0x0	0000.0000 (see page 3	92)									
					OEMIC	DEMIC	DEMIS	EEMIO	DTMIC	TYNIC	DVMC				
					OEMIS	BEMIS	PEMIS	FEMIS	RTMIS	TXMIS	RXMIS				
UARTICR,	type W1C,	offset 0x0	44, reset 0)	×0000.0000	(see page	393)									
					OEIC	BEIC	PEIC	FEIC	RTIC	TXIC	RXIC				
	nhID4 turn	RO offor	t 0xFD0, re:	sot Avana				1							
OARTPerip	рпіц4, туре	RO, ONSE	UUXFDU, re	381 UXUUUU	(see	page 395)									

31	20	29	20	27	26	25	24	22	22	21	20	19	10	17	16
15	30 14	13	28 12	11	26 10	25 9	8	23 7	6	21 5	4	3	18 2	17 1	0
	iphID5, type								-				_		
	· · · · · · · · · · · · · · · · · · ·	,													
											PI	D5			
UARTPer	iphID6, type	RO, offse	et 0xFD8, re	eset 0x0000	.0000 (see	page 397)		1							
											PI	D6			
UARTPer	iphID7, type	RO, offse	et 0xFDC, re	eset 0x0000	.0000 (see	e page 398)									
											PI	D7			
UARTPer	riphID0, type	RO, offse	et 0xFE0, re	set 0x0000	.0011 (see	page 399)									
											PI	D0			
UARTPer	riphID1, type	RO, offse	et 0xFE4, re	eset 0x0000	.0000 (see	page 400)									
											PI	D1			
UARTPer	riphID2, type	RO, offse	et 0xFE8, re	eset 0x0000	.0018 (see	page 401)									
											PI	D2			
UARTPer	riphID3, type	RO, offse	et 0xFEC, re	eset 0x0000	.0001 (see	e page 402)									
											PI	D3			
UARTPC	ellID0, type I	RO, offset	0xFF0, res	et 0x0000.0	100D (see p	bage 403)									
	- 111D4 4	0	0		050 (404)						D0			
UARTPC	ellID1, type I	<Ο, onset	UXFF4, res	et 0x0000.0	IUFU (see p	age 404)									
											C	D1			
	ellID2, type I		OvEE8 res	et 0x0000 0	005 (see n	age 405)					0				
UARTEC	enioz, type i	(O, Oliset	0,10,105		1 003 (see p	age 403)									
											C	D2			
UARTPC	ellID3, type I	RO, offset	0xFFC, res	et 0x0000.0	00B1 (see)	nage 406)		I							
		,				page ice)									
											C	D3			
Synchr	ronous Se	arial Int	orfaco (S	351)	1			1							
	se: 0x4000			501)											
SSICR0, 1	type R/W, of	fset 0x000), reset 0x0	000.0000 (s	ee page 42	20)									
			S	CR				SPH	SPO	FI	RF		D	SS	
SSICR1, 1	type R/W, of	fset 0x004	4, reset 0x0	000.0000 (s	ee page 42	22)									
												SOD	MS	SSE	LBM
SSIDR, ty	/pe R/W, offs	et 0x008,	reset 0x00	00.0000 (se	e page 424	4)									-
							DA	TA							
SSISR, ty	vpe RO, offse	et 0x00C,	reset 0x000	00.0003 (see	e page 425)									
											BSY	RFF	RNE	TNF	TFE
SSICPSR	, type R/W, o	offset 0x0	10, reset 0x	0000.0000	(see page	427)									
											CPS	DVSR			
SSIIM, ty	pe R/W, offs	et 0x014,	reset 0x000	0.0000 (see	e page 428)									
												TXIM	RXIM	RTIM	RORIM

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SSIRIS, ty	pe RO, offs	set 0x018,	reset 0x000	0.0008 (se	e page 430)										
												TXRIS	RXRIS	RTRIS	RORRI
SSIMIS, ty	pe RO, offs	set 0x01C,	reset 0x000	00.0000 (se	e page 431)		1				1			
													-		
												TXMIS	RXMIS	RTMIS	RORMI
SSIICR, ty	pe W1C, of	fset 0x020), reset 0x00	000.0000 (s I	ee page 43	2)									
														RTIC	RORIO
CEIDorinh	ID4 tune B	O offeet ()xFD0, rese	+ 0×0000 00	00 (222 22	ao (122)								RIIC	RURI
Sorenpi	юч, туре к	o, onser c	JAI DO, IESE		Joo (see pa	ye 433)									
											P	D4			
SSIPeriph	ID5. type R	O. offset 0)xFD4, rese	t 0x0000.00)00 (see pa	ae 434)									
een enpn					(000 pa	ge .e .,									
											P	I ID5			
SSIPeriph	ID6, type R	O, offset 0)xFD8, rese	t 0x0000.00	000 (see pa	ge 435)		1							
											P	I ID6			
SSIPeriph	ID7, type R	O, offset 0)xFDC, rese	t 0x0000.0	000 (see pa	ge 436)									
											P	ID7			
SSIPeriph	ID0, type R	O, offset 0	xFE0, reset	t 0x0000.00)22 (see pag	ge 437)									
											P	D0			
SSIPeriph	ID1, type R	O, offset 0)xFE4, reset	t 0x0000.00)00 (see pag	ge 438)									
											P	D1			
SSIPeriph	ID2, type R	O, offset 0	xFE8, reset	t 0x0000.00	018 (see pag	ge 439)									
											PI	D2			
SSIPeriph	ID3, type R	O, offset 0)xFEC, rese	t 0x0000.0	001 (see pa	ge 440)		1				1			
											P	D3			
SSIPCellic	00, type RC), offset 0x	(FF0, reset (0x0000.000	D (see pag	e 441)									
											C	ID0			
SSIRCALI)1 tupo PC) offect ()	(FF4, reset (0 (see page	. 442)					0				
SSIF Cellic	JI, type RC	, onset ox	114, Teset (5 442)									
											C	l ID1			
SSIPCellIF)2. type RC), offset 0x	(FF8, reset (0x0000.000	5 (see page	443)									
	_, , , , po ne	., 0			- (000 page	,									
											С	I ID2			
SSIPCellIC	03, type RC), offset 0x	FFC, reset	0x0000.001	B1 (see pag	e 444)		1			-				
						,									
											С	I ID3			
	Compar 003.C000														
			00	0000 0000	1000 0000	150)									
ACMIS, ty	pe k/w1C,	onset 0x0	00, reset 0x	0000.0000	(see page 4	+DU)									
															INIO
		at 0,400 t		0.0000 /-											IN0
ACKIS, typ	pe KO, offs	et 0x004, i	reset 0x000	0.0000 (see	e page 451)										
															INIC
															IN0

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	/	6	5	4	3	2	1	0
	, type rc/w,	onset uxu	uo, reset uz	<0000.0000	(see page	+52)									
															INO
ACREFCI	TL. type R/V	N. offset 0x	x010. reset	0x0000.000	0 (see pag	e 453)									
	, ., po				(ooo pag										
						EN	RNG						VF	REF	
ACSTATO	, type RO, o	offset 0x02	20, reset 0x	0000.0000 (see page 4	54)						1			
														OVAL	
ACCTL0,	type R/W, o	offset 0x02	4, reset 0x	0000.0000 (see page 4	55)									
				TOEN	AS	RCP		TSLVAL	т	SEN	ISLVAL	IS	EN	CINV	
Pulse V	Vidth Mo	odulator	(PWM)												
Base 0x4	4002.8000)													
PWMCTL,	, type R/W,	offset 0x0	00, reset 0>	¢0000.0000	(see page	467)									
													ync2	ync1	/nc0
													Global Sync2	GlobalSync1	Global Sync0
													ō	ō	ō
PWMSYN	C, type R/V	V, offset 0x	004, reset	0x0000.000	0 (see pag	e 468)									
													Sync2	Sync1	Sync0
PWMENA	BLE, type I	R/W, offset	t 0x008, res	et 0x0000.0)000 (see p	age 469)		1							1
										DMAAFE	DWAAF	D14/1405-	DM/0405-	DMAAF	DIAMAGE
		() AL - 55 4.1			000 ((70)				PWW5En	PVVIVI4EN	PWW3En	PWM2En	PWWTEN	PWWUE
	ER I, type R	/ww, onset (uxuuc, rese	et 0x0000.00	uu (see pa	ige 470)		1							
										PWM5Inv	PWM4Inv	PWM3Inv	PWM2Inv	PWM1Inv	PWM0Ir
PWMFAU	IT. type R/	N. offset 0:	x010. reset	0x0000.000)0 (see par	e 471)									
	,.,				(coo pag										
										Fault5	Fault4	Fault3	Fault2	Fault1	Fault0
PWMINTE	EN, type R/\	N, offset 0	x014, reset	0x0000.000	00 (see pag	e 472)						1			
															IntFault
													IntPWM2	IntPWM1	IntPWM
PWMRIS,	type RO, o	ffset 0x018	8, reset 0x0	000.0000 (s	see page 4	73)									
															IntFault
													IntPWM2	IntPWM1	IntPWM
PWMISC,	type R/W1	C, offset 0	x01C, reset	0x0000.00	00 (see pa	je 474)									
															IntFault
													IntPWM2	IntPWM1	IntPWM
PWMSTAT	TUS, type F	RO, offset (0x020, rese	t 0x0000.00	00 (see pa	ge 475)		1				1			
							_								-
	1. Auro 200		040	-) (ag - :	476)									Fault
PWMOCTI	∟, type R/W	, oπset 0x	u40, reset ()x0000.0000	(see page	4/6)		1				1			
										CmpBl.lpd	CmpAUpd	Load Ind	Debug	Mode	Enable
DWM4CT			080 reset ()x0000.0000		476)				Стрвора	Стряора		Debug	woue	
	L, type R/W	, onset ux	ooo, reset t		, (see page	+10)									
										CmpBLInd	CmpAUpd	LoadUpd	Debug	Mode	Enable
PWM2CTI	L. type R/W	l. offset 0x1	0C0, reset	0x0000.000	0 (see page	476)				5роори	cp. topu		Lobuy		
	_, ., po 10 W	.,			- (000 page										
										CmpBUpd	CmpAUpd	LoadUpd	Debug	Mode	Enable
										0pb0pu	5p. (opu	1p	Lobug		

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
WMOIN	TEN, type F	R/W, offset 0	x044, rese	t 0x0000.00	00 (see pag	je 478)		1				1			
		TrCmpBD	TrCmpBU	TrCmpAD	TrCmpAU	TrCntLoad	TrCntZero			IntCmpBD	IntCmpBU	IntCmpAD	IntCmpAU	IntCntLoad	IntCntZe
PWM1IN	TEN, type F	R/W, offset 0	x084, rese	t 0x0000.00	00 (see pag	je 478)						1			
		TrCmpBD	TrCmpBU	TrCmpAD	TrCmpAU	TrCntLoad	TrCntZero			IntCmpBD	IntCmpBU	IntCmpAD	IntCmpAU	IntCntLoad	IntCntZe
PWM2IN	TEN, type F	R/W, offset 0	x0C4, rese	et 0x0000.0	000 (see pa	ge 478)									
		TrCmpBD	TrCmpBU	TrCmpAD	TrCmpAU	TrCntLoad	TrCntZero			IntCmpBD	IntCmpBU	IntCmpAD	IntCmpAU	IntCntLoad	IntCntZe
PWMORI	S, type RO,	offset 0x04	8, reset 0x	0000.0000	see page 4	81)	-	-				-	-		
										IntCmpBD	IntCmpBU	IntCmpAD	IntCmpAU	IntCntLoad	IntCntZe
PWM1RI	S, type RO,	offset 0x08	8, reset 0x	0000.0000	see page 4	81)									
										IntCmpBD	IntCmpBU	IntCmpAD	IntCmpAU	IntCntLoad	IntCntZe
PWM2RI	S, type RO,	offset 0x0C	8, reset 0x	0000.0000	(see page 4	81)									
	_														
										IntCmpBD	IntCmpBU	IntCmpAD	IntCmpAU	IntCntLoad	IntCntZe
PWM0ISC	C, type R/W	/1C, offset 0	x04C, rese	et 0x0000.00	000 (see pa	ge 482)									
	D. 6	40 - 55 40								IntCmpBD	IntCmpBU	IntCmpAD	IntCmpAU	IntCntLoad	IntCntZe
PWM1ISC	3, type R/W	/1C, offset 0	x08C, rese	et 0x0000.00	JUU (see pa	ge 482)									
										latCase DD	latCase DU	Int Case AD	Int Case All	1-10-111	1.10.17.
DWMOIC	2. france D/AA	11C affect 0	w0000 maa	 	000 (000 00	ac (192)				IntCmpBD	IntCmpBU	IntCmpAD	IntCmpAU	IntCntLoad	IntCntZer
PVVIVIZIS	s, type R/W	/1C, offset 0	XUCC, rese		uuu (see pa	ge 462)									
										IntCmpBD	IntCmpBU	IntCmpAD	IntCmpAU	IntCntLoad	IntCntZer
	AD type R	/W, offset 0	x050 reset	 0x0000 00	00 (see pao	e 483)				intempoo	intempore	intonip, ib	intemp/10	intointeodd	intointeoi
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				ee (see pag	0 400)									
							Lo	l ad							
PWM1LO	AD. type R	/W, offset 0	x090. reset	t 0x0000.00	00 (see pag	e 483)	-								
-		,													
							Lo	ad							
PWM2LO	AD, type R	/W, offset 0	x0D0, rese	t 0x0000.00	00 (see pag	je 483)									
							Lo	ad							
PWM0CC	OUNT, type	RO, offset 0	x054, rese	t 0x0000.00	100 (see pa	ge 484)									
							Co	unt							
PWM1CC	OUNT, type	RO, offset 0	x094, rese	t 0x0000.00	00 (see pag	ge 484)									
							Co	unt							
PWM2CC	OUNT, type	RO, offset 0	x0D4, rese	et 0x0000.0	000 (see pa	ge 484)									
							Co	unt							
PWM0CN	IPA, type R	/W, offset 0	x058, reset	t 0x0000.00	00 (see pag	e 485)									
							Cor	npA							
PWM1CN	IPA, type R	/W, offset 0	x098, reset	t 0x0000.00	00 (see pag	e 485)									
							Cor	npA							


21	20	20	20	27	26	25	24	22	22	21	20	10	10	17	16
31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23	22 6	21 5	20 4	19 3	18 2	17	16 0
		-	x0D8, reset				0			0		-	-		•
	,,, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,			(000 pc	.go .cc)									
							Co	npA							
PWMOCM	PB, type R/	W, offset (x05C, rese	t 0x0000.00	000 (see pa	age 486)									
							Co	mpB							
PWM1CM	PB, type R/	W, offset ()x09C, rese	t 0x0000.00	000 (see pa	age 486)									
							Co	mpB							
PWM2CM	PB, type R/	W, offset ()x0DC, rese	t 0x0000.0	000 (see pa	age 486)									
							Co	mpB							
PWM0GE	NA, type R/	W, offset (0x060, reset	0x0000.00	00 (see pa	ige 487)									
					mpBD		mpBU	ActCi	mpAD	ActC	mpAU	Actl	_oad	Act	Zero
PWM1GEN	NA, type R/	W, offset (x0A0, reset	t 0x0000.00	000 (see pa	age 487)									
				A -10	ma D D	A-10	m DL/	A -10		A-10	mn 411	A . 11	aad	A	Zara
	1A Am - D	W	W0E0		mpBD		mpBU	ActCi	mpAD	ActC	mpAU	Actl	_oad	Act	Zero
PWWZGE	NA, type R/	vv, onset u	0x0E0, reset	0x0000.00	iuu (see pa	ige 487)									
				ActC	mpBD	ActC	mpBU	ActC	mpAD	ActC	mpAU	Acti	_oad	Act	Zero
PWM0GE	NB type R/	W offset ()x064, reset				inpb0	7,010	inp/tb	7,610	mp/ 10	7.01		7.04	2010
, milocel	12, type 10	n, onser e	, 10001	0,0000.00	00 (000 pu	.gc 400)									
				ActCi	mpBD	ActC	mpBU	ActC	mpAD	ActC	mpAU	Actl	_oad	Act	Zero
PWM1GE	NB, type R/	W, offset ()x0A4, reset				•		•		•				
				ActCi	mpBD	ActC	mpBU	ActC	mpAD	ActC	mpAU	Actl	_oad	Acti	Zero
PWM2GE	NB, type R/	W, offset (x0E4, reset	0x0000.00	000 (see pa	ige 490)									
				ActCi	mpBD	ActC	mpBU	ActC	mpAD	ActC	mpAU	Actl	oad	Act	Zero
PWM0DB0	CTL, type R	/W, offset	0x068, rese	t 0x0000.0	000 (see p	age 493)									
															Enable
PWM1DB0	CTL, type R	/W, offset	0x0A8, rese	et 0x0000.0	000 (see p	age 493)									
															Enable
PWM2DB0	CTL, type R	/W, offset	0x0E8, rese	et 0x0000.0	000 (see p	age 493)									
															Easter
			0,0000	of 0x0000	0000 /00-	D000 404)									Enable
- WWUDBF	≺ເວ⊏, type i	rt/ww, offse	t 0x06C, res	et 0X0000.	uuu (see	page 494)									
									Rico	Delay					
	RISE, type P	R/W. offee	t 0x0AC, res	set Ox0000	0000 (999	nage 4941			1/136	Loidy					
	or, type i	, 01136				page 101)									
									Rise	Delay					
		R/W, offse	t 0x0EC, res	set 0x0000.	.0000 (see	page 494)				,					
	RISE, type I		,		·	/									
	RISE, type I														
	RISE, type I							1	Rise	Delay					
PWM2DBF			t 0x070, res	et 0x0000.	0000 (see	page 495)		1	Rise	Delay			1		
PWM2DBF			t 0x070, res	et 0x0000.	0000 (see	page 495)			Rise	Delay					

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PWM1DB	FALL, type	R/W, offse	t 0x0B0, re	set 0x0000	.0000 (see	page 495)									
									Fall	Delay					
PWM2DB	FALL, type	R/W, offse	t 0x0F0, res	set 0x0000	.0000 (see p	age 495)									
									Fall	Delay					

C Ordering and Contact Information

C.1 Ordering Information

The figure below defines the full set of potential orderable part numbers for all the Stellaris[®] LM3S microcontrollers. See the Package Option Addendum for the valid orderable part numbers for the LM3S617 microcontroller.

C.2 Part Markings

The Stellaris microcontrollers are marked with an identifying number. This code contains the following information:

- The first line indicates the part number, for example, LM3S9B90.
- In the second line, the first eight characters indicate the temperature, package, speed, revision, and product status. For example in the figure below, IQC80C0X indicates an Industrial temperature (I), 100-pin LQFP package (QC), 80-MHz (80), revision C0 (C0) device. The letter immediately following the revision indicates product status. An X indicates experimental and requires a waiver; an S indicates the part is fully qualified and released to production.
- The remaining characters contain internal tracking numbers.

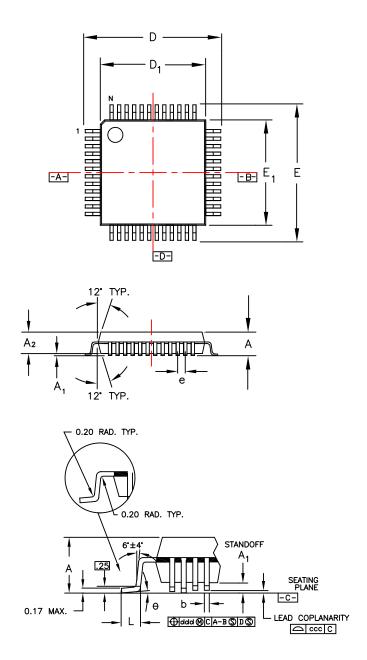
C.3 Kits

The Stellaris Family provides the hardware and software tools that engineers need to begin development quickly.

- Reference Design Kits accelerate product development by providing ready-to-run hardware and comprehensive documentation including hardware design files
- Evaluation Kits provide a low-cost and effective means of evaluating Stellaris microcontrollers before purchase
- Development Kits provide you with all the tools you need to develop and prototype embedded applications right out of the box

See the website at www.ti.com/stellaris for the latest tools available, or ask your distributor.

C.4 Support Information

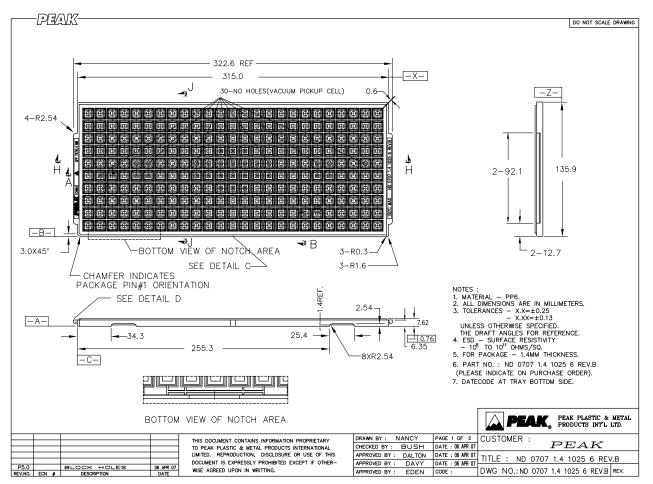

For support on Stellaris products, contact the TI Worldwide Product Information Center nearest you: http://www-k.ext.ti.com/sc/technical-support/product-information-centers.htm.

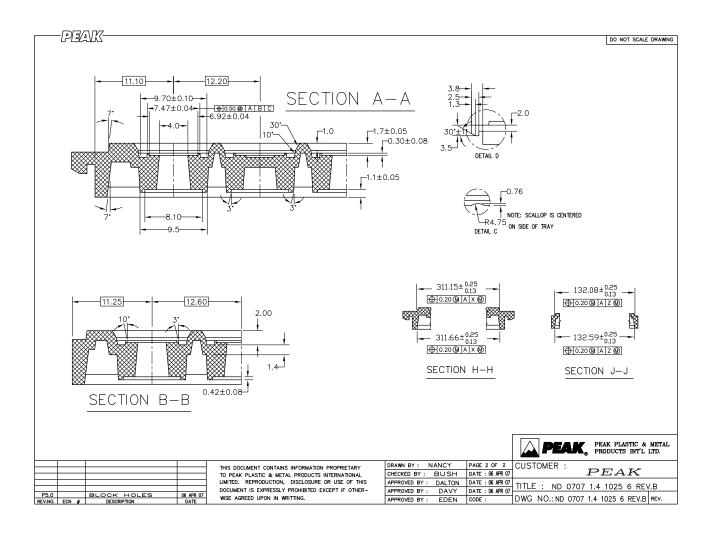
D Package Information

D.1 48-Pin LQFP Package

D.1.1 Package Dimensions

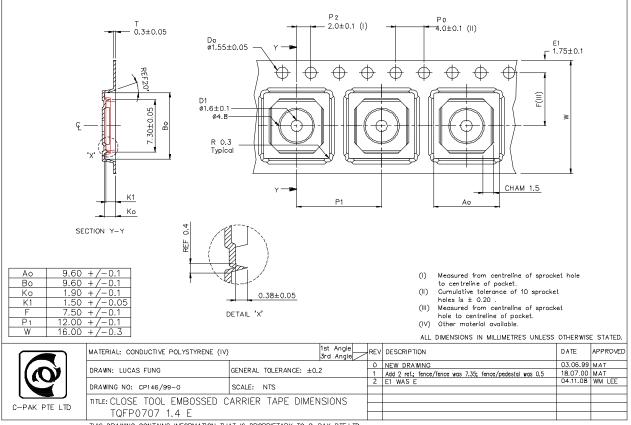
Figure D-1. Stellaris LM3S617 48-Pin LQFP Package


Note: The following notes apply to the package drawing.


- **1.** All dimensions are in mm.
- 2. Dimensions shown are nominal with tolerances indicated.
- **3.** Foot length "L" is measured at gage plane 0.25 mm above seating plane.
- 4. L/F: Eftec 64T Cu or equivalent, 0.127 mm (0.005") thick.

	Packa	де Туре	
Symbol	48LD	Note	
	MIN	MAX	
A	-	1.60	
A ₁	0.05	0.15	
A ₂	-	1.40	
D	9.	.00	
D ₁	7.	.00	
E	9.	.00	
E ₁	7.	.00	
L	0.	.60	
е	0.	.50	
b	0.	22	
theta	0°	- 7°	
ddd	0.	.08	
ccc	0.	.08	
	JEDEC Reference Drawing		MS-026
	Variation Designator		BBC

D.1.2 Tray Dimensions



Tape and Reel Dimensions D.1.3

THIS DRAWING CONTAINS INFORMATION THAT IS PROPRIETARY TO C-PAK PTE.LTD.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
LM3S617-IQN50-C2T	NRND	LQFP	PT	48	2000	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 85	LM3S617 IQN50 PT	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

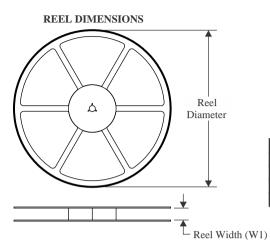
⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

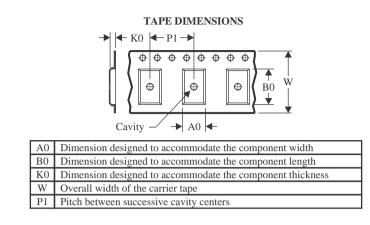
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

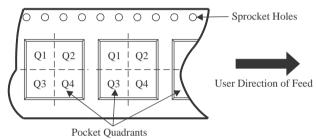
⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



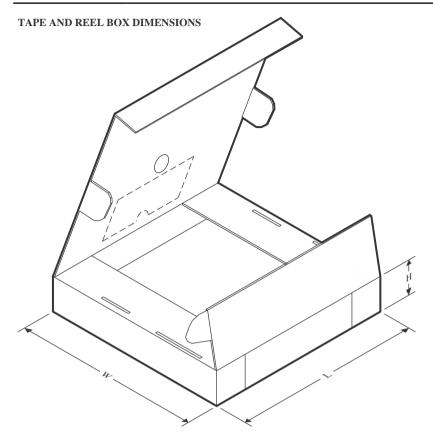
Texas


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal	


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM3S617-IQN50-C2T	LQFP	PT	48	2000	330.0	16.4	9.6	9.6	1.9	12.0	16.0	Q2

www.ti.com

PACKAGE MATERIALS INFORMATION

5-Oct-2023

*All	dimensions	are	nominal	
------	------------	-----	---------	--

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM3S617-IQN50-C2T	LQFP	PT	48	2000	367.0	367.0	38.0

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated