ADC0844/ADC0848 8-Bit µP Compatible A/D Converters with Multiplexer Options

Check for Samples: ADC0844, ADC0848

FEATURES
• Easy Interface to All Microprocessors
• Operates Ratiometrically or with 5 V_{DC} Voltage Reference
• No Zero or Full-Scale Adjust Required
• 4-Channel or 8-Channel Multiplexer with Address Logic
• Internal Clock
• 0V to 5V Input Range with Single 5V Power Supply
• Standard Width 20-Pin or 24-Pin PDIP
• 28 Pin PLCC Package

KEY SPECIFICATIONS
• Resolution: 8 Bits
• Total Unadjusted Error: ±½ LSB and ± 1 LSB
• Single Supply: 5 V_{DC}
• Low Power: 15 mW
• Conversion Time: 40 µs

DESCRIPTION
The ADC0844 and ADC0848 are CMOS 8-bit successive approximation A/D converters with versatile analog input multiplexers. The 4-channel or 8-channel multiplexers can be software configured for single-ended, differential or pseudo-differential modes of operation.

The differential mode provides low frequency input common mode rejection and allows offsetting the analog range of the converter. In addition, the A/D’s reference can be adjusted enabling the conversion of reduced analog ranges with 8-bit resolution.

The A/Ds are designed to operate from the control bus of a wide variety of microprocessors. TRI-STATE output latches that directly drive the data bus permit the A/Ds to be configured as memory locations or I/O devices to the microprocessor with no interface logic necessary.

* ADC0848 shown in PDIP Package CH5-CH8 not included on the ADC0844

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage (V_{CC})</td>
<td>6.5V</td>
</tr>
<tr>
<td>Logic Control Inputs</td>
<td>$-0.3V$ to $+15V$</td>
</tr>
<tr>
<td>Voltage at Other Inputs and Outputs</td>
<td>$-0.3V$ to $V_{CC}+0.3V$</td>
</tr>
<tr>
<td>Input Current at Any Pin (I_{IN})</td>
<td>5 mA</td>
</tr>
<tr>
<td>Package Input Current (I_{P})</td>
<td>20 mA</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>$-65°C$ to $+150°C$</td>
</tr>
<tr>
<td>Package Dissipation at $T_A=25°C$</td>
<td>875 mW</td>
</tr>
<tr>
<td>ESD Susceptibility</td>
<td>800V</td>
</tr>
<tr>
<td>Lead Temperature (Soldering, 10 seconds)</td>
<td>260°C</td>
</tr>
<tr>
<td>PDIP Package</td>
<td>Vapor Phase (60 seconds)</td>
</tr>
<tr>
<td>PLCC Package</td>
<td>Infrared (15 seconds)</td>
</tr>
</tbody>
</table>

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.

(2) All voltages are measured with respect to the ground pins.

(3) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.

(4) When the input voltage (V_{IN}) at any pin exceeds the power supply rails ($V_{IN} < V^-$ or $V_{IN} > V^+$) the absolute value of the current at that pin should be limited to 5 mA or less. The 20 mA package input current limits the number of pins that can exceed the power supply boundaries with a 5 mA current limit to four.

(5) Human body model, 100 pF discharged through a 1.5 kΩ resistor.
Operating Conditions (1)(2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>ADC0844BCJ(1)</th>
<th>ADC0844CCJ(1)</th>
<th>ADC0844CCN, ADC0848BCN, ADC0848CCN, ADC0848BCV, ADC0848CCV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage (V<sub>CC</sub>)</td>
<td>ADC0844CCN, ADC0848BCN, ADC0848CCN</td>
<td>4.5 V<sub>DC</sub> to 6.0 V<sub>DC</sub></td>
<td>0°C ≤ T<sub>A</sub> ≤ 70°C</td>
<td></td>
</tr>
<tr>
<td>Temperature Range (T<sub>MIN</sub> ≤ T<sub>A</sub> ≤ T<sub>MAX</sub>)</td>
<td>ADC0844BCJ(3), ADC0844CCJ(3), ADC0848BCV, ADC0848CCV</td>
<td>0 °C ≤ T<sub>A</sub> ≤ 85 °C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.

(2) All voltages are measured with respect to the ground pins.

(3) Product/package combination obsolete; shown for reference only.

Electrical Characteristics

The following specifications apply for V_{CC} = 5 V_{DC} unless otherwise specified. **Boldface limits apply from T_{MIN} to T_{MAX}; all other limits T_A = T_j = 25 °C.**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>ADC0844BCJ(1)</th>
<th>ADC0844CCJ(1)</th>
<th>ADC0844CCN, ADC0848BCN, ADC0848CCN, ADC0848BCV, ADC0848CCV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Total</td>
<td>ADC0844BCN, ADC0848BCN, BCV</td>
<td>V<sub>REF</sub> = 5.00 V<sub>DC</sub></td>
<td>±1/2</td>
<td>±1/2</td>
</tr>
<tr>
<td>Unadjusted Error</td>
<td>ADC0844BCN, ADC0848BCN, CCV</td>
<td>±1</td>
<td>±1</td>
<td></td>
</tr>
<tr>
<td>Minimum Reference Input Resistance</td>
<td>ADC0844CCJ(1)</td>
<td>2.4</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Maximum Reference Input Resistance</td>
<td>ADC0844CCJ(1)</td>
<td>2.4</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>Maximum Common-Mode Input Voltage</td>
<td>See(6)</td>
<td>V<sub>CC</sub></td>
<td>V<sub>CC</sub> + 0.05</td>
<td>V<sub>CC</sub> + 0.05</td>
</tr>
<tr>
<td>Minimum Common-Mode Input Voltage</td>
<td>See(6)</td>
<td>GND - 0.05</td>
<td>GND - 0.05</td>
<td>GND - 0.05</td>
</tr>
<tr>
<td>DC Common-Mode Error</td>
<td>Differential Mode</td>
<td>±1/16</td>
<td>±1/4</td>
<td>±1/16</td>
</tr>
<tr>
<td>Power Supply Sensitivity</td>
<td>ADC0844BCN, ADC0848BCN, BCV</td>
<td>±1/6</td>
<td>±1/4</td>
<td>±1/6</td>
</tr>
<tr>
<td>Off Channel Leakage Current</td>
<td>On Channel = 5V, Off Channel = 0V(7)</td>
<td>−1</td>
<td>−0.1</td>
<td>−1</td>
</tr>
<tr>
<td></td>
<td>On Channel = 0V, Off Channel = 5V</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
</tr>
</tbody>
</table>

Digital and DC Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>ADC0844BCN, ADC0848BCN, BCV</th>
<th>ADC0844CCN, ADC0848BCN, ADC0848CCN, ADC0848BCV, ADC0848CCV</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>IN</sub>(1), Logical “1” Input Voltage (Min)</td>
<td>V<sub>CC</sub> = 5.25V</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>V<sub>IN</sub>(0), Logical “0” Input Voltage (Max)</td>
<td>V<sub>CC</sub> = 4.75V</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>I<sub>IN</sub>(1), Logical “1” Input Current (Max)</td>
<td>V<sub>IN</sub> = 5.0V</td>
<td>0.005</td>
<td>1</td>
</tr>
<tr>
<td>I<sub>IN</sub>(0), Logical “0” Input Current (Max)</td>
<td>V<sub>IN</sub> = 0V</td>
<td>−0.005</td>
<td>−1</td>
</tr>
</tbody>
</table>

(1) This product/package combination is obsolete. Shown for reference only.

(2) Typical figures are at 25 °C and represent most likely parametric norm.

(3) Test limits are specified to TI’s AOQL (Average Outgoing Quality Level).

(4) Design limits are specified by not 100% tested. These limits are not used to calculate outgoing quality levels.

(5) Total unadjusted error includes offset, full-scale, linearity, and multiplexer error.

(6) For V_{IN} (−) ≥ V_{IN}(+) the digital output code will be 0000 0000. Two on-chip diodes are tied to each analog input, which will forward-conduct for analog input voltages one diode drop below ground or one diode drop greater than V_{CC} supply. Be careful during testing at low V_{CC} levels (4.5V), as high level analog inputs (5V) can cause this input diode to conduct, especially at elevated temperatures, and cause errors for Analog inputs near full-scale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog V_{IN} does not exceed the supply voltage by more than 50 mV, the output code will be correct. To achieve an absolute 0 V_{DC} to 5 V_{DC} input voltage range will therefore require a minimum supply voltage of 4.950 V_{DC} over temperature variations, initial tolerance and loading.

(7) Off channel leakage current is measured after the channel selection.
Electrical Characteristics (continued)

The following specifications apply for $V_{CC} = 5\, V_{DC}$ unless otherwise specified. **Boldface limits apply from T_{MIN} to T_{MAX}; all other limits $T_A = T_j = 25^\circ C$.**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>ADC0844BCJ(1)</th>
<th>ADC0844CCJ(1)</th>
<th>ADC0844CCN, ADC0848BCN, ADC0848CCN, ADC0848BCV, ADC0848CCV</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{OUT(1)}$, Logical “1” Output Voltage (Min)</td>
<td>$V_{CC} = 4.75V$, $I_{OUT} = -360, \mu A$</td>
<td>2.4</td>
<td>2.8</td>
<td>2.4</td>
<td>V</td>
</tr>
<tr>
<td>$V_{OUT(0)}$, Logical “0” Output Voltage (Max)</td>
<td>$V_{CC} = 4.75V$, $I_{OUT} = 1.6, mA$</td>
<td>0.4</td>
<td>0.34</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>I_{OUT}, TRI-STATE Output Current (Max)</td>
<td>$V_{OUT} = 0V$</td>
<td>-0.01</td>
<td>-0.01</td>
<td>-0.3</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td>$V_{OUT} = 5V$</td>
<td>0.01</td>
<td>0.01</td>
<td>0.3</td>
<td>3</td>
</tr>
<tr>
<td>I_{SOURCE}, Output Source Current (Min)</td>
<td>$V_{OUT} = 0V$</td>
<td>-14</td>
<td>-14</td>
<td>-7.5</td>
<td>-6.5</td>
</tr>
<tr>
<td></td>
<td>$V_{OUT} = V_{CC}$</td>
<td>16</td>
<td>16</td>
<td>9.0</td>
<td>8.0</td>
</tr>
<tr>
<td>I_{CC}, Supply Current (Max)</td>
<td>$CS = 1$, V_{REF} Open</td>
<td>1</td>
<td>2.5</td>
<td>1</td>
<td>2.3</td>
</tr>
</tbody>
</table>

AC Electrical Characteristics

The following specifications apply for $V_{CC} = 5V_{DC}$, $t_r = t_f = 10\, ns$ unless otherwise specified. **Boldface limits apply from T_{MIN} to T_{MAX}; all other limits $T_A = T_j = 25^\circ C$.**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Typ(1)</th>
<th>Tested Limit(2)</th>
<th>Design Limit(3)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_c, Maximum Conversion Time (See Figure 7)</td>
<td></td>
<td>30</td>
<td>40</td>
<td>60</td>
<td>μs</td>
</tr>
<tr>
<td>t_{WR}, Minimum WR Pulse Width</td>
<td></td>
<td>50</td>
<td>150</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{ACD}, Maximum Access Time (Delay from Falling Edge of RD to Output Data Valid)</td>
<td>$C_L = 100, pF$</td>
<td>145</td>
<td>225</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{IH}, I_{OH}, TRI-STATE Control (Maximum Delay from Rising Edge of RD to Hi-Z State)</td>
<td>$C_L = 10, pF$, $R_L = 10k$</td>
<td>125</td>
<td>200</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{WI}, t_{RI}, Maximum Delay from Falling Edge of WR or RD to Reset of INTR</td>
<td></td>
<td>200</td>
<td>400</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{DS}, Minimum Data Set-Up Time</td>
<td></td>
<td>50</td>
<td>100</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{DH}, Minimum Data Hold Time</td>
<td></td>
<td>0</td>
<td>50</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>C_{IN}, Capacitance of Logic Inputs</td>
<td></td>
<td>5</td>
<td></td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>C_{OUT}, Capacitance of Logic Outputs</td>
<td></td>
<td>5</td>
<td></td>
<td>pF</td>
<td></td>
</tr>
</tbody>
</table>

(1) Typical figures are at $25^\circ C$ and represent most likely parametric norm.
(2) Tested limits are specified to TI’s AOQL (Average Outgoing Quality Level).
(3) Design limits are specified by not 100% tested. These limits are not used to calculate outgoing quality levels.
(4) The temperature coefficient is 0.3%/°C.
Typical Performance Characteristics

Logic Input Threshold Voltage vs. Supply Voltage

Output Current vs. Temperature

Power Supply Current vs. Temperature

Linearity Error vs. V_{REF}

Conversion Time vs. V_{SUPPLY}

Conversion Time vs. Temperature
Typical Performance Characteristics (continued)

Unadjusted Offset Error vs. \(V_{\text{REF}} \) Voltage

![Graph](image)

Figure 10.

TRI-STATE Test Circuits and Waveforms

\(t_{1H} \), \(C_L = 10 \ pF \)

\(t_{0H} \), \(C_L = 10 \ pF \)

\(t_r = 20 \ \text{ns} \)

Leakage Current Test Circuit

NOT INCLUDED ON ADC0844
Timing Diagrams

Read strobe must occur at least 600 ns after the assertion of interrupt to ensure reset of INTR. MA stands for MUX address.

Figure 11. Using the Previously Selected Channel Configuration and Starting a Conversion
Functional Description

The ADC0844 and ADC0848 contain a 4-channel and 8-channel analog input multiplexer (MUX) respectively. Each MUX can be configured into one of three modes of operation: differential, pseudo-differential, and single ended. These modes are discussed in Applications Information. The specific mode is selected by loading the MUX address latch with the proper address (see Table 1 and Table 2). Inputs to the MUX address latch (MA0-MA4) are common with data bus lines (DB0-DB4) and are enabled when the RD line is high. A conversion is initiated via the CS and WR lines. If the data from a previous conversion is not read, the INTR line will be low. The falling edge of WR will reset the INTR line high and ready the A/D for a conversion cycle. The rising edge of WR, with RD high, strobes the data on the MA0/DB0-MA4/DB4 inputs into the MUX address latch to select a new input configuration and start a conversion. If the RD line is held low during the entire low period of WR the previous MUX configuration is retained, and the data of the previous conversion is the output on lines DB0-DB7. After the conversion cycle (tC ≤ 40 μs), which is set by the internal clock frequency, the digital data is transferred to the output latch and the INTR is asserted low. Taking CS and RD low resets INTR output high and outputs the conversion result on the data lines (DB0-DB7).

APPLICATIONS INFORMATION

MULTIPLEXER CONFIGURATION

The design of these converters utilizes a sampled-data comparator structure which allows a differential analog input to be converted by a successive approximation routine.

The actual voltage converted is always the difference between an assigned “+” input terminal and a “−” input terminal. The polarity of each input terminal of the pair being converted indicates which line the converter expects to be the most positive. If the assigned “+” input is less than the “−” input the converter responds with an all zeros output code.

A unique input multiplexing scheme has been utilized to provide multiple analog channels. The input channels can be software configured into three modes: differential, single ended, or pseudo-differential. Figure 12 shows the three modes using the 4-channel MUX ADC0844. The eight inputs of the ADC0848 can also be configured in any of the three modes. In the differential mode, the ADC0844 channel inputs are grouped in pairs, CH1 with CH2 and CH3 with CH4. The polarity assignment of each channel in the pair is interchangeable. The single-ended mode has CH1–CH4 assigned as the positive input with the negative input being the analog ground (AGND) of the device. Finally, in the pseudo-differential mode CH1–CH3 are positive inputs referenced to CH4 which is now a pseudo-ground. This pseudo-ground input can be set to any potential within the input common-mode range of the converter. The analog signal conditioning required in transducer-based data acquisition systems is significantly simplified with this type of input flexibility. One converter package can now handle ground referenced inputs and true differential inputs as well as signals with some arbitrary reference voltage.

The analog input voltages for each channel can range from 50 mV below ground to 50 mV above VCC (typically 5V) without degrading conversion accuracy.
Table 1. ADC0844 MUX ADDRESSING\(^{(1)}\)

<table>
<thead>
<tr>
<th>MUX Address</th>
<th>CS</th>
<th>WR</th>
<th>RD</th>
<th>Channel#</th>
<th>MUX Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA3 MA2 MA1 MA0</td>
<td></td>
<td></td>
<td></td>
<td>CH1</td>
<td>CH2</td>
</tr>
<tr>
<td>X L L L L</td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td>+</td>
</tr>
<tr>
<td>X L L H L</td>
<td></td>
<td>NP</td>
<td></td>
<td>H</td>
<td>-</td>
</tr>
<tr>
<td>X L H L L</td>
<td></td>
<td>H</td>
<td></td>
<td>H</td>
<td>+</td>
</tr>
<tr>
<td>X L H H L</td>
<td></td>
<td>H</td>
<td></td>
<td>H</td>
<td>-</td>
</tr>
<tr>
<td>L H L L L</td>
<td></td>
<td>NP</td>
<td></td>
<td>H</td>
<td>+</td>
</tr>
<tr>
<td>L H H L L</td>
<td></td>
<td>H</td>
<td></td>
<td>H</td>
<td>-</td>
</tr>
<tr>
<td>L H H H L</td>
<td></td>
<td>H</td>
<td></td>
<td>H</td>
<td>+</td>
</tr>
<tr>
<td>H H L L L</td>
<td></td>
<td>NP</td>
<td></td>
<td>H</td>
<td>+</td>
</tr>
<tr>
<td>H H L H L</td>
<td></td>
<td>H</td>
<td></td>
<td>H</td>
<td>+</td>
</tr>
<tr>
<td>H H H H L</td>
<td></td>
<td>H</td>
<td></td>
<td>H</td>
<td>+</td>
</tr>
<tr>
<td>X X X X X</td>
<td></td>
<td>NP</td>
<td></td>
<td>L</td>
<td></td>
</tr>
</tbody>
</table>

(1) X = don’t care, NP = negative pulse

![Figure 12. Analog Input Multiplexer Options](image)

REFERENCE CONSIDERATIONS

The voltage applied to the reference input of these converters defines the voltage span of the analog input (the difference between \(V_{\text{IN(MAX)}}\) and \(V_{\text{IN(MIN)}}\)) over which the 256 possible output codes apply. The devices can be used in either ratiometric applications or in systems requiring absolute accuracy. The reference pin must be connected to a voltage source capable of driving the minimum reference input resistance of 1.1 kΩ. This pin is the top of a resistor divider string used for the successive approximation conversion.

In a ratiometric system (Figure 13), the analog input voltage is proportional to the voltage used for the A/D reference. This voltage is typically the system power supply, so the \(V_{\text{REF}}\) pin can be tied to \(V_{\text{CC}}\). This technique relaxes the stability requirements of the system reference as the analog input and A/D reference move together maintaining the same output code for a given input condition. For absolute accuracy (Figure 14), where the analog input varies between very specific voltage limits, the reference pin can be biased with a time and temperature stable voltage source. The LM385 and LM336 reference diodes are good low current devices to use with these converters.

The maximum value of the reference is limited to the \(V_{\text{CC}}\) supply voltage. The minimum value, however, can be quite small (see Typical Performance Characteristics) to allow direct conversions of transducer outputs providing less than a 5V output span. Particular care must be taken with regard to noise pickup, circuit layout and system error voltage sources when operating with a reduced span due to the increased sensitivity of the converter (1 LSB equals \(V_{\text{REF}}/256\)).
THE ANALOG INPUTS

Analog Differential Voltage Inputs and Common-Mode Rejection

The differential input of these converters actually reduces the effects of common-mode input noise, a signal common to both selected “+” and “−” inputs for a conversion (60 Hz is most typical). The time interval between sampling the “+” input and then the “−” inputs is ½ of a clock period. The change in the common-mode voltage during this short time interval can cause conversion errors. For a sinusoidal common-mode signal this error is:

$$V_{ERROR(MAX)} = V_{peak} (2\pi f_{CM}) \times 0.5 \times \left(\frac{t_c}{8}\right)$$

where

- f_{CM} is the frequency of the common-mode signal
- V_{peak} is its peak voltage value
- t_c is the conversion time

For a 60 Hz common-mode signal to generate a ¼ LSB error (≈ 5 mV) with the converter running at 40 μS, its peak value would have to be 5.43V. This large a common-mode signal is much greater than that generally found in a well designed data acquisition system.

<table>
<thead>
<tr>
<th>MUX Address</th>
<th>CS</th>
<th>WR</th>
<th>RD</th>
<th>Channel</th>
<th>MUX Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA4, MA3, MA2, MA1, MA0</td>
<td></td>
<td></td>
<td></td>
<td>CH1, CH2, CH3, CH4, CH5, CH6, CH7, CH8, AGND</td>
<td></td>
</tr>
<tr>
<td>X L L L L L L</td>
<td>H</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>L H H L L L L</td>
<td>H</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>L H H L L L L</td>
<td>H</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>H H L L L L L</td>
<td>H</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>L H H H L L L</td>
<td>H</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>L H H H H L L</td>
<td>H</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>H H L L L L L</td>
<td>H</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>H H L L L L L</td>
<td>H</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>H H L L L L L</td>
<td>H</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>H H L L L L L</td>
<td>H</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>H H H H H H L</td>
<td>H</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>X X X X L L</td>
<td>L</td>
<td>Previous Channel Configuration</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) X = don’t care, NP = negative pulse
Input Current

Due to the sampling nature of the analog inputs, short duration spikes of current enter the “+” input and exit the “−” input at the clock edges during the actual conversion. These currents decay rapidly and do not cause errors as the internal comparator is strobed at the end of a clock period. Bypass capacitors at the inputs will average these currents and cause an effective DC current to flow through the output resistance of the analog signal source. Bypass capacitors should not be used if the source resistance is greater than 1 kΩ.

Input Source Resistance

The limitation of the input source resistance due to the DC leakage currents of the input multiplexer is important. A worst-case leakage current of ±1 μA over temperature will create a 1 mV input error with a 1 kΩ source resistance. An op amp RC active low pass filter can provide both impedance buffering and noise filtering should a high impedance signal source be required.

OPTIONAL ADJUSTMENTS

Zero Error

The zero of the A/D does not require adjustment. If the minimum analog input voltage value, \(V_{IN(MIN)} \), is not ground, a zero offset can be done. The converter can be made to output 0000 0000 digital code for this minimum input voltage by biasing any \(V_{IN(−)} \) input at this \(V_{IN(MIN)} \) value. This is useful for either differential or pseudo-differential modes of input channel configuration.

The zero error of the A/D converter relates to the location of the first riser of the transfer function and can be measured by grounding the \(V^− \) input and applying a small magnitude positive voltage to the \(V^+ \) input. Zero error is the difference between actual DC input voltage which is necessary to just cause an output digital code transition from 0000 0000 to 0000 0001 and the ideal ½ LSB value (½ LSB = 9.8 mV for \(V_{REF} = 5.000 \text{ V}_{DC} \)).

Full-Scale

The full-scale adjustment can be made by applying a differential input voltage which is 1 ½ LSB down from the desired analog full-scale voltage range and then adjusting the magnitude of the \(V_{REF} \) input for a digital output code changing from 1111 1110 to 1111 1111.

Adjusting for an Arbitrary Analog Input Voltage Range

If the analog zero voltage of the A/D is shifted away from ground (for example, to accommodate an analog input signal which does not go to ground), this new zero reference should be properly adjusted first. A \(V_{IN(+)\text{ offset}} \) voltage which equals this desired zero reference plus ½ LSB (where the LSB is calculated for the desired analog span, 1 LSB = analog span/256) is applied to selected “+” input and the zero reference voltage at the corresponding “−” input should then be adjusted to just obtain the 00\text{HEX} to 01\text{HEX} code transition.

![Figure 13. Referencing Examples - Ratiometric](image-url)
The full-scale adjustment should be made [with the proper $V_{IN} (-)$ voltage applied] by forcing a voltage to the $V_{IN} (+)$ input which is given by:

$$V_{IN} (+)_{ts\ \text{adj}} = V_{MAX} - 1.5 \left(\frac{V_{MAX} - V_{MIN}}{256} \right)$$

where

- $V_{MAX} = \text{the high end of the analog input range}$
- $V_{MIN} = \text{the low end (the offset zero) of the analog range. (Both are ground referenced.)}$

(1)

The V_{REF} (or V_{CC}) voltage is then adjusted to provide a code change from FE_{HEX} to FF_{HEX}. This completes the adjustment procedure.

For an example see the Zero-Shift and Span Adjust circuit below.
Figure 16. Differential Voltage Input 9-Bit A/D

Diodes are 1N914

DO = all 1s if $V_{IN}^{(+)} > V_{IN}^{(-)}$
DO = all 0s if $V_{IN}^{(+)} < V_{IN}^{(-)}$

Figure 17. Span Adjust ($0 \leq V_{IN} \leq 3V$)

Figure 18. Protecting the Input

* $V_{IN}^{(-)} = 0.15 \times V_{CC}$
15% of V_{CC} of V_{XDR} is 85% of V_{CC}

Figure 19. High Accuracy Comparators

Figure 20. Operating with Automotive Ratiometric Transducers
Note: DUT pin numbers in parentheses are for ADC0844, others are for ADC0848.

Figure 21. A Stand Alone Circuit

CS • WR will update the channel configuration and start a conversion.
CS • RD will read the conversion data and start a new conversion without updating the channel configuration.
Waiting for the end of this conversion is not necessary. A CS • WR can immediately follow the CS • RD.

Figure 22. Start a Conversion without Updating the Channel Configuration
Figure 23. ADC0844—INS8039 Interface

Sample Program for ADC0844 - INS8039 Interface Converting Two Ratiometric Differential Signals

```
ORG 0H
0000 04 10 JMP BEGIN ;START PROGRAM AT ADDR 10
ORG 10H ;MAIN PROGRAM
0010 B9 FF BEGIN: MOV R1,#0FFH ;LOAD R1 WITH AN UNUSED ADDR
   ;LOCATION
0012 B8 20 MOV R0,#20H ;A/D DATA ADDRESS
0014 89 FF ORL P1,#0FFH ;SET PORT 1 OUTPUTS HIGH
0016 23 00 MOV A,00H ;LOAD THE ACC WITH A/D MUX DATA
   ;CH1 AND CH2 DIFFERENTIAL
0018 14 50 CALL CONV ;CALL THE CONVERSION SUBROUTINE
001A 23 02 MOV A,#02H ;LOAD THE ACC WITH A/D MUX DATA
   ;CH3 AND CH4 DIFFERENTIAL
001C 23 00 INC R0 ;INCREMENT THE A/D DATA ADDRESS
001E 14 50 CALL CONV ;CALL THE CONVERSION SUBROUTINE

;CONTINUE MAIN PROGRAM

;CONVERSION SUBROUTINE
;ENTRY:ACC-A/D MUX DATA
;EXIT:ACC-CONVERTED DATA

ORG 50H
0050 99 FE CONV: ANL P1,#0FEH ;CHIP SELECT THE A/D
0052 91 MOVX @R1,A ;LOAD A/D_MUX & START CONVERSION
0054 32 53 JB1 LOOP ;IF INTR = 1 GOTO LOOP
0056 81 MOVX A,@R1 ;IF INTR = 0 INPUT A/D DATA
0058 89 01 ORL P1,#01H ;CLEAR THE A/D CHIP SELECT
005A A0 MOV @R0,A ;STORE THE A/D DATA
005C 83 RET ;RETURN TO MAIN PROGRAM
```
Figure 24. I/O Interface to NSC800

Sample Program for ADC0848 - NSC800 Interface

0008 NCONV EQU 16
000F DEL EQU 15 ;DELAY 50 μSEC CONVERSION
001F CS EQU 1FH ;THE BOARD ADDRESS
3C00 ADDTA EQU 003CH ;START OF RAM FOR A/D ;DATA
0000' 08 09 0A 0B MUXDTA: DB 08H,09H,0AH,0BH ;MUX DATA
0004' 0C 0D 0E 0F DB 0CH,0DH,0EH,0FH
0008' 0E 1F START: LD C,CS
000C' 21 003C LD DE,ADDTA
000F' 11 003C LD DE,ADDTA
0012' ED A3 STCONV: OUTI ;LOAD A/D'S MUX DATA ;AND START A CONVERSION
0014' EB EX DE,HL ;HL=RAM ADDRESS FOR THE ;A/D DATA
0015' 3E 0F LD A,DEL
0017' 3D WAIT: DEC A ;WAIT 50 μSEC FOR THE
0018' C2 0013' JP NZ,WAIT ;CONVERSION TO FINISH
001B' ED A2 INI ;STORE THE A/D'S DATA ;CONVERTED ALL INPUTS?
001D' EB EX DE,HL
001E' C2 000E' JP NZ,STCONV ;IF NOT GOTO STCONV
END

Note: This routine sequentially programs the MUX data latch in the signal-ended mode. For CH1-CH8 a conversion is started, then a 50 μs wait for the A/D to complete a conversion and the data is stored at address ADDTA for CH1, ADDTA + 1 for CH2, etc.
REVISION HISTORY

Changes from Revision C (March 2013) to Revision D

<table>
<thead>
<tr>
<th>Change Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changed layout of National Data Sheet to TI format</td>
<td>17</td>
</tr>
</tbody>
</table>

Product Folder Links: [ADC0844 ADC0848]
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>PIns</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC0844CCN/NOPB</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>NFH</td>
<td>20</td>
<td>18</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-NA-UNLIM</td>
<td>0 to 70</td>
<td>ADC0844CCN</td>
<td></td>
</tr>
<tr>
<td>ADC0848BCV</td>
<td>LIFEBUY</td>
<td>PLCC</td>
<td>FN</td>
<td>28</td>
<td>35</td>
<td>TBD</td>
<td>Call TI</td>
<td>Level-2A-245C-4 WEEK</td>
<td>-40 to 85</td>
<td>ADC0848BCV</td>
<td></td>
</tr>
<tr>
<td>ADC0848BCV/NOPB</td>
<td>ACTIVE</td>
<td>PLCC</td>
<td>FN</td>
<td>28</td>
<td>35</td>
<td>TBD</td>
<td>Call TI</td>
<td>Level-2A-245C-4 WEEK</td>
<td>-40 to 85</td>
<td>ADC0848BCV</td>
<td></td>
</tr>
<tr>
<td>ADC0848CCN</td>
<td>LIFEBUY</td>
<td>PDIP</td>
<td>NAM</td>
<td>24</td>
<td>15</td>
<td>TBD</td>
<td>Call TI</td>
<td>Level-2A-245C-4 WEEK</td>
<td>-40 to 85</td>
<td>ADC0848CCN</td>
<td></td>
</tr>
<tr>
<td>ADC0848CCV</td>
<td>LIFEBUY</td>
<td>PLCC</td>
<td>FN</td>
<td>28</td>
<td>35</td>
<td>TBD</td>
<td>Call TI</td>
<td>Level-2A-245C-4 WEEK</td>
<td>-40 to 85</td>
<td>ADC0848CCV</td>
<td></td>
</tr>
<tr>
<td>ADC0848CCV/NOPB</td>
<td>ACTIVE</td>
<td>PLCC</td>
<td>FN</td>
<td>28</td>
<td>35</td>
<td>TBD</td>
<td>Call TI</td>
<td>Level-2A-245C-4 WEEK</td>
<td>-40 to 85</td>
<td>ADC0848CCV</td>
<td></td>
</tr>
<tr>
<td>ADC0848CCVX</td>
<td>LIFEBUY</td>
<td>PLCC</td>
<td>FN</td>
<td>28</td>
<td>750</td>
<td>TBD</td>
<td>Call TI</td>
<td>Level-2A-245C-4 WEEK</td>
<td>-40 to 85</td>
<td>ADC0848CCVX</td>
<td></td>
</tr>
<tr>
<td>ADC0848CCVX/NOPB</td>
<td>ACTIVE</td>
<td>PLCC</td>
<td>FN</td>
<td>28</td>
<td>750</td>
<td>TBD</td>
<td>Call TI</td>
<td>Level-2A-245C-4 WEEK</td>
<td>-40 to 85</td>
<td>ADC0848CCVX</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.
NOTES:

1. All linear dimensions are in inches. Any dimensions in brackets are in millimeters. Any dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.

2. This drawing is subject to change without notice.

3. Dimension does not include mold protrusion. Maximum allowable mold protrusion .01 in [0.25 mm] per side.

4. Reference JEDEC registration MS-018.
5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
8. Board assembly site may have different recommendations for stencil design.
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and/or implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers’ applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designers agree that, with respect to their applications, Designers have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designers agree that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY TECHNICAL, NON TECHNICAL, ANY PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.