12-Bit, 20MHz Sampling
ANALOG-TO-DIGITAL CONVERTER

FEATURES

- HIGH SFDR: 74dB at 9.8MHz f_in
- HIGH SNR: 68dB
- LOW POWER: 300mW
- LOW DLE: 0.25LSB
- FLEXIBLE INPUT RANGE
- OVER-RANGE INDICATOR

APPLICATIONS

- STUDIO CAMERAS
- IF AND BASEBAND DIGITIZATION
- COPIERS
- TEST INSTRUMENTATION

DESCRIPTION

The ADS805 is a 20MHz, high dynamic range, 12-bit, pipelined Analog-to-Digital Converter (ADC). This converter includes a high-bandwidth track-and-hold that gives excellent spurious performance up to and beyond the Nyquist rate. This high-bandwidth, linear track-and-hold minimizes harmonics and has low jitter, leading to excellent Signal-to-Noise Ratio (SNR) performance. The ADS805 is also pin-compatible with the 10MHz ADS804 and the 5MHz ADS803.

The ADS805 provides an internal reference or an external reference can be used. The ADS805 can be programmed for a 2Vp-p input range which is the easiest to drive with a single op amp and provides the best spurious performance. Alternatively, the 5Vp-p input range can be used for the lowest input-referred noise of 0.09LSBs rms giving superior imaging performance. There is also the capability to set the input range between 2Vp-p and 5Vp-p, either single-ended or differential. The ADS805 also provides an over-range flag that indicates when the input signal has exceeded the converter’s full-scale range. This flag can also be used to reduce the gain of the front end signal conditioning circuitry.

The ADS805 employs digital error techniques to provide excellent differential linearity for demanding imaging applications. Its low distortion and high SNR give the extra margin needed for communications, medical imaging, video, and test instrumentation applications. The ADS805 is available in an SSOP-28 package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
ABSOLUTE MAXIMUM RATINGS

+V_S ....................................................................................................... +6V
Analog Input ............................................................ -0.3V to (+V_S) + 0.3V
Logic Input ............................................................... -0.3V to (+V_S) + 0.3V
Case Temperature ........................................................................... +100°C
Junction Temperature .................................................................... +150°C
Storage Temperature ..................................................................... +150°C

NOTE: (1) Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may affect device reliability.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>PACKAGE-LEAD</th>
<th>PACKAGE DESIGNATOR(1)</th>
<th>SPECIFIED TEMPERATURE RANGE</th>
<th>ORDERING NUMBER(2)</th>
<th>TRANSPORT MEDIA, QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADS805</td>
<td>SSOP-28</td>
<td>DB</td>
<td>−40°C to +85°C</td>
<td>ADS805E</td>
<td>Rails, 48</td>
</tr>
</tbody>
</table>

NOTE: (1) For the most current specifications and package information, refer to our web site at www.ti.com.

ELECTRICAL CHARACTERISTICS

At T_A = full specified temperature range, V_S = +5V, specified input range = 1.5V to 3.5V, and single-ended input and sampling rate = 20MHz, unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>ADS805E</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESOLUTION</td>
<td>12 Bits Tested</td>
<td></td>
</tr>
<tr>
<td>SPECIFIED TEMPERATURE RANGE</td>
<td>−40 to +85°C</td>
<td>°C</td>
</tr>
</tbody>
</table>

CONVERSION CHARACTERISTICS

Sample Rate | 10k | 6 | 20M Samples/s Clk Cycles |
Data Latency | | |

ANALOG INPUT

Standard Single-Ended Input Range | 1.5 | 3.5 V |
Optional Single-Ended Input Range | 0 | 5 V |
Standard Common-Mode Voltage | 2.5 | V |
Standard Optional Common-Mode Voltage | 1 | V |
Input Capacitance | 20 | pF |
Analog Input Bandwidth | −3dBFS Input | |

DYNAMIC CHARACTERISTICS

Differential Linearity Error (Largest Code Error)
| f = 500kHz | ±0.25 | ±0.75 LSB |
| No Missing Codes | Tested |
| Spurious-Free Dynamic Range(1) | 65 | 74 dBFS(2) |
| f = 9.8MHz | |
| 2-Tone Intermodulation Distortion(3) | f = 7.7MHz and 7.9MHz (−7dB each tone) | −70 dBc |
| Signal-to-Noise Ratio (SNR) | f = 9.8MHz | 63 | 68 dBFS |
| Signal-to-(Noise + Distortion) (SINAD) | f = 9.8MHz | 62 | 66 dBFS |
| Effective Number of Bits at 9.8MHz(4) | 0V to 5V Input | 10.7 Bits |
| Input Referred Noise | 1.5V to 3.5V Input | 0.09 LSBs rms |
| Integral Nonlinearity Error | f = 500kHz | ±1 | ±2 LSB |
| Aperture Delay Time | 3 | ns |
| Aperture Jitter | 4 | ps rms |
| Over-Voltage Recovery Time | 1.5x FS Input | 2 | ns |
| Full-Scale Step Acquisition Time | | 20 | ns |

NOTES: (1) Spurious-Free Dynamic Range refers to the magnitude of the largest harmonic. (2) dBFS means dB relative to full-scale. (3) 2-tone intermodulation distortion is referred to the largest fundamental tone. This number will be 6dB higher if it is referred to the magnitude of the 2-tone fundamental envelope. (4) Effective number of bits (ENOB) is defined by (SINAD − 1.76)/6.02. (5) Internal 50kΩ pull-down resistor. (6) Includes internal reference. (7) Excludes internal reference.
ELECTRICAL CHARACTERISTICS (Cont.)

At TA = full specified temperature range, VS = +5V, specified input range = 1.5V to 3.5V, and single-ended input and sampling rate = 20MHz, unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>ADS805E</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIGITAL INPUTS</td>
<td></td>
<td>MIN</td>
</tr>
<tr>
<td>Logic Family</td>
<td>CMOS Compatible</td>
<td></td>
</tr>
<tr>
<td>Convert Command</td>
<td>Rising Edge of Convert Clock</td>
<td></td>
</tr>
<tr>
<td>High Level Input Current (VIN = 5V)</td>
<td>±100</td>
<td>µA</td>
</tr>
<tr>
<td>Low Level Input Current (VOUT = 0V)</td>
<td>10</td>
<td>µA</td>
</tr>
<tr>
<td>High Level Input Voltage</td>
<td>+3.5</td>
<td>V</td>
</tr>
<tr>
<td>Low Level Input Voltage</td>
<td>+1.0</td>
<td>V</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>5</td>
<td>pF</td>
</tr>
</tbody>
</table>

| DIGITAL OUTPUTS | CMOS/TTL Compatible |             |
| Logic Family | Straight Offset Binary |       |
| Logic Coding |                    |       |
| Low Output Voltage | (ICL = 50µA) | 0.1  | V   |     |       |
| Low Output Voltage | (ICL = 1.6mA) | 0.4  | V   |     |       |
| High Output Voltage | (ICL = 50µA) | +4.5 | V   |     |       |
| High Output Voltage | (ICL = 0.5mA) | +2.4 | V   |     |       |
| 3-State Enable Time | OE = L | 20   | ns  |     |       |
| 3-State Disable Time | OE = H | 2    | 10  | ns  |       |
| Output Capacitance | 5  | pF  |     |     |       |

| ACCURACY (5Vp-p Input Range) | fS = 2.5MHz |
| Zero-Error (Referred to –FS) | 0.3 | ±1.5 | %FS |     |
| Zero-Error Drift (Referred to –FS) | ±5  | ppm/°C |       |     |
| Gain Error(6) | At 25°C | 0.7  | ±2.0 | %FS |       |
| Gain Error Drift(6) | At 25°C | ±18  | ppm/°C |       |     |
| Gain Error(7) | At 25°C | 0.2  | ±1.5 | %FS |       |
| Gain Error Drift(7) | At 25°C | ±10  | ppm/°C |       |     |
| Power-Supply Rejection of Gain | ΔVS = ±5% | 60   | 70  | dB |       |
| Reference Input Resistance | 1.6  | kΩ  |     |     |       |
| Internal Voltage Reference Tolerance (VREF = 2.5V) | At 25°C | ±35  | mV |     |       |
| Internal Voltage Reference Tolerance (VREF = 1.0V) | At 25°C | ±14  | mV |     |       |

| POWER-SUPPLY REQUIREMENTS |            |
| Supply Voltage: +VS | Operating | +4.75 | +5.0 | +5.25 | V |
| Supply Current: +VS | Operating | 60    | 69   | mA   |     |
| Power Dissipation | Operating | 300   | 345  | mW   |     |
| Thermal Resistance, θJA | SSOP-28 | 50 | °C/W |     |     |

NOTES: (1) Spurious-Free Dynamic Range refers to the magnitude of the largest harmonic. (2) d BFS means dB relative to full-scale. (3) 2-tone intermodulation distortion is referred to the largest fundamental tone. This number will be 6dB higher if it is referred to the magnitude of the 2-tone fundamental envelope. (4) Effective number of bits (ENOB) is defined by (SINAD – 1.76)/6.02. (5) Internal 50kΩ pull-down resistor. (6) Includes internal reference. (7) Excludes internal reference.
**PIN CONFIGURATION**

**Top View**

<table>
<thead>
<tr>
<th>PIN</th>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVR</td>
<td>Over-Range Indicator</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>Data Bit 1 (D11) (MSB)</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>Data Bit 2 (D10)</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>Data Bit 3 (D9)</td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>Data Bit 4 (D8)</td>
<td></td>
</tr>
<tr>
<td>B5</td>
<td>Data Bit 5 (D7)</td>
<td></td>
</tr>
<tr>
<td>B6</td>
<td>Data Bit 6 (D6)</td>
<td></td>
</tr>
<tr>
<td>B7</td>
<td>Data Bit 7 (D5)</td>
<td></td>
</tr>
<tr>
<td>B8</td>
<td>Data Bit 8 (D4)</td>
<td></td>
</tr>
<tr>
<td>B9</td>
<td>Data Bit 9 (D3)</td>
<td></td>
</tr>
<tr>
<td>B10</td>
<td>Data Bit 10 (D2)</td>
<td></td>
</tr>
<tr>
<td>B11</td>
<td>Data Bit 11 (D1)</td>
<td></td>
</tr>
<tr>
<td>B12</td>
<td>Data Bit 12 (D0) (LSB)</td>
<td></td>
</tr>
<tr>
<td>CLK</td>
<td>Convert Clock Input</td>
<td></td>
</tr>
<tr>
<td>OE</td>
<td>Output Enable. H = High Impedance State. L = LOW or floating, normal operation (internal pull-down resistor).</td>
<td></td>
</tr>
<tr>
<td>+VS</td>
<td>+5V Supply</td>
<td></td>
</tr>
<tr>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>SEL</td>
<td>Input Range Select</td>
<td></td>
</tr>
<tr>
<td>VREF</td>
<td>Reference Voltage Select</td>
<td></td>
</tr>
<tr>
<td>REFB</td>
<td>Bottom Reference</td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>Common-Mode Voltage</td>
<td></td>
</tr>
<tr>
<td>REFT</td>
<td>Top Reference</td>
<td></td>
</tr>
<tr>
<td>IN</td>
<td>Complementary Analog Input</td>
<td></td>
</tr>
<tr>
<td>+VS</td>
<td>+5V Supply</td>
<td></td>
</tr>
</tbody>
</table>

**SSOP**

**PIN DESCRIPTIONS**

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>DESCRIPTION</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>tCONV</td>
<td>Convert Clock Period</td>
<td>50</td>
<td>100µs</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tL</td>
<td>Clock Pulse LOW</td>
<td>24</td>
<td>25</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tH</td>
<td>Clock Pulse HIGH</td>
<td>24</td>
<td>25</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tD</td>
<td>Aperture Delay</td>
<td>24</td>
<td>3</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t1</td>
<td>Data Hold Time, C_L = 0pF</td>
<td>3.9</td>
<td>12</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t2</td>
<td>New Data Delay Time, C_L = 15pF max</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TYPICAL CHARACTERISTICS

At $T_A =$ full specified temperature range, $V_S =$ +5V, specified single-ended input range = 1.5V to 3.5V, and sampling rate = 20MHz, unless otherwise specified.

---

**Spectral Performance**

- **Frequency (MHz):**
  - 0
  - 2.0
  - 4.0
  - 6.0
  - 8.0
  - 10.0

- **Amplitude (dB):**
  - 0
  - –20
  - –40
  - –60
  - –80
  - –100
  - –120

- $f_{IN} = 500kHz$
- $f_{IN} = 9.8MHz$

---

**2-Tone Intermodulation Distortion**

- $f_1 = 7.7MHz$ at –7dBFS
- $f_2 = 7.9MHz$ at –7dBFS
- IMD (3) = –70dBc

---

**Differential Linearity Error**

- **Output Code:**
  - 0
  - 1024
  - 2048
  - 3072
  - 4096

- **Code Width Error (LSB):**
  - 1.0
  - 0.5
  - 0
  - –0.5
  - –1.0

- $f_{IN} = 9.8MHz$

---

**Integral Linearity Error**

- **Output Code:**
  - 0
  - 1024
  - 2048
  - 3072
  - 4096

- **ILE (LSB):**
  - 4.0
  - 2.0
  - 0
  - –2.0
  - –4.0

- $f_{IN} = 500kHz$
- $f_{IN} = 500kHz$

---

**Swept Power SFDR**

- **Input Amplitude (dBFS):**
  - –60
  - –50
  - –40
  - –30
  - –20
  - –10
  - 0

- **SFDR (dBFS, dBc):**
  - 100
  - 80
  - 60
  - 40
  - 20

- $f_{IN} = 9.8MHz$

---
TYPICAL CHARACTERISTICS (Cont.)

At $T_a = $ full specified temperature range, $V_s = +5V$, specified single-ended input range = 1.5V to 3.5V, and sampling rate = 20MHz, unless otherwise specified.

**Dynamic Performance vs Input Frequency**

SFDR, SNR (dBFS)

feldber

**Differential Linearity Error vs Temperature**

DLE (LSB)

**Spurious-Free Dynamic Range vs Temperature**

SFDR (dBFS)

**Signal-to-Noise Ratio vs Temperature**

SNR (dBFS)

**Signal-to-(Noise + Distortion) vs Temperature**

SINAD (dBFS)

**Power Dissipation vs Temperature**

Power (mW)
TYPICAL CHARACTERISTICS (Cont.)

At $T_A =$ full specified temperature range, $V_S =$ +5V, specified single-ended input range = 1.5V to 3.5V, and sampling rate = 20MHz, unless otherwise specified.

OUTPUT NOISE HISTOGRAM (DC Input)

OUTPUT NOISE HISTOGRAM (DC Input, $V_{IN} =$ 5Vp-p Range)

UNDERSMARTING (Differential Input, 2Vp-p)

$\begin{align*}
    f_s &= 20\text{MHz} \\
    f_{IN} &= 41\text{MHz} \\
    \text{SNR} &= 63.2\text{dBFS} \\
    \text{SFDR} &= 76.3\text{dBFS}
\end{align*}$
DRIVING THE ANALOG INPUT

The ADS805 allows its analog inputs to be driven either single-ended or differentially. The focus of the following discussion is on the single-ended configuration. Typically, its implementation is easier to achieve and the rated specifications for the ADS805 are characterized using the single-ended mode of operation.

AC-COUPLED INPUT CONFIGURATION

Given in Figure 1 is the circuit example of the most common interface configuration for the ADS805. With the VREF pin connected to the SEL pin, the full-scale input range is defined to be 2Vp-p. This signal is ac-coupled in single-ended form to the ADS805 using the low distortion voltage-feedback amplifier OPA642. As is generally necessary for single-supply components, operating the ADS805 with a full-scale input signal swing requires a level-shift of the amplifier’s zero centered analog signal to comply with the ADC’s input range requirements. Using a DC-blocking capacitor between the output of the driving amplifier and the converter’s input, a simple level-shifting scheme can be implemented. In this configuration, the top and bottom references (REFT, REFB) provide an output voltage of +3V and +2V, respectively. Here, two resistor pairs (2 • 2kΩ) are used to create a common-mode voltage of approximately +2.5V to bias the inputs of the ADS805 (IN, IN_) to the required DC voltage.

An advantage of ac-coupling is that the driving amplifier still operates with a ground-based signal swing. This will keep the distortion performance at its optimum since the signal swing stays within the linear region of the op amp and sufficient headroom to the supply rails can be maintained. Consider using the inverting gain configuration to eliminate CMR induced errors of the amplifier. The addition of a small series resistor (Rs) between the output of the op amp and the input of the ADS805 will be beneficial in almost all interface configurations. This will decouple the op amp’s output from the capacitive load and avoid gain peaking, which can result in increased noise. For best spurious and distortion performance, the resistor value should be kept below 100Ω. Furthermore, the series resistor, together with the 100pF capacitor, establish a passive low-pass filter, limiting the bandwidth for the wideband noise, thus helping improve the signal-to-noise performance.

DC-COUPLED WITHOUT LEVEL SHIFT

In some applications the analog input signal may already be biased at a level which complies with the selected input range and reference level of the ADS805. In this case, it is only necessary to provide an adequately low source impedance to the selected input, IN or IN_. Always consider wideband op amps since their output impedance will stay low over a wide range of frequencies.

DC-COUPLED WITH LEVEL SHIFT

Several applications may require that the bandwidth of the signal path include DC, in which case the signal has to be DC-coupled to the ADC. In order to accomplish this, the interface circuit has to provide a DC-level shift. The circuit presented in Figure 2 utilizes the single-supply, current-feedback op amp OPA681 (A1), to sum the ground-centered input signal with a required DC offset. The ADS805 typically operates with a +2.5V common-mode voltage, which is established with resistors R3 and R4 and connected to the IN input of the converter. Amplifier A1 operates in inverting configuration. Here, resistors R1 and R2 set the DC-bias level for A1. Because of the op amp’s noise gain of +2V/V, assuming R_f = R_in, the DC offset voltage applied to its noninverting input has to be divided down to +1.25V, resulting in a DC output voltage of +2.5V. DC voltage differences between the IN and IN_ inputs of the ADS805 effectively will produce an offset, which can be corrected for by adjusting the values of resistors R1 and R2. The bias current of the op amp may also result in an undesired

FIGURE 1. AC-Coupled Input Configuration for 2Vp-p Input Swing and Common-Mode Voltage at +2.5V Derived from Internal Top and Bottom Reference.
offset. The selection criteria for an appropriate op amp should include the input bias current, output voltage swing, distortion, and noise specification. Note that in this example the overall signal phase is inverted. To reestablish the original signal polarity, it is always possible to interchange the IN and IN connections.

**SINGLE-ENDED-TO-DIFFERENTIAL CONFIGURATION (TRANSFORMER-COUPLED)**

In order to select the best suited interface circuit for the ADS805, the performance requirements must be known. If an ac-coupled input is needed for a particular application, the next step is to determine the method of applying the signal; either single-ended or differentially. The differential input configuration may provide a noticeable advantage of achieving good SFDR performance based on the fact that, in the differential mode, the signal swing can be reduced to half of the swing required for single-ended drive. Secondly, by driving the ADS805 differentially, the even-order harmonics will be reduced. Figure 3 shows the schematic for the suggested transformer-coupled interface circuit. The resistor across the secondary side (R_T) should be set to get an input impedance match (e.g., R_T = n^2 • R_G).

One application example that will benefit from the differential input configuration is the digitization of IF signals. The wide track-and-hold input bandwidth makes the ADS805 well suited for IF down conversion in both narrow and wideband applications. The ADS805 maintains excellent dynamic performance in multiple Nyquist regions covering a variety of IF frequencies (see the Typical Characteristics). Using the ADS805 for direct IF conversion eliminates the need of an analog mixer along with subsequent functions like amplifiers and filters, thus reducing system cost and complexity.

**FIGURE 2. DC-Coupled, Single-Ended Input Configuration with DC-level Shift.**

**FIGURE 3. Transformer-Coupled Input.**

**REFERENCE OPERATION**

Integrated into the ADS805 is a bandgap reference circuit including logic that provides either a +1V or +2.5V reference output, by simply selecting the corresponding pin-strap configuration. Different reference voltages can be generated by the use of two external resistors, which will set a different gain for the internal reference buffer. For more design flexibility, the internal reference can be shut off and an external reference voltage used. Table I provides an overview of the possible reference options and pin configurations.

**TABLE I. Selected Reference Configuration Examples.**
A simple model of the internal reference circuit is shown in Figure 4. The internal blocks are a 1V-bandgap voltage reference, buffer, the resistive reference ladder and the drivers for the top and bottom reference which supply the necessary current to the internal nodes. As shown, the output of the buffer appears at the \( V_{\text{REF}} \) pin. The full-scale input span of the ADS805 is determined by the voltage at \( V_{\text{REF}} \), according to Equation 1:

\[
\text{Full-Scale Input Span} = 2 \cdot V_{\text{REF}} \quad (1)
\]

Note that the current drive capability of this amplifier is limited to approximately 1mA and should not be used to drive low loads. The programmable reference circuit is controlled by the voltage applied to the select pin (SEL). Refer to Table I for an overview.

The top reference (REFT) and the bottom reference (REFB) are brought out mainly for external bypassing. For proper operation with all reference configurations, it is necessary to provide solid bypassing to the reference pins in order to keep the clock feedthrough to a minimum. Figure 5 shows the recommended decoupling network.

In addition, the Common-Mode Voltage (CMV) may be used as a reference level to provide the appropriate offset for the driving circuitry. However, care must be taken not to appreciably load this node, which is not buffered and has a high impedance. An alternate method of generating a common-mode voltage is given in Figure 6. Here, two external precision resistors (tolerance 1% or better) are located between the top and bottom reference pins. The common-mode level will appear at the midpoint. The output buffers of the top and bottom reference are designed to supply approximately 2mA of output current.
SELECTING THE INPUT RANGE AND REFERENCE

Figures 7 through 9 show a selection of circuits for the most common input ranges when using the internal reference of the ADS805. All examples are for single-ended input and operate with a nominal common-mode voltage of +2.5V.

EXTERNAL REFERENCE OPERATION

Depending on the application requirements, it might be advantageous to operate the ADS805 with an external reference. This may improve the DC accuracy if the external reference circuitry is superior in its drift and accuracy. To use the ADS805 with an external reference, the user must disable the internal reference, as shown in Figure 10. By connecting the SEL pin to +Vs, the internal logic will shut down the internal reference. At the same time, the output of the internal reference buffer is disconnected from the VREF pin, which now must be driven with the external reference. Note that a similar bypassing scheme should be maintained as described for the internal reference operation.

DIGITAL INPUTS AND OUTPUTS

Over-Range (OVR)

One feature of the ADS805 is its 'Over-Range' (OVR) digital output. This pin can be used to monitor any out-of-range condition, which occurs every time the applied analog input voltage exceeds the input range (set by VREF). The OVR output is LOW when the input voltage is within the defined input range. It becomes HIGH when the input voltage is beyond the input range. This is the case when the input voltage is either below the bottom reference voltage or above the top reference voltage. OVR will remain active until the analog input returns to its normal signal range and another conversion is completed. Using the MSB and its complement in conjunction with OVR, a simple decode logic can be built that detects the over-range and under-range conditions, (see Figure 11). It should be noted that OVR is a digital output which is updated along with the bit information corresponding to the particular sampling incidence of the analog signal. Therefore, the OVR data is subject to the same pipeline delay (latency) as the digital data.
If necessary, external buffers or latches may be used which provide the added benefit of isolating the ADS805 from any digital noise activities on the bus coupling back high-frequency noise. In addition, resistors in series with each data line may help maintain the ac performance of the ADS805. Their use depends on the capacitive loading seen by the converter. Values in the range of 100Ω to 200Ω will limit the instantaneous current the output stage has to provide for recharging the parasitic capacitances, as the output levels change from LOW to HIGH or HIGH to LOW.

GROUNDING AND DECOUPLING

Proper grounding and bypassing, short lead length, and the use of ground planes are particularly important for high-frequency designs. Multilayer PC boards are recommended for best performance since they offer distinct advantages like minimizing ground impedance, separation of signal layers by ground layers, etc. It is recommended that the analog and digital ground pins of the ADS805 be joined together at the IC and be connected only to the analog ground of the system.

The ADS805 has analog and digital supply pins, however the converter should be treated as an analog component and all supply pins should be powered by the analog supply. This will ensure the most consistent results, since digital supply lines often carry high levels of noise that would otherwise be coupled into the converter and degrade the achievable performance.

Because of the pipeline architecture, the converter also generates high-frequency current transients and noise that are fed back into the supply and reference lines. This requires that the supply and reference pins be sufficiently bypassed. Figure 12 shows the recommended decoupling scheme for the analog supplies. In most cases, 0.1µF ceramic chip capacitors are adequate to keep the impedance low over a wide frequency range. Their effectiveness largely depends on the proximity to the individual supply pin. Therefore, they should be located as close to the supply pins as possible. In addition, a larger size bipolar capacitor (1µF to 22µF) should be placed on the PC board in close proximity to the converter circuit.
## PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADS805E</td>
<td>ACTIVE</td>
<td>SSOP</td>
<td>DB</td>
<td>28</td>
<td>50</td>
<td>Green (RoHS &amp; no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>ADS805E</td>
<td></td>
</tr>
<tr>
<td>ADS805E/1K</td>
<td>ACTIVE</td>
<td>SSOP</td>
<td>DB</td>
<td>28</td>
<td>1000</td>
<td>Green (RoHS &amp; no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>ADS805E</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

**LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

**NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

**Green (RoHS & no Sb/Br):** TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

Addendum-Page 1
In no event shall TI’s liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
## TAPE AND REEL INFORMATION

### TAPE DIMENSIONS

- **A0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component length
- **K0**: Dimension designed to accommodate the component thickness
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers

### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

- Sprocket Holes
- User Direction of Feed
- Pocket Quadrants

*All dimensions are nominal*

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin 1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADS805E/1K</td>
<td>SSOP</td>
<td>DB</td>
<td>28</td>
<td>1000</td>
<td>330.0</td>
<td>16.4</td>
<td>8.1</td>
<td>10.4</td>
<td>2.5</td>
<td>12.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADS805E/1K</td>
<td>SSOP</td>
<td>DB</td>
<td>28</td>
<td>1000</td>
<td>350.0</td>
<td>350.0</td>
<td>43.0</td>
</tr>
</tbody>
</table>

*All dimensions are nominal*
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-150.
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated