Programmable Multi-Chemistry Fast-Charge Management IC

Check for Samples: bq2000

FEATURES
- Safe Management of Fast Charge for NiCd, NiMH, or Li-Ion Battery Packs
- High-Frequency Switching Controller for Efficient and Simple Charger Design
- Pre-Charge Qualification for Detecting Shorted, Damaged, or Overheated Cells
- Fast-Charge Termination by Peak Voltage (PVD) for Nickel chemistries, Minimum Current for Li-Ion chemistries, Maximum Temperature, and Maximum Charge Time
- Selectable Top-Off Mode for Achieving Maximum Capacity in NiMH Batteries
- Programmable Trickle-Charge Mode for Reviving Deeply Discharged Batteries and for Postcharge Maintenance
- Built-in Battery Removal and Insertion Detection
- Sleep Mode for Low Power Consumption

APPLICATIONS
- Multi-Chemistry Charger
- Nickel Charger
- High-Power, Multi-Cell Charger

GENERAL DESCRIPTION
The bq2000 is a programmable, monolithic IC for fast-charge management of nickel cadmium (NiCd), nickel metal-hydride (NiMH), or lithium-ion (Li-Ion) batteries in single- or multi-chemistry applications. The bq2000 chooses the proper battery chemistry (either nickel or lithium) and proceeds with the optimal charging and termination algorithms. This process eliminates undesirable, undercharged, or overcharged conditions, and allows accurate and safe termination of fast charge.

Depending on the chemistry, the bq2000 provides a number of charge termination criteria:
- Peak voltage, PVD (for NiCd and NiMH)
- Minimum charge current (for Li-Ion)
- Maximum temperature
- Maximum charge time

For safety, the bq2000 inhibits fast charge until the battery voltage and temperature are within user-defined limits. If the battery voltage is below the low-voltage threshold, the bq2000 uses trickle-charge to condition the battery. For NiMH batteries, the bq2000 provides an optional top-off charge to maximize the battery capacity.

The integrated high-speed comparator allows the bq2000 to be the basis for a complete, high-efficiency battery charger circuit for both nickel-based and lithium-based chemistries.

8-Pin DIP or Narrow SOIC or TSSOP

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNS</td>
<td>Current-sense input</td>
</tr>
<tr>
<td>VSS</td>
<td>System ground</td>
</tr>
<tr>
<td>LED</td>
<td>Charge-status output</td>
</tr>
<tr>
<td>BAT</td>
<td>Battery-voltage input</td>
</tr>
<tr>
<td>TS</td>
<td>Temperature-sense input</td>
</tr>
<tr>
<td>RC</td>
<td>Timer-program input</td>
</tr>
<tr>
<td>MOD</td>
<td>Supply-voltage input</td>
</tr>
<tr>
<td>VCC</td>
<td>Modulation-control output</td>
</tr>
</tbody>
</table>

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

PIN DESCRIPTIONS

SNS
Current-sense input
Enables the bq2000 to sense the battery current via the voltage developed on this pin by an external sense-resistor connected in series with the battery pack.

V_{SS}
System Ground
Connect to the battery’s negative terminal.

LED
Charge-status output
Open-drain output that indicates the charging status by turning on, turning off, or flashing an external LED, driven through a resistor.

BAT
Battery-voltage input
Battery-voltage sense input. A simple resistive divider, across the battery terminals, generates this input.

TS
Temperature-sense input
Input for an external battery-temperature monitoring circuit. An external resistive divider network with a negative temperature-coefficient thermistor sets the lower and upper temperature thresholds.

RC
Timer-program input
Used to program the maximum fast charge-time, maximum top-off charge-time, hold-off period, trickle charge rate, and to disable or enable top-off charge. A capacitor from V_{CC} and a resistor to ground connect to this pin.

V_{CC}
Supply-voltage input
Recommended bypassing is 10µF + 0.1µF to 0.22µF of decoupling capacitance near the pin.

MOD
Modulation-control output
Push-pull output that controls the charging current to the battery. MOD switches high to enable charging current to flow and low to inhibit charging-current flow.
FUNCTIONAL DESCRIPTION

The bq2000 is a versatile, multi-chemistry battery charge control device. See Figure 1 for a functional block diagram and Figure 2 for a state diagram.

![Figure 1. Functional Block Diagram](image-url)
NOTE: If $V_{TS} < V_{TCO}$ at any time, may only return to Trickle Maintenance Charge state and not to Top-Off.

Figure 2. State Diagram
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC VCC relative to VSS</td>
<td>-0.3 to 7</td>
<td>V</td>
</tr>
<tr>
<td>VT DC voltage applied on any pin, relative to VSS</td>
<td>-0.3 to VCC</td>
<td>V</td>
</tr>
<tr>
<td>TOPR Operating ambient temperature</td>
<td>-20 to 70</td>
<td>°C</td>
</tr>
<tr>
<td>TSTG Storage temperature</td>
<td>-40 to 125</td>
<td>°C</td>
</tr>
<tr>
<td>TSOLDER Soldering temperature (10 s max.)</td>
<td>260</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational limits for extended periods of time may affect device reliability.

DC THRESHOLDS

T_A = T_OPR; V_CC = 5 V ±20% (unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>TYPICAL</th>
<th>TOLERANCE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTCO Temperature cutoff</td>
<td>Voltage at the TS pin</td>
<td>0.225 × V_CC</td>
<td>±5%</td>
<td>V</td>
</tr>
<tr>
<td>VHTF High-temperature fault</td>
<td>Voltage at the TS pin</td>
<td>0.25 × V_CC</td>
<td>±5%</td>
<td>V</td>
</tr>
<tr>
<td>VLCF Low-temperature fault</td>
<td>Voltage at the TS pin</td>
<td>0.5 × V_CC</td>
<td>±5%</td>
<td>V</td>
</tr>
<tr>
<td>VMCV Maximum cell voltage</td>
<td>Voltage at the BAT pin</td>
<td>2.00</td>
<td>±0.75%</td>
<td>V</td>
</tr>
<tr>
<td>VBAT Minimum cell voltage</td>
<td>Voltage at the BAT pin</td>
<td>950</td>
<td>±5%</td>
<td>mV</td>
</tr>
<tr>
<td>PVD BAT input change for PVD detection</td>
<td>Voltage at the BAT pin</td>
<td>3.8</td>
<td>±20%</td>
<td>mV</td>
</tr>
<tr>
<td>VSNISH High threshold at SNS</td>
<td>Voltage at the SNS pin</td>
<td>50</td>
<td>±10</td>
<td>mV</td>
</tr>
<tr>
<td>VSNISL Low threshold at SNS</td>
<td>Voltage at the SNS pin</td>
<td>-50</td>
<td>±10</td>
<td>mV</td>
</tr>
<tr>
<td>VSLP Sleep-mode input threshold</td>
<td>Voltage at the BAT pin</td>
<td>V_CC-1</td>
<td>±0.5</td>
<td>V</td>
</tr>
<tr>
<td>VICH Recharge threshold</td>
<td>Voltage at the BAT pin</td>
<td>V_MCV-0.1</td>
<td>±0.02</td>
<td>V</td>
</tr>
</tbody>
</table>

(1) All voltages are relative to V_SS except as noted.

RECOMMENDED DC OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC Supply voltage</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>I CC Supply current</td>
<td>0.5</td>
<td>1</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>I CCS Sleep current</td>
<td>Y_BAT = Y_SLP</td>
<td>5</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>VTS Thermistor input</td>
<td>V_TS < 0.5 V prohibited</td>
<td>0.5</td>
<td>V_CC</td>
<td>V</td>
</tr>
<tr>
<td>VOH Output high input</td>
<td>MOD, I_CH = 10 mA</td>
<td>V_CC-0.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VOL Output low input</td>
<td>MOD, LED, I_CL = 10 mA</td>
<td>0.2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>IOZ High-impedance leakage current</td>
<td>LED</td>
<td>5</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>I SINK Sink current</td>
<td>MOD, LED</td>
<td>20</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>RMTO Charge timer resistor</td>
<td>2</td>
<td>250</td>
<td>kΩ</td>
<td></td>
</tr>
<tr>
<td>CRMT Charge timer capacitor</td>
<td>0.001</td>
<td>1</td>
<td>µF</td>
<td></td>
</tr>
</tbody>
</table>

IMPEDANCE

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBAT Battery input impedance</td>
<td>10</td>
<td></td>
<td>MΩ</td>
<td></td>
</tr>
<tr>
<td>RTS TS input impedance</td>
<td>10</td>
<td></td>
<td>MΩ</td>
<td></td>
</tr>
<tr>
<td>RSN SNS input impedance</td>
<td>10</td>
<td></td>
<td>MΩ</td>
<td></td>
</tr>
</tbody>
</table>

TIMING

T_A = T_OPR; V_CC = 5 V ±20% (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>dTIME MTO time-base variation</td>
<td>-5%</td>
<td>5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRH TRL Pulse-trickle frequency</td>
<td>0.9</td>
<td>1</td>
<td>1.1</td>
<td>Hz</td>
</tr>
</tbody>
</table>

Copyright © 2008–2009, Texas Instruments Incorporated

Submit Documentation Feedback
Initiation and Charge Qualification

The bq2000 initiates a charge cycle when it detects
- Application of power to \(V_{CC} \)
- Battery replacement
- Exit from sleep mode
- Capacity depletion (Li-Ion only)

Immediately following initiation, the IC enters a charge-qualification mode. The bq2000 charge qualification is based on battery voltage and temperature. If the voltage on the BAT pin is less than the internal threshold, \(V_{LBAT} \), the bq2000 enters the battery conditioning state. This condition indicates the possibility of a defective or shorted battery pack. In an attempt to revive a fully depleted pack, the bq2000 enables the MOD pin to trickle-charge at a rate of once every 1.0s. As explained in the section "Top-Off and Pulse-Trickle Maintenance Charge," the trickle pulse-width is user-selectable and is set by the value of the resistance connected between the RC pin and \(V_{SS} \).

During charge qualification, the LED pin blinks at a 1Hz rate, indicating the pending status of the charger.

Once battery conditioning (trickle charge) has raised the voltage on the BAT pin above \(V_{LBAT} \), the IC enters fast charge, if the battery temperature is within the \(V_{LTF} \) to \(V_{HTF} \) range. The BQ2000 will stay in the battery conditioning state indefinitely and will not progress to fast charge until the voltage on the BAT pin is above \(V_{LBAT} \) and the temperature is within the \(V_{LTF} \) and \(V_{HTF} \) range. No timer is implemented during battery conditioning.

Battery Chemistry

The bq2000 detects the battery chemistry by monitoring the battery-voltage profile during the initial stage of the fast charge. If the voltage on the BAT pin rises to the internal \(V_{MCV} \) reference, the IC assumes a Li-Ion battery. Otherwise, the bq2000 assumes a NiCd/NiMH chemistry. While in the fast charge state, the LED pin is pulled low (the LED is on).

As shown in Figure 3, a resistor voltage-divider between the battery pack's positive terminal and \(V_{SS} \) scales the battery voltage. A low-pass filter then smooths out this voltage to present a clean signal to the BAT pin. In a mixed-chemistry design, a common voltage-divider is used as long as the maximum charge voltage of the nickel-based pack is below that of the Li-Ion pack. Otherwise, different scaling is required.

![Figure 3. Battery Voltage Divider and Filter](image)

Once the chemistry is determined, the bq2000 completes the fast charge with the appropriate charge algorithm (Table 1). The user can customize the algorithm by programming the device using an external resistor and a capacitor connected to the RC pin, as discussed in later sections.

NiCd and NiMH Batteries

Following charge qualification (which includes trickle charge, if required), the bq2000 fast-charges NiCd or NiMH batteries using a current-limited algorithm. During the fast-charge period, it monitors charge time, temperature, and voltage for adherence to the termination criteria. This monitoring is further explained in later sections. Following fast charge, the battery is topped off, if top-off is selected. The charging cycle ends with a trickle maintenance-charge that continues as long as the voltage on the BAT pin remains below \(V_{MCV} \).
Lithium-Ion Batteries

The bq2000 uses a two-phase fast-charge algorithm for Li-Ion batteries (Figure 4). In phase one, the bq2000 regulates constant current until V_{BAT} rises to V_{MCV}. Once $V_{\text{BAT}} = V_{\text{MCV}}$, the device identifies the cell as a Li-ion, and changes the termination method from PVD to minimum current. The bq2000 then moves to phase two, regulates the battery with constant voltage of V_{MCV}, and terminates when the charging current falls below the I_{MIN} threshold or the timer expires (whichever happens first). A new charge cycle is started if the cell voltage falls below the V_{RCH} threshold.

![Figure 4. Lithium-Ion Charge Algorithm](image)

During the current-regulation phase, the bq2000 monitors charge time, battery temperature, and battery voltage for adherence to the termination criteria. During the final constant-voltage stage, in addition to the charge time and temperature, it monitors the charge current as a termination criterion. There is no post-charge maintenance mode for Li-Ion batteries.

Table 1 summarizes the charging process for both Nickel and Li-Ion batteries.

<table>
<thead>
<tr>
<th>BATTERY CHEMISTRY</th>
<th>CHARGE ALGORITHM</th>
</tr>
</thead>
</table>
| NiCd or NiMH ($V_{\text{BAT}} < V_{\text{MCV}}$ always) | 1. Charge qualification
2. Trickle charge, if required
3. Fast charge (constant current)
4. Charge termination (peak voltage, maximum charge time = 1 MTO)
5. Top-off (optional)
6. Trickle charge |
| Li-Ion ($V_{\text{BAT}} \leq V_{\text{MCV}}$) | 1. Charge qualification
2. Trickle charge, if required
3. Fast charge (constant current)
4. Fast charge (constant voltage)
5. Charge termination (minimum current, maximum charge time = 2 MTO) |

FAST CHARGE TERMINATION

Initial Hold-OFF Period

The bq2000 incorporates a user programmable hold-off period to avoid premature fast charge termination that can occur with brand new cells at the very beginning of fast charge. The values of the external resistor and capacitor connected to the RC pin set the initial hold-off period. During this period, the bq2000 avoids early termination due to an initial peak in the battery voltage by disabling the peak voltage-detection (PVD) feature. This period is fixed at the programmed value of the maximum charge time (MTO) divided by 32.
Maximum Charge Time (NiCD, NiMH, and Li-Ion)

The bq2000 sets the maximum charge-time through the RC pin. With the proper selection of external resistor and capacitor values, various time-out values may be achieved. If the timer expires while still in constant-current charging, the bq2000 assumes a Nickel chemistry and proceeds to top-off charge (if top-off is enabled) or trickle maintenance charge. Figure 5 shows a typical connection.

The following equation shows the relationship between the R_{MTO} and C_{MTO} values and the maximum charge time (MTO) for the bq2000:

$$MTO = R_{MTO} \times C_{MTO} \times 35,988$$ \hspace{1cm} (2)

MTO is measured in minutes, R_{MTO} in ohms, and C_{MTO} in farads. (Note: R_{MTO} and C_{MTO} values also determine other features of the device. See Table 4 and Table 5 for details.

If, during fast charge, $V_{TS} > V_{LTF}$, then the timer is paused and the IC enters battery conditioning charge until $V_{TS} < V_{LTF}$. Since the IC is in the battery conditioning state, the LED flashes at the 1 Hz rate. Once $V_{TS}<V_{LTF}$, fast charge restarts and the timer resumes from where it left off with no change in total fast charge time.

For Li-Ion cells, when the battery reaches the constant-voltage phase of fast charge, the bq2000 adds an additional MTO of time to whatever time was left over from the constant current fast charge timer. Thus, the pack could spend longer than 1 MTO in constant-voltage fast charge, but is always limited to 1 MTO in constant-current fast charge. This feature provides the additional charge time required for Li-Ion cells.

For Nickel cells, if top-off is enabled, the timer is reset on the completion of fast charge before beginning top-off charge.

Maximum Temperature (NiCd, NiMH, Li-Ion)

A negative-coefficient thermistor, referenced to V_{SS} and placed in thermal contact with the battery, may be used as a temperature-sensing device. Figure 6 shows a typical temperature-sensing circuit.
During fast charge, the bq2000 compares the battery temperature to an internal high-temperature cutoff threshold, V_{TCO}, and a low-temperature threshold, V_{LTF}. During fast charge only, the V_{HTF} fault comparator is disabled. When the voltage at the TS pin is lower than V_{TCO}, the bq2000 terminates fast charge, moves to the charge suspended state, and turns off the LED. When V_{TS} rises above V_{HTF}, the bq2000 will resume charging in the trickle maintenance charge state, per Figure 2. In fast charge (either constant current or constant voltage fast charge), when the voltage on the TS pin is higher than V_{LTF}, the charger enters the battery conditioning state, as described in the previous section. Fast charge is resumed when V_{TS} is less than V_{LTF}.

Peak Voltage (NiCd, NiMH)

The bq2000 uses a peak-voltage detection (PVD) scheme to terminate fast charge for NiCd and NiMH batteries. The bq2000 continuously monitors the voltage on the BAT pin, representing the battery voltage, to ensure that it never exceeds V_{MCV} (maximum cell voltage). In addition, it also samples, at a rate of MTO/128, the voltage on the BAT pin and triggers the peak detection feature if this value falls below the maximum sampled value by as much as 3.8mV (PVD). In preparation for sampling the BAT pin voltage, the bq2000 briefly turns off most circuits (the MOD and RC pins will both go low) in order to get the cleanest possible, noise-free measurement. While the monitoring of the BAT pin voltage is continuous, the sampling of the BAT pin voltage with the internal ADC only occurs during the constant current regulation phase of fast charge. If the cell voltage reaches V_{MCV}, the pack is assumed to be Li-Ion and the BAT pin voltage sampling is disabled, as PVD is not a termination criterion for Lithium cells. As shown in Figure 3, a resistor voltage-divider between the battery pack's positive terminal and V_{SS} scales the battery voltage measured at the BAT pin.

For Li-Ion battery packs, the resistor values R_{B1} and R_{B2} are calculated by the following equation:

$$\frac{R_{B1}}{R_{B2}} = \left(N \times \frac{V_{CELL}}{V_{MCV}} \right)^{-1}$$

(3)

where N is the number of cells in series and V_{CELL} is the manufacturer-specified charging voltage. $R_{B1} + R_{B2}$ should be at least 200kΩ and no more than 1MΩ.

A NiCd or NiMH battery pack consisting of N series cells may benefit by the selection of the R_{B1} value to be $N-1$ times larger than the R_{B2} value. This sets the per cell regulation voltage (V_{CELL}) equal to V_{MCV}. It is critical that V_{CELL} be set high enough that the nickle pack not reach voltage regulation, thus allowing proper termination by PVD. Typical V_{CELL} for a nickle pack is between 1.7V and 2V.

In a mixed-chemistry design, a common voltage-divider is used as long as the maximum charge voltage of the nickel-based pack is below that of the Li-Ion pack. Otherwise, different scaling is required. See Figure 7 for an example.
Minimum Current (Li-Ion Only)

The bq2000 monitors the charging current during the voltage-regulation phase of Li-Ion batteries. Fast charge is terminated when the current is tapered off to 14% of the maximum charging current.

Once constant-current fast charge has ended, the bq2000 either measures the value of the C\textsubscript{MTO} capacitor (in the case of Nickel batteries) and then proceeds to either top-off or trickle maintenance charge or simply completes the constant-voltage stage of fast charge (in the case of a Li-Ion cell).

Top-Off and Pulse-Trickle Maintenance Charge

An optional top-off charge is available for NiCd or NiMH batteries. Top-off may be desirable on batteries that have a tendency to terminate charge before reaching full capacity. To enable this option, the capacitance value of C\textsubscript{MTO} connected between the RC pin and V\textsubscript{CC} (Figure 5) should be greater than 0.13\(\mu\text{F}\), and the value of the resistor connected to this pin should be less than 250k\(\Omega\). To disable top-off, the capacitance value should be less than 0.07\(\mu\text{F}\). The tolerance of the capacitor needs to be taken into account in component selection.

Once top-off is started, the timer is reset and top-off proceeds until the timer expires, V\textsubscript{MCV} is reached, or there is a temperature fault. During top-off, current is delivered to the battery in pulses that occur each second. The fixed pulse width allows an average current of 1/16 of the fast charge current to be delivered to the battery every second. The LED is always off during top-off and trickle maintenance charge.
During top-off, there are three different temperature faults that can occur. If \(V_{TS} > V_{LTF} \), top-off is suspended, the timer is paused, and trickle charge is started. When \(V_{TS} \) falls below \(V_{LTF} \), top-off is resumed. If \(V_{TS} < V_{HTF} \), all charging stops, but the timer keeps counting. When \(V_{TS} > V_{HTF} \), top-off is resumed, if there is still time remaining on the timer. If there is not time left, trickle maintenance charge is entered. If \(V_{TS} < V_{TCO} \), all charging stops. Only trickle maintenance charge may resume after \(V_{TS} > V_{HTF} \).

Following top-off, the bq2000 trickle-charges the battery by enabling the MOD pin to charge at a rate of once every 1.0 second. The trickle pulse-width is user-selectable and is set by the value of the resistor \(R_{MTO} \), connected between the RC pin and \(V_{SS} \). Figure 8 shows the relationship between the trickle pulse-width and the value of \(R_{MTO} \). The typical tolerance of the pulsewidth below 150kΩ is ±10%.

![Figure 8. Relationship Between Trickle Pulse-Width and Value of \(R_{MTO} \)](image)

Note that with an \(R_{MTO} \) value around 150 kΩ, the trickle charge pulse width is nearly identical to the top-off pulse width of 62.5 ms (1/16 of a second). With \(R_{MTO} \) values near 150 kΩ, it can be difficult to tell which state the IC is in (top-off or trickle charge). The best way to tell if the bq2000 is in top-off or trickle charge is to look at the RC pin when the temperature is between the LTF and HTF. In top-off, the RC pin will be counting and will have a sawtooth waveform on it. In trickle charge, there is no timer and the RC pin will be at a DC value.

The RC pin contains valuable information in determining what state the bq2000 is in, since it always operates in one of three modes. If the RC pin is low (around \(V_{SS} \) potential), the IC is in sleep mode. (If the RC pin is low for brief instants during fast charge, the bq2000 is sampling the BAT pin for PVD). If the RC pin is at some DC value (usually around 1-2V), then the IC has paused the timer or the timer is inactive. If the RC pin is a sawtooth waveform (similar to Figure 15), then the timer is running and the RC pin is considered “active.” Lastly, the RC pin can be loaded by too large of a C or too small of an R. This will sometimes make the usual sawtooth waveform look like a triangle waveform on an oscilloscope (the rise time is lengthened), or the RC signal could have the appearance of being clipped (flat top or bottom). The timer will be unreliable under these conditions and the bq2000 should not be operated in this manner. Table 2 summarizes the different states of the RC pin.

Table 2. RC Pin Status

<table>
<thead>
<tr>
<th>bq2000 CHARGE STATE</th>
<th>TS PIN STATE</th>
<th>RC PIN BEHAVIOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery absent</td>
<td>N/A</td>
<td>1.2V DC level</td>
</tr>
<tr>
<td>Sleep mode</td>
<td>N/A</td>
<td>Ground (Vss)</td>
</tr>
<tr>
<td>Charge qualification (including battery conditioning (trickle charge) and charge suspended)</td>
<td>N/A</td>
<td>1.2V DC level</td>
</tr>
<tr>
<td>Fast charge (current and voltage regulation)</td>
<td>(V_{TS} < V_{LTF})</td>
<td>Active</td>
</tr>
<tr>
<td></td>
<td>(V_{TS} > V_{LTF}) (in battery conditioning state)</td>
<td>1.2V DC level (timer is paused and will resume when (V_{TS} < V_{LTF}))</td>
</tr>
</tbody>
</table>
Table 2. RC Pin Status (continued)

<table>
<thead>
<tr>
<th>bq2000 CHARGE STATE</th>
<th>TS PIN STATE</th>
<th>RC PIN BEHAVIOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top-off charge</td>
<td>(V_{TS} > V_{LTF}) (in trickle maintenance charge state)</td>
<td>1-2V DC level (timer is paused and will resume when (V_{TS} < V_{LTF}))</td>
</tr>
<tr>
<td></td>
<td>(V_{LTF} > V_{TS} > V_{HTF})</td>
<td>Active</td>
</tr>
<tr>
<td></td>
<td>(V_{HTF} > V_{TS} > V_{TCO})</td>
<td>Active (timer is still counting, even though charging is suspended)</td>
</tr>
<tr>
<td>Trickle maintenance charge (after fast charge)</td>
<td>N/A</td>
<td>1-2V DC level</td>
</tr>
<tr>
<td>Charge complete</td>
<td>N/A</td>
<td>Active</td>
</tr>
</tbody>
</table>

Both top-off and trickle maintenance charge are terminated and the pack never receives any more charge (until a charge initialization occurs) if the voltage on the BAT pin reaches \(V_{MCV} \). During trickle maintenance charge, charging is suspended if \(V_{TS} < V_{HTF} \). It resumes when \(V_{TS} > V_{HTF} \). The bq2000 is designed to remain in trickle maintenance charge forever (excluding the two faults just mentioned) in order to keep a Nickel pack full.

Charge Current Control

The bq2000 implements a hysteretic control loop that regulates the current being delivered to the battery pack to a user programmable value that is set by the value of the \(R_{SNS} \) resistor. A second, outer control loop reduces the average current delivered to the pack in order to clamp the voltage at the BAT pin to a maximum of \(V_{MCV} \). The bq2000 modulates the MOD pin to regulate the current and voltage of the pack. The bq2000 monitors charge current at the SNS input by sensing the voltage drop across a sense-resistor, \(R_{SNS} \), in series with the battery pack. See Figure 9 for a typical current-sensing circuit.

\[
R_{SNS} \text{ is sized to provide the desired fast-charge current (} I_{MAX} \text{).}
\]

\[
I_{MAX} = \frac{0.05}{R_{SNS}}
\]

(4)

If the voltage at the SNS pin is greater than \(V_{SNSLO} \) or less than \(V_{SNSHI} \), the bq2000 switches the MOD output high to pass charge current to the battery. When the SNS voltage is less than \(V_{SNSLO} \) or greater than \(V_{SNSHI} \), the bq2000 switches the MOD output low to shut off charging current to the battery. A hysteresis capacitor (\(C_{HYS} \)) is required between the \(C_{MOD} \) pin and the SNS pin to add a healthy amount of hysteresis to the current sense signal. Typical hysteresis values are between 5 and 25 mV. The amount of hysteresis can be calculated by examining the capacitive divider formed by \(C_{HYS} \) and \(C_{f} \).

\[
\text{Hysteresis (V)} = V_{CC} \times \frac{C_{HYS}}{(C_{HYS} + C_{f})}
\]

(5)

Being a hysteretic controller, the switching frequency of the bq2000 is determined by the values of several of the external circuit components. The components that affect the switching frequency are: input voltage, \(R_{SNS} \) value, inductor value, hysteresis capacitor value (\(C_{HYS} \)), and the value of the filter on the current sense signal (\(R_{f} \) and \(C_{f} \) values). \(R_{f} \) and \(C_{f} \) have the most impact on the switching frequency and are also the components that are easiest to change to adjust the frequency, as they do not affect anything else in the circuit (besides, of course, the cleanliness and quality of the current sense signal being fed to the bq2000). In general, increasing the input...
voltage and/or inductor value or decreasing C_{HYS} and/or the $R_i \times C_i$ filter corner frequency will increase the switching frequency. Figure 10 and Figure 11 show empirical data on the variation in switching frequency based on adjusting R_i and C_i. This data was taken with an input voltage of 12V, inductor value of 220 µH, R_{SNS} value of 50 mΩ, and C_{HYS} value of 4.7 pF. Typical switching frequencies for the bq2000 are between 100 and 200 kHz, though it is possible to achieve switching frequencies in excess of 300kHz.

![Figure 10. Switching Frequency vs Capacitance](image1)

![Figure 11. Switching Frequency vs Resistance](image2)
TEMPERATURE MONITORING

The bq2000 measures the temperature by the voltage at the TS pin. This voltage is typically generated by a negative-temperature-coefficient thermistor. The bq2000 compares this voltage against its internal threshold voltages to determine if charging is safe. These thresholds are the following:

- **High-temperature cutoff voltage**: \(V_{TCO} = 0.225 \times V_{CC} \). This voltage corresponds to the maximum temperature (TCO) at which any charging is allowed. The bq2000 terminates charging if the voltage on the TS pin falls below \(V_{TCO} \).

- **High-temperature fault voltage**: \(V_{HTF} = 0.25 \times V_{CC} \). This voltage corresponds to a maximum allowed pack temperature (HTF) in all states except for fast charge. During fast charge, HTF faults are disabled to allow for a normal increase in pack temperature.

- **Low-temperature fault voltage**: \(V_{LTF} = 0.5 \times V_{CC} \). This voltage corresponds to the minimum temperature (LTF) at which fast charging or top-off is allowed. If the voltage on the TS pin rises above \(V_{LTF} \), the bq2000 suspends either fast charge or top-off and begins a trickle charge. When the voltage falls back below \(V_{LTF} \), fast charge or top-off resumes from the point where suspended. If \(V_{TS} > V_{LTF} \), the charger will always be in trickle charge.

Table 3 summarizes these various conditions.

<table>
<thead>
<tr>
<th>TEMPERATURE</th>
<th>CONDITION</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{TS} > V_{LTF})</td>
<td>Cold battery – checked at all times</td>
<td>During charge qualification, no effect</td>
</tr>
<tr>
<td>(V_{HTF} < V_{TS} < V_{LTF})</td>
<td>Optimal charging range</td>
<td>Allows all stages of charging</td>
</tr>
<tr>
<td>(V_{TS} < V_{HTF})</td>
<td>Hot battery – checked at all times, except during fast charge</td>
<td>During charge qualification, stops charging</td>
</tr>
<tr>
<td>(V_{TS} < V_{TCO})</td>
<td>Battery exceeding maximum allowable temperature – checked at all times</td>
<td>During charge qualification, stops charging</td>
</tr>
</tbody>
</table>

Table 4. Summary of NiCd or NiMH Charging Characteristics

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE(^{(1)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum cell voltage ((V_{MCV}))</td>
<td>2 V</td>
</tr>
<tr>
<td>Minimum pre-charge qualification voltage ((V_{LBAT}))</td>
<td>950 mV</td>
</tr>
<tr>
<td>High-temperature cutoff voltage ((V_{TCO}))</td>
<td>(0.225 \times V_{CC})</td>
</tr>
<tr>
<td>High-temperature fault voltage ((V_{HTF}))</td>
<td>(0.25 \times V_{CC})</td>
</tr>
<tr>
<td>Low-temperature fault voltage ((V_{LTF}))</td>
<td>(0.5 \times V_{CC})</td>
</tr>
<tr>
<td>bq2000 fast-charge maximum time out (MTO)</td>
<td>(R_{MTO} \times C_{MTO} \times 35,988)</td>
</tr>
<tr>
<td>Fast-charge charging current ((I_{MAX}))</td>
<td>(0.05/R_{SNS})</td>
</tr>
<tr>
<td>Hold-off period</td>
<td>MTO/32</td>
</tr>
<tr>
<td>Top-off charging current (optional)</td>
<td>(I_{MAX}/16)</td>
</tr>
<tr>
<td>Top-off period (optional)</td>
<td>MTO</td>
</tr>
<tr>
<td>Trickle-charge frequency</td>
<td>1 Hz</td>
</tr>
<tr>
<td>Trickle-charge pulse-width</td>
<td>See Figure 8</td>
</tr>
</tbody>
</table>

\(^{(1)}\) See the DC Thresholds Specification for details.
Table 5. Summary of Li-Ion Charging Characteristics

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum cell voltage (V_{MCV})</td>
<td>2 V</td>
</tr>
<tr>
<td>Minimum pre-charge qualification voltage (V_{LBAT})</td>
<td>950 mV</td>
</tr>
<tr>
<td>High-temperature cutoff voltage (V_{TCO})</td>
<td>0.225 \times V_{CC}</td>
</tr>
<tr>
<td>High-temperature fault voltage (V_{HTF})</td>
<td>0.25 \times V_{CC}</td>
</tr>
<tr>
<td>Low-temperature fault voltage (V_{LTF})</td>
<td>0.5 \times V_{CC}</td>
</tr>
<tr>
<td>bq2000 fast-charge maximum time out (MTO)</td>
<td>\frac{2 \times R_{MTO} \times C_{MTO}}{35,988}</td>
</tr>
<tr>
<td>Fast-charge charging current (I_{MAX})</td>
<td>0.05/R_{SNS}</td>
</tr>
<tr>
<td>Hold-off period</td>
<td>MTO/32</td>
</tr>
<tr>
<td>Minimum current (for fast-charge termination)</td>
<td>I_{MAX}/7</td>
</tr>
<tr>
<td>Trickle-charge frequency (before fast charge only)</td>
<td>1Hz</td>
</tr>
<tr>
<td>Trickle-charge pulse-width (before fast charge only)</td>
<td>See Figure 8</td>
</tr>
</tbody>
</table>

(1) See the DC Thresholds Specification for details.

Charge Status Display

The charge status is indicated by open-drain output \text{LED}. Table 6 summarizes the display output of the bq2000. A temperature fault or timer expiring changes the charge state immediately (according to Figure 2) and will thus change the \text{LED} status immediately and accordingly.

Table 6. Charge Status Display

<table>
<thead>
<tr>
<th>bq2000 CHARGE STATE</th>
<th>LED STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge qualification (including battery conditioning and charge suspended)</td>
<td>1 Hz flash</td>
</tr>
<tr>
<td>Fast charge (current and voltage regulation)</td>
<td>Low</td>
</tr>
<tr>
<td>Top-off charge</td>
<td></td>
</tr>
<tr>
<td>Trickle maintenance charge (after fast charge)</td>
<td></td>
</tr>
<tr>
<td>Charge complete</td>
<td>High impedance</td>
</tr>
<tr>
<td>Battery absent</td>
<td></td>
</tr>
<tr>
<td>Sleep mode</td>
<td></td>
</tr>
</tbody>
</table>

Sleep Mode

The bq2000 features a sleep mode for low power consumption. This mode is enabled when the voltage at the BAT pin is above the low-power-mode threshold, V_{SLP}. During sleep mode, the bq2000 shuts down all unnecessary internal circuits, drives the \text{LED} output to high-impedance state, and drives the MOD pin low. Restoring BAT below the V_{MCV} threshold initiates the IC and starts a fast-charge cycle. Normally, the bq2000 only enters sleep mode when there is no battery connected on the output and the charger is idling with nothing to charge. In addition, V_{IN} needs to be high enough such that when V_{IN} is present on the output, V_{BAT} would be greater than V_{SLP}. In sleep mode, the output voltage will decay to V_{MCV} at which point the bq2000 turns on and pulses the MOD pin several times. With no battery connected, the output will rise to near V_{IN} at which point the bq2000 re-enters sleep mode. During sleep mode, the RC pin will be at V_{SS} potential. A typical sleep mode waveform is shown in Figure 18.
TYPICAL CHARACTERISTICS

Figure 12. bq2000 Start-up on Battery Insertion

Figure 13. bq2000 Start-up on Vin

Figure 14. Battery Removal During Fast Charge

Figure 15. bq2000 in Fast Charge
TYPICAL CHARACTERISTICS (continued)

- **Figure 16. bq2000 in Fast Charge**
 - CH1 = V_O, 5V/div
 - CH2 = RC pin, 1V/div
 - CH3 = MOD pin, 5V/div
 - CH4 = EED pin, 1V/div
 - Time - 10μs/div

- **Figure 17. bq2000 Fast Charge SNS and MOD Waveforms**
 - CH1 = SNS pin, 20mV/div
 - CH2 = MOD pin, 5V/div
 - Time - 2μs/div

- **Figure 18. bq2000 in Sleep Mode**
 - CH1 = V_O, 10V/div
 - CH2 = BAT pin, 1V/div
 - CH3 = RC pin, 2V/div
 - CH4 = MOD pin, 5V/div
 - Time - 1s/div
Revision History

Changes from Revision September 1998 (*) to Revision 1

- Changed the device status From: Preliminary To: Final ... 1
- Changed the DC Thresholds - \(V_{TCO} \), \(V_{HTF} \), \(V_{LTF} \) Tolerance ... 5
- Changed the Recommended DC Operating Conditions - \(R_{MTO} \), \(C_{MTO} \) Values .. 5
- Added Figure 3 - Battery Voltage Divider and Filter .. 6
- Changed MTO equation From: \(MTO = R \times C \times 71,976 \) ... 8
- Added Figure 8 ... 11

Changes from Revision 1 (January 1999) to Revision 2

- Changed Table 4 - \(V_{BLAT} \) value .. 14
- Changed Table 5 - \(V_{BLAT} \) value .. 15

Changes from Revision 2 (March 1999) to Revision 3

- Added the TSSOP Package option .. 1
- Added Figure 2 State Diagram .. 4
- Changed the DC Thresholds - \(V_{TCO} \), \(V_{HTF} \), \(V_{LTF} \) Tolerance ... 5
- Changed Figure 7 - Single-Cell Li-Ion, 3-Cell NiCd/NiMH 1A Charger .. 10
- Changed the Top-Off and Pulse-Trickle Maintenance Charge section - Updated requirement for enabling top-off 10

Changes from Revision 3 (May 1999) to Revision 4

- Changed Rec DC Operating Conditions, \(V_{OH} \) - From: \(MIN = V_{CC} - 0.2 \) at \(I_{OH} = 20mA \) To: \(MIN = V_{CC} - 0.4 \) at \(I_{OH} = 10mA \) .. 5
- Changed Rec DC Operating Conditions, \(V_{OH} \) - From: \(I_{OH} = 20mA \) To: \(I_{OH} = 10mA \) .. 5
- Changed Figure 8 - Updated tolerance on the curve .. 11

Changes from Revision 4 (February 2000) to Revision 5

- Changed Figure 2 State Diagram - Battery voltage detail From: (checked at all times) To: Voltage regulation checked constantly. PVD checked at rate of MTO/64. .. 4
- Changed Figure 2 State Diagram - Battery temperature detail From: (checked at all times) To: (checked 1,750 times per second) .. 4

Changes from Revision 5 (February 2001) to Revision 6

- Changed the Top-Off and Pulse-Trickle Maintenance Charge section - First paragraph From: the value of the resistor connected to this pin should be less than 15k\(\Omega \) To: the value of the resistor connected to this pin should be less than 250k\(\Omega \) .. 10

Changes from Revision 6 (January 2008) to Revision D

- Changed the data sheet format. The data sheet was originally from Benchmark Products. In revision D, the data sheet was converted to the TI format, and a re-write of the data sheet was implemented .. 1

Submit Documentation Feedback
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>BQ2000PN-B5</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>P</td>
<td>8</td>
<td>50</td>
<td>Pb-Free</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>-20 to 70</td>
<td>2000PN-B5</td>
<td></td>
</tr>
<tr>
<td>BQ2000PW</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>8</td>
<td>150</td>
<td>Green</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-20 to 70</td>
<td>BQ2000</td>
<td></td>
</tr>
<tr>
<td>BQ2000PWG4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>8</td>
<td>150</td>
<td>Green</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-20 to 70</td>
<td>BQ2000</td>
<td></td>
</tr>
<tr>
<td>BQ2000PWR</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>8</td>
<td>2000</td>
<td>Green</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-20 to 70</td>
<td>BQ2000</td>
<td></td>
</tr>
<tr>
<td>BQ2000PWRG4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>8</td>
<td>2000</td>
<td>Green</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-20 to 70</td>
<td>BQ2000</td>
<td></td>
</tr>
<tr>
<td>BQ2000SN-B5</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-20 to 70</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>BQ2000SN-B5TR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-20 to 70</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>BQ2000SN-B5TRG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-20 to 70</td>
<td>2000</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE:** Product device recommended for new designs.
- **LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE:** TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

- **RoHS Exempt:** TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
- **Green:** TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

TAPE DIMENSIONS

- **K0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component length
- **A0**: Dimension designed to accommodate the component thickness
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>BQ2000PWR</td>
<td>TSSOP</td>
<td>PW</td>
<td>8</td>
<td>2000</td>
<td>330.0</td>
<td>12.4</td>
<td>7.0</td>
<td>3.6</td>
<td>1.6</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>BQ2000SN-BSTR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

All dimensions are nominal.
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BQ2000PWR</td>
<td>TSSOP</td>
<td>PW</td>
<td>8</td>
<td>2000</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>BQ2000SN-BSTR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
MECHANICAL DATA

D (R-PDSO-G8) PLASTIC SMALL OUTLINE

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
 △ Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0.15) each side.
 △ Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0.43) each side.
E. Reference JEDEC MS-012 variation AA.

4040047-3/M 06/11
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
P (R-PDIP-T8) PLASTIC DUAL-IN-LINE PACKAGE

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001 variation BA.

Texas Instruments
www.ti.com
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153, variation AA.
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and/or implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers’ applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY COPYRIGHT, TRADEMARK, PATENT, TRADE SECRET, ANY OTHER INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designers may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated