1 Introduction

1.1 Features

- Seamless Interface to 2.4-GHz Low-Power RF Devices from Texas Instruments
- +22-dBm Output Power
- 3-dB Typical Improved Sensitivity on CC2520, CC253X, and CC85XX
- Very Few External Components
 - Integrated Switches
 - Integrated Matching Network
 - Integrated Balun
 - Integrated Inductors
 - Integrated PA
 - Integrated LNA
- Digital Control of LNA Gain by HGM Terminal
- 100 nA in Power Down (LNA_EN = PA_EN = 0)
- Low-Transmit Current Consumption
 - 155 mA at 3 V for +22 dBm, PAE = 34%
- Low-Receive Current Consumption
 - 4.0-mA for High-Gain Mode
 - 1.9-mA for Low-Gain Mode
- 4.7-dB LNA Noise Figure, Including T/R Switch and External Antenna Match
- RoHS Compliant 4-mm × 4-mm QFN-16 Package
- 2.0-V to 3.7-V Operation
- −40°C to +125°C Operation

1.2 Applications

- All 2.4-GHz ISM Band Systems
- Wireless Sensor Networks
- Wireless Industrial Systems
- IEEE 802.15.4 and ZigBee® Metering Systems
- IEEE 802.15.4 and ZigBee Gateways
- Wireless Consumer Systems
- Wireless Audio Systems

1.3 Description

The CC2592 device is a cost-effective and high-performance RF front end for low-power and low-voltage 2.4-GHz wireless applications.

The CC2592 device is a range extender for all CC25XX 2.4-GHz low-power RF transceivers, transmitters, and system-on-chip products from Texas Instruments.

To increase the link budget, the CC2592 device provides a power amplifier for increased output power and an LNA with a low-noise figure for improved receiver sensitivity.

The CC2592 device provides a very small size, high-output power RF design with its 4-mm × 4-mm QFN-16 package.

The CC2592 device contains PA, LNA, switches, RF-matching, and balun for simple design of high-performance wireless applications.
1.4 Functional Block Diagram

Figure 1-1 shows a simplified block diagram of the CC2592 device.

![CC2592 Simplified Block Diagram](image)

Figure 1-1. CC2592 Simplified Block Diagram
Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Literature Number</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>February 2014</td>
<td>SWRS159</td>
<td>Initial release</td>
</tr>
</tbody>
</table>
2 Device Characteristics

2.1 Absolute Maximum Ratings
Under no circumstances must the absolute maximum ratings be violated. Stress exceeding one or more of the limiting values may cause permanent damage to the device.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>All supply terminals must have the same voltage</td>
<td>–0.3 to 3.8</td>
<td>V</td>
</tr>
<tr>
<td>Voltage on any digital terminal</td>
<td></td>
<td>–0.3 to VDD+0.3, max 3.8</td>
<td>V</td>
</tr>
<tr>
<td>Input RF level</td>
<td></td>
<td>+10</td>
<td>dBm</td>
</tr>
</tbody>
</table>

2.2 Handling Ratings
Under no circumstances must the handling ratings be violated. Stress exceeding one or more of the limiting values may cause permanent damage to the device.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage temperature range</td>
<td></td>
<td>–50 to 150</td>
<td>°C</td>
</tr>
<tr>
<td>ESD</td>
<td>Human Body Model</td>
<td>2000</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Charge Device Model</td>
<td>1000</td>
<td>V</td>
</tr>
</tbody>
</table>

2.3 Recommended Operating Conditions
The operating conditions for the CC2592 device are listed below.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature range</td>
<td>–40</td>
<td>125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Operating supply voltage</td>
<td>2.0</td>
<td>3.7</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Operating frequency range</td>
<td>2400</td>
<td>2483.5</td>
<td>MHz</td>
<td></td>
</tr>
</tbody>
</table>
2.4 Electrical Characteristics

$T_c = 25\degree C$, $VDD = 3.0$ V, $f_{RF} = 2440$ MHz (unless otherwise noted). Measured on CC2592EM reference design including external matching components.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receive current, high-gain mode</td>
<td>HGM = 1</td>
<td>4</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Receive current, low-gain mode</td>
<td>HGM = 0</td>
<td>1.9</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Transmit current</td>
<td>$P_{OUT} = 20$ dBm</td>
<td>123</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>$P_{OUT} = 22$ dBm</td>
<td>155</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Transmit current</td>
<td>No input signal</td>
<td>50</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Power down current</td>
<td>EN = 0</td>
<td>0.1</td>
<td>0.3</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>High-input level (control terminals)</td>
<td>PA_EN, LNA_EN, HGM</td>
<td>1.3</td>
<td>Vdd</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Low-input level (control terminals)</td>
<td>PA_EN, LNA_EN, HGM</td>
<td>0.3</td>
<td>Vdd</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Power down - Receive mode switching time</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>Power down - Transmit mode switching time</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
</tbody>
</table>

RF Receive

- Gain, high-gain mode
 - HGM = 1
 - 11 dB
- Gain, low-gain mode
 - HGM = 0
 - 6 dB
- Gain variation over frequency
 - 2400 to 2483.5 MHz, HGM = 1
 - 2 dB
- Gain variation over power supply
 - 2.0 V to 3.7 V, HGM = 1
 - 1.5 dB
- Gain variation over temperature
 - −40°C to 85°C, HGM = 1
 - 1.7 dB
- Noise figure, high-gain mode
 - HGM = 1, including internal T/R switch and external antenna match
 - 4.7 dB
- Input 1-dB compression, high-gain mode
 - HGM = 1
 - −18 dBm
- Input IP3, high-gain mode
 - HGM = 1
 - −9 dBm
- Input reflection coefficient, S11
 - HGM = 1, measured at antenna port
 - −15 dB

RF Transmit

- Gain
 - 24 dB
- Output power, P_{OUT}
 - $P_{IN} = 0.0$ dBm
 - 20.3 dBm
 - $P_{IN} = 4.0$ dBm
 - 21.9 dBm
- Power added efficiency, PAE
 - $P_{OUT} = 22$ dBm
 - 34 %
- Output 1-dB compression
 - 15 dBm
- Output power variation over frequency
 - 2400 to 2483.5 MHz, $P_{IN} = 4$ dBm
 - 0.5 dB
- Output power variation over power supply
 - 2.0 V to 3.7 V, $P_{IN} = 4$ dBm
 - 3.8 dB
- Output power variation over temperature
 - −40°C to 125°C, $P_{IN} = 4$ dBm
 - 1.7 dB
- Second harmonic power
 - FCC requirement
 - −41.2 dBm
- Third harmonic power
 - FCC requirement
 - −41.2 dBm

- VSWR
 - No damage
 - 20:1
- Stability
 - 7.5:1
3 Device Information

3.1 Terminal and I/O Configuration

Figure 3-1 and Table 3-1, provide the terminal layout and description for the CC2592 device.

![Figure 3-1. Terminal Top View](image-url)
Table 3-1. Terminal Functions

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>GND</td>
<td>Ground</td>
<td>The exposed die attach pad must be connected to a solid ground plane. See CC2592EM reference design for the recommended layout.</td>
</tr>
<tr>
<td>1, 4, 9, 11, 12, 16</td>
<td>GND</td>
<td>Ground</td>
<td>Ground connections. Only terminals 9, 11, and 12 should be shorted to the die attach pad on the top PCB layer.</td>
</tr>
<tr>
<td>2</td>
<td>RF_N</td>
<td>RF</td>
<td>RF interface toward CC25xx device</td>
</tr>
<tr>
<td>3</td>
<td>RF_P</td>
<td>RF</td>
<td>RF interface toward CC25xx device</td>
</tr>
<tr>
<td>5</td>
<td>PA_EN</td>
<td>Digital input</td>
<td>Digital control terminal. See Table 9-1 for details.</td>
</tr>
<tr>
<td>6</td>
<td>LNA_EN</td>
<td>Digital input</td>
<td>Digital control terminal. See Table 9-1 or details.</td>
</tr>
</tbody>
</table>
| 7 | HGM | Digital input | Digital control terminal.
\[HGM = 1 \rightarrow \text{Device in High Gain Mode} \]
\[HGM = 0 \rightarrow \text{Device in Low Gain Mode} \]
| 8 | BIAS | Analog | Biasing input. Resistor between this node and ground sets bias current for PA and LNA. |
| 10 | ANT | RF | Antenna interface |
| 13 | VDD_LNA | Power | 2.0- to 3.7-V power |
| 14 | VDD_BIAS | Power | 2.0- to 3.7-V power |
| 15 | VDD_PA | Power | 2.0- to 3.7-V power |
4 Sensitivity Improvement Example

The noise factor of a system consisting of the CC2592 device and a CC2520 device, as seen in Figure 4-1 is given by:

\[
F = F_1 + \frac{F_2 - 1}{G_1} = 10^{\frac{4.7}{10}} + \frac{10^{\frac{8}{10}} - 1}{10^{\frac{11}{10}}} = 3.37
\]

(1)

The noise figure is:

\[
NF = 10\log(F) = 10\log(3.37) = 5.28 \text{ dB}
\]

(2)

The noise figure is reduced from 8 dB for the CC2520 standalone to 5.28 dB for the CC2592 and CC2520 device combination, leading to a 2.72-dB theoretical improvement in sensitivity.

In practice, tests on the CC2592 and CC25XX devices show around 3-dB improvement in sensitivity. For the CC2538 and CC2592 devices, the improvement is almost 4 dB (approximately –97 dBm to –101 dBm).
5 CC2592EM Evaluation Module

Figure 5-1 shows an evaluation module circuit of the CC2592 device.

![CC2592 Evaluation Module Circuit Diagram](image)

Figure 5-1. CC2592 Evaluation Module

Table 5-1 lists the materials in the CC2592 evaluation module circuit.

<table>
<thead>
<tr>
<th>Device</th>
<th>Function</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L101</td>
<td>PA bias inductor</td>
<td>4.7 nH, Multilayer chip inductor</td>
</tr>
<tr>
<td>L102</td>
<td>Part of antenna match</td>
<td>1 nH, Multilayer chip inductor</td>
</tr>
<tr>
<td>L103</td>
<td>Part of antenna match</td>
<td>1.8 nH, Multilayer chip inductor</td>
</tr>
<tr>
<td>C101</td>
<td>Part of antenna match</td>
<td>2.2-pF 0402 Chip capacitor</td>
</tr>
<tr>
<td>C103</td>
<td>Part of antenna match</td>
<td>2.2-pF 0402 Chip capacitor</td>
</tr>
<tr>
<td>C105</td>
<td>Part of antenna match</td>
<td>0.1-pF 0402 Chip capacitor</td>
</tr>
<tr>
<td>C106</td>
<td>Decoupling</td>
<td>12-pF 0402 Chip capacitor</td>
</tr>
<tr>
<td>C107</td>
<td>Decoupling</td>
<td>1-nF 0402 Chip capacitor</td>
</tr>
<tr>
<td>C108</td>
<td>Decoupling</td>
<td>1-µF 0402 Chip capacitor</td>
</tr>
<tr>
<td>C109</td>
<td>Decoupling</td>
<td>18-pF 0402 Chip capacitor</td>
</tr>
<tr>
<td>C21</td>
<td>DC block</td>
<td>0.2-pF 0402 Chip capacitor</td>
</tr>
<tr>
<td>C152</td>
<td>DC block</td>
<td>0.3-pF 0402 Chip capacitor</td>
</tr>
<tr>
<td>C131</td>
<td>DC block</td>
<td>1-nF 0402 Chip capacitor</td>
</tr>
<tr>
<td>C151</td>
<td>DC block</td>
<td>12-pF 0402 Chip capacitor</td>
</tr>
<tr>
<td>R81</td>
<td>Bias resistor</td>
<td>3.9 kΩ, 0402 resistor</td>
</tr>
</tbody>
</table>
6 Typical Characteristics

Figure 1. LNA Gain and Noise Figure Versus Frequency

Figure 2. LNA Gain Versus Power Supply

Figure 3. LNA Gain Versus Temperature

Figure 4. Output Power, PAE, and Current Consumption Versus Frequency
Input Power Level = +4 dBm

Figure 5. Output Power, PAE, and Current Consumption Versus Input Power

Figure 6. Output Power, PAE, and Current Consumption Versus Power Supply
Input Power Level = +4 dBm
Figure 7. Output Power, PAE, and Current Consumption Versus Temperature
Input Power Level = +4 dBm
7 Controlling the Output Power from CC2592

The output power of the CC2592 device is controlled by controlling the input power. The CC2592 PA is designed to work in compression (class AB).

Driving the CC2592 device too far into saturation might result in spurious emissions and harmonics above regulatory limits. This caution should especially be considered for systems targeting a wide operating temperature range, where a combination of low temperature, low supply voltage, and a transceiver that increases output power (drive level) at low temperature, can result in high spurious emissions.

Figure 7-1 shows the maximum recommended drive level versus temperature and supply voltage.

![Figure 7-1. Maximum Recommended Drive Level](image)

8 Input Levels on Control Terminals

The three digital control terminals (PA_EN, LNA_EN, and HGM) have built-in level-shifting functionality, meaning that if the CC2592 device operates off a 3.7-V supply voltage, the control terminals still sense 1.6- to 1.8-V signals as a logical 1. However, the input voltages should not have a logical 1 level that is higher than the supply.
9 Connecting the CC2592 Device to a CC25xx Device

Table 9-1 shows the control logic for connecting CC2592 to a CC25xx device.

<table>
<thead>
<tr>
<th>PA_EN</th>
<th>LNA_EN</th>
<th>HGM</th>
<th>Mode of Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>X</td>
<td>Power Down</td>
</tr>
<tr>
<td>X</td>
<td>1</td>
<td>0</td>
<td>RX Low-Gain Mode</td>
</tr>
<tr>
<td>X</td>
<td>1</td>
<td>1</td>
<td>RX High-Gain Mode</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>X</td>
<td>TX</td>
</tr>
</tbody>
</table>

Figure 9-1 shows the application circuit for the CC2592 and CC253X devices.
10 Device and Documentation Support

10.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

<table>
<thead>
<tr>
<th>PARTS</th>
<th>PRODUCT FOLDER</th>
<th>SAMPLE & BUY</th>
<th>TECHNICAL DOCUMENTS</th>
<th>TOOLS & SOFTWARE</th>
<th>SUPPORT & COMMUNITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC2592</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
</tr>
</tbody>
</table>

10.2 Trademarks

ZigBee is a registered trademark of ZigBee Alliance.

10.3 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

10.4 Glossary

**SLYZ022 — **TI Glossary.

This glossary lists and explains terms, acronyms and definitions.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC2592RGVR</td>
<td>ACTIVE</td>
<td>VQFN</td>
<td>RGV</td>
<td>16</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>CC2592</td>
<td></td>
</tr>
<tr>
<td>CC2592RGVT</td>
<td>ACTIVE</td>
<td>VQFN</td>
<td>RGV</td>
<td>16</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>CC2592</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE:** Product device recommended for new designs.
- **LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI’s liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

Dimensions:*

- **A0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component length
- **K0**: Dimension designed to accommodate the component thickness
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin 1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC2592RGVR</td>
<td>VQFN</td>
<td>RGV</td>
<td>16</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>4.3</td>
<td>4.3</td>
<td>1.5</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
</tr>
<tr>
<td>CC2592RGVT</td>
<td>VQFN</td>
<td>RGV</td>
<td>16</td>
<td>250</td>
<td>180.0</td>
<td>12.4</td>
<td>4.3</td>
<td>4.3</td>
<td>1.5</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC2592RGVR</td>
<td>VQFN</td>
<td>RGV</td>
<td>16</td>
<td>2500</td>
<td>350.0</td>
<td>350.0</td>
<td>43.0</td>
</tr>
<tr>
<td>CC2592RGVT</td>
<td>VQFN</td>
<td>RGV</td>
<td>16</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
MECHANICAL DATA

RGV (S-PVQFN-N16) PLASTIC QUAD FLATPACK NO-LEAD

NOTES:
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Quad Flatpack, No-leads (QFN) package configuration.
D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
F. Falls within JEDEC MO-220.

Texas Instruments
www.ti.com
THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

![Exposed Thermal Pad Dimensions](image)

NOTE: All linear dimensions are in millimeters.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com (http://www.ti.com).
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
F. Customers should contact their board fabrication site for solder mask tolerances.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated