CMOS Programmable Divide-by-“N” Counter

Standard “A”-Series Types (3-to-15-Volt Rating)

The CD4059A-series types are divide-by-N down-counters that can be programmed to divide an input frequency by any number “N” from 3 to 15,999. The output signal is a pulse one clock-cycle wide occurring at a rate equal to the input frequency divided by N. This single output has TTL drive capability. The down-counter is preset by means of 16 jam inputs.

The three Mode-Select Inputs Ka, Kb, and Kc determine the modulus (“divide-by” number) of the first and last counting sections in accordance with the truth table shown in Table I. Every time the first (fastest) counting section goes through one cycle, it reduces by 1 the number that has been preset (jammed) into the three decades of the intermediate counting section and into the last counting section, which consists of flip-flops that are not needed for operating the first counting section. For example, in the ÷ 2 mode, only one flip-flop is needed in the first counting section. Therefore the last counting section has three flip-flops that can be preset to a maximum count of seven with a place value of thousands. If ÷ 10 is desired for the first section, Ka is set to 1, Kb to 1, and Kc to 0. Jam Inputs J1, J2, J3, and J4 are used to preset the first counting section and there is no last counting section. The intermediate counting section consists of three cascaded BCD decades (÷10) counters presettable by means of Jam Inputs J5 through J16.

The Mode-Select Inputs permit frequency-synthesizer channel separations of 10, 12.5, 20, 25, or 50 parts. These inputs set the maximum value of N at 9,999 (when the first counting section divides by 5 or 10) or 15,999 (when the first counting section divides by 8, 4, or 2).

The three decades of the intermediate counting section can be preset to a binary 15 instead of a binary 8, while their place values are still 1, 10, and 100, multiplied by the number of the ÷ N mode. For example, in the ÷ 8 mode, the number from which counting-down begins can be preset to:

<table>
<thead>
<tr>
<th>3rd decade</th>
<th>2nd decade</th>
<th>1st decade</th>
<th>Last counting section</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>150</td>
<td>15</td>
<td>1000</td>
</tr>
</tbody>
</table>

The total of these numbers (2665) times 8 equals 21,320. The first counting section can be preset to 7. Therefore, 21,327 is the maximum possible count in the ÷ 8 mode. The highest count of the various modes is shown in the column entitled Extended Counter Range of Table I. Control inputs Kd and Ke can be used to initiate and lock the counter in the “master preset” state. In this condition the flip-flops in the counter are preset in accordance with the jam inputs and the counter remains in that state as long as Kd and Ke both remain low. The counter begins to count down from the preset state when a counting mode other than the master preset mode is selected.

The counter should always be put in the master preset mode before the ÷5 mode is selected.

Whenever the master preset mode is used, control signals Kd=0 and Ke=0 must be applied for at least 3 full clock pulses.

After the Master Preset Mode inputs have been changed to one of the ÷ modes, the next positive-going clock transition changes an internal flip-flop so that the countdown can begin at the second positive-going clock transition. Thus, after an MP (Master Preset) mode, there is always one extra count before the output goes high. Fig.1 illustrates a total count of 3 (÷8 mode). If the Master Preset mode is started two clock cycles or less before an output pulse, the output pulse will appear at the time due. If the Master Preset Mode is not used the counter jumps back to the “JAM” count when the output pulse appears.

![Fig. 1 — Total count of 3.](image)

A “1” on the Latch Enable input will cause the counter output to remain high once an output pulse occurs, and to remain in the high state until the latch input returns to “0”. If the Latch Enable is “0”, the output pulse will remain high for only one cycle of the clock-input signal.

As illustrated in the sample applications, this device is particularly advantageous in communication digital frequency synthesis (VHF, UHF, FM, AM, etc.) where programmable divide-by-“N” counters are an integral part of the synthesizer phase-locked-loop subsystem. The CD4059A can also be used to perform the synthesizer “Fixed Divide-by-R” counting function. It is also useful in general-purpose counters for instrumentation functions such as totalizers, production counters, and “time out” timers.

Operational and Performance Features:

- Synchronous Programmable ÷ N Counter: N = 3 to 9999 or 15,999
- Presettable down-counter
- Fully static operation
- Mode-select control of initial decade counting function (±10,8,5,4,2)
- T²L drive capability
- Master preset initialization
- Latchable ÷ N output
- Quiescent current specified to 15 volts
- Max. input leakage current of 1 μA at 15 volts, full package-temperature range
- 1 volt noise margin, full package-temperature range
- 5-V and 10-V parametric ratings

Applications:

- Communications digital frequency synthesizers: VHF, UHF, FM, AM, etc.
- Fixed or programmable frequency division
- “Time out” timer for consumer-application industrial controls

The CD4059A-series types are supplied in 24-lead dual-in-line plastic packages (E suffix), and 24-lead small-outline packages (M and M96 suffixes).
CD4059A Types

MAXIMUM RATINGS, Absolute-Maximum Values:
DC SUPPLY-VOLTAGE RANGE, (VDD)
Voltages referenced to Vgs (Terminal) ... -0.5V to +15V
INPUT VOLTAGE RANGE, ALL INPUTS ... -0.5V to VDD +0.5V
POWER DISSIPATION PER PACKAGE (PDL):
For Ta = -55°C to +100°C ... 500mW
For Ta = +100°C to +125°C ... Derate Linearly to 100mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR
FOR Ta = FULL PACKAGE-TEMPERATURE RANGE (All Package Types) ... 100mW
OPERATING-TEMPERATURE RANGE (Ta) ... -55°C to +125°C
STORAGE TEMPERATURE RANGE (Tstg) ... -65°C to +150°C
LEAD TEMPERATURE (DURING SOLDERING):
At distance 1/16 ± 1/32 inch (1.59 ± 0.79mm) from case for 10s max

STATIC ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>VO (V)</th>
<th>VIN (V)</th>
<th>VDD (V)</th>
<th>-55°C</th>
<th>-40°C</th>
<th>+85°C</th>
<th>+125°C</th>
<th>-25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quiescent Current</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>700</td>
<td>300</td>
<td>0</td>
<td>0.02</td>
<td>10</td>
</tr>
<tr>
<td>IIL Max.</td>
<td>-15</td>
<td>-12</td>
<td>-16</td>
<td>200</td>
<td>400</td>
<td>0</td>
<td>0.02</td>
<td>20</td>
</tr>
</tbody>
</table>

Output Voltage:
Low Level, VOH Max. | 0,5 | 5 | 0,5 | 0 | 0,05 | - | 0 | 0,05 |
High Level, VIL Min. | 0,10 | 10 | 0,05 | 0 | 0,05 | - | 0 | 0,05 |
VOL Min. | 0,5 | 5 | 4,95 | 4,95 | 5 | - | - | - |

Noise Immunity:
Inputs Low, VNLM Min. | 5 | 10 | 3 | 3 | 4,5 | - | - | - |

Noise Margin:
Inputs Low, VNLM Min. | 4,5 | 5 | 1 | - | - | - | - | - |

Output Drive Current:
N-Channel (Sink) | 0,4 | 5 | 2,5 | 1,6 | 1,4 | 2 | 4 | - |
P-Channel (Source) | 2,5 | 5 | -2 | -1,8 | -1,3 | -1,15 | -1,8 | -1,8 |
P-Channel (Sink) | 4,6 | 10 | -0,5 | -0,48 | -0,36 | -0,3 | -0,4 | -0,8 |

Input Leakage Current: *
IILL, IIL Max. | 15 | ±1 | ±10^5 | ±1 | - | - | - | - |

* Any Input

OPERATING CONDITIONS AT Ta = 25°C
(Unless otherwise specified)
For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Vdd</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage Range (over full temp. range)</td>
<td>-</td>
<td>3</td>
<td>12</td>
<td>V</td>
</tr>
<tr>
<td>Clock Pulse Width</td>
<td>10</td>
<td>200</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>Clock Input Frequency</td>
<td>10</td>
<td>100</td>
<td>-</td>
<td>MHz</td>
</tr>
<tr>
<td>Clock Input Rise and Fall Time</td>
<td>5</td>
<td>-</td>
<td>15</td>
<td>3</td>
</tr>
</tbody>
</table>

Fig. 2 – Minimum output n-channel drain characteristics.

Fig. 3 – Typical output n-channel drain characteristics.

Fig. 4 – Minimum output p-channel drain characteristics.

Copyright © 2003, Texas Instruments Incorporated
CD4059A Types

DYNAMIC ELECTRICAL CHARACTERISTICS AT \(T_A = 25^\circ C, C_L = 50 \text{ pF}, \text{ Input } t_{P}, t_{R} = 20 \text{ ns}, R_L = 200 \, \Omega \)**

<table>
<thead>
<tr>
<th>CHARACTERISTIC</th>
<th>CONDITIONS</th>
<th>LIMITS</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V_Dd</td>
<td>ALL PACKAGES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Min.</td>
<td>Typ.</td>
<td>Max.</td>
</tr>
<tr>
<td>Propagation Delay Time, (t_{PLH}, t_{PHL})</td>
<td>5</td>
<td>180</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>90</td>
<td>180</td>
</tr>
<tr>
<td>Transition Time:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_{THL})</td>
<td>5</td>
<td>35</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>(t_{TLH})</td>
<td>5</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Maximum Clock Input Frequency, (f_{CL})</td>
<td>5</td>
<td>1.5</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Average Input Capacitance, (C_I) (any input)</td>
<td></td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5 — Functional block diagram.

Fig. 6 — Typical output p-channel drain characteristics.

Fig. 7 — Typical low-to-high propagation delay time vs. load capacitance.

Fig. 8 — Typical high-to-low propagation delay time vs. load capacitance.

Fig. 9 — Typical low-to-high transition time vs. load capacitance.
CD4059A Types

Fig. 10 – Typical high-to-low transition time vs. load capacitance.

Fig. 11 – Typical max. clock frequency vs. supply voltage.

Fig. 12 – Typical power dissipation vs. input frequency.

Fig. 13 – Typical power dissipation vs. clock input frequency.

TABLE I

<table>
<thead>
<tr>
<th>MODE SELECT INPUT</th>
<th>FIRST COUNTING SECTION</th>
<th>LAST COUNTING SECTION</th>
<th>COUNTER RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_a</td>
<td>K_b</td>
<td>K_c</td>
<td>MODE</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5<sup>#</sup></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>0</td>
<td>MASTER PRESET</td>
</tr>
</tbody>
</table>

¹Operation in the ±5 mode (1st counting section) requires going through the Master Preset mode prior to going into the ±5 mode. At power turn-on, k_c must be a logic “0” for a period of 3 input clock pulses after V_{DD} reaches a minimum of 3 volts. See Fig. 21 for a suggested external preset circuit.

HOW TO PRESET THE CD4059A TO DESIRED ± N

The value N is determined as follows:

\[
N = \text{MODE} \times \left(1000 \times \text{Decade 5 Preset} + 100 \times \text{Decade 4 Preset}
ight)
\]

(1)

where:

- MODE is the first counting section divider (10, 8, 5, 4 or 2)
- Preset is the value of the preset input

To calculate preset values for any N count, divide the N count by the Mode.

The resultant is the corresponding preset values of the 5th through 2nd decade with the remainder being equal to the 1st decade value.

\[
\text{Preset Value} = \frac{N}{\text{Mode}}
\]

(2)

Examples:

A) \(N = 8479 \), Mode = 5

\[
1695 + 4 = \begin{array}{c}
\text{Preset Values}
\hline
\text{1695} \\
\text{8479}
\end{array}
\]

\[
\text{Mode} = \begin{array}{c}
N \\
8479
\end{array}
\]

PROGRAM JAM INPUTS (BCD)

<table>
<thead>
<tr>
<th>MODE SELECT = 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
</tr>
<tr>
<td>J1</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

To verify the results use equation 1:

\[
N = 5 \times (1000 \times 1 + 100 \times 6 + 10 \times 9 + 1 \times 5 + 4) = 8479
\]

B) \(N = 12382 \), Mode = 8

\[
1547 + 6 = \begin{array}{c}
\text{Preset Values}
\hline
\text{1547} \\
\text{12382}
\end{array}
\]

MODE SELECT = 8

\[
\begin{array}{c}
\text{Ka} \\
\text{Kb} \\
\text{Kc}
\end{array} = \begin{array}{c}
1 \\
0 \\
1
\end{array}
\]
CD4059A Types

PROGRAM JAM INPUTS

<table>
<thead>
<tr>
<th>6</th>
<th>1</th>
<th>7</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>J2</td>
<td>J3</td>
<td>J4</td>
<td>J5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

To verify:

N = 8 (1000 X 1 + 100 X 5 + 10 X 4 + 1 X 7) + 6

N = 12382

MODE SELECT = 10

C) N = 8479, Mode = 10

<table>
<thead>
<tr>
<th>0847</th>
<th>+</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>8479</td>
<td></td>
</tr>
</tbody>
</table>

PROGRAM JAM INPUTS

<table>
<thead>
<tr>
<th>9</th>
<th>7</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>J2</td>
<td>J3</td>
<td>J4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

To verify:

N = 10 (1000 X 0 + 100 X 8 + 10 X 4 + 1 X 7) + 9

N = 8479

DIGITAL PHASE-LOCKED LOOP (PLL) FOR FM BAND SYNTHESIZER

```
VCO → f₀
         ↓
         ↓ 2.41 to 2.965 MHz
         ↓ Prescaler
         ↓ f_k
         ↓ f_kMax = 118.6 MHz
         ↓ 2.965 MHz
         ↓ f_kMin = 98.8 MHz
         ↓ 2.47 MHz
         ↓ N = f₀/f_k
         ↓ 40
         ↓ 118.6 MHz
         ↓ 40
         ↓ 2965 MHz
         ↓ 40
         ↓ 98.8 MHz
         ↓ 40
         ↓ 247 MHz
         ↓ 40
         ↓ 5 kHz
         ↓ 5 kHz
         ↓ 5 kHz
         ↓ 5 kHz
         ↓ f₀ - f_k
         ↓ 5 kHz
```

“CASCADEING” VIA OTHER COUNTERS

Fig. 14 shows a BCD-switch compatible arrangement suitable for ± 8 and ± 5 modes, which can be adapted, with slight changes, to the other divide-by-modes. In order to be able to preset to any number from three to about 256,000, while preserving the BCD-switch compatible character of the jam inputs, a rather complex cascading scheme is required. Such a cascading scheme is necessary because the CD4059A can never be preset to a count less than 3 and logic is needed to detect the condition that one of the numbers to be preset in the CD4059A is rather small. In order to simplify the detection logic, only that condition is detected where the jam inputs to terminals 6, 7, and 9 would be low during one count. If such a condition is detected, and if at least 1 is expected to be jammed into the MSB counter, the detection logic removes one from the number to be jammed into the MSB counter (with a place value of 2000 times the divide-by-mode) and jams the same 2000 into the CD4059A by forcing terminals 6, 7, and 9 high.

The clock of the CD4013A may be driven directly from the output of the CD4059A, as shown by dashed option (1), or by the inverted output of the CD4059A, option (2). If option (2) is used, the CD4029A cannot count cycles shorter than 3. If option (1) is used propagation delay problems may occur at high counting speeds.

The general circuit in Fig. 14 can be simplified considerably if the range of the cascaded counters does not have to start at a very low value. Fig. 15 shows a range in the ± 4 mode, where the counting range extends in a BCD-switch compatible manner from 88,003 to 103,999. The arrangement shown in Fig. 15 is easy to follow; one during each cycle, then the less significant digits are jammed in (14,712 in this case) and then 11,000 (4 x 2750) is jammed in eight times in succession, by forcing jam inputs high or low, as required.

Numbers larger than the extended counter range can also be produced by cascading the CD4059A with some other counting device. Fig. 16 shows such an arrangement where only one fixed divide-by-number is desired which is close to three times the extended counter range as shown in the last column of Table I. The dual flip-flop wired to produce a ± 3 count, can be replaced by other counters such as the CD4029, CD4510, CD4516, CD4017, or the CD4022. In Fig. 16 the ± N subsystem is preset once to a number smaller than the desired divide-by-number. This smaller number represents the less significant digits of the divide-by-number. The subsystem is then preset one or more times to a round number (e.g., 1000, 2000) and multiplied by the number of the divide-by mode (± 2 in the example of Fig. 16). It is important that the second counting device has an output that is high or low, as the case may be, during only one of its counting states.
CD4059A Types

2) \(\div N \) Counter Configuration for UHF – 220 to 400 MHz
Channel Spacing: 50 kHz or 25 kHz

\[
\begin{array}{cccccc}
\div 2 / \div 4 & \div 10 & \div 10 & \div 10 & \div 4 \\
50/25 \text{ kHz} & 100 \text{ kHz} & 1 \text{ MHz} & 10 \text{ MHz} & 100 \text{ MHz}
\end{array}
\]

\[N_{\text{Max}} = \frac{400 \text{ MHz}}{25 \text{ kHz}} = 16,000 \quad N_{\text{Min}} = \frac{220 \text{ MHz}}{25 \text{ kHz}} = 8,800\]

3) \(\div N \) Counter Configuration to VHF – 116 MHz
Channel Spacing = 12.5 kHz

\[
\begin{array}{cccccc}
\div 8 & \div 10 & \div 10 & \div 10 & \div 2 \\
12.5 \text{ kHz} & 100 \text{ kHz} & 1 \text{ MHz} & 10 \text{ MHz} & 100 \text{ MHz}
\end{array}
\]

\[N_{\text{Max}} = \frac{160 \text{ MHz}}{12.5 \text{ kHz}} = 12,800 \quad N_{\text{Min}} = \frac{116 \text{ MHz}}{12.5 \text{ kHz}} = 9,300\]

4) \(\div N \) Counter Configuration for VHF – 30 to 80 MHz
Channel Spacing: 25 kHz

\[
\begin{array}{cccc}
\div 4 & \div 10 & \div 10 & \div 10 \\
25 \text{ kHz} & 100 \text{ kHz} & 1 \text{ MHz} & 10 \text{ MHz}
\end{array}
\]

\[N_{\text{Max}} = \frac{80 \text{ MHz}}{25 \text{ kHz}} = 3,200 \quad N_{\text{Min}} = \frac{30 \text{ MHz}}{25 \text{ kHz}} = 1200\]

5) \(\div N \) Counter Configuration for AM – 995 to 2055 kHz
Channel Spacing = 10 kHz

\[
\begin{array}{cccc}
\div 10 & \div 10 & \div 10 \\
10 \text{ kHz} & 100 \text{ kHz} & 1 \text{ MHz}
\end{array}
\]

\[N_{\text{Max}} = \frac{2055 \text{ kHz}}{10 \text{ kHz}} = 205 \quad N_{\text{Min}} = \frac{995 \text{ kHz}}{10 \text{ kHz}} = 99\]

Fig. 14 — BCD switch-compatible \(\div N \) system of the most general kind.

Copyright © 2003, Texas Instruments Incorporated
Fig. 15 – Dividing by any number from 88,003 to 103,999.

Fig. 16 – Division by 47,690 in ÷2 mode.

Fig. 17 – Quiescent device current test circuit.

Fig. 18 – Noise immunity test circuit.

Fig. 19 – Power dissipation test circuit (all ÷ modes).

Fig. 20 – Input leakage current test circuit.

Copyright © 2003, Texas Instruments Incorporated
CD4059A Types

For changing from any mode other than mode 5 (with power on), apply positive pulse to C5p. This circuit automatically selects master preset mode \((K_0 = 0, K_5 = 0) \) before going into the select conditions for mode 5 \((K_0 = 1, K_5 = 0, K = 1) \). The selection of \(C_1 \) and \(C_5 \) is critical; \(C_1 \) is determined by the VDD voltage—the lower VDD's need larger \(C_1 \)'s. \(C_5 \) must be 0.1 \(\mu \)F or larger.

Fig. 21 – CD4059A mode 5 power on master preset circuit.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils \((10^3 \) mil).
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish (6)</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4059AD3</td>
<td>ACTIVE</td>
<td>CDIP SB</td>
<td>JD</td>
<td>24</td>
<td>1</td>
<td>TBD</td>
<td>POST-PLATE</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td>CD4059AD/3</td>
</tr>
<tr>
<td>CD4059AM</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>DW</td>
<td>24</td>
<td>25</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-55 to 125</td>
<td>CD4059AM</td>
</tr>
<tr>
<td>CD4059AMG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>DW</td>
<td>24</td>
<td>25</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-55 to 125</td>
<td>CD4059AM</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

- **TBD**: The Pb-Free/Green conversion plan has not been defined.
- **Pb-Free (RoHS)**: TI’s terms “Lead-Free” or “Pb-Free” mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
- **Pb-Free (RoHS Exempt)**: This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
- **Green (RoHS & no Sb/Br)**: TI defines “Green” to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a “~” will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI’s knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CD4059A, CD4059A-MIL:

- Catalog: CD4059A
- Military: CD4059A-MIL

NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog product
- Military - QML certified for Military and Defense Applications
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a metal lid.
D. The terminals are gold plated.
E. Falls within MIL STD 1835 CDIP2 – T8, T14, T16, T18, T20 and T24 respectively.
NOTES:
A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M−1994.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0.15).
D. Falls within JEDEC MS−013 variation AD.
IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and/or implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers’ applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource for the purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY TECHNOLOGY, PATENT, COPYRIGHT, TRADE SECRET, TRADEMARK, TRADE NAME, TRADE PRACTICE, PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. TI reserves the right to discontinue any product or service per JESD48, latest issue. TI may provide design advice or design aids without warranties or obligations. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designers may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.