CD74HCT4066-Q1
HIGH-SPEED CMOS LOGIC QUAD BILATERAL SWITCH

- Qualified for Automotive Applications
- Low ON Resistance
 - 25 Ω Typical (V_{CC} = 4.5 V)
- Fast Switching and Propagation Speeds
- Low OFF Leakage Current
- Wide Operating Temperature Range: −40°C to 125°C

description/ordering information

The CD74HCT4066 contains four independent digitally controlled analog switches that use silicon-gate CMOS technology to achieve operation speeds similar to LSTTL, with the low power consumption of standard CMOS integrated circuits.

These switches feature the characteristic linear ON resistance of the metal-gate CD4066B. Each switch is turned on by a high-level voltage on its control input.

ORDERING INFORMATION†

<table>
<thead>
<tr>
<th>T_{A}</th>
<th>PACKAGE‡</th>
<th>ORDERABLE PART NUMBER§</th>
<th>TOP-SIDE MARKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>−40°C to 125°C</td>
<td>SOIC – M Reel of 2500</td>
<td>CD74HCT4066QM96Q1</td>
<td>HCT4066Q</td>
</tr>
<tr>
<td></td>
<td>TSSOP – PW Reel of 2000</td>
<td>CD74HCT4066QPWRQ1</td>
<td>HK4066Q</td>
</tr>
</tbody>
</table>

† For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at http://www.ti.com.
‡ Package drawings, thermal data, and symbolization are available at http://www.ti.com/packaging.
§ The suffix 96 denotes tape and reel.

FUNCTION TABLE

<table>
<thead>
<tr>
<th>INPUT (nE)</th>
<th>SWITCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Off</td>
</tr>
<tr>
<td>H</td>
<td>On</td>
</tr>
</tbody>
</table>

H = High level
L = Low level

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V_{CC} (see Note 1) ... -0.5 V to $+7$ V
Input clamp current, I_{IK} ($V_I < -0.5$ V or $V_I > V_{CC} + 0.5$ V) .. ± 20 mA
Output clamp current, I_{OK} ($V_O < -0.5$ V or $V_O > V_{CC} + 0.5$ V) ... ± 20 mA
Switch current, I_O (see Note 2) ($V_O > -0.5$ V or $V_O < V_{CC} + 0.5$ V) ± 25 mA
Output source or sink current per output pin, I_O ($V_O > -0.5$ V or $V_O < V_{CC} + 0.5$ V) ± 25 mA
Continuous current through V_{CC} or GND ... ± 50 mA
Package thermal impedance, θ_{JA} (see Note 3): D package .. 86°C/W
PW package .. 113°C/W
Storage temperature range, T_{stg} .. -65°C to 150°C

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltages referenced to GND unless otherwise specified.
2. In certain applications, the external load-resistor current may include both V_{CC} and signal-line components. To avoid drawing V_{CC} current when switch current flows into the transmission gate inputs (terminals 1, 4, 8, and 11), the voltage drop across the bidirectional switch must not exceed 0.6 V (calculated from r_{on} values shown in the electrical characteristics table). No V_{CC} current flows through R_L if the switch current flows into terminals 2, 3, 9, and 10.
3. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions (see Note 4)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>V_I</th>
<th>V_{CC}</th>
<th>$T_A = 25^\circ C$</th>
<th>$T_A = -40^\circ C TO 125^\circ C$</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{IL}</td>
<td>Any control</td>
<td>V_{CC} or GND</td>
<td>5.5 V</td>
<td>±0.1</td>
<td>±1</td>
<td>µA</td>
</tr>
<tr>
<td>I_{IZ}</td>
<td>$V_{IS} = V_{CC}$ or GND</td>
<td>V_{IL}</td>
<td>5.5 V</td>
<td>±0.1</td>
<td>±1</td>
<td>µA</td>
</tr>
<tr>
<td>t_{on}</td>
<td>$I_O = 1$ mA, See Figure 7</td>
<td>$V_{IS} = V_{CC}$ or GND</td>
<td>V_{CC}</td>
<td>4.5 V</td>
<td>25</td>
<td>80</td>
</tr>
<tr>
<td>Δt_{on}</td>
<td>Between any two switches</td>
<td>V_{CC}</td>
<td>4.5 V</td>
<td>1</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>I_{CC}</td>
<td>V_{CC} or GND</td>
<td>5.5 V</td>
<td>2</td>
<td>40</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>ΔI_{CC}</td>
<td>Per input pin: 1 unit load, See Note 5</td>
<td>$V_{CC} - 2.1$ V</td>
<td>4.5 V to 5.5 V</td>
<td>100</td>
<td>360</td>
<td>490</td>
</tr>
<tr>
<td>C_I</td>
<td>Control inputs</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

NOTES: 4. All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

HCT input loading

<table>
<thead>
<tr>
<th>INPUT</th>
<th>UNIT LOADS†</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>1</td>
</tr>
</tbody>
</table>

† Unit load is ΔI_{CC} limit specified in the electrical characteristics table, e.g., 360 µA max at 25°C.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 6)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>FROM (INPUT)</th>
<th>TO (OUTPUT)</th>
<th>LOAD CAPACITANCE</th>
<th>VCC</th>
<th>(T_A = 25°C) MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>(T_A = -40°C) TO 125°C MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{pd})</td>
<td>Y or Z</td>
<td>Z or Y</td>
<td>(C_L = 15 \text{ pF})</td>
<td>5 V</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(C_L = 50 \text{ pF})</td>
<td>4.5 V</td>
<td>12</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_{en})</td>
<td>E</td>
<td>Y or Z</td>
<td>(C_L = 15 \text{ pF})</td>
<td>5 V</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(C_L = 50 \text{ pF})</td>
<td>4.5 V</td>
<td>24</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_{dis})</td>
<td>E</td>
<td>Y or Z</td>
<td>(C_L = 15 \text{ pF})</td>
<td>5 V</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(C_L = 50 \text{ pF})</td>
<td>4.5 V</td>
<td>35</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

operating characteristics, \(V_{CC} = 5 \text{ V} \), \(T_A = 25°C \), input \(t_r \), \(t_f = 6 \text{ ns} \)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TYP</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{pd})</td>
<td>Power dissipation capacitance (see Note 6)</td>
<td>38</td>
</tr>
</tbody>
</table>

NOTE 6: \(C_{pd} \) is used to determine the dynamic power consumption \((P_D) \), per package:

\[
P_D = (C_{pd} \times V_{CC}^2 \times f_I) + \Sigma (C_L + C_S) \times V_{CC}^2 \times f_O
\]

- \(f_O \) = output frequency
- \(f_I \) = input frequency
- \(C_L \) = output load capacitance
- \(C_S \) = switch capacitance
- \(V_{CC} \) = supply voltage

analog channel characteristics, \(T_A = 25°C \)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>VCC</th>
<th>TYP</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{max})</td>
<td>Switch frequency response bandwidth at (-3 \text{ dB})</td>
<td>See Figure 2 and Figure 8 and Notes 7 and 8</td>
<td>4.5 V</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Crosstalk between any two switches</td>
<td>See Figure 1 and Figure 9 and Notes 8 and 9</td>
<td>4.5 V</td>
<td>–72</td>
</tr>
<tr>
<td>Total harmonic distortion</td>
<td>See Figure 3, 1 kHz, (V_{IS} = 4 \text{ Vp-p})</td>
<td>4.5 V</td>
<td>0.023</td>
<td>%</td>
</tr>
<tr>
<td>Control to switch feedthrough noise</td>
<td>See Figure 4</td>
<td>4.5 V</td>
<td>130</td>
<td>mV</td>
</tr>
<tr>
<td>Switch OFF signal feedthrough</td>
<td>See Figure 5 and Figure 9 and Notes 8 and 9</td>
<td>4.5 V</td>
<td>–72</td>
<td>dB</td>
</tr>
<tr>
<td>(C_S)</td>
<td>Switch input capacitance</td>
<td></td>
<td>5</td>
<td>pF</td>
</tr>
</tbody>
</table>

NOTES: 1. Adjust input voltage to obtain 0 dBm at output, \(f = 1 \text{ MHz} \).
2. \(V_{IS} \) is centered at \(V_{CC}/2 \).
3. Adjust input for 0 dBm at \(V_{IS} \).
PARAMETER MEASUREMENT INFORMATION

Figure 1. Crosstalk Between Two Switches Test Circuit

Figure 2. Frequency-Response Test Circuit

Figure 3. Total Harmonic Distortion Test Circuit

Figure 4. Control-to-Switch Feedthrough Noise Test Circuit

Figure 5. Switch OFF Signal Feedthrough Test Circuit
PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

PARAMETER	S1	S2
\(t_{\text{en}} \) | \(\text{Open} \) | \(\text{Closed} \) |
\(t_{\text{PZH}} \) | \(\text{Open} \) | \(\text{Closed} \) |
\(t_{\text{PLZ}} \) | \(\text{Open} \) | \(\text{Closed} \) |
\(t_{\text{pd}} \) | \(\text{Open} \) | \(\text{Open} \) |

NOTES:
A. \(C_L \) includes probe and test-fixture capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: \(PRR \leq 1 \text{ MHz} \), \(Z_O = 50 \Omega \), \(t_r = 6 \text{ ns} \), \(t_f = 6 \text{ ns} \).
D. For clock inputs, \(f_{\text{max}} \) is measured with the input duty cycle at 50%.
E. The outputs are measured one at a time, with one input transition per measurement.
F. \(t_{\text{PZH}} \) and \(t_{\text{PHZ}} \) are the same as \(t_{\text{en}} \).
G. \(t_{\text{PZL}} \) and \(t_{\text{PHZ}} \) are the same as \(t_{\text{en}} \).
H. \(t_{\text{PLH}} \) and \(t_{\text{PHL}} \) are the same as \(t_{\text{pd}} \).

VOLTAGE WAVEFORMS

PROPA GATION DELAY AND OUTPUT TRANSITION TIMES

VOLTAGE WAVEFORMS

OUTPUT ENABLE AND DISABLE TIMES

Figure 6. Load Circuit and Voltage Waveforms
TYPICAL CHARACTERISTICS

Figure 7. Typical ON Resistance vs Input Signal Voltage

Figure 8. Switch Frequency Response, $V_{CC} = 4.5$ V

Figure 9. Switch-OFF Signal Feedthrough and Crosstalk vs Frequency, $V_{CC} = 4.5$ V
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Top-Side Markings</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD74HCT4066QM96Q1</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>HCT4066Q</td>
<td></td>
</tr>
<tr>
<td>CD74HCT4066QPWRQ1</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>HK4066Q</td>
<td></td>
</tr>
<tr>
<td>D24066QM96G4Q1</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>HCT4066Q</td>
<td></td>
</tr>
<tr>
<td>HCT4066QPWRG4Q1</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>HK4066Q</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE:** Product device recommended for new designs.
- **LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF CD74HCT4066-Q1:

- Catalog: CD74HCT4066

NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog product
TAPE AND REEL INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin 1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD74HCT4066QPWRQ1</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>330.0</td>
<td>12.4</td>
<td>6.9</td>
<td>5.6</td>
<td>1.6</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>HCT4066QPWRG4Q1</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>330.0</td>
<td>12.4</td>
<td>6.9</td>
<td>5.6</td>
<td>1.6</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

*All dimensions are nominal.

- **A0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component length
- **K0**: Dimension designed to accommodate the component thickness
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers
<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD74HCT4066QPWRQ1</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>HCT4066QPWRG4Q1</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0.15) each side.
D. Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0.43) each side.
E. Reference JEDEC MS-012 variation AB.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
MECHANICAL DATA

PW (R-PDSO-G14) PLASTIC SMALL OUTLINE

NOTES:
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
\[\text{Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed } 0.15 \text{ each side.}\]
\[\text{Body width does not include interlead flash. Interlead flash shall not exceed } 0.25 \text{ each side.}\]
E. Falls within JEDEC MO-153
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the party or, a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has the all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to additional restrictions. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>amplifier.ti.com</td>
</tr>
<tr>
<td>Data Converters</td>
<td>dataconverter.ti.com</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>www.dlp.com</td>
</tr>
<tr>
<td>DSP</td>
<td>dsp.ti.com</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>www.ti.com/clocks</td>
</tr>
<tr>
<td>Interface</td>
<td>interface.ti.com</td>
</tr>
<tr>
<td>Logic</td>
<td>logic.ti.com</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>power.ti.com</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>microcontroller.ti.com</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
</tr>
<tr>
<td>OMAP Applications</td>
<td>www.ti.com/omap</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated