DS90C402 Dual Low Voltage Differential Signaling (LVDS) Receiver

FEATURES
- Ultra Low Power Dissipation
- Operates above 155.5 Mbps
- Standard TIA/EIA-644
- 8 Lead SOIC Package saves PCB space
- $V_{CM} \pm 1\text{V}$ center around 1.2V
- ±100 mV Receiver Sensitivity

DESCRIPTION
The DS90C402 is a dual receiver device optimized for high data rate and low power applications. This device along with the DS90C401 provides a pair chip solution for a dual high speed point-to-point interface. The device is in a PCB space saving 8 lead small outline package. The receiver offers ±100 mV threshold sensitivity, in addition to common-mode noise protection.

Connection Diagram

![Connection Diagram](image)

See Package Number D (SOIC)

Functional Diagram

![Functional Diagram](image)

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

Copyright © 1998–2013, Texas Instruments Incorporated
Absolute Maximum Ratings

- **Supply Voltage** (V\(_{CC}\))
 - Min: −0.3V to +6V

- **Input Voltage** (R\(_{IN+}\), R\(_{IN−}\))
 - Min: −0.3V to (V\(_{CC}\) + 0.3V)

- **Output Voltage** (R\(_{OUT}\))
 - Min: −0.3V to (V\(_{CC}\) + 0.3V)

- **Maximum Package Power Dissipation @ +25°C**
 - D Package: 1025 mW
 - Derate D Package: 8.2 mW/°C above +25°C

- **Storage Temperature Range**
 - Min: −65°C to +150°C

- **Lead Temperature Range**
 - Soldering (4 sec.): +260°C

- **Maximum Junction Temperature**
 - Min: +150°C

- **ESD Rating**
 - (HBM, 1.5 kΩ, 100 pF): ≥3,500V
 - (EIAJ, 0Ω, 200 pF): ≥250V

(1) "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be ensured. They are not meant to imply that the devices should be operated at these limits. **Electrical Characteristics** specifies conditions of device operation.

(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.

(3) ESD Rating: HBM (1.5 kΩ, 100 pF) ≥3,500V EIAJ (0Ω, 200 pF) ≥250V

Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage (V(_{CC}))</td>
<td>+4.5</td>
<td>+5.0</td>
<td>+5.5</td>
<td>V</td>
</tr>
<tr>
<td>Receiver Input Voltage</td>
<td>GND</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Operating Free Air Temperature (T(_{A}))</td>
<td>−40</td>
<td>+25</td>
<td>+85</td>
<td>°C</td>
</tr>
</tbody>
</table>

Electrical Characteristics

Over Supply Voltage and Operating Temperature ranges, unless otherwise specified.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Pin</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V(_{TH})</td>
<td>Differential Input High Threshold</td>
<td>V(_{CM}) = + 1.2V</td>
<td>R({IN+}), R({IN−})</td>
<td>−100</td>
<td>+100</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>V(_{TL})</td>
<td>Differential Input Low Threshold</td>
<td>V({IN}) = +2.4V, V({CC}) = 5.5V</td>
<td></td>
<td>−10</td>
<td>±1</td>
<td>+10</td>
<td>µA</td>
</tr>
<tr>
<td>I(_{IN})</td>
<td>Input Current</td>
<td>V(_{IN}) = 0V</td>
<td></td>
<td>−10</td>
<td>±1</td>
<td>+10</td>
<td>µA</td>
</tr>
<tr>
<td>V(_{OH})</td>
<td>Output High Voltage</td>
<td>I({OH}) = −0.4 mA, V({ID}) = +200 mV</td>
<td>R(_{OUT})</td>
<td>3.8</td>
<td>4.9</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I(_{OH}) = −0.4 mA, Inputs terminated</td>
<td></td>
<td>3.8</td>
<td>4.9</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I(_{OH}) = −0.4 mA, Inputs Open</td>
<td></td>
<td>3.8</td>
<td>4.9</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I(_{OH}) = −0.4 mA, Inputs Shorted</td>
<td></td>
<td>4.9</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V(_{OL})</td>
<td>Output Low Voltage</td>
<td>I({OL}) = 2 mA, V({ID}) = −200 mV</td>
<td></td>
<td>0.07</td>
<td>0.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I(_{OS})</td>
<td>Output Short Circuit Current</td>
<td>V(_{OUT}) = 0V(^{(3)})</td>
<td></td>
<td>−15</td>
<td>−60</td>
<td>−100</td>
<td>mA</td>
</tr>
<tr>
<td>I(_{CC})</td>
<td>No Load Supply Current</td>
<td>Inputs Open</td>
<td>V(_{CC})</td>
<td>3.5</td>
<td>10</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

(1) Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground unless otherwise specified.

(2) All typicals are given for: V\(_{CC}\) = +5.0V, T\(_{A}\) = +25°C.

(3) Output short circuit current (I\(_{OS}\)) is specified as magnitude only, minus sign indicates direction only. Only one output should be shorted at a time, do not exceed maximum junction temperature specification.
Switching Characteristics

\(V_{CC} = +5.0V \pm 10\% , \ T_A = -40^\circ C \) to \(+85^\circ C \) \((1) (2) (3) (4) (5)\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{PHLD})</td>
<td>Differential Propagation Delay High to Low</td>
<td>(C_L = 5) pF, (V_{ID} = 200) mV ((\text{Figure 1 and Figure 2}))</td>
<td>1.0</td>
<td>3.40</td>
<td>6.0</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{PLHD})</td>
<td>Differential Propagation Delay Low to High</td>
<td></td>
<td>1.0</td>
<td>3.48</td>
<td>6.0</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{SKD})</td>
<td>Differential Skew (</td>
<td>t_{PHLD} - t_{PLHD}</td>
<td>)</td>
<td></td>
<td>0</td>
<td>0.08</td>
</tr>
<tr>
<td>(t_{SK1})</td>
<td>Channel-to-Channel Skew ((3))</td>
<td></td>
<td>0</td>
<td>0.6</td>
<td>1.5</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{SK2})</td>
<td>Chip to Chip Skew ((4))</td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{TLH})</td>
<td>Rise Time</td>
<td></td>
<td>0.5</td>
<td>2.5</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{THL})</td>
<td>Fall Time</td>
<td></td>
<td>0.5</td>
<td>2.5</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

(1) All typicals are given for: \(V_{CC} = +5.0V, \ T_A = +25^\circ C \).
(2) Generator waveform for all tests unless otherwise specified: \(f = 1 \) MHz, \(ZO = 50 \) \(\Omega \), \(t_r \) and \(t_f \) \((0\% - 100\%) \) \(\leq 1 \) ns for \(R_{IN} \).
(3) Channel-to-Channel Skew is defined as the difference between the propagation delay of one channel and that of the others on the same chip with an event on the inputs.
(4) Chip to Chip Skew is defined as the difference between the minimum and maximum specified differential propagation delays.
(5) \(C_L \) includes probe and jig capacitance.

Parameter Measurement Information

![Figure 1. Receiver Propagation Delay and Transition Time Test Circuit](image1)

![Figure 2. Receiver Propagation Delay and Transition Time Waveforms](image2)
Applications Information

LVDS drivers and receivers are intended to be primarily used in an uncomplicated point-to-point configuration as is shown in Figure 3. This configuration provides a clean signaling environment for the quick edge rates of the drivers. The receiver is connected to the driver through a balanced media which may be a standard twisted pair cable, a parallel pair cable, or simply PCB traces. Typically the characteristic impedance of the media is in the range of 100Ω. A termination resistor of 100Ω should be selected to match the media, and is located as close to the receiver input pins as possible. The termination resistor converts the current sourced by the driver into a voltage that is detected by the receiver. Other configurations are possible such as a multi-receiver configuration, but the effects of a mid-stream connector(s), cable stub(s), and other impedance discontinuities as well as ground shifting, noise margin limits, and total termination loading must be taken into account.

The DS90C402 differential line receiver is capable of detecting signals as low as 100 mV, over a ±1V common-mode range centered around +1.2V. This is related to the driver offset voltage which is typically +1.2V. The driven signal is centered around this voltage and may shift ±1V around this center point. The ±1V shifting may be the result of a ground potential difference between the driver’s ground reference and the receiver’s ground reference, the common-mode effects of coupled noise, or a combination of the two. Both receiver input pins should honor their specified operating input voltage range of 0V to +2.4V (measured from each pin to ground), exceeding these limits may turn on the ESD protection circuitry which will clamp the bus voltages.

Fail-Safe Feature:

The LVDS receiver is a high gain, high speed device that amplifies a small differential signal (20mV) to CMOS logic levels. Due to the high gain and tight threshold of the receiver, care should be taken to prevent noise from appearing as a valid signal.

The receiver’s internal fail-safe circuitry is designed to source/sink a small amount of current, providing fail-safe protection (a stable known state HIGH output voltage) for floating, terminated or shorted receiver inputs.

1. **Open Input Pins.** The DS90C402 is a dual receiver device, and if an application requires only one receiver, the unused channel(s) inputs should be left OPEN. Do not tie unused receiver inputs to ground or any other voltages. The input is biased by internal high value pull up and pull down resistors to set the output to a HIGH state. This internal circuitry will ensure a HIGH, stable output state for open inputs.

2. **Terminated Input.** If the driver is disconnected (cable unplugged), or if the driver is in a power-off condition, the receiver output will again be in a HIGH state, even with the end of cable 100Ω termination resistor across the input pins. The unplugged cable can become a floating antenna which can pick up noise. If the cable picks up more than 10mV of differential noise, the receiver may see the noise as a valid signal and switch. To insure that any noise is seen as common-mode and not differential, a balanced interconnect should be used. Twisted pair cable will offer better balance than flat ribbon cable.

3. **Shorted Inputs.** If a fault condition occurs that shorts the receiver inputs together, thus resulting in a 0V differential input voltage, the receiver output will remain in a HIGH state. Shorted input fail-safe is not supported across the common-mode range of the device (GND to 2.4V). It is only supported with inputs shorted and no external common-mode voltage applied.
PIN DESCRIPTIONS

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2, 6</td>
<td>R_{OUT}</td>
<td>Receiver output pin</td>
</tr>
<tr>
<td>3, 7</td>
<td>R_{IN^+}</td>
<td>Positive receiver input pin</td>
</tr>
<tr>
<td>4, 8</td>
<td>R_{IN^-}</td>
<td>Negative receiver input pin</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground pin</td>
</tr>
<tr>
<td>1</td>
<td>V_{CC}</td>
<td>Positive power supply pin, (+5V \pm 10%)</td>
</tr>
</tbody>
</table>
Typical Performance Characteristics

Output High Voltage vs Power Supply Voltage

![Graph](image)

Figure 4.

Output High Voltage vs Ambient Temperature

![Graph](image)

Figure 5.

Output Low Voltage vs Power Supply Voltage

![Graph](image)

Figure 6.

Output Low Voltage vs Ambient Temperature

![Graph](image)

Figure 7.

Output Short Circuit Current vs Power Supply Voltage

![Graph](image)

Figure 8.

Output Short Circuit Current vs Ambient Temperature

![Graph](image)

Figure 9.
Typical Performance Characteristics (continued)

Differential Propagation Delay vs Power Supply Voltage

\[t_{PHLD} - t_{PLHD} \] vs \(V_{CC} \) (V)

Figure 10.

Differential Skew vs Power Supply Voltage

\[t_{SKD0} - t_{PD} \] vs \(V_{CC} \) (V)

Figure 12.

Transition Time vs Power Supply Voltage

\[t_{TLH} - t_{TLH} \] vs \(V_{CC} \) (V)

Figure 14.

Differential Propagation Delay vs Ambient Temperature

\[t_{PHLD} - t_{PLHD} \] vs \(T_{A} \) (°C)

Figure 11.

Differential Skew vs Ambient Temperature

\[t_{SKD0} - t_{PD} \] vs \(T_{A} \) (°C)

Figure 13.

Transition Time vs Ambient Temperature

\[t_{TLH} - t_{TLH} \] vs \(T_{A} \) (°C)

Figure 15.
REVISION HISTORY

<table>
<thead>
<tr>
<th>Changes from Revision B (April 2013) to Revision C</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Changed layout of National Data Sheet to TI format</td>
<td>7</td>
</tr>
</tbody>
</table>
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS90C402M</td>
<td>NRND</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>95</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>-40 to 85</td>
<td>DS90C402M</td>
<td></td>
</tr>
<tr>
<td>DS90C402M/NOPB</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>95</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>DS90C402M</td>
<td></td>
</tr>
<tr>
<td>DS90C402MX/NOPB</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>DS90C402M</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE:** Product device recommended for new designs.
- **LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE:** TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
- **RoHS Exempt:** TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
- **Green:** TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin 1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS90C402MX/NOPB</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.5</td>
<td>5.4</td>
<td>2.0</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

Definitions

- **A0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component length
- **K0**: Dimension designed to accommodate the component thickness
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers

Diagram Notes

- **Reel Diameter**
- **Cavity**
- **Reel Width (W1)**
- **Pocket Quadrants**
- **Sprocket Holes**
- **User Direction of Feed**
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS90C402MX/NOPB</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
MECHANICAL DATA

D (R-PDSO-G8) PLASTIC SMALL OUTLINE

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
 ▶️ Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0.15) each side.
 ▶️ Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0.43) each side.
E. Reference JEDEC MS-012 variation AA.

Texas Instruments
www.ti.com
IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond those parameters stated by TI for that product or service voids all express and/or implied warranties of the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers’ applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY TECHNOLOGY, PATENT, COPYRIGHT, TRADE SECRET, TRADE NAME, PRODUCT, SERVICE, OR OTHER RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.