FEATURES

- Single +3.3V Supply
- Chipset (Tx + Rx) Power Consumption <250 mW (typ)
- Power-down Mode (<0.5 mW total)
- Up to 173 Megabytes/sec Bandwidth
- Up to 1.386 Gbps Data Throughput
- Narrow Bus Reduces Cable Size
- 290 mV Swing LVDS Devices for Low EMI
- +1V Common Mode Range (Around +1.2V)
- PLL Requires No External Components
- Low Profile 48-Lead TSSOP Package
- Rising Edge Data Strobe
- Compatible with TIA/EIA-644 LVDS Standard
- ESD Rating > 7 kV
- Operating Temperature: −40°C to +85°C

DESCRIPTION

The DS90CR215 transmitter converts 21 bits of CMOS/TTL data into three LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fourth LVDS link. Every cycle of the transmit clock 21 bits of input data are sampled and transmitted. The DS90CR216 receiver converts the LVDS data streams back into 21 bits of CMOS/TTL data. At a transmit clock frequency of 66 MHz, 21 bits of TTL data are transmitted at a rate of 462 Mbps per LVDS data channel. Using a 66 MHz clock, the data throughput is 1.386 Gbit/s (173 Mbytes/s).

The multiplexing of the data lines provides a substantial cable reduction. Long distance parallel single-ended buses typically require a ground wire per active signal (and have very limited noise rejection capability). Thus, for a 21-bit wide data and one clock, up to 44 conductors are required. With the Channel Link chipset as few as 9 conductors (3 data pairs, 1 clock pair and a minimum of one ground) are needed. This provides a 80% reduction in required cable width, which provides a system cost savings, reduces connector physical size and cost, and reduces shielding requirements due to the cables' smaller form factor.

The 21 CMOS/TTL inputs can support a variety of signal combinations. For example, five 4-bit nibbles plus 1 control, or two 9-bit (byte + parity) and 3 control.

Block Diagram

Figure 1. DS90CR215

48-Lead TSSOP

See Package Number DGG0048A

Figure 2. DS90CR216 - Improved AC Specifications

See Package Number DGG0048A

Recommended Alternative Device
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.
Absolute Maximum Ratings\(^{(1)}\)(\(^{(2)}\))

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Nom</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage ((V_{CC}))</td>
<td>(-0.3\text{V}) to +4\text{V})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMOS/TTL Input Voltage</td>
<td>(-0.3\text{V}) to ((V_{CC}) + 0.3\text{V}))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMOS/TTL Output Voltage</td>
<td>(-0.3\text{V}) to ((V_{CC}) + 0.3\text{V}))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVDS Receiver Input Voltage</td>
<td>(-0.3\text{V}) to ((V_{CC}) + 0.3\text{V}))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVDS Driver Output Voltage</td>
<td>(-0.3\text{V}) to ((V_{CC}) + 0.3\text{V}))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVDS Output Short Circuit Duration</td>
<td>Continuous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>+150°\text{C}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>(-65\text{°C}) to +150°\text{C})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Temperature (Soldering, 4 sec.)</td>
<td>+260°\text{C}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Package Power Dissipation @ +25°C</td>
<td></td>
<td>DGG0048A (TSSOP)</td>
<td>DS90CR215</td>
<td>1.98 \text{W}</td>
</tr>
<tr>
<td>Package:</td>
<td></td>
<td>DS90CR216</td>
<td>1.89 \text{W}</td>
<td></td>
</tr>
<tr>
<td>Package Derating</td>
<td></td>
<td>DS90CR215</td>
<td>16 \text{mW/°C} above +25°C</td>
<td></td>
</tr>
<tr>
<td>ESD Rating (HBM, 1.5 \text{kΩ}, 100 \text{pF})</td>
<td>> 7 \text{kV}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) If Military/Aerospace specified devices are required, please contact the TI Sales Office/ Distributors for availability and specifications.
(2) “Absolute Maximum Ratings” are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. “Electrical Characteristics” specify conditions for device operation.

Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Nom</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage ((V_{CC}))</td>
<td>3.0</td>
<td>3.3</td>
<td>3.6</td>
<td>\text{V}</td>
</tr>
<tr>
<td>Operating Free Air Temperature ((T_A))</td>
<td>(-40)</td>
<td>+25</td>
<td>+85</td>
<td>\text{°C}</td>
</tr>
<tr>
<td>Receiver Input Range</td>
<td>0</td>
<td>2.4</td>
<td></td>
<td>\text{V}</td>
</tr>
<tr>
<td>Supply Noise Voltage ((V_{CC}))</td>
<td></td>
<td></td>
<td>100</td>
<td>\text{mV}_{\text{pp}}</td>
</tr>
</tbody>
</table>

Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IH})</td>
<td>High Level Input Voltage</td>
<td>(V_{CC})</td>
<td>2.0</td>
<td></td>
<td></td>
<td>\text{V}</td>
</tr>
<tr>
<td>(V_{IL})</td>
<td>Low Level Input Voltage</td>
<td>GND</td>
<td>0.8</td>
<td></td>
<td></td>
<td>\text{V}</td>
</tr>
<tr>
<td>(V_{OH})</td>
<td>High Level Output Voltage</td>
<td>(I_{OH}) = -0.4 \text{mA}</td>
<td>2.7</td>
<td>3.3</td>
<td></td>
<td>\text{V}</td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Low Level Output Voltage</td>
<td>(I_{OL}) = 2 \text{mA}</td>
<td>0.06</td>
<td>0.3</td>
<td></td>
<td>\text{V}</td>
</tr>
<tr>
<td>(V_{CL})</td>
<td>Input Clamp Voltage</td>
<td>(I_{CL}) = -18 \text{mA}</td>
<td>-0.79</td>
<td>-1.5</td>
<td></td>
<td>\text{V}</td>
</tr>
<tr>
<td>(I_{IN})</td>
<td>Input Current</td>
<td>(V_{IN} = V_{CC}, \text{GND}, 2.5\text{V} or 0.4\text{V})</td>
<td>±5.1</td>
<td>±10</td>
<td></td>
<td>\text{µA}</td>
</tr>
<tr>
<td>(I_{OS})</td>
<td>Output Short Circuit Current</td>
<td>(V_{OUT} = 0\text{V})</td>
<td>-60</td>
<td>-120</td>
<td></td>
<td>\text{mA}</td>
</tr>
</tbody>
</table>

LVDS DRIVER DC SPECIFICATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{OD})</td>
<td>Differential Output Voltage</td>
<td>(R_L = 100\text{Ω})</td>
<td>250</td>
<td>290</td>
<td>450</td>
<td>\text{mV}</td>
</tr>
<tr>
<td>(\Delta V_{OD})</td>
<td>Change in (V_{OD}) between Complimentary Output States</td>
<td></td>
<td>35</td>
<td></td>
<td></td>
<td>\text{mV}</td>
</tr>
<tr>
<td>(V_{OS})</td>
<td>Offset Voltage(^{(1)})</td>
<td>(1.125)</td>
<td>1.25</td>
<td>1.375</td>
<td></td>
<td>\text{V}</td>
</tr>
<tr>
<td>(\Delta V_{OS})</td>
<td>Change in (V_{OS}) between Complimentary Output States</td>
<td></td>
<td>35</td>
<td></td>
<td></td>
<td>\text{mV}</td>
</tr>
<tr>
<td>(I_{OS})</td>
<td>Output Short Circuit Current</td>
<td>(V_{OUT} = 0\text{V}, R_L = 1000\text{Ω})</td>
<td>-3.5</td>
<td>-5</td>
<td></td>
<td>\text{mA}</td>
</tr>
<tr>
<td>(I_{OZ})</td>
<td>Output TRI-STATE Current</td>
<td>(\text{PWR DWN} = 0\text{V}, V_{OUT} = 0\text{V} or V_{CC})</td>
<td>±1</td>
<td>±10</td>
<td></td>
<td>\text{µA}</td>
</tr>
</tbody>
</table>

LVDS RECEIVER DC SPECIFICATIONS

(1) \(V_{OS}\) previously referred as \(V_{CM}\).
Electrical Characteristics (continued)

Over recommended operating supply and temperature ranges unless otherwise specified

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{TH}</td>
<td>Differential Input High Threshold</td>
<td>$V_{CM} = +1.2V$</td>
<td>+100</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{TL}</td>
<td>Differential Input Low Threshold</td>
<td></td>
<td>−100</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{IN}</td>
<td>Input Current</td>
<td>$V_{IN} = +2.4V, V_{CC} = 3.6V$</td>
<td>±10</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{IN} = 0V, V_{CC} = 3.6V$</td>
<td>±10</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRANSMITTER SUPPLY CURRENT

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
</table>
| I_{CCTW} | Transmitter Supply Current Worst Case (with Loads) | $R_L = 100\Omega$, $C_L = 5\ pF$
*Worst Case Pattern (Figure 5 Figure 6) $T_A = -10\degree C$ to $+70\degree C$ | f = 32.5 MHz | 31 | 45 | mA |
| | | | f = 37.5 MHz | 32 | 50 | mA |
| | | | f = 66 MHz | 37 | 55 | mA |
| | | | f = 40 MHz | 38 | 51 | mA |
| | | | f = 66 MHz | 42 | 55 | mA |

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
</table>
| I_{CCTZ} | Transmitter Supply Current Power Down | $PWR\ DWN = Low$
Driver Outputs in TRI-STATE under Powerdown Mode | 10 | 55 | μA |

RECEIVER SUPPLY CURRENT

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
</table>
| I_{CCRW} | Receiver Supply Current Worst Case | $C_L = 8\ pF$,
*Worst Case Pattern (Figure 5 Figure 7), $T_A = -10\degree C$ to $+70\degree C$ | f = 32.5 MHz | 49 | 65 | mA |
| | | | f = 37.5 MHz | 53 | 70 | mA |
| | | | f = 66 MHz | 78 | 105 | mA |
| | | | $C_L = 8\ pF$,
*Worst Case Pattern (Figure 5 Figure 7), $T_A = -40\degree C$ to $+85\degree C$ | f = 40 MHz | 55 | 82 | mA |
| | | | f = 66 MHz | 78 | 105 | mA |

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
</table>
| I_{CCRZ} | Receiver Supply Current Power Down | $PWR\ DWN = Low$
Receiver Outputs Stay Low during Powerdown Mode | 10 | 55 | μA |

Transmitter Switching Characteristics

Over recommended operating supply and $-40\degree C$ to $+85\degree C$ ranges unless otherwise specified

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLHT</td>
<td>LVDS Low-to-High Transition Time (Figure 6)</td>
<td></td>
<td>0.5</td>
<td>1.5</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>LHHLT</td>
<td>LVDS High-to-Low Transition Time (Figure 6)</td>
<td></td>
<td>0.5</td>
<td>1.5</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TCIT</td>
<td>TxCLK IN Transition Time (Figure 8)</td>
<td></td>
<td>5</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCCS</td>
<td>TxOUT Channel-to-Channel Skew (Figure 9)</td>
<td></td>
<td>250</td>
<td>ps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPPo0</td>
<td>Transmitter Output Pulse Position for Bit0 (1) (Figure 20)</td>
<td>f = 40 MHz</td>
<td>−0.4</td>
<td>0</td>
<td>0.4</td>
<td>ns</td>
</tr>
<tr>
<td>TPPo1</td>
<td>Transmitter Output Pulse Position for Bit1</td>
<td></td>
<td>3.1</td>
<td>3.3</td>
<td>4.0</td>
<td>ns</td>
</tr>
<tr>
<td>TPPo2</td>
<td>Transmitter Output Pulse Position for Bit2</td>
<td></td>
<td>6.5</td>
<td>6.8</td>
<td>7.6</td>
<td>ns</td>
</tr>
<tr>
<td>TPPo3</td>
<td>Transmitter Output Pulse Position for Bit3</td>
<td></td>
<td>10.2</td>
<td>10.4</td>
<td>11.0</td>
<td>ns</td>
</tr>
<tr>
<td>TPPo4</td>
<td>Transmitter Output Pulse Position for Bit4</td>
<td></td>
<td>13.7</td>
<td>13.9</td>
<td>14.6</td>
<td>ns</td>
</tr>
<tr>
<td>TPPo5</td>
<td>Transmitter Output Pulse Position for Bit5</td>
<td></td>
<td>17.3</td>
<td>17.6</td>
<td>18.2</td>
<td>ns</td>
</tr>
<tr>
<td>TPPo6</td>
<td>Transmitter Output Pulse Position for Bit6</td>
<td></td>
<td>21.0</td>
<td>21.2</td>
<td>21.8</td>
<td>ns</td>
</tr>
</tbody>
</table>

(1) The min. and max. are based on the actual bit position of each of the 7 bits within the LVDS data stream across PVT.
Transmitter Switching Characteristics (continued)

Over recommended operating supply and −40°C to +85°C ranges unless otherwise specified

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPPos0</td>
<td>Transmitter Output Pulse Position for Bit0 (^{(2)}) (Figure 20) (f = 66) MHz</td>
<td>−0.4</td>
<td>0</td>
<td>0.3</td>
<td>ns</td>
</tr>
<tr>
<td>TPPos1</td>
<td>Transmitter Output Pulse Position for Bit1</td>
<td>1.8</td>
<td>2.2</td>
<td>2.5</td>
<td>ns</td>
</tr>
<tr>
<td>TPPos2</td>
<td>Transmitter Output Pulse Position for Bit2</td>
<td>4.0</td>
<td>4.4</td>
<td>4.7</td>
<td>ns</td>
</tr>
<tr>
<td>TPPos3</td>
<td>Transmitter Output Pulse Position for Bit3</td>
<td>6.2</td>
<td>6.6</td>
<td>6.9</td>
<td>ns</td>
</tr>
<tr>
<td>TPPos4</td>
<td>Transmitter Output Pulse Position for Bit4</td>
<td>8.4</td>
<td>8.8</td>
<td>9.1</td>
<td>ns</td>
</tr>
<tr>
<td>TPPos5</td>
<td>Transmitter Output Pulse Position for Bit5</td>
<td>10.6</td>
<td>11.0</td>
<td>11.3</td>
<td>ns</td>
</tr>
<tr>
<td>TPPos6</td>
<td>Transmitter Output Pulse Position for Bit6</td>
<td>12.8</td>
<td>13.2</td>
<td>13.5</td>
<td>ns</td>
</tr>
<tr>
<td>TCIP</td>
<td>TxCLK IN Period (Figure 10)</td>
<td>15</td>
<td>T</td>
<td>50</td>
<td>ns</td>
</tr>
<tr>
<td>TCIH</td>
<td>TxCLK IN High Time (Figure 10)</td>
<td>0.35T</td>
<td>0.5T</td>
<td>0.65T</td>
<td>ns</td>
</tr>
<tr>
<td>TGLH</td>
<td>TxCLK IN Low Time (Figure 10)</td>
<td>0.35T</td>
<td>0.5T</td>
<td>0.65T</td>
<td>ns</td>
</tr>
<tr>
<td>TSTC</td>
<td>TxIN Setup to TxCLK IN (Figure 10)</td>
<td>2.5</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>THTC</td>
<td>TxIN Hold to TxCLK IN (Figure 10)</td>
<td>0</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>TCCD</td>
<td>TxCLK IN to TxCLK OUT Delay @ 25°C,(V_{CC}=3.3)V (Figure 12)</td>
<td>3</td>
<td>3.7</td>
<td>5.5</td>
<td>ns</td>
</tr>
<tr>
<td>TPLLs</td>
<td>Transmitter Phase Lock Loop Set (Figure 14)</td>
<td>10</td>
<td></td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>TPDD</td>
<td>Transmitter Powerdown Delay (Figure 18)</td>
<td>100</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

(2) The min. and max. limits are based on the worst bit by applying a −400ps/+300ps shift from ideal position.

Receiver Switching Characteristics

Over recommended operating supply and −40°C to +85°C ranges unless otherwise specified

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLHT</td>
<td>CMOS/TTL Low-to-High Transition Time (Figure 7)</td>
<td>2.2</td>
<td>5.0</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>CHLT</td>
<td>CMOS/TTL High-to-Low Transition Time (Figure 7)</td>
<td>2.2</td>
<td>5.0</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>RSPos0</td>
<td>Receiver Input Strobe Position for Bit 0 (^{(1)}) (Figure 21) (f = 40) MHz</td>
<td>1.0</td>
<td>1.4</td>
<td>2.15</td>
<td>ns</td>
</tr>
<tr>
<td>RSPos1</td>
<td>Receiver Input Strobe Position for Bit 1</td>
<td>4.5</td>
<td>5.0</td>
<td>5.8</td>
<td>ns</td>
</tr>
<tr>
<td>RSPos2</td>
<td>Receiver Input Strobe Position for Bit 2</td>
<td>8.1</td>
<td>8.5</td>
<td>9.15</td>
<td>ns</td>
</tr>
<tr>
<td>RSPos3</td>
<td>Receiver Input Strobe Position for Bit 3</td>
<td>11.6</td>
<td>11.9</td>
<td>12.6</td>
<td>ns</td>
</tr>
<tr>
<td>RSPos4</td>
<td>Receiver Input Strobe Position for Bit 4</td>
<td>15.1</td>
<td>15.6</td>
<td>16.3</td>
<td>ns</td>
</tr>
<tr>
<td>RSPos5</td>
<td>Receiver Input Strobe Position for Bit 5</td>
<td>18.8</td>
<td>19.2</td>
<td>19.9</td>
<td>ns</td>
</tr>
<tr>
<td>RSPos6</td>
<td>Receiver Input Strobe Position for Bit 6</td>
<td>22.5</td>
<td>22.9</td>
<td>23.6</td>
<td>ns</td>
</tr>
<tr>
<td>RSPos0</td>
<td>Receiver Input Strobe Position for Bit 0 (^{(2)}) (Figure 21) (f = 66) MHz</td>
<td>0.7</td>
<td>1.1</td>
<td>1.4</td>
<td>ns</td>
</tr>
<tr>
<td>RSPos1</td>
<td>Receiver Input Strobe Position for Bit 1</td>
<td>2.9</td>
<td>3.3</td>
<td>3.6</td>
<td>ns</td>
</tr>
<tr>
<td>RSPos2</td>
<td>Receiver Input Strobe Position for Bit 2</td>
<td>5.1</td>
<td>5.5</td>
<td>5.8</td>
<td>ns</td>
</tr>
<tr>
<td>RSPos3</td>
<td>Receiver Input Strobe Position for Bit 3</td>
<td>7.3</td>
<td>7.7</td>
<td>8.0</td>
<td>ns</td>
</tr>
<tr>
<td>RSPos4</td>
<td>Receiver Input Strobe Position for Bit 4</td>
<td>9.5</td>
<td>9.9</td>
<td>10.2</td>
<td>ns</td>
</tr>
<tr>
<td>RSPos5</td>
<td>Receiver Input Strobe Position for Bit 5</td>
<td>11.7</td>
<td>12.1</td>
<td>12.4</td>
<td>ns</td>
</tr>
<tr>
<td>RSPos6</td>
<td>Receiver Input Strobe Position for Bit 6</td>
<td>13.9</td>
<td>14.3</td>
<td>14.6</td>
<td>ns</td>
</tr>
<tr>
<td>RSKM</td>
<td>RxIN Skew Margin (^{(3)}) (Figure 22) (f = 40) MHz</td>
<td>490</td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>RSKM</td>
<td>RxIN Skew Margin (^{(3)}) (Figure 22) (f = 66) MHz</td>
<td>400</td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>RCOP</td>
<td>RxCLK OUT Period (Figure 11)</td>
<td>15</td>
<td>T</td>
<td>50</td>
<td>ns</td>
</tr>
<tr>
<td>RCOH</td>
<td>RxCLK OUT High Time (Figure 11)</td>
<td>6.0</td>
<td>10.0</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.0</td>
<td>6.1</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

(1) The min. and max. are based on the actual bit position of each of the 7 bits within the LVDS data stream across PVT.

(2) The min. and max. limits are based on the worst bit by applying a −400ps/+300ps shift from ideal position.

(3) Receiver Skew Margin is defined as the valid data sampling region at the receiver inputs. This margin takes into account for transmitter pulse positions (min and max) and the receiver input setup and hold time (internal data sampling window). This margin allows LVDS interconnect skew, inter-symbol interference (both dependent on type/length of cable), and clock jitter less than 250 ps.
Receiver Switching Characteristics (continued)
Over recommended operating supply and \(-40^\circ C\) to \(+85^\circ C\) ranges unless otherwise specified

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCOL</td>
<td>RxCLK OUT Low Time (Figure 11)</td>
<td>(f = 40 \text{ MHz})</td>
<td>10.0</td>
<td>13.0</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(f = 66 \text{ MHz})</td>
<td>6.0</td>
<td>7.8</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>RSRC</td>
<td>RxOUT Setup to RxCLK OUT (Figure 11)</td>
<td>(f = 40 \text{ MHz})</td>
<td>6.5</td>
<td>14.0</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(f = 66 \text{ MHz})</td>
<td>2.5</td>
<td>8.0</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>RHRC</td>
<td>RxOUT Hold to RxCLK OUT (Figure 11)</td>
<td>(f = 40 \text{ MHz})</td>
<td>6.0</td>
<td>8.0</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(f = 66 \text{ MHz})</td>
<td>2.5</td>
<td>4.0</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>RCCD</td>
<td>RxCLK IN to RxCLK OUT Delay (Figure 13)</td>
<td>(f = 40 \text{ MHz})</td>
<td>4.0</td>
<td>6.7</td>
<td>8.0</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(f = 66 \text{ MHz})</td>
<td>5.0</td>
<td>6.6</td>
<td>9.0</td>
<td>ns</td>
</tr>
<tr>
<td>RPLLS</td>
<td>Receiver Phase Lock Loop Set (Figure 15)</td>
<td></td>
<td></td>
<td></td>
<td>10 ms</td>
<td></td>
</tr>
<tr>
<td>RPDD</td>
<td>Receiver Powerdown Delay (Figure 19)</td>
<td></td>
<td></td>
<td></td>
<td>1 µs</td>
<td></td>
</tr>
</tbody>
</table>

AC Timing Diagrams

Figure 5. “Worst Case” Test Pattern

Figure 6. DS90CR215 (Transmitter) LVDS Output Load and Transition Times
Figure 7. DS90CR216 (Receiver) CMOS/TTL Output Load and Transition Times

Figure 8. DS90CR215 (Transmitter) Input Clock Transition Time

Figure 9. DS90CR215 (Transmitter) Channel-to-Channel Skew

Figure 10. DS90CR215 (Transmitter) Setup/Hold and High/Low Times
Figure 11. DS90CR216 (Receiver) Setup/Hold and High/Low Times

Figure 12. DS90CR215 (Transmitter) Clock In to Clock Out Delay

Figure 13. DS90CR216 (Receiver) Clock In to Clock Out Delay

Figure 14. DS90CR215 (Transmitter) Phase Lock Loop Set Time
Figure 15. DS9OCR216 (Receiver) Phase Lock Loop Set Time

Figure 16. Seven Bits of LVDS in Once Clock Cycle

Figure 17. 21 Parallel TTL Data Inputs Mapped to LVDS Outputs (DS90CR215)

Figure 18. Transmitter Powerdown Delay
Figure 19. Receiver Powerdown Delay

Figure 20. Transmitter LVDS Output Pulse Position Measurement
Figure 21. Receiver LVDS Input Strobe Position
C — Setup and Hold Time (Internal data sampling window) defined by Rspos (receiver input strobe position) min and max

Tposn — Transmitter output pulse position (min and max)

RSKM ≥ Cable Skew (type, length) + Source Clock Jitter (cycle to cycle) + ISI (Inter-symbol interference)

Cable Skew — typically 10 ps–40 ps per foot, media dependent

Cycle-to-cycle jitter is less than 250 ps

ISI is dependent on interconnect length; may be zero

Figure 22. Receiver LVDS Input Skew Margin
APPLICATIONS INFORMATION

The DS90CR215 and DS90CR216 are backward compatible with the existing 5V Channel Link transmitter/receiver pair (DS90CR213, DS90CR214). To upgrade from a 5V to a 3.3V system the following must be addressed:

1. Change 5V power supply to 3.3V. Provide this supply to the V_{CC}, LVDS V_{CC} and PLL V_{CC}.
2. Transmitter input and control inputs except 3.3V TTL/CMOS levels. They are not 5V tolerant.
3. The receiver powerdown feature when enabled will lock receiver output to a logic low. However, the 5V/66 MHz receiver maintain the outputs in the previous state when powerdown occurred.

DS90CR215 Pin Descriptions — Channel Link Transmitter

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>I/O</th>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TxIN</td>
<td>I</td>
<td>21</td>
<td>TTL level input.</td>
</tr>
<tr>
<td>TxOUT+</td>
<td>O</td>
<td>3</td>
<td>Positive LVDS differential data output.</td>
</tr>
<tr>
<td>TxOUT−</td>
<td>O</td>
<td>3</td>
<td>Negative LVDS differential data output.</td>
</tr>
<tr>
<td>TxCLK IN</td>
<td>I</td>
<td>1</td>
<td>TTL level clock input. The rising edge acts as data strobe. Pin name TxCLK IN.</td>
</tr>
<tr>
<td>TxCLK OUT+</td>
<td>O</td>
<td>1</td>
<td>Positive LVDS differential clock output.</td>
</tr>
<tr>
<td>TxCLK OUT−</td>
<td>O</td>
<td>1</td>
<td>Negative LVDS differential clock output.</td>
</tr>
<tr>
<td>PWR DWN</td>
<td>I</td>
<td>1</td>
<td>TTL level input. Assertion (low input) TRI-STATEs the outputs, ensuring low current at power down.</td>
</tr>
<tr>
<td>V_{CC}</td>
<td>I</td>
<td>4</td>
<td>Power supply pins for TTL inputs.</td>
</tr>
<tr>
<td>GND</td>
<td>I</td>
<td>5</td>
<td>Ground pins for TTL inputs.</td>
</tr>
<tr>
<td>PLL V_{CC}</td>
<td>I</td>
<td>1</td>
<td>Power supply pins for PLL.</td>
</tr>
<tr>
<td>PLL GND</td>
<td>I</td>
<td>2</td>
<td>Ground pins for PLL.</td>
</tr>
<tr>
<td>LVDS V_{CC}</td>
<td>I</td>
<td>1</td>
<td>Power supply pin for LVDS outputs.</td>
</tr>
<tr>
<td>LVDS GND</td>
<td>I</td>
<td>3</td>
<td>Ground pins for LVDS outputs.</td>
</tr>
</tbody>
</table>

DS90CR216 Pin Descriptions — Channel Link Receiver

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>I/O</th>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RxIN+</td>
<td>I</td>
<td>3</td>
<td>Positive LVDS differential data inputs.</td>
</tr>
<tr>
<td>RxIN−</td>
<td>I</td>
<td>3</td>
<td>Negative LVDS differential data inputs.</td>
</tr>
<tr>
<td>RxOUT</td>
<td>O</td>
<td>21</td>
<td>TTL level data outputs.</td>
</tr>
<tr>
<td>RxCLK IN+</td>
<td>I</td>
<td>1</td>
<td>Positive LVDS differential clock input.</td>
</tr>
<tr>
<td>RxCLK IN−</td>
<td>I</td>
<td>1</td>
<td>Negative LVDS differential clock input.</td>
</tr>
<tr>
<td>RxCLK OUT</td>
<td>O</td>
<td>1</td>
<td>TTL level clock output. The rising edge acts as data strobe. Pin name RxCLK OUT.</td>
</tr>
<tr>
<td>PWR DWN</td>
<td>I</td>
<td>1</td>
<td>TTL level input. When asserted (low input) the receiver outputs are low.</td>
</tr>
<tr>
<td>V_{CC}</td>
<td>I</td>
<td>4</td>
<td>Power supply pins for TTL outputs.</td>
</tr>
<tr>
<td>GND</td>
<td>I</td>
<td>5</td>
<td>Ground pins for TTL outputs.</td>
</tr>
<tr>
<td>PLL V_{CC}</td>
<td>I</td>
<td>1</td>
<td>Power supply for PLL.</td>
</tr>
<tr>
<td>PLL GND</td>
<td>I</td>
<td>2</td>
<td>Ground pin for PLL.</td>
</tr>
<tr>
<td>LVDS V_{CC}</td>
<td>I</td>
<td>1</td>
<td>Power supply pin for LVDS inputs.</td>
</tr>
<tr>
<td>LVDS GND</td>
<td>I</td>
<td>3</td>
<td>Ground pins for LVDS inputs.</td>
</tr>
</tbody>
</table>

The Channel Link devices are intended to be used in a wide variety of data transmission applications. Depending upon the application the interconnecting media may vary. For example, for lower data rate (clock rate) and shorter cable lengths (< 2m), the media electrical performance is less critical. For higher speed/long distance applications the media's performance becomes more critical. Certain cable constructions provide tighter skew (matched electrical length between the conductors and pairs). Twin-coax for example, has been demonstrated at distances as great as 5 meters and with the maximum data transfer of 1.38 Gbit/s. Additional applications information can be found in the following Interface Application Notes:
CABLES

A cable interface between the transmitter and receiver needs to support the differential LVDS pairs. The 21-bit CHANNEL LINK chipset (DS90CR215/216) requires four pairs of signal wires and the 28-bit CHANNEL LINK chipset (DS90CR285/286) requires five pairs of signal wires. The ideal cable/connector interface would have a constant 100Ω differential impedance throughout the path. It is also recommended that cable skew remain below 150 ps (@ 66 MHz clock rate) to maintain a sufficient data sampling window at the receiver.

In addition to the four or five cable pairs that carry data and clock, it is recommended to provide at least one additional conductor (or pair) which connects ground between the transmitter and receiver. This low impedance ground provides a common mode return path for the two devices. Some of the more commonly used cable types for point-to-point applications include flat ribbon, flex, twisted pair and Twin-Coax. All are available in a variety of configurations and options. Flat ribbon cable, flex and twisted pair generally perform well in short point-to-point applications while Twin-Coax is good for short and long applications. When using ribbon cable, it is recommended to place a ground line between each differential pair to act as a barrier to noise coupling between adjacent pairs. For Twin-Coax cable applications, it is recommended to utilize a shield on each cable pair. All extended point-to-point applications should also employ an overall shield surrounding all cable pairs regardless of the cable type. This overall shield results in improved transmission parameters such as faster attainable speeds, longer distances between transmitter and receiver and reduced problems associated with EMS or EMI.

The high-speed transport of LVDS signals has been demonstrated on several types of cables with excellent results. However, the best overall performance has been seen when using Twin-Coax cable. Twin-Coax has very low cable skew and EMI due to its construction and double shielding. All of the design considerations discussed here and listed in the supplemental application notes provide the subsystem communications designer with many useful guidelines. It is recommended that the designer assess the tradeoffs of each application thoroughly to arrive at a reliable and economical cable solution.

BOARD LAYOUT

To obtain the maximum benefit from the noise and EMI reductions of LVDS, attention should be paid to the layout of differential lines. Lines of a differential pair should always be adjacent to eliminate noise interference from other signals and take full advantage of the noise canceling of the differential signals. The board designer should also try to maintain equal length on signal traces for a given differential pair. As with any high speed design, the impedance discontinuities should be limited (reduce the numbers of vias and no 90 degree angles on traces). Any discontinuities which do occur on one signal line should be mirrored in the other line of the differential pair. Care should be taken to ensure that the differential trace impedance match the differential impedance of the selected physical media (this impedance should also match the value of the termination resistor that is connected across the differential pair at the receiver's input). Finally, the location of the CHANNEL LINK TxOUT/RxIN pins should be as close as possible to the board edge so as to eliminate excessive pcb runs. All of these considerations will limit reflections and crosstalk which adversely effect high frequency performance and EMI.

UNUSED INPUTS

All unused inputs at the TxIN inputs of the transmitter must be tied to ground. All unused outputs at the RxOUT outputs of the receiver must then be left floating.
TERMINATION

Use of current mode drivers requires a terminating resistor across the receiver inputs. The CHANNEL LINK chipset will normally require a single 100Ω resistor between the true and complement lines on each differential pair of the receiver input. The actual value of the termination resistor should be selected to match the differential mode characteristic impedance (90Ω to 120Ω typical) of the cable. Figure 23 shows an example. No additional pull-up or pull-down resistors are necessary as with some other differential technologies such as PECL. Surface mount resistors are recommended to avoid the additional inductance that accompanies leaded resistors. These resistors should be placed as close as possible to the receiver input pins to reduce stubs and effectively terminate the differential lines.

DECOUPLING CAPACITORS

Bypassing capacitors are needed to reduce the impact of switching noise which could limit performance. For a conservative approach three parallel-connected decoupling capacitors (Multi-Layered Ceramic type in surface mount form factor) between each V_{CC} and the ground plane(s) are recommended. The three capacitor values are 0.1 μF, 0.01μF and 0.001 μF. An example is shown in Figure 24. The designer should employ wide traces for power and ground and ensure each capacitor has its own via to the ground plane. If board space is limiting the number of bypass capacitors, the PLL V_{CC} should receive the most filtering/bypassing. Next would be the LVDS V_{CC} pins and finally the logic V_{CC} pins.

CLOCK JITTER

The CHANNEL LINK devices employ a PLL to generate and recover the clock transmitted across the LVDS interface. The width of each bit in the serialized LVDS data stream is one-seventh the clock period. For example, a 66 MHz clock has a period of 15 ns which results in a data bit width of 2.16 ns. Differential skew (Δt within one differential pair), interconnect skew (Δt of one differential pair to another) and clock jitter will all reduce the available window for sampling the LVDS serial data streams. Care must be taken to ensure that the clock input to the transmitter be a clean low noise signal. Individual bypassing of each V_{CC} to ground will minimize the noise passed on to the PLL, thus creating a low jitter LVDS clock. These measures provide more margin for channel-to-channel skew and interconnect skew as a part of the overall jitter/skew budget.
COMMON MODE vs. DIFFERENTIAL MODE NOISE MARGIN

The typical signal swing for LVDS is 300 mV centered at +1.2V. The CHANNEL LINK receiver supports a 100 mV threshold therefore providing approximately 200 mV of differential noise margin. Common mode protection is of more importance to the system’s operation due to the differential data transmission. LVDS supports an input voltage range of Ground to +2.4V. This allows for a ±1.0V shifting of the center point due to ground potential differences and common mode noise.

POWER SEQUENCING AND POWERDOWN MODE

Outputs of the CHANNEL LINK transmitter remain in TRI-STATE until the power supply reaches 2V. Clock and data outputs will begin to toggle 10 ms after V_{CC} has reached 3V and the Powerdown pin is above 1.5V. Either device may be placed into a powerdown mode at any time by asserting the Powerdown pin (active low). Total power dissipation for each device will decrease to 5 μW (typical).

The CHANNEL LINK chipset is designed to protect itself from accidental loss of power to either the transmitter or receiver. If power to the transmit board is lost, the receiver clocks (input and output) stop. The data outputs (RxOUT) retain the states they were in when the clocks stopped. When the receiver board loses power, the receiver inputs are shorted to V_{CC} through an internal diode. Current is limited (5 mA per input) by the fixed current mode drivers, thus avoiding the potential for latchup when powering the device.

![Figure 25. Single-Ended and Differential Waveforms](image-url)
REVISION HISTORY

Changes from Revision C (April 2013) to Revision D

<table>
<thead>
<tr>
<th>Change Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changed layout of National Data Sheet to TI format</td>
<td>16</td>
</tr>
</tbody>
</table>
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (1)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS90CR215MTD</td>
<td>NRND</td>
<td>TSSOP</td>
<td>DGG</td>
<td>48</td>
<td>38</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>-40 to 85</td>
<td>DS90CR215MTD</td>
<td></td>
</tr>
<tr>
<td>DS90CR215MTD/NOPB</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>DGG</td>
<td>48</td>
<td>38</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>DS90CR215MTD</td>
<td></td>
</tr>
<tr>
<td>DS90CR215MTDX/NOPB</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>DGG</td>
<td>48</td>
<td>1000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>DS90CR215MTD</td>
<td></td>
</tr>
<tr>
<td>DS90CR216MTD</td>
<td>NRND</td>
<td>TSSOP</td>
<td>DGG</td>
<td>48</td>
<td>38</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>DS90CR216MTD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS90CR216MTD/NOPB</td>
<td>NRND</td>
<td>TSSOP</td>
<td>DGG</td>
<td>48</td>
<td>38</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-2-260C-1 YEAR</td>
<td>DS90CR216MTD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS90CR216MTDX</td>
<td>NRND</td>
<td>TSSOP</td>
<td>DGG</td>
<td>48</td>
<td>1000</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>DS90CR216MTD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

Pb-Free (RoHS): TI's terms “Lead-Free” or “Pb-Free” mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a “~” will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS90CR215MTDX/NOPB</td>
<td>TSSOP</td>
<td>DGG</td>
<td>48</td>
<td>1000</td>
<td>330.0</td>
<td>24.4</td>
<td>8.6</td>
<td>13.2</td>
<td>1.6</td>
<td>12.0</td>
<td>24.0</td>
<td>Q1</td>
</tr>
<tr>
<td>DS90CR216MTDX</td>
<td>TSSOP</td>
<td>DGG</td>
<td>48</td>
<td>1000</td>
<td>330.0</td>
<td>24.4</td>
<td>8.6</td>
<td>13.2</td>
<td>1.6</td>
<td>12.0</td>
<td>24.0</td>
<td>Q1</td>
</tr>
<tr>
<td>DS90CR216MTDX/NOPB</td>
<td>TSSOP</td>
<td>DGG</td>
<td>48</td>
<td>1000</td>
<td>330.0</td>
<td>24.4</td>
<td>8.6</td>
<td>13.2</td>
<td>1.6</td>
<td>12.0</td>
<td>24.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

All dimensions are nominal.
TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS90CR215MTDX/NOPB</td>
<td>TSSOP</td>
<td>DGG</td>
<td>48</td>
<td>1000</td>
<td>367.0</td>
<td>367.0</td>
<td>45.0</td>
</tr>
<tr>
<td>DS90CR216MTDX</td>
<td>TSSOP</td>
<td>DGG</td>
<td>48</td>
<td>1000</td>
<td>367.0</td>
<td>367.0</td>
<td>45.0</td>
</tr>
<tr>
<td>DS90CR216MTDX/NOPB</td>
<td>TSSOP</td>
<td>DGG</td>
<td>48</td>
<td>1000</td>
<td>367.0</td>
<td>367.0</td>
<td>45.0</td>
</tr>
</tbody>
</table>
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold protrusion not to exceed 0,15.
D. Falls within JEDEC MO-153
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated