1 Features

- AEC-Q100 qualified for automotive applications:
 - Temperature grade 1: \(-40^\circ°C \leq T_A \leq +125^\circ°C\)
- Low offset voltage: 25 \(\mu\)V (maximum), \(G \geq 100\)
- Low drift: 0.1 \(\mu\)V/°C, \(G \geq 100\)
- Low noise: 50 nV/√Hz, \(G \geq 100\)
- High CMRR: 100 dB (minimum), \(G \geq 10\)
- Low input bias current: 200 pA (maximum)
- Supply range: 1.8 V to 5.5 V
- Input voltage: \((V–) + 0.1\) V to \((V+) – 0.1\) V
- Output range: \((V–) + 0.05\) V to \((V+) – 0.05\) V
- Low quiescent current: 50 \(\mu\)A
- Operating temperature: \(-40^\circ°C\) to \(+125^\circ°C\)
- RFI filtered inputs
- Package: 8-Pin VSSOP

2 Applications

- Powertrain torque sensor
- Powertrain pressure sensor
- Powertrain temperature sensor
- Powertrain knock sensor
- Vehicle occupant detection sensor
- Driver vital sign monitoring

3 Description

The INA333-Q1 is a low-power, precision instrumentation amplifier offering excellent accuracy. The versatile three-operational-amplifier design, small size, and low power make this device an excellent choice for a wide range of automotive applications that use resistive bridge sensors.

A single external resistor sets any gain from 1 to 1000. The INA333-Q1 is designed to use an industry-standard gain equation: \(G = 1 + \left(\frac{100\ \text{k} \Omega}{R_G} \right)\).

The INA333-Q1 provides very low offset voltage (25 \(\mu\)V, \(G \geq 100\)), excellent offset voltage drift (0.1 \(\mu\)V/°C, \(G \geq 100\)), and high common-mode rejection (100 dB at \(G \geq 10\)). The device operates with power supplies as low as 1.8 V (±0.9 V) and quiescent current is only 50 \(\mu\)A, making this device an excellent choice for battery-operated systems. Autocalibration techniques maintain excellent precision over the industrial temperature range. The INA333-Q1 also offers exceptionally low noise density (50 nV/√Hz) that extends down to dc.

The INA333-Q1 device is available in an 8-pin VSSOP package and is specified over the \(T_A = –40^\circ°C\) to \(+125^\circ°C\) temperature range.

Device Information (1)

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INA333-Q1</td>
<td>VSSOP (8)</td>
<td>3.00 mm × 3.00 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the package option addendum at the end of the data sheet.

\[G = 1 + \left(\frac{100\ \text{k} \Omega}{R_G} \right) \]
Table of Contents

1 Features ... 1
2 Applications .. 1
3 Description .. 1
4 Revision History ... 2
5 Pin Configuration and Functions 3
6 Specifications .. 4
 6.1 Absolute Maximum Ratings 4
 6.2 ESD Ratings ... 4
 6.3 Recommended Operating Conditions 4
 6.4 Thermal Information .. 4
 6.5 Electrical Characteristics 5
 6.6 Typical Characteristics 7
7 Detailed Description .. 13
 7.1 Overview .. 13
 7.2 Functional Block Diagram 13
 7.3 Feature Description .. 13
 7.4 Device Functional Modes 13
8 Application and Implementation 14
 8.1 Application Information 14
 8.2 Typical Application .. 15
9 Power Supply Recommendations 20
10 Layout ... 20
 10.1 Layout Guidelines .. 20
 10.2 Layout Example ... 20
11 Device and Documentation Support 21
 11.1 Device Support ... 21
 11.2 Documentation Support 22
 11.3 Trademarks .. 22
 11.4 Electrostatic Discharge Caution 22
 11.5 Glossary ... 22
12 Mechanical, Packaging, and Orderable Information 22

4 Revision History

<table>
<thead>
<tr>
<th>DATE</th>
<th>REVISION</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 2019</td>
<td>*</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>
5 Pin Configuration and Functions

Pin Functions

<table>
<thead>
<tr>
<th>PIN</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF</td>
<td>5 I</td>
<td>Reference input. This pin must be driven by low impedance or connected to ground.</td>
</tr>
<tr>
<td>RG</td>
<td>1, 8 —</td>
<td>Gain setting pins. For gains greater than 1, place a gain resistor between pins 1 and 8.</td>
</tr>
<tr>
<td>V+</td>
<td>7 —</td>
<td>Positive supply</td>
</tr>
<tr>
<td>V–</td>
<td>4 —</td>
<td>Negative supply</td>
</tr>
<tr>
<td>VIN+</td>
<td>3 I</td>
<td>Positive input</td>
</tr>
<tr>
<td>VIN–</td>
<td>2 I</td>
<td>Negative input</td>
</tr>
<tr>
<td>VOUT</td>
<td>6 O</td>
<td>Output</td>
</tr>
</tbody>
</table>
6 Specifications

6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted) \(^{(1)}\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>7</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>Analog input voltage (^{(2)})</td>
<td>(V–) – 0.3</td>
<td>(V+) + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>Output short-circuit (^{(3)})</td>
<td>Continuous</td>
<td>Continuous</td>
<td></td>
</tr>
<tr>
<td>(T_A) Operating temperature</td>
<td>–40</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>(T_J) Junction temperature</td>
<td>150</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>(T_{stg}) Storage temperature</td>
<td>–65</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

\(^{(2)}\) Input pins are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3 V beyond the supply rails should be current limited to 10 mA or less.

\(^{(3)}\) Short-circuit to ground.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th>Voltage ((V_{ESD}))</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrostatic discharge</td>
<td>Human-body model (HBM), per AEC Q100-002 (^{(1)})</td>
<td>±4000</td>
</tr>
<tr>
<td></td>
<td>HBM ESD classification level 3A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Charged-device model (CDM), per AEC Q100-011</td>
<td>±1000</td>
</tr>
<tr>
<td></td>
<td>CDM ESD classification level C6</td>
<td></td>
</tr>
</tbody>
</table>

\(^{(1)}\) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_S) Supply voltage</td>
<td>1.8</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>(T_A) Specified temperature</td>
<td>–40</td>
<td>125</td>
<td>°C</td>
</tr>
</tbody>
</table>

6.4 Thermal Information

<table>
<thead>
<tr>
<th>Thermal Metric (^{(1)})</th>
<th>INA333-Q1</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{JAT})</td>
<td>Junction-to-ambient thermal resistance</td>
<td>169.5</td>
</tr>
<tr>
<td>(R_{JCT}) (top)</td>
<td>Junction-to-case (top) thermal resistance</td>
<td>62.7</td>
</tr>
<tr>
<td>(R_{JCB})</td>
<td>Junction-to-board thermal resistance</td>
<td>90.3</td>
</tr>
<tr>
<td>(\psi_{JT})</td>
<td>Junction-to-top characterization parameter</td>
<td>7.6</td>
</tr>
<tr>
<td>(\psi_{JB})</td>
<td>Junction-to-board characterization parameter</td>
<td>88.7</td>
</tr>
<tr>
<td>(R_{JCB}) (bot)</td>
<td>Junction-to-case (bottom) thermal resistance</td>
<td>N/A</td>
</tr>
</tbody>
</table>

\(^{(1)}\) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
6.5 Electrical Characteristics

at $V_S = 1.8$ V to 5.5 V at $T_A = 25°C$, $R_L = 10$ kΩ, $V_{\text{REF}} = V_S / 2$, and $G = 1$ (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OSI} Offset voltage, RTI$^{(2)}$</td>
<td>$\pm 10 \pm 25/G$</td>
<td>$\pm 25 \pm 75/G$</td>
<td>μV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSRR Power-supply rejection ratio</td>
<td>$\pm 1 \pm 5/G$</td>
<td>$\pm 5 \pm 15/G$</td>
<td>μV/V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T_A = –40°C \text{ to } +125°C$</td>
<td>$\pm 0.1 \pm 0.5/G$</td>
<td>μV/V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-term stability</td>
<td>See $^{(3)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn on time to specified V_{OS}</td>
<td>$T_A = –40°C \text{ to } +125°C$</td>
<td>See Typical Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z_{n} Input impedance</td>
<td>Differential</td>
<td>$100 | 3$ GΩ | pF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common-mode</td>
<td>$100 | 3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{CM} Common-mode voltage</td>
<td>$V_O = 0$ V</td>
<td>$(V–) + 0.1$</td>
<td>$(V+) – 0.1$ V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMRR Common-mode rejection ratio</td>
<td>DC to 60 Hz, $V_{\text{CM}} = (V–) + 0.1$ V to $(V+) – 0.1$ V</td>
<td>$G = 1$</td>
<td>80</td>
<td>90</td>
<td>dB</td>
</tr>
<tr>
<td>$G = 10$</td>
<td>100</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$G = 100$</td>
<td>100</td>
<td>115</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$G = 1000$</td>
<td>100</td>
<td>115</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INPUT BIAS CURRENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_B Input bias current</td>
<td>$T_A = –40°C \text{ to } +125°C$</td>
<td>$\pm 70 \pm 200$ pA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{OS} Input offset current</td>
<td>$T_A = –40°C \text{ to } +125°C$</td>
<td>$\pm 50 \pm 200$ pA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INPUT VOLTAGE NOISE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e_{NI} Input voltage noise</td>
<td>$G = 100$, $R_S = 0$ Ω</td>
<td>$f = 10$ Hz</td>
<td>50</td>
<td>nV/√Hz</td>
<td></td>
</tr>
<tr>
<td>$f = 100$ Hz</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$f = 1$ kHz</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$f = 0.1$ Hz to 10 Hz</td>
<td>1</td>
<td>μV/√Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_N Input current noise</td>
<td>$f = 10$ Hz</td>
<td>100</td>
<td>fA/√Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$f = 0.1$ Hz to 10 Hz</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain equation</td>
<td>$1 + (100$ kΩ/R_G)</td>
<td>V/V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G Gain</td>
<td>1</td>
<td>1000</td>
<td>V/V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain error</td>
<td>$V_S = 5.5$ V, $(V–) + 100$ mV $\leq V_O \leq (V+) – 100$ mV</td>
<td>$G = 1$</td>
<td>$\pm 0.01%$</td>
<td>$\pm 0.1%$</td>
<td></td>
</tr>
<tr>
<td>$G = 10$</td>
<td>$\pm 0.05%$</td>
<td>$\pm 0.25%$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$G = 100$</td>
<td>$\pm 0.07%$</td>
<td>$\pm 0.25%$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$G = 1000$</td>
<td>$\pm 0.25%$</td>
<td>$\pm 0.5%$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain drift error</td>
<td>$V_S = 5.5$ V, $(V–) + 100$ mV $\leq V_O \leq (V+) – 100$ mV, $T_A = –40°C \text{ to } +125°C$</td>
<td>$G = 1$</td>
<td>± 1</td>
<td>± 5 ppm/°C</td>
<td></td>
</tr>
<tr>
<td>$G > 1^{(4)}$</td>
<td>± 15</td>
<td>± 50 ppm/°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain nonlinearity</td>
<td>$V_S = 5.5$ V, $(V–) + 100$ mV $\leq V_O \leq (V+) – 100$ mV, $R_L = 10$ kΩ</td>
<td>10</td>
<td>ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output voltage swing from rail</td>
<td>$V_S = 5.5$ V, $R_L = 10$ kΩ</td>
<td>See Figure 29</td>
<td>50</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Capacitive load drive</td>
<td>500</td>
<td>pF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{SC} Short-circuit current</td>
<td>Continuous to common</td>
<td>Source</td>
<td>5</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Sink</td>
<td>$–40$ mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Total V_{OS}, referred-to-input = $(V_{\text{OSI}}) + (V_{\text{OSO}} / G)$.
(2) RTI = Referred-to-input.
(3) 300-hour life test at 150°C demonstrated randomly distributed variation of approximately 1 μV.
(4) Does not include effects of external resistor R_G.
Electrical Characteristics (continued)

at \(V_S = 1.8 \) V to 5.5 V at \(T_A = 25^\circ\text{C} \), \(R_L = 10 \) kΩ, \(V_{\text{REF}} = V_S / 2 \), and \(G = 1 \) (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREQUENCY RESPONSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bandwidth, –3 dB</td>
<td>(G = 1)</td>
<td>150</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td>(G = 10)</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(G = 100)</td>
<td>3.5</td>
<td></td>
<td></td>
<td>Hz</td>
</tr>
<tr>
<td></td>
<td>(G = 1000)</td>
<td>350</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>Slew rate</td>
<td>(V_S = 5) V, (V_O = 4)-V step, (G = 1)</td>
<td>0.16</td>
<td></td>
<td>V/\mu s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_S = 5) V, (V_O = 4)-V step, (G = 100)</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_S)</td>
<td>Settling time to 0.01%</td>
<td>(V_{\text{STEP}} = 4) V, (G = 1)</td>
<td>50</td>
<td></td>
<td>\mu s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{STEP}} = 4) V, (G = 100)</td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Settling time to 0.001%</td>
<td>(V_{\text{STEP}} = 4) V, (G = 1)</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{STEP}} = 4) V, (G = 100)</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overload recovery</td>
<td>50% overdrive</td>
<td>75</td>
<td></td>
<td>\mu s</td>
</tr>
<tr>
<td>REFERENCE INPUT</td>
<td>(R_{\text{IN}})</td>
<td>Input impedance</td>
<td>300</td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td></td>
<td>Reference input voltage</td>
<td>(V^–)</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POWER SUPPLY</td>
<td>(I_Q)</td>
<td>Quiescent current</td>
<td>(V_{\text{IN}} = V_S / 2)</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{IN}} = V_S / 2, T_A = –40^\circ\text{C}) to +125°C</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{IN}} = V_S / 2, T_A = –40^\circ\text{C}) to +125°C</td>
<td>75</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.6 Typical Characteristics

at $T_A = 25^\circ C$, $V_S = 5$ V, $R_L = 10$ kΩ, $V_{REF} = \text{midsupply}$, and $G = 1$ (unless otherwise noted)

Figure 1. Input Offset Voltage

Figure 2. Input Voltage Offset Drift (−40°C to 125°C)

Figure 3. Output Offset Voltage

Figure 4. Output Voltage Offset Drift (−40°C to 125°C)

Figure 5. Offset Voltage vs Common-Mode Voltage

Figure 6. 0.1-Hz to 10-Hz Noise
Typical Characteristics (continued)

at $T_A = 25^\circ C$, $V_S = 5 \, \text{V}$, $R_L = 10 \, \text{k} \Omega$, $V_{\text{REF}} = \text{midsupply}$, and $G = 1$ (unless otherwise noted)

![Graph showing DC Output Nonlinearity Error (%FSR) vs. Output Voltage (V) at different gains](image)

![Graph showing 0.1-Hz to 10-Hz Noise vs. Frequency (Hz)](image)

![Graph showing Spectral Noise Density vs. Frequency (Hz)](image)

![Graph showing Nonlinearity Error](image)

![Graph showing Large Signal Response](image)

![Graph showing Large-Signal Step Response](image)

![Graph showing Small-Signal Step Response](image)
Typical Characteristics (continued)

at $T_A = 25^\circ C$, $V_S = 5\, V$, $R_L = 10\, k\Omega$, $V_{REF} = $ midsupply, and $G = 1$ (unless otherwise noted)

![Figure 13. Small-Signal Step Response](image1)

![Figure 14. Settling Time vs Gain](image2)

![Figure 15. Start-Up Settling Time](image3)

![Figure 16. Gain vs Frequency](image4)

![Figure 17. Common-Mode Rejection Ratio](image5)

![Figure 18. Common-Mode Rejection Ratio vs Temperature](image6)
Typical Characteristics (continued)

at $T_A = 25^\circ C$, $V_S = 5$ V, $R_L = 10$ kΩ, $V_{REF} = $ midsupply, and $G = 1$ (unless otherwise noted)

Figure 19. Common-Mode Rejection Ratio vs Frequency

Figure 20. Typical Common-Mode Range vs Output Voltage

Figure 21. Typical Common-Mode Range vs Output Voltage

Figure 22. Typical Common-Mode Range vs Output Voltage

Figure 23. Typical Common-Mode Range vs Output Voltage

Figure 24. Positive Power-Supply Rejection Ratio
Typical Characteristics (continued)

at $T_A = 25^\circ C$, $V_S = 5 \text{ V}$, $R_L = 10 \text{ k}\Omega$, $V_{REF} = \text{ midsupply}$, and $G = 1$ (unless otherwise noted)

![Figure 25. Negative Power-Supply Rejection Ratio](image1)

![Figure 26. Input Bias Current vs Temperature](image2)

![Figure 27. Input Bias Current vs Common-Mode Voltage](image3)

![Figure 28. Input Offset Current vs Temperature](image4)

![Figure 29. Output Voltage Swing vs Output Current](image5)

![Figure 30. Quiescent Current vs Temperature](image6)
Typical Characteristics (continued)

at $T_A = 25^\circ C$, $V_S = 5 \text{ V}$, $R_L = 10 \text{ k}\Omega$, $V_{\text{REF}} = \text{midsupply}$, and $G = 1$ (unless otherwise noted)

![Graph showing quiescent current vs common-mode voltage](image)

Figure 31. Quiescent Current vs Common-Mode Voltage
7 Detailed Description

7.1 Overview
The INA333-Q1 is a monolithic instrumentation amplifier (INA) based on the precision zero-drift INA333-Q1 (operational amplifier) core. The INA333-Q1 also integrates laser-trimmed resistors to maintain excellent common-mode rejection and low gain error. The combination of the zero-drift amplifier core and the precision resistors allows this device to achieve outstanding dc precision, and makes the INA333-Q1 an excellent choice for many 3.3-V and 5-V automotive applications.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Operating Voltage
The INA333-Q1 operates over a power-supply range of 1.8 V to 5.5 V (±0.9 V to ±2.75 V). Supply voltages greater than 7 V (absolute maximum) can permanently damage the device. Parameters that vary over supply voltage or temperature are shown in the Typical Characteristics section of this data sheet.

7.3.2 Internal Offset Correction
The INA333-Q1 internal operational amplifiers use an auto-calibration technique with a time-continuous, 350-kHz operational amplifier in the signal path. The amplifier is zero-corrected every 8 µs using a proprietary technique. At power up, the amplifier requires approximately 100 µs to achieve the specified V\textsubscript{OS} accuracy. This design has no aliasing or flicker noise.

7.3.3 Input Protection
The input pins of the INA333-Q1 are protected with internal diodes connected to the power-supply rails. These diodes clamp and prevent the applied signal from damaging the input circuitry. If the input signal voltage exceeds the power supplies by greater than 0.3 V, limit the input signal current to less than 10 mA to protect the internal clamp diodes. This current limiting is generally done with a series input resistor. Some signal sources are inherently current-limited and do not require limiting resistors.

7.4 Device Functional Modes
The INA333-Q1 has a single functional mode and is operational when the power-supply voltage is greater than 1.8 V. The recommended maximum specified power-supply voltage for the INA333-Q1 is 5.5 V.
8 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The INA333-Q1 measures small differential voltage with high common-mode voltage developed between the noninverting and inverting input. The high input impedance makes the INA333-Q1 a great choice for a wide range of applications. The ability to set the reference pin to adjust the functionality of the output signal offers additional flexibility that is practical for multiple configurations.

8.1.1 Input Common-Mode Range

The linear input voltage range of the input circuitry of the INA333-Q1 is from approximately 0.1 V below the positive supply voltage to 0.1 V above the negative supply. As a differential input voltage causes the output voltage to increase, however, the linear input range is limited by the output voltage swing of amplifiers A1 and A2. Thus, the linear common-mode input range is related to the output voltage of the complete amplifier. This behavior also depends on supply voltage; see Figure 20 to Figure 23 in the Typical Characteristics section.

Input overload conditions can produce an output voltage that appears normal. For example, if an input overload condition drives both input amplifiers to the respective positive output swing limit, the difference voltage measured by the output amplifier is near zero. The output of the INA333-Q1 is near 0 V even though both inputs are overloaded.
8.2 Typical Application

Figure 32 shows the basic connections required for operation of the INA333-Q1. Good layout practice mandates the use of bypass capacitors placed close to the device pins as shown.

The output of the INA333-Q1 is referred to the output reference (REF) pin, which is normally grounded. This connection must be low-impedance to maintain good common-mode rejection. Although 15 Ω or less of stray resistance can be tolerated while maintaining specified CMRR, small stray resistances of tens of ohms in series with the REF pin can cause noticeable degradation in CMRR.

\[
V_O = G \times (V_{IN+} - V_{IN-})
\]

\[
G = 1 + \frac{100 \text{ k}\Omega}{R_G}
\]

8.2.1 Design Requirements

The device can be configured to monitor the input differential voltage when the gain of the input signal is set by the external resistor \(R_G \). The output signal references to the Ref pin. The most common application is where the output is referenced to ground when no input signal is present by connecting the Ref pin to ground. When the input signal increases, the output voltage at the OUT pin increases, too.

8.2.2 Detailed Design Procedure

8.2.2.1 Setting the Gain

Gain of the INA333-Q1 is set by a single external resistor, \(R_G \), connected between pins 1 and 8. The value of \(R_G \) is selected according to Equation 1:

\[
G = 1 + \frac{100 \text{ k}\Omega}{R_G}
\]

Table 1 lists several commonly-used gains and resistor values. The 100 kΩ in Equation 1 comes from the sum of the two internal feedback resistors of \(A_1 \) and \(A_2 \). These on-chip resistors are laser trimmed to accurate absolute values. The accuracy and temperature coefficient of these resistors are included in the gain accuracy and drift specifications of the INA333-Q1.
Typical Application (continued)

The stability and temperature drift of the external gain setting resistor, R_G, also affects gain. The contribution of R_G to gain accuracy and drift can be directly inferred from the gain Equation 1. Low resistor values required for high gain can make wiring resistance important. Sockets add to the wiring resistance and contribute additional gain error (possibly an unstable gain error) in gains of approximately 100 or greater. To maintain stability, avoid parasitic capacitance of more than a few picofarads at the R_G connections. Careful matching of any parasitics on both R_G pins maintains optimal CMRR over frequency.

Table 1. Commonly-Used Gains and Resistor Values

<table>
<thead>
<tr>
<th>DESIRED GAIN</th>
<th>R_G (Ω)</th>
<th>NEAREST 1% R_G (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NC (1)</td>
<td>NC</td>
</tr>
<tr>
<td>2</td>
<td>100k</td>
<td>100k</td>
</tr>
<tr>
<td>5</td>
<td>25k</td>
<td>24.9k</td>
</tr>
<tr>
<td>10</td>
<td>11.1k</td>
<td>11k</td>
</tr>
<tr>
<td>20</td>
<td>5.26k</td>
<td>5.23k</td>
</tr>
<tr>
<td>50</td>
<td>2.04k</td>
<td>2.05</td>
</tr>
<tr>
<td>100</td>
<td>1.01k</td>
<td>1k</td>
</tr>
<tr>
<td>200</td>
<td>502.5</td>
<td>499</td>
</tr>
<tr>
<td>500</td>
<td>200.4</td>
<td>200</td>
</tr>
<tr>
<td>1000</td>
<td>100.1</td>
<td>100</td>
</tr>
</tbody>
</table>

(1) NC denotes no connection. When using the SPICE model, the simulation will not converge unless a resistor is connected to the R_G pins; use a very large resistor value.

8.2.2.2 Offset Trimming

Most applications require no external offset adjustment; however, if necessary, adjustments can be made by applying a voltage to the REF pin. Figure 33 shows an optional circuit for trimming the output offset voltage. The voltage applied to REF pin is summed at the output. The operational amplifier buffer provides low impedance at the REF pin to preserve good common-mode rejection.

![Figure 33. Optional Trimming of Output Offset Voltage](image-url)
8.2.2.3 Noise Performance

The auto-calibration technique used by the INA333-Q1 results in reduced low frequency noise, typically only 50 nV/√Hz (G = 100). The spectral noise density is shown in detail in Figure 8. The low-frequency noise of the INA333-Q1 is approximately 1 μVPP measured from 0.1 Hz to 10 Hz (G = 100).

8.2.2.4 Input Bias Current Return Path

The input impedance of the INA333-Q1 is extremely high; approximately 100 GΩ. However, a path must be provided for the input bias current of both inputs. This input bias current is typically ±70 pA. High input impedance means that this input bias current changes very little with varying input voltage.

Input circuitry must provide a path for this input bias current for proper operation. Figure 34 shows various provisions for an input bias current path. Without a bias current path, the inputs float to a potential that exceeds the common-mode range of the INA333-Q1, and the input amplifiers will saturate. If the differential source resistance is low, the bias current return path can be connected to one input (see the thermocouple example in Figure 34). With higher source impedance, use two equal resistors to provide a balanced input with the possible advantages of a lower input offset voltage as a result of bias current, and improved high-frequency common-mode rejection.

Figure 34. Providing an Input Common-Mode Current Path
8.2.2.5 Low Voltage Operation

The INA333-Q1 can be operated on power supplies as low as ±0.9 V. Most parameters vary only slightly throughout this supply voltage range; see the Typical Characteristics section. Operation at very-low supply voltage requires careful attention to make sure that the input voltages remain within the linear range. Voltage swing requirements of internal nodes limit the input common-mode range with low power-supply voltage. Figure 20 to Figure 23 show the range of linear operation for various supply voltages and gains.

8.2.2.6 Single-Supply Operation

The INA333-Q1 can be used on single power supplies of 1.8 V to 5.5 V. Figure 35 shows a basic single-supply circuit. The output REF pin is connected to midsupply. Zero differential input voltage demands an output voltage of midsupply. Actual output voltage swing is limited to approximately 50 mV more than ground, when the load is referred to ground, as shown. Figure 29 shows how the output voltage swing varies with output current.

With single-supply operation, V_{IN+} and V_{IN–} must both be 0.1 V greater than ground for linear operation. For instance, the inverting input cannot be connected to ground to measure a voltage connected to the noninverting input.

To show the issues affecting low voltage operation, consider the circuit in Figure 35 that shows the INA333-Q1 operating from a single 3-V supply. A resistor in series with the low side of the bridge makes sure that the bridge output voltage is within the common-mode range of the amplifier inputs.

![Figure 35. Single-Supply Bridge Amplifier](image)

(1) R₁ creates proper common-mode voltage, only for low-voltage operation; see the Single-Supply Operation section.
8.2.3 Application Curves

Figure 36. Large Signal Response

Figure 37. Large-Signal Step Response

Figure 38. Small-Signal Step Response

Figure 39. Small-Signal Step Response
9 Power Supply Recommendations

The minimum power supply voltage for INA333-Q1 is 1.8 V, and the maximum power supply voltage is 5.5 V; for specified performance, 3.3 V to 5 V is recommended. Add a bypass capacitor at the input to compensate for the layout and power supply source impedance.

10 Layout

10.1 Layout Guidelines

Attention to good layout practices is always recommended.

- Keep traces short.
- When possible, use a printed-circuit-board (PCB) ground plane with surface-mount components placed as close to the device pins as possible.
- Place a 0.1-μF bypass capacitor closely across the supply pins.

These guidelines should be applied throughout the analog circuit to improve performance, and provide benefits such as reducing the electromagnetic-interference (EMI) susceptibility.

Instrumentation amplifiers vary in susceptibility to radio-frequency interference (RFI). RFI can generally be identified as a variation in offset voltage or dc signal levels with changes in the interfering RF signal. The INA333-Q1 has been specifically designed to minimize susceptibility to RFI by incorporating passive RC filters with an 8-MHz corner frequency at the V_{IN+} and V_{IN-} inputs. As a result, the INA333-Q1 demonstrates remarkably low sensitivity compared to previous-generation devices. Strong RF fields may continue to cause varying offset levels, however, and may require additional shielding.

10.2 Layout Example

![Figure 40. Layout Example](image-url)
11 Device and Documentation Support

11.1 Device Support

11.1.1 Development Support

11.1.1.1 TINA-TI (Free Download Software)

Using TINA-TI SPICE-Based Analog Simulation Program with the INA333-Q1

TINA is a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI is a free, fully functional version of the TINA software, preloaded with a library of macromodels in addition to a range of both passive and active models. It provides all the conventional dc, transient, and frequency domain analysis of SPICE as well as additional design capabilities.

Available as a free download from the Analog eLab Design Center, TINA-TI offers extensive post-processing capability that allows users to format results in a variety of ways.

Virtual instruments offer users the ability to select input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic quick-start tool.

Figure 41 shows example TINA-TI circuits for the INA333-Q1 device that can be used to develop, modify, and assess the circuit design for specific applications. Links to download these simulation files are given below.

NOTE

These files require that either the TINA software (from DesignSoft) or TINA-TI software be installed. Download the free TINA-TI software from the TINA-TI folder.

Figure 41. Four-Wire, 3-V Conditioner for a PT100 RTD With Programmable Gain Acquisition System

Download the TINA-TI simulation file for this circuit with the following link: PT100 RTD.
11.2 Documentation Support

11.2.1 Related Documentation

For related documentation see the following:

• Texas Instruments, *OPA188-Q1 Precision, Low-Noise, Rail-to-Rail Output, 36-V, Zero-Drift, Automotive-Grade Operational Amplifier* data sheet
• Texas Instruments, *OPA333-Q1 1.8-V microPower CMOS Operational Amplifier Zero-Drift Series* data sheet
• Texas Instruments, *Circuit board layout techniques*

11.3 Trademarks

All trademarks are the property of their respective owners.

11.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.5 Glossary

SLYZ022 — *TI Glossary.*

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>INA333QDGKRQ1</td>
<td>PREVIEW</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAUAG</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>333Q</td>
<td></td>
</tr>
<tr>
<td>PINA333QDGKRQ1</td>
<td>ACTIVE</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>2500</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>-40 to 125</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) **Lead/Ball Finish -** Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF INA333-Q1:

- Catalog: INA333

NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog product
NOTE:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
D. Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
E. Falls within JEDEC MO-187 variation AA, except interlead flash.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated