INA826 Precision, 200-µA Supply Current, 3-V to 36-V Supply Instrumentation Amplifier with Rail-to-Rail Output

1 Features
- Input Common-Mode Range: Includes V–
- Common-Mode Rejection:
 - 104 dB, Min (G = 10)
 - 100 dB, Min at 5 kHz (G = 10)
- Power-Supply Rejection: 100 dB, Min (G = 1)
- Low Offset Voltage: 150 µV, Max
- Gain Drift: 1 ppm/°C (G = 1), 35 ppm/°C (G > 1)
- Noise: 18 nV/√Hz, G ≥ 100
- Bandwidth: 1 MHz (G = 1), 60 kHz (G = 100)
- Inputs Protected Up to ±40 V
- Rail-to-Rail Output
- Supply Current: 200 µA
- Supply Range:
 - Single Supply: 3 V to 36 V
 - Dual Supply: ±1.5 V to ±18 V
- Specified Temperature Range: –40°C to +125°C
- Packages: 8-Pin VSSOP, SOIC, and WSON

2 Applications
- Industrial Process Controls
- Circuit Breakers
- Battery Testers
- ECG Amplifiers
- Power Automation
- Medical Instrumentation
- Portable Instrumentation

3 Description
The INA826 is a low-cost instrumentation amplifier that offers extremely low power consumption and operates over a very wide single or dual supply range. A single external resistor sets any gain from 1 to 1000. The device offers excellent stability over temperature, even at G > 1, as a result of the low gain drift of only 35 ppm/°C (max).

The INA826 is optimized to provide excellent common-mode rejection ratio of over 100 dB (G = 10) over frequencies up to 5 kHz. At G = 1, the common-mode rejection ratio exceeds 84 dB across the full input common-mode range from the negative supply all the way up to 1 V of the positive supply. Using a rail-to-rail output, the INA826 is well-suited for low voltage operation from a 3-V single supply as well as dual supplies up to ±18 V.

Additional circuitry protects the inputs against overvoltage of up to ±40 V beyond the power supplies by limiting the input currents to less than 8 mA.

The INA826 is available in 8-pin SOIC, VSSOP, and tiny 3-mm × 3-mm WSON surface-mount packages. All versions are specified for the –40°C to +125°C temperature range.

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INA826</td>
<td>SOIC (8)</td>
<td>4.90 mm × 3.91 mm</td>
</tr>
<tr>
<td></td>
<td>WSON (8)</td>
<td>3.00 mm × 3.00 mm</td>
</tr>
<tr>
<td></td>
<td>VSSOP (8)</td>
<td>3.00 mm × 3.00 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.

General-Purpose Instrumentation Amplifier

(1) This resistor is optional if the input voltage stays above [(V–) – 2 V] or if the signal source current drive capability is limited to less than 3.5 mA; see the Input Protection section for more details.

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.
Table of Contents

1 Features ... 1
2 Applications .. 1
3 Description ... 1
4 Revision History 2
5 Device Comparison Table 4
6 Pin Configuration and Functions 4
7 Specifications ... 5
 7.1 Absolute Maximum Ratings 5
 7.2 ESD Ratings 5
 7.3 Recommended Operating Conditions 5
 7.4 Thermal Information 5
 7.5 Electrical Characteristics 6
 7.6 Typical Characteristics 8
8 Detailed Description 18
 8.1 Overview ... 18
 8.2 Functional Block Diagram 18
 8.3 Feature Description 19
8.4 Device Functional Modes 25
9 Application and Implementation 26
 9.1 Application Information 26
 9.2 Typical Application 26
 9.3 System Examples 28
10 Power Supply Recommendations 34
11 Layout .. 34
 11.1 Layout Guidelines 34
 11.2 Layout Example 35
12 Device and Documentation Support 36
 12.1 Documentation Support 36
 12.2 Receiving Notification of Documentation Updates 36
 12.3 Community Resources 36
 12.4 Trademarks 36
 12.5 Electrostatic Discharge Caution 36
 12.6 Glossary .. 36
13 Mechanical, Packaging, and Orderable
 Information ... 36

4 Revision History

Changes from Revision E (April 2013) to Revision F Page

• Added Device Information table, ESD Ratings table, Recommended Operating Conditions table, Feature Description section, Device Functional Modes section, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section .. 1
• Added TI Design .. 1
• Changed 2.7-V to 3-V in document title .. 1
• Changed MSOP to VSSOP, SO to SOIC, and DRG to WSON throughout document .. 1
• Changed Supply Range Features bullet minimum voltage levels .. 1
• Changed Packages Features bullet .. 1
• Changed page 1 graphic .. 1
• Changed Description section for minor rewording, renaming of packages, and changing single supply voltage value from 2.7 V to 3 V .. 1
• Changed title of Device Comparison Table .. 4
• Deleted DGK Package Ordering Information table .. 4
• Changed Temperature parameter symbols in Absolute Maximum Ratings table .. 5
• Changed Input, Differential impedance and Common-mode impedance parameter symbols in Electrical Characteristics table .. 6
• Changed Input, VCM parameter test conditions in Electrical Characteristics table .. 6
• Deleted Gain, Range of gain parameter symbol from Electrical Characteristics table .. 7
• Changed Power Supply, Vg parameter test conditions and minimum specifications in Electrical Characteristics table .. 7
• Changed Vg voltage to 3.0 V and red VREF trace to 1.5 V in Figure 9 and Figure 10 .. 9
• Changed Vg voltage level to 3.0 V in Figure 29 .. 12
• Changed blue Vg trace value to 3.0 V in Figure 36 .. 13
• Changed conditions of Figure 47 and Figure 48 .. 15
• Changed 2.7 V to 3 V and 1.35 V to 1.5 V in Operating Voltage section .. 24
• Changed TINA-TI simulation circuit links in Using TINA-TI SPICE-Based Analog Simulation Program with the INA826 section .. 29

Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Product Folder Links: INA826
Changes from Revision D (March 2013) to Revision E

- Deleted package marking column from Package/Ordering Information table ... 4

Changes from Revision C (March 2012) to Revision D

- Changed Input voltage range parameter specification value in Absolute Maximum Ratings table .. 5

Changes from Revision B (December 2011) to Revision C

- Changed product status from Mixed Status to Production Data .. 1
- Deleted gray shading and footnote 2 from Package/Ordering Information table .. 4
- Changed DFN-8 package to production data .. 4

Changes from Revision A (September 2011) to Revision B

- Deleted gray from SO-8 row in Package/Ordering Information .. 4
5 Device Comparison Table

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>INA333</td>
<td>25-μV V\text{OS}, 0.1 μV/°C V\text{OS} drift, 1.8-V to 5-V, RRO, 50-μA I\text{Q}, chopper-stabilized INA</td>
</tr>
<tr>
<td>PGA280</td>
<td>20-mV to ±10-V programmable gain IA with 3-V or 5-V differential output; analog supply up to ±18 V</td>
</tr>
<tr>
<td>INA159</td>
<td>G = 0.2 V differential amplifier for ±10-V to 3-V and 5-V conversion</td>
</tr>
<tr>
<td>PGA112</td>
<td>Precision programmable gain op amp with SPI™ interface</td>
</tr>
</tbody>
</table>

6 Pin Configuration and Functions

Pin Functions

<table>
<thead>
<tr>
<th>PIN</th>
<th>I/O</th>
<th>NAME</th>
<th>NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>–IN</td>
<td>I</td>
<td>NAME</td>
<td>NO.</td>
<td>I/O</td>
</tr>
<tr>
<td>–IN</td>
<td>1</td>
<td>SOIC, VSSOP</td>
<td>1</td>
<td>I</td>
</tr>
<tr>
<td>+IN</td>
<td>4</td>
<td>SOIC, VSSOP</td>
<td>4</td>
<td>I</td>
</tr>
<tr>
<td>REF</td>
<td>6</td>
<td>SOIC, VSSOP</td>
<td>6</td>
<td>I</td>
</tr>
<tr>
<td>R\text{G}</td>
<td>2</td>
<td>SOIC, VSSOP</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>V\text{OUT}</td>
<td>7</td>
<td>SOIC, VSSOP</td>
<td>7</td>
<td>O</td>
</tr>
<tr>
<td>–V\text{S}</td>
<td>5</td>
<td>SOIC, VSSOP</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>+V\text{S}</td>
<td>8</td>
<td>SOIC, VSSOP</td>
<td>8</td>
<td>—</td>
</tr>
</tbody>
</table>

DGK and D Package
8-Pin SOIC, VSSOP
Top View

DRG Package
8-Pin WSON
Top View
7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)\(^{(1)}\)

<table>
<thead>
<tr>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>Voltage</td>
<td>–20</td>
</tr>
<tr>
<td></td>
<td>REF pin</td>
<td>–20</td>
</tr>
<tr>
<td>Signal input pins</td>
<td>–V(_{S})</td>
<td>–40</td>
</tr>
<tr>
<td>Output short-circuit(^{(2)})</td>
<td>Operating, T(_{A})</td>
<td>–50</td>
</tr>
<tr>
<td></td>
<td>Junction, T(_{J})</td>
<td>–50</td>
</tr>
<tr>
<td></td>
<td>Storage, T(_{stg})</td>
<td>–65</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Short-circuit to V\(_{S}\) / 2.

7.2 ESD Ratings

<table>
<thead>
<tr>
<th>V(_{(ESD)})</th>
<th>Electrostatic discharge</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(^{(1)})</td>
<td>±2500</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Charged-device model (CDM), per JEDEC specification JESD22-C101(^{(2)})</td>
<td>±1500</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Machine model (MM)</td>
<td>±150</td>
<td>V</td>
</tr>
</tbody>
</table>

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>Single supply</td>
<td>3</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Dual supply</td>
<td>±1.5</td>
<td>±18</td>
</tr>
<tr>
<td>Specified temperature</td>
<td>–40</td>
<td>+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>–50</td>
<td>+150</td>
<td>°C</td>
</tr>
</tbody>
</table>

7.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(^{(1)})</th>
<th>INA826</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D (SOIC)</td>
</tr>
<tr>
<td></td>
<td>8 PINS</td>
</tr>
<tr>
<td>R(_{JA})</td>
<td>Junction-to-ambient thermal resistance</td>
</tr>
<tr>
<td>R(_{JC(top)})</td>
<td>Junction-to-case (top) thermal resistance</td>
</tr>
<tr>
<td>R(_{JB})</td>
<td>Junction-to-board thermal resistance</td>
</tr>
<tr>
<td>(\psi_{JT})</td>
<td>Junction-to-top characterization parameter</td>
</tr>
<tr>
<td>(\psi_{JB})</td>
<td>Junction-to-board characterization parameter</td>
</tr>
<tr>
<td>R(_{JC(bot)})</td>
<td>Junction-to-case (bottom) thermal resistance</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report (SPRA953).
7.5 Electrical Characteristics

at $T_A = 25^\circ C$, $V_S = \pm 15$ V, $R_L = 10$ kΩ, $V_{\text{REF}} = 0$ V, and $G = 1$ (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OSI}</td>
<td>Input stage offset voltage$^{(1)}$</td>
<td>RTI</td>
<td>40</td>
<td>150</td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>vs temperature, $T_A = –40^\circ C$ to $+125^\circ C$</td>
<td>0.4</td>
<td>2</td>
<td>µV/°C</td>
<td></td>
</tr>
<tr>
<td>V_{OSO}</td>
<td>Output stage offset voltage$^{(1)}$</td>
<td>RTI</td>
<td>200</td>
<td>700</td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>vs temperature, $T_A = –40^\circ C$ to $+125^\circ C$</td>
<td>2</td>
<td>10</td>
<td>µV/°C</td>
<td></td>
</tr>
<tr>
<td>PSRR</td>
<td>Power-supply rejection ratio</td>
<td>$G = 1$, RTI</td>
<td>100</td>
<td>124</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>$G = 10$, RTI</td>
<td>115</td>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$G = 100$, RTI</td>
<td>120</td>
<td>140</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$G = 1000$, RTI</td>
<td>120</td>
<td>140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{id}</td>
<td>Differential impedance</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{ic}</td>
<td>Common-mode impedance</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RFI filter, –3-dB frequency</td>
<td></td>
<td>20</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>V_{CM}</td>
<td>Operating input range$^{(2)}$</td>
<td>V_{OSI} = ±1.5 V to ±18 V, $T_A = –40^\circ C$ to $+125^\circ C$</td>
<td>See Figure 41 to Figure 44</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V_{OSO}</td>
<td>V_{OSI} = (V–) to (V+) – 1 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIAS CURRENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{B}</td>
<td>Input bias current</td>
<td>$V_{\text{CM}} = V_S / 2$</td>
<td>35</td>
<td>65</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td>$T_A = –40^\circ C$ to $+125^\circ C$</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{OS}</td>
<td>Input offset current</td>
<td>$V_{\text{CM}} = V_S / 2$</td>
<td>0.7</td>
<td>5</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td>$T_A = –40^\circ C$ to $+125^\circ C$</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOISE VOLTAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e_{NI}</td>
<td>Input stage voltage noise$^{(3)}$</td>
<td>$f = 1$ kHz, $G = 100$, $R_S = 0$ Ω</td>
<td>18</td>
<td>20</td>
<td>nV/√Hz</td>
</tr>
<tr>
<td></td>
<td>$f = 0.1$ Hz to 10 Hz, $G = 100$, $R_S = 0$ Ω</td>
<td>0.52</td>
<td></td>
<td>µVpp</td>
<td></td>
</tr>
<tr>
<td>e_{NO}</td>
<td>Output stage voltage noise$^{(3)}$</td>
<td>$f = 1$ kHz, $G = 1$, $R_S = 0$ Ω</td>
<td>110</td>
<td>115</td>
<td>nV/√Hz</td>
</tr>
<tr>
<td></td>
<td>$f = 0.1$ Hz to 10 Hz, $G = 1$, $R_S = 0$ Ω</td>
<td>3.3</td>
<td></td>
<td>µVpp</td>
<td></td>
</tr>
<tr>
<td>I_{n}</td>
<td>Noise current</td>
<td>$f = 1$ kHz</td>
<td>100</td>
<td></td>
<td>fA/√Hz</td>
</tr>
<tr>
<td></td>
<td>$f = 0.1$ Hz to 10 Hz</td>
<td>5</td>
<td></td>
<td>pA/√Hz</td>
<td></td>
</tr>
</tbody>
</table>

(1) Total offset, referred-to-input (RTI): $V_{\text{OSI}} = (V_{\text{OSI}}) + (V_{\text{OSO}} / G)$.
(2) Input voltage range of the INA826 input stage. The input range depends on the common-mode voltage, differential voltage, gain, and reference voltage. See Typical Characteristic curves Figure 9 through Figure 16 and Figure 41 through Figure 44 for more information.
(3) Total RTI voltage noise $= \sqrt{(e_{\text{NI}})^2 + \left(\frac{e_{\text{NO}}}{G}\right)^2}$.
Electrical Characteristics (continued)

at $T_A = 25^\circ C$, $V_S = \pm 15\, V$, $R_L = 10\, k\Omega$, $V_{REF} = 0\, V$, and $G = 1$ (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Gain equation</td>
<td>$1 + \left(\frac{49.4, k\Omega}{R_G} \right)$</td>
<td>V/V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Range of gain</td>
<td>1</td>
<td>1000</td>
<td>V/V</td>
<td></td>
</tr>
<tr>
<td>GE</td>
<td>Gain error</td>
<td>$G = 1, V_O = \pm 10, V$</td>
<td>$\pm 0.003%$</td>
<td>$\pm 0.015%$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$G = 10, V_O = \pm 10, V$</td>
<td>$\pm 0.03%$</td>
<td>$\pm 0.15%$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$G = 100, V_O = \pm 10, V$</td>
<td>$\pm 0.04%$</td>
<td>$\pm 0.15%$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$G = 1000, V_O = \pm 10, V$</td>
<td>$\pm 0.04%$</td>
<td>$\pm 0.15%$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gain vs temperature<sup>(4)</sup></td>
<td>$G = 1, T_A = -40^\circ C$ to $+125^\circ C$</td>
<td>± 0.1</td>
<td>± 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$G = 10, T_A = -40^\circ C$ to $+125^\circ C$</td>
<td>± 10</td>
<td>± 35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gain nonlinearity</td>
<td>$G = 1, to, 100, V_O = \pm 10, V$</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$G = 1000, V_O = \pm 10, V$</td>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>OUTPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Voltage swing</td>
<td>$R_L = 10, k\Omega$</td>
<td>$(V-) + 0.1$</td>
<td>$(V+) - 0.15$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Load capacitance stability</td>
<td>1000</td>
<td>pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z<sub>o</sub></td>
<td>Open-loop output impedance</td>
<td>See Figure 56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{SC}</td>
<td>Short-circuit current</td>
<td>Continuous to $V_S / 2$</td>
<td>± 16</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>FREQUENCY RESPONSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BW</td>
<td>Bandwidth, −3 dB</td>
<td>$G = 1$</td>
<td>1</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$G = 10$</td>
<td>500</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$G = 100$</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$G = 1000$</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>Slew rate</td>
<td>$G = 1, V_O = \pm 14.5, V$</td>
<td>1</td>
<td>V/µs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$G = 100, V_O = \pm 14.5, V$</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_S</td>
<td>Settling time</td>
<td>0.01%</td>
<td>$G = 1, V_{STEP} = 10, V$</td>
<td>12</td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.001%</td>
<td>$G = 10, V_{STEP} = 10, V$</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$G = 100, V_{STEP} = 10, V$</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$G = 1000, V_{STEP} = 10, V$</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$G = 1, V_{STEP} = 10, V$</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$G = 10, V_{STEP} = 10, V$</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$G = 100, V_{STEP} = 10, V$</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$G = 1000, V_{STEP} = 10, V$</td>
<td>278</td>
<td></td>
</tr>
<tr>
<td>REFERENCE INPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{IN}</td>
<td>Input impedance</td>
<td>$G = 1$</td>
<td>100</td>
<td>kΩ</td>
<td></td>
</tr>
<tr>
<td>Voltage range</td>
<td>$(V-) \quad (V+)$</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain to output</td>
<td>V/V</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference gain error</td>
<td>0.01%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POWER SUPPLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_S</td>
<td>Power-supply voltage</td>
<td>Single supply</td>
<td>3</td>
<td>36</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Dual supply</td>
<td>±1.5</td>
<td>±18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_Q</td>
<td>Quiescent current</td>
<td>$V_{IN} = 0, V$</td>
<td>200</td>
<td>250</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>vs temperature, $T_A = -40^\circ C$ to $+125^\circ C$</td>
<td>250</td>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE RANGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specified</td>
<td>-40</td>
<td>125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operating</td>
<td>-50</td>
<td>150</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

⁽⁴⁾ The values specified for $G > 1$ do not include the effects of the external gain-setting resistor, R_G.
7.6 Typical Characteristics

at $T_A = 25^\circ C$, $V_S = \pm 15 \text{ V}$, $R_L = 10 \text{ k}\Omega$, $V_{\text{REF}} = 0 \text{ V}$, and $G = 1$ (unless otherwise noted)
Typical Characteristics (continued)

at $T_A = 25^\circ C$, $V_S = \pm 15 V$, $R_L = 10 \, k\Omega$, $V_{REF} = 0 \, V$, and $G = 1$ (unless otherwise noted)

Figure 7. Typical Gain Error Drift Distribution (G = 1)

Figure 8. Typical Gain Error Drift Distribution (G > 1)

Figure 9. Input Common-Mode Voltage vs Output Voltage

Figure 10. Input Common-Mode Voltage vs Output Voltage

Figure 11. Input Common-Mode Voltage vs Output Voltage

Figure 12. Input Common-Mode Voltage vs Output Voltage
Typical Characteristics (continued)

at $T_A = 25^\circ C$, $V_S = \pm 15$ V, $R_L = 10$ kΩ, $V_{REF} = 0$ V, and $G = 1$ (unless otherwise noted)

![Figure 13. Input Common-Mode Voltage vs Output Voltage](image1)

![Figure 14. Input Common-Mode Voltage vs Output Voltage](image2)

![Figure 15. Input Common-Mode Voltage vs Output Voltage](image3)

![Figure 16. Input Common-Mode Voltage vs Output Voltage](image4)

![Figure 17. Input Overvoltage vs Input Current](image5)

![Figure 18. Input Overvoltage vs Input Current with 10-kΩ Resistance](image6)
Typical Characteristics (continued)

at $T_A = 25^\circ\text{C}$, $V_S = \pm 15\text{ V}$, $R_L = 10\text{ k}\Omega$, $V_{\text{REF}} = 0\text{ V}$, and $G = 1$ (unless otherwise noted)

Figure 19. CMRR vs Frequency (RTI)

Figure 20. CMRR vs Frequency (RTI, 1-k\Omega Source Imbalance)

Figure 21. Positive PSRR vs Frequency (RTI)

Figure 22. Negative PSRR vs Frequency (RTI)

Figure 23. Gain vs Frequency

Figure 24. Voltage Noise Spectral Density vs Frequency (RTI)
Typical Characteristics (continued)

at $T_A = 25^\circ C$, $V_S = \pm 15$ V, $R_L = 10 \, k\Omega$, $V_{REF} = 0$ V, and $G = 1$ (unless otherwise noted)

![Graphs showing current noise spectral density vs frequency (RTI) and voltage noise at 0.1 Hz to 10 Hz RTI.](image1)

Figure 25. Current Noise Spectral Density vs Frequency (RTI)

![Graph showing 0.1 Hz to 10 Hz RTI voltage noise with G = 1.](image2)

Figure 26. 0.1-Hz to 10-Hz RTI Voltage Noise (G = 1)

![Graph showing 0.1 Hz to 10 Hz RTI voltage noise with G = 1000.](image3)

Figure 27. 0.1-Hz to 10-Hz RTI Voltage Noise (G = 1000)

![Graph showing 0.1 Hz to 10 Hz RTI current noise.](image4)

Figure 28. 0.1-Hz to 10-Hz RTI Current Noise

![Graphs showing input bias current vs common-mode voltage for different temperatures.](image5)

Figure 29. Input Bias Current vs Common-Mode Voltage

![Graphs showing input bias current vs common-mode voltage for different temperatures.](image6)

Figure 30. Input Bias Current vs Common-Mode Voltage
Typical Characteristics (continued)

at $T_A = 25^\circ C$, $V_S = \pm 15 \, V$, $R_L = 10 \, k\Omega$, $V_{\text{REF}} = 0 \, V$, and $G = 1$ (unless otherwise noted)

Figure 31. Input Bias Current vs Temperature

Figure 32. Input Offset Current vs Temperature

Figure 33. Gain Error vs Temperature ($G = 1$)

Figure 34. Gain Error vs Temperature ($G > 1$)

Figure 35. CMRR vs Temperature ($G = 1$)

Figure 36. Supply Current vs Temperature
Typical Characteristics (continued)

at $T_A = 25^\circ C$, $V_S = \pm 15\, V$, $R_L = 10\, k\Omega$, $V_{REF} = 0\, V$, and $G = 1$ (unless otherwise noted)

Figure 37. Gain Nonlinearity (G = 1)

Figure 38. Gain Nonlinearity (G = 10)

Figure 39. Gain Nonlinearity (G = 100)

Figure 40. Gain Nonlinearity (G = 1000)

Figure 41. Offset Voltage vs Negative Common-Mode Voltage

Figure 42. Offset Voltage vs Positive Common-Mode Voltage
Typical Characteristics (continued)

at \(T_A = 25^\circ C \), \(V_S = \pm 15 \) V, \(R_L = 10 \) k\(\Omega \), \(V_{\text{REF}} = 0 \) V, and \(G = 1 \) (unless otherwise noted)

![Graph 1](image1)

Figure 43. Offset Voltage vs Negative Common-Mode Voltage

![Graph 2](image2)

Figure 44. Offset Voltage vs Positive Common-Mode Voltage

![Graph 3](image3)

Figure 45. Positive Output Voltage Swing vs Output Current

![Graph 4](image4)

Figure 46. Negative Output Voltage Swing vs Output Current

![Graph 5](image5)

Figure 47. Positive Output Voltage Swing vs Output Current

![Graph 6](image6)

Figure 48. Negative Output Voltage Swing vs Output Current
Typical Characteristics (continued)

at $T_A = 25^\circ\text{C}$, $V_S = \pm 15\ \text{V}$, $R_L = 10\ \text{k}\Omega$, $V_{\text{REF}} = 0\ \text{V}$, and $G = 1$ (unless otherwise noted)

![Figure 49. Large-Signal Frequency Response](image)

![Figure 50. Settling Time vs Step Size](image)

![Figure 51. Small-Signal Response Over Capacitive Loads (G = 1)](image)

![Figure 52. Small-Signal Response](image)

![Figure 53. Small-Signal Response](image)

![Figure 54. Small-Signal Response](image)
Typical Characteristics (continued)

at $T_A = 25^\circ C$, $V_S = \pm 15$ V, $R_L = 10$ kΩ, $V_{REF} = 0$ V, and $G = 1$ (unless otherwise noted)

![Figure 55. Small-Signal Response](image)

$G = 1000$, $R_L = 10$ kΩ, $C_L = 100$ pF

![Figure 56. Open-Loop Output Impedance](image)

![Figure 57. Change in Input Offset Voltage vs Warm-Up Time](image)
8 Detailed Description

8.1 Overview

The Functional Block Diagram section shows the basic connections required for operation of the INA826. Good layout practice mandates the use of bypass capacitors placed as close to the device pins as possible.

The output of the INA826 is referred to the output reference (REF) terminal, which is normally grounded. This connection must be low-impedance to assure good common-mode rejection. Although 5 Ω or less of stray resistance can be tolerated when maintaining specified CMRR, small stray resistances of tens of ohms in series with the REF pin can cause noticeable degradation in CMRR.

8.2 Functional Block Diagram

Also drawn in simplified form:

(1) This resistor is optional if the input voltage stays above [(V–) – 2 V] or if the signal source current drive capability is limited to less than 3.5 mA; see the Input Protection section for more details.
8.3 Feature Description

8.3.1 Inside the INA826

See the Functional Block Diagram section for a simplified representation of the INA826. A more detailed diagram (shown in Figure 58) provides additional insight into the INA826 operation.

Each input is protected by two field-effect transistors (FETs) that provide a low series resistance under normal signal conditions, and preserve excellent noise performance. When excessive voltage is applied, these transistors limit input current to approximately 8 mA.

The differential input voltage is buffered by Q₁ and Q₂ and is impressed acrossRG, causing a signal current to flow throughRG, R₁, and R₂. The output difference amplifier, A₃, removes the common-mode component of the input signal and refers the output signal to the REF terminal.

The equations shown in Figure 58 describe the output voltages of A₁ and A₂. The VBE and voltage drop acrossR₁ and R₂ produce output voltages on A₁ and A₂ that are approximately 0.8 V higher than the input voltages.

![Figure 58. INA826 Simplified Circuit Diagram](https://www.ti.com/lit/ds/sbos562f/sbos562f.pdf?lang=en)
8.3.2 Setting the Gain

Gain of the INA826 is set by a single external resistor, R_G, connected between pins 2 and 3. The value of R_G is selected according to Equation 1:

$$G = 1 + \left(\frac{49.4 \text{k}\Omega}{R_G} \right)$$ \(1\)

Table 1 lists several commonly-used gains and resistor values. The 49.4-kΩ term in Equation 1 comes from the sum of the two internal 24.7-kΩ feedback resistors. These on-chip resistors are laser-trimmed to accurate absolute values. The accuracy and temperature coefficients of these resistors are included in the gain accuracy and drift specifications of the INA826.

Table 1. Commonly-Used Gains and Resistor Values

<table>
<thead>
<tr>
<th>DESIRED GAIN (V/V)</th>
<th>R_G (Ω)</th>
<th>NEAREST 1% R_G (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>49.4 k</td>
<td>49.9 k</td>
</tr>
<tr>
<td>5</td>
<td>12.35 k</td>
<td>12.4 k</td>
</tr>
<tr>
<td>10</td>
<td>5.489 k</td>
<td>5.49 k</td>
</tr>
<tr>
<td>20</td>
<td>2.600 k</td>
<td>2.61 k</td>
</tr>
<tr>
<td>50</td>
<td>1.008 k</td>
<td>1 k</td>
</tr>
<tr>
<td>100</td>
<td>499</td>
<td>499</td>
</tr>
<tr>
<td>200</td>
<td>248</td>
<td>249</td>
</tr>
<tr>
<td>500</td>
<td>99</td>
<td>100</td>
</tr>
<tr>
<td>1000</td>
<td>49.5</td>
<td>49.9</td>
</tr>
</tbody>
</table>

8.3.2.1 Gain Drift

The stability and temperature drift of the external gain setting resistor, R_G, also affects gain. The contribution of R_G to gain accuracy and drift can be directly inferred from the gain of Equation 1.

The best gain drift of 1 ppm/℃ can be achieved when the INA826 uses $G = 1$ without R_G connected. In this case, the gain drift is limited only by the slight mismatch of the temperature coefficient of the integrated 50-kΩ resistors in the differential amplifier (A_3). At G greater than 1, the gain drift increases as a result of the individual drift of the 24.7-kΩ resistors in the feedback of A_1 and A_2, relative to the drift of the external gain resistor R_G. Process improvements of the temperature coefficient of the feedback resistors now make possible specifying a maximum gain drift of the feedback resistors of 35 ppm/℃, thus significantly improving the overall temperature stability of applications using gains greater than 1.

Low resistor values required for high gain can make wiring resistance important. Sockets add to the wiring resistance and contribute additional gain error (such as a possible unstable gain error) at gains of approximately 100 or greater. To ensure stability, avoid parasitic capacitance of more than a few picofarads at R_G connections. Careful matching of any parasitics on both R_G pins maintains optimal CMRR over frequency; see the Typical Characteristics curves (Figure 19 and Figure 20).
8.3.3 Offset Trimming

Most applications require no external offset adjustment; however, if necessary, adjustments can be made by applying a voltage to the REF terminal. Figure 59 shows an optional circuit for trimming the output offset voltage. The voltage applied to the REF terminal is summed at the output. The op amp buffer provides low impedance at the REF terminal to preserve good common-mode rejection.

![Figure 59. Optional Trimming of the Output Offset Voltage](image)

8.3.4 Input Common-Mode Range

The linear input voltage range of the INA826 input circuitry extends from the negative supply voltage to 1 V below the positive supply and maintains 84-dB (minimum) common-mode rejection throughout this range. The common-mode range for most common operating conditions is described in the input common-mode voltage versus output voltage *Typical Characteristics* curves (Figure 9 through Figure 15) and the offset voltage versus common-mode voltage curves (Figure 41 through Figure 43). The INA826 can operate over a wide range of power supplies and V_{REF} configurations, thus providing a comprehensive guide to common-mode range limits for all possible conditions is impractical.

The most commonly overlooked overload condition occurs when a circuit exceeds the output swing of A_1 and A_2, which are internal circuit nodes that cannot be measured. Calculating the expected voltages at the output of A_1 and A_2 (see Figure 58) provides a check for the most common overload conditions. The designs of A_1 and A_2 are identical and the outputs can swing to within approximately 100 mV of the power-supply rails. For example, when the A_2 output is saturated, A_1 can still be in linear operation, responding to changes in the noninverting input voltage. This difference can give the appearance of linear operation but the output voltage is invalid.

A single-supply instrumentation amplifier has special design considerations. To achieve a common-mode range that extends to single-supply ground, the INA826 employs a current-feedback topology with PNP input transistors; see Figure 58. The matched PNP transistors Q_1 and Q_2 shift the input voltages of both inputs up by a diode drop, and (through the feedback network) shift the output of A_1 and A_2 by approximately 0.8 V. With both inputs and V_{REF} at single-supply ground (negative power supply), the output of A_1 and A_2 is well within the linear range, allowing differential measurements to be made at the GND level. As a result of this input level-shifting, the voltages at pin 2 and pin 3 are not equal to the respective input terminal voltages (pin 1 and pin 4). For most applications, this inequality is not important because only the gain-setting resistor connects to these pins.
8.3.5 Input Protection

The inputs of the INA826 are individually protected for voltages up to ±40 V. For example, a condition of –40 V on one input and 40 V on the other input does not cause damage. However, if the input voltage exceeds (V–) – 2 V and the signal source current drive capability exceeds 3.5 mA, the output voltage switches to the opposite polarity; see Figure 17. This polarity reversal can easily be avoided by adding resistance of 10 kΩ in series with both inputs.

Internal circuitry on each input provides low series impedance under normal signal conditions. If the input is overloaded, the protection circuitry limits the input current to a safe value of approximately 8 mA. Figure 17 and Figure 18 illustrate this input current limit behavior. The inputs are protected even if the power supplies are disconnected or turned off.

8.3.6 Input Bias Current Return Path

The input impedance of the INA826 is extremely high—approximately 20 GΩ. However, a path must be provided for the input bias current of both inputs. This input bias current is typically 35 nA. High input impedance means that this input bias current changes very little with varying input voltage.

Input circuitry must provide a path for this input bias current for proper operation. Figure 60 shows various provisions for an input bias current path. Without a bias current path, the inputs float to a potential that exceeds the common-mode range of the INA826 and the input amplifiers saturate. If the differential source resistance is low, the bias current return path can be connected to one input (as shown in the thermocouple example in Figure 60). With higher source impedance, using two equal resistors provides a balanced input with possible advantages of lower input offset voltage as a result of bias current and better high-frequency common-mode rejection.

![Figure 60. Providing an Input Common-Mode Current Path](image-url)
8.3.7 Reference Terminal
The output voltage of the INA826 is developed with respect to the voltage on the reference terminal. Often, in dual-supply operation, the reference pin (pin 6) is connected to the low-impedance system ground. In single-supply operation, offsetting the output signal to a precise mid-supply level can be useful (for example, 2.5 V in a 5-V supply environment). To accomplish this level shift, a voltage source can be tied to the REF pin to level-shift the output so that the INA826 can drive a single-supply ADC, for example.

For the best performance, keep the source impedance to the REF terminal below 5 Ω. As illustrated in the Functional Block Diagram section, the reference resistor is at one end of a 50-kΩ resistor. Additional impedance at the REF pin adds to this 50-kΩ resistor. The imbalance in the resistor ratios results in degraded common-mode rejection ratio (CMRR).

Figure 61 shows two different methods of driving the reference pin with low impedance. The OPA330 is a low-power, chopper-stabilized amplifier and therefore offers excellent stability over temperature. The OPA330 is available in the space-saving SC70 and even smaller chip-scale package. The REF3225 is a precision reference in the small SOT23-6 package.

![Figure 61. Options for Low-Impedance Level Shifting](image)

8.3.8 Dynamic Performance
Figure 23 illustrates that, despite its low quiescent current of only 200 µA, the INA826 achieves much wider bandwidth than other INAs in its class. This achievement is a result of using TI's proprietary high-speed precision bipolar process technology. The current-feedback topology provides the INA826 with wide bandwidth even at high gains. Settling time also remains excellent at high gain because of a high slew rate of 1 V/µs.
8.3.9 Operating Voltage
The INA826 operates over a power-supply range of 3 V to 36 V (±1.5 V to ±18 V). Supply voltages higher than 40 V (±20 V) can permanently damage the device. Parameters that vary over supply voltage or temperature are shown in the Typical Characteristics section of this data sheet.

8.3.9.1 Low-Voltage Operation
The INA826 can operate on power supplies as low as ±1.5 V. Most parameters vary only slightly throughout this supply voltage range; see the Typical Characteristics section. Operation at very low supply voltage requires careful attention to assure that the input voltages remain within the linear range. Voltage swing requirements of internal nodes limit the input common-mode range with low power-supply voltage. The Typical Characteristics curves Figure 9 through Figure 15 and Figure 41 through Figure 43 describe the range of linear operation for various supply voltages, reference connections, and gains.

8.3.10 Error Sources
Most modern signal-conditioning systems calibrate errors at room temperature. However, calibration of errors that result from a change in temperature is normally difficult and costly. Therefore, minimizing these errors is important by choosing high-precision components such as the INA826 that have improved specifications in critical areas that impact the precision of the overall system. Figure 62 shows an example application.

Resistor-adjustable INAs such as the INA826 show the lowest gain error in G = 1 because of the inherently well-matched drift of the internal resistors of the differential amplifier. At gains greater than 1 (for instance, G = 10 V/V or G = 100 V/V) the gain error becomes a significant error source because of the contribution of the resistor drift of the 24.7-kΩ feedback resistors in conjunction with the external gain resistor. Except for very high gain applications, the gain drift is by far the largest error contributor compared to other drift errors, such as offset drift.
The INA826 offers excellent gain error over temperature for both \(G > 1 \) and \(G = 1 \) (no external gain resistor). Table 2 summarizes the major error sources in common INA applications and compares the two cases of \(G = 1 \) (no external resistor) and \(G = 10 \) (5.49-kΩ external resistor). As can be seen in Table 2, although the static errors (absolute accuracy errors) in \(G = 1 \) are almost twice as great as compared to \(G = 10 \), there are much fewer drift errors because of the much lower gain error drift. In most applications, these static errors can readily be removed during calibration in production. All calculations refer to the error to the input for easy comparison and system evaluation.

Table 2. Error Calculation

<table>
<thead>
<tr>
<th>ERROR SOURCE</th>
<th>ERROR CALCULATION</th>
<th>INA826</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSOLUTE ACCURACY AT 25°C</td>
<td>SPECIFICATION</td>
<td>G = 10 ERROR (ppm)</td>
</tr>
<tr>
<td>Input offset voltage (μV)</td>
<td>(V_{\text{OSI}} / V_{\text{DIFF}})</td>
<td>150</td>
</tr>
<tr>
<td>Output offset voltage (μV)</td>
<td>(V_{\text{OSO}} / (G \times V_{\text{DIFF}}))</td>
<td>700</td>
</tr>
<tr>
<td>Input offset current (nA)</td>
<td>(I_{\text{OS}} \times \text{maximum} (R_{\text{S+}}, R_{\text{S-}}) / V_{\text{DIFF}})</td>
<td>5</td>
</tr>
<tr>
<td>CMRR (dB)</td>
<td>(V_{\text{CM}} / (10^{\text{CMRR/20}} \times V_{\text{DIFF}}))</td>
<td>104 ((G = 10)), 84 ((G = 1))</td>
</tr>
<tr>
<td>Total absolute accuracy error (ppm)</td>
<td></td>
<td>333</td>
</tr>
<tr>
<td>DRIFT TO 105°C</td>
<td></td>
<td>2800</td>
</tr>
<tr>
<td>Gain drift (ppm/°C)</td>
<td>(\text{GTC} \times (T_{A} - 25))</td>
<td>35 ((G = 10)), 1 ((G = 1))</td>
</tr>
<tr>
<td>Input offset voltage drift (μV/°C)</td>
<td>((V_{\text{OSI}} _\text{TC}) / V_{\text{DIFF}} \times (T_{A} - 25))</td>
<td>2</td>
</tr>
<tr>
<td>Output offset voltage drift (μV/°C)</td>
<td>((V_{\text{OSO}} _\text{TC}) / (G \times V_{\text{DIFF}}) \times (T_{A} - 25))</td>
<td>10</td>
</tr>
<tr>
<td>Offset current drift (pA/°C)</td>
<td>(I_{\text{OS}} _\text{TC} \times \text{maximum} (R_{\text{S+}}, R_{\text{S-}}) \times (T_{A} - 25) / V_{\text{DIFF}})</td>
<td>60</td>
</tr>
<tr>
<td>Total drift error (ppm)</td>
<td></td>
<td>3088</td>
</tr>
<tr>
<td>RESOLUTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain nonlinearity (ppm of FS)</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Voltage noise (1 kHz)</td>
<td>(\frac{\sqrt{BW} \times \left(\frac{e_{\text{NI}}^{2}}{G} + \left(\frac{e_{\text{NO}}}{V_{\text{DIFF}}} \right)^{2} \right) \times \frac{6}{V_{\text{DIFF}}}}{e_{\text{NI}} = 18, e_{\text{NO}} = 110})</td>
<td>10</td>
</tr>
<tr>
<td>Total resolution error (ppm)</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>TOTAL ERROR</td>
<td>Total error = sum of all error sources</td>
<td>3436</td>
</tr>
</tbody>
</table>

8.4 Device Functional Modes

The INA826 has a single functional mode and is operational when the power-supply voltage is greater than 3 V (±1.5 V). The maximum power-supply voltage for the INA826 is 36 V (±18 V).
9 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The low power consumption, high performance, and low cost of the INA826 make the device an excellent instrumentation amplifier for many applications. The INA826 can be used in many low-power, portable applications because the device has a low quiescent current (200 µA, typ) and comes in a small 8-pin WSON package. The input protection circuitry, low maximum gain drift, low offset voltage, and 36-V maximum supply voltage also make the INA826 an ideal choice for industrial applications as well.

9.2 Typical Application

Figure 63 shows a three-terminal programmable-logic controller (PLC) design for the INA826. This PLC reference design accepts inputs of ±10 V or ±20 mA. The output is a single-ended voltage of 2.5 V ±2.3 V (or 200 mV to 4.8 V). Many PLCs typically have these input and output ranges.

9.2.1 Design Requirements

This design has these requirements:

• Supply voltage: ±15 V, 5 V
• Inputs: ±10 V, ±20 mA
• Output: 2.5 V, ±2.3 V

9.2.2 Detailed Design Procedure

There are two modes of operation for the circuit shown in Figure 63: current input and voltage input. This design requires $R_1 >> R_2 >> R_3$. Given this relationship, the current input mode transfer function is given by Equation 2.

$$V_{OUT,i} = V_D \times G + V_{REF} = -(I_{IN} \times R_3) \times G + V_{REF}$$

where

• G represents the gain of the instrumentation amplifier

Figure 63. Three-Terminal PLC Design
Typical Application (continued)

The transfer function for the voltage input mode is shown by Equation 3.

\[
V_{\text{OUT-V}} = V_D \times G + V_{\text{REF}} = -\left(V_{\text{IN}} \times \frac{R_2}{R_1 + R_2} \right) \times G + V_{\text{REF}}
\]

(3)

\(R_1\) sets the input impedance of the voltage input mode. The minimum typical input impedance is 100 kΩ. 100 kΩ is selected for \(R_1\) because increasing the \(R_1\) value also increases noise. The value of \(R_3\) must be extremely small compared to \(R_1\) and \(R_2\). 20 Ω for \(R_3\) is selected because that resistance value is much smaller than \(R_1\) and yields an input voltage of ±400 mV when operated in current mode (±20 mA).

Equation 4 can be used to calculate \(R_2\) given \(V_D = \pm 400 \text{ mV}, V_{\text{IN}} = \pm 10 \text{ V}, \text{ and } R_1 = 100 \text{ kΩ}.

\[
V_D = V_{\text{IN}} \times \frac{R_2}{R_1 + R_2} \rightarrow R_2 = \frac{R_1 \times V_D}{V_{\text{IN}} - V_D} = 4.167 \text{ kΩ}
\]

(4)

The value obtained from Equation 4 is not a standard 0.1% value, so 4.12 kΩ is selected. \(R_1\) and \(R_2\) also use 0.1% tolerance resistors to minimize error.

The ideal gain of the instrumentation amplifier is calculated with Equation 5.

\[
G = \frac{V_{\text{OUT}} - V_{\text{REF}}}{V_D} = \frac{4.8 \text{ V} - 2.5 \text{ V}}{400 \text{ mV}} = 5.75 \text{ V/V}
\]

(5)

Using the INA826 gain equation, the gain-setting resistor value is calculated as shown by Equation 6.

\[
G_{\text{INA826}} = 1 + \frac{49.4 \text{ kΩ}}{R_G} \rightarrow R_G = \frac{49.4 \text{ kΩ}}{G_{\text{INA826}} - 1} = \frac{49.4 \text{ kΩ}}{5.75 - 1} = 10.4 \text{ kΩ}
\]

(6)

10.4 kΩ is a standard 0.1% resistor value that can be used in this design. Finally, the output RC filter components are selected to have a –3-dB cutoff frequency of 1 MHz.

9.2.3 Application Curves

Figure 64 and Figure 65 illustrate typical characteristic curves for Figure 63.
9.3 System Examples

9.3.1 Circuit Breaker

Figure 66 shows the INA826 used in a circuit breaker application.

![Circuit Breaker Example](Image)

Figure 66. Circuit Breaker Example

9.3.2 Programmable Logic Controller (PLC) Input

The INA826 used in an example programmable logic controller (PLC) input application is shown in Figure 67.

![PLC Input Example](Image)

Figure 67. ±10-V, 4-mA to 20-mA PLC Input

Additional application ideas are illustrated in Figure 68 to Figure 72.
System Examples (continued)

9.3.3 Using TINA-TI SPICE-Based Analog Simulation Program with the INA826

TINA is a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI is a free, fully-functional version of the TINA software, preloaded with a library of macromodels in addition to a range of both passive and active models. TINA provides all the conventional dc, transient, and frequency domain analysis of SPICE as well as additional design capabilities.

Available as a free download from the Analog eLab Design Center, TINA-TI offers extensive post-processing capability that allows users to format results in a variety of ways. Virtual instruments offer users the ability to select input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic quick-start tool.

Figure 68 and Figure 70 illustrate example TINA-TI circuits for the INA826 that can be used to develop, modify, and assess the circuit design for specific applications. Links to download these simulation files are provided in this section.

NOTE

These files require that either the TINA software (from DesignSoft) or TINA-TI software be installed. Download the free TINA-TI software from the TINA-TI folder.

The circuit in Figure 68 is used to convert inputs of ±10 V, ±5 V, or ±20 mA to an output voltage range from 0.5 V to 4.5 V. The input selection depends on the settings of SW₁ and SW₂. Further explanation as well as the TINA-TI simulation circuit is provided in the compressed file that can be downloaded at the following link: PLC Circuit.

Figure 68. Two-Terminal Programmable Logic Controller (PLC) Input
System Examples (continued)

Figure 69 is an example of a LEAD I ECG circuit. The input signals come from leads attached to the right arm (RA) and left arm (LA). These signals are simulated with the circuitry in the corresponding boxes. Protection resistors (R\text{PROT1} and R\text{PROT2}) and filtering are also provided. The OPA333 is used as an integrator to remove the gained-up dc offsets and servo the INA826 outputs to V\text{REF}. Finally, the right leg drive is biased to a potential (+V_S / 2) and inverts and amplifies the average common-mode signal back into the patient’s right leg. This architecture reduces the 50- and 60-Hz noise pickup.

Copyright © 2016, Texas Instruments Incorporated

Figure 69. ECG Circuit
System Examples (continued)

Figure 70 shows an example of how the INA826 can be used for low-side current sensing. The load current (I_{LOAD}) creates a voltage drop across the shunt resistor (R_{SHUNT}). This voltage is amplified by the INA826 with gain set to 100. The output swing of the INA826 is set by the common-mode voltage (which is 0 V in low-side current sensing) and power supplies. Therefore, a dual-supply circuit is implemented. The load current is set from 1 A to 10 A, corresponding to an output voltage range from 350 mV to 3.5 V. The output range can be adjusted by changing the shunt resistor and the gain of the INA826. Click the following link to download the TINA-TI file: Current Sensing Circuit.

Figure 70. Low-Side Current Sensing
System Examples (continued)

Figure 71 shows an example of how the INA826 can be used for RTD signal conditioning. This circuit creates an excitation current (I_{SET}) by forcing 2.5 V from the REF5025 across R_{SET}. The zero-drift, low-noise OPA188 creates the virtual ground that maintains a constant differential voltage across R_{SET} with changing common-mode voltage. This voltage is necessary because the voltage on the positive input of the INA826 fluctuates over temperature as a result of the changing RTD resistance. Click the following link to download the TINA-TI file: RTD Circuit.

![RTD Circuit Diagram](image-url)
System Examples (continued)

The circuit in Figure 72 creates a precision current I_{SET} by forcing the INA826 V_{DIFF} across R_{SET}. The input voltage V_{IN} is amplified to the output of the INA826 and then divided down by the gain of the INA826 to create V_{DIFF}. I_{SET} can be controlled either by changing the value of the gain-set resistor R_G, the set resistor R_{SET}, or by changing V_{OUT} through the gain of the composite loop. Care must be taken to ensure that the changing load resistance R_L does not create a voltage on the negative input of the INA826 that violates the compliance of the common-mode input range. Likewise, the voltage on the output of the OPA170 must remain compliant throughout the changing load resistance for this circuit to function properly.

Figure 72. Precision Current Source
10 Power Supply Recommendations

The nominal performance of the INA826 is specified with a supply voltage of ±15 V and mid-supply reference voltage. The device can also be operated using power supplies from ±1.5 V (3 V) to ±18 V (36 V) and non mid-supply reference voltages with excellent performance. Parameters that can vary significantly with operating voltage and reference voltage are illustrated in the Typical Characteristics section.

11 Layout

11.1 Layout Guidelines

Attention to good layout practices is always recommended. Keep traces short and, when possible, use a printed circuit board (PCB) ground plane with surface-mount components placed as close to the device pins as possible. Place 0.1-μF bypass capacitors close to the supply pins. Apply these guidelines throughout the analog circuit to improve performance and provide benefits such as reducing the electromagnetic-interference (EMI) susceptibility.

The INA826EVM is intended to provide basic functional evaluation of the INA826. An image of the INA826EVM is provided in Figure 73. The INA826EVM is also available for purchase through the TI eStore.

11.1.1 CMRR vs Frequency

The INA826 pinout is optimized for achieving maximum CMRR performance over a wide range of frequencies. However, care must be taken to ensure that both input paths are well-matched for source impedance and capacitance to avoid converting common-mode signals into differential signals. In addition, parasitic capacitance at the gain-setting pins can also affect CMRR over frequency. For example, in applications that implement gain switching using switches or PhotoMOS® relays to change the value of R_G, choose the component so that the switch capacitance is as small as possible.
11.2 Layout Example

The INA826EVM provides the following features:
- Intuitive evaluation with silkscreen schematic
- Easy access to nodes with surface-mount test points
- Advanced evaluation with two prototype areas
- Reference voltage source flexibility
- Convenient input and output filtering
12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

OPAx330 50–μV VOS, 0.25–μV/°C, 35–μA CMOS Operational Amplifiers Zero-Drift Series (SBOS432)

REF32xx 4ppm/°C, 100μA, SOT23-6 Series Voltage Reference (SBVS058)

REF50xx Low-Noise, Very Low Drift, Precision Voltage Reference (SBOS410)

INA333 Micro-Power (50μA), Zero-Drift, Rail-to-Rail Out Instrumentation Amplifier (SBOS445)

PGA280 Zero-Drift, High-Voltage, Programmable Gain Instrumentation Amplifier (SBOS487)

INA159 Precision, Gain of 0.2 Level Translation Difference Amplifier (SBOS333)

PGA11x Zero-Drift Programmable Gain Amplifier With Mux (SBOS424)

INA826EVM User Guide (SBOU115)

TINA-TI software folder

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

E2E is a trademark of Texas Instruments.

PhotoMOS is a registered trademark of Panasonic Electric Works Europe AG.

All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
Packaging Information

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>INA826AID</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>INA826</td>
<td></td>
</tr>
<tr>
<td>INA826AIDGK</td>
<td>ACTIVE</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>80</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>IPDI</td>
<td></td>
</tr>
<tr>
<td>INA826AIDGKR</td>
<td>ACTIVE</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>IPDI</td>
<td></td>
</tr>
<tr>
<td>INA826AIDR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>INA826</td>
<td></td>
</tr>
<tr>
<td>INA826AIDRGR</td>
<td>ACTIVE</td>
<td>SON</td>
<td>DRG</td>
<td>8</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>IPEI</td>
<td></td>
</tr>
<tr>
<td>INA826AIDRGT</td>
<td>ACTIVE</td>
<td>SON</td>
<td>DRG</td>
<td>8</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>IPEI</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- ACTIVE: Product device recommended for new designs.
- LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
- OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
- TBD: The Pb-Free/Green conversion plan has not been defined.
- Pb-Free (RoHS): TI's terms “Lead-Free” or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
- Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
- Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "-" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

Device	**Package Type**	**Package Drawing**	**Pins**	**SPQ**	**Reel Diameter (mm)**	**Reel Width W1 (mm)**	**A0 (mm)**	**B0 (mm)**	**K0 (mm)**	**P1 (mm)**	**W (mm)**	**Pin1 Quadrant**
INA826AIDGKR | VSSOP | DGK | 8 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 |
INA826AIDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 |
INA826AIDRGR | SON | DRG | 8 | 3000 | 330.0 | 12.4 | 3.3 | 3.3 | 1.1 | 8.0 | 12.0 | Q2 |
INA826AIDRG | SON | DRG | 8 | 250 | 180.0 | 12.4 | 3.3 | 3.3 | 1.1 | 8.0 | 12.0 | Q2 |

All dimensions are nominal.

Notes:
- A0: Dimension designed to accommodate the component width.
- B0: Dimension designed to accommodate the component length.
- K0: Dimension designed to accommodate the component thickness.
- W: Overall width of the carrier tape.
- P1: Pitch between successive cavity centers.

Pack Materials-Page 1
TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INA826AIDGKR</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>2500</td>
<td>346.0</td>
<td>346.0</td>
<td>41.0</td>
</tr>
<tr>
<td>INA826AIDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>INA826AIDRGR</td>
<td>SON</td>
<td>DRG</td>
<td>8</td>
<td>3000</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>INA826AIDRGT</td>
<td>SON</td>
<td>DRG</td>
<td>8</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>
DGK (S-PDSON-G8) PLASTIC SMALL-OUTLINE PACKAGE

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
D. Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
E. Falls within JEDEC MO-187 variation AA, except interlead flash.

4073329/E 05/06
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
NOTES:
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. SON (Small Outline No-Lead) package configuration.
⚠️ The package thermal pad must be soldered to the board for thermal and mechanical performance.
See the Product Data Sheet for details regarding the exposed thermal pad dimensions.
E. JEDEC MO-229 package registration pending.
THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

![Exposed Thermal Pad Dimensions Diagram](image)

NOTE: All linear dimensions are in millimeters.
LAND PATTERN DATA

DRG (S-PWSON-N8) PLASTIC SMALL OUTLINE NO-LEAD

Example Board Layout

Example Stencil Design
(Note E)

2x Via
Keep Out Area

Non Solder Mask
Defined Pad

Solder Mask Opening
(Note F)

Pad Geometry
(Note C)

71% solder coverage on center pad

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http://www.ti.com>.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

4208205-2/G 03/15
NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated