INA828 50-µV Offset, 7-nV/√Hz Noise, Low-Power, Precision Instrumentation Amplifier

1 Features

- Precision Instrumentation Amplifier Evolution:
 - Second Generation: INA828
 - First Generation: INA128
- Low Offset Voltage: 50 µV, MAX
- Gain Drift: 5 ppm/°C (G = 1), 50 ppm/°C (G > 1)
- Noise: 7 nV/√Hz
- Bandwidth: 2 MHz (G = 1), 260 kHz (G = 100)
- Stable with 1-nF Capacitive Loads
- Inputs Protected Up to ±40 V
- Common-Mode Rejection:
 - 110 dB, MIN (G = 10)
- Power-Supply Rejection: 100 dB, MIN (G = 1)
- Supply Current: 650 µA, MAX
- Supply Range:
 - Single Supply: 4.5 V to 36 V
 - Dual Supply: ±2.25 V to ±18 V
- Specified Temperature Range: −40°C to +125°C
- Package: 8-Pin SOIC

2 Applications

- Industrial Process Controls
- Circuit Breakers
- Battery Testers
- ECG Amplifiers
- Power Automation
- Medical Instrumentation
- Portable Instrumentation

3 Description

The INA828 is a high-precision instrumentation amplifier that offers low power consumption and operates over a very wide single- or dual-supply range. A single external resistor sets any gain from 1 to 1000. The device offers excellent precision due to the use of new super-beta input transistors which provide exceptionally low input offset voltage, offset voltage drift, input bias current, and input voltage and current noise. Additional circuitry protects the inputs against overvoltage up to ±40 V.

The INA828 is optimized to provide excellent common-mode rejection ratio. At G = 1, the common-mode rejection ratio exceeds 90 dB across the full input common-mode range. The device is well-suited for low-voltage operation from a 5-V single supply as well as dual supplies up to ±18 V. Finally, INA828 is available in an 8-pin SOIC package and specified over the −40°C to +125°C temperature range.

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INA828</td>
<td>SOIC (8)</td>
<td>4.90 mm × 3.91 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.

INA828 Simplified Internal Schematic

Typical Distribution of Input Offset Voltage Drift
Table of Contents

1 Features ... 1
2 Applications ... 1
3 Description .. 1
4 Revision History ... 2
5 Pin Configuration and Functions 3
6 Specifications ... 4
 6.1 Absolute Maximum Ratings 4
 6.2 ESD Ratings ... 4
 6.3 Recommended Operating Conditions 4
 6.4 Thermal Information .. 4
 6.5 Electrical Characteristics 5
 6.6 Typical Characteristics .. 7
7 Detailed Description ... 16
 7.1 Overview .. 16
 7.2 Functional Block Diagram 16
 7.3 Feature Description ... 17
 7.4 Device Functional Modes 21
8 Application and Implementation 22
9 Power Supply Recommendations 29
10 Layout ... 29
 10.1 Layout Guidelines ... 29
 10.2 Layout Example .. 30
11 Device and Documentation Support 31
 11.1 Documentation Support 31
 11.2 Receiving Notification of Documentation Updates 31
 11.3 Community Resources ... 31
 11.4 Trademarks .. 31
 11.5 Electrostatic Discharge Caution 31
 11.6 Glossary ... 31
12 Mechanical, Packaging, and Orderable Information 31

Revision History

Changes from Original (August 2017) to Revision A

- Changed MAX value for G = 1 in "GE" row from "±0.020%" to "±0.025%" ... 5
5 Pin Configuration and Functions

![D Package 8-Pin SOIC Top View](image)

Pin Functions

<table>
<thead>
<tr>
<th>PIN</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>RG</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Gain setting pin. Place a gain resistor between pin 1 and pin 8.</td>
</tr>
<tr>
<td>–IN</td>
<td>2</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Negative (inverting) input</td>
</tr>
<tr>
<td>+IN</td>
<td>3</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Positive (noninverting) input</td>
</tr>
<tr>
<td>–VS</td>
<td>4</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Negative supply</td>
</tr>
<tr>
<td>REF</td>
<td>5</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reference input. This pin must be driven by a low impedance source.</td>
</tr>
<tr>
<td>OUT</td>
<td>6</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Output</td>
</tr>
<tr>
<td>+VS</td>
<td>7</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Positive supply</td>
</tr>
</tbody>
</table>
6 Specifications

6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)\(^{(1)}\)

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>–18</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>Signal input pins</td>
<td>–40</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>REF pin</td>
<td>–18</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>Output short-circuit(^{(2)})</td>
<td>Continuous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>Operating, (T_A)</td>
<td>–50</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Junction, (T_J)</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Storage, (T_{stg})</td>
<td>–65</td>
<td>150</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Short-circuit to \(V_S\) / 2.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th>Electrostatic discharge</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(^{(1)})</td>
<td>±1500</td>
<td>V</td>
</tr>
<tr>
<td>Charged-device model (CDM), per JEDEC specification JESD22-C101(^{(2)})</td>
<td>±750</td>
<td>V</td>
</tr>
</tbody>
</table>

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage Single supply</td>
<td>4.5</td>
<td>36</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Dual supply</td>
<td>±2.25</td>
<td>±18</td>
</tr>
<tr>
<td>Specified temperature</td>
<td>–40</td>
<td>125</td>
<td>°C</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>–50</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

6.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(^{(1)})</th>
<th>INA828</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{\text{JA}}) Junction-to-ambient thermal resistance</td>
<td>119.6</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{\text{JUC(top)}}) Junction-to-case (top) thermal resistance</td>
<td>66.3</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{\text{JUB}}) Junction-to-board thermal resistance</td>
<td>61.9</td>
<td>°C/W</td>
</tr>
<tr>
<td>(\psi_{\text{JT}}) Junction-to-top characterization parameter</td>
<td>20.5</td>
<td>°C/W</td>
</tr>
<tr>
<td>(\psi_{\text{JB}}) Junction-to-board characterization parameter</td>
<td>61.4</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{\text{JUC(bot)}}) Junction-to-case (bottom) thermal resistance</td>
<td>n/a</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
6.5 Electrical Characteristics

at $T_A = 25^\circ\text{C}$, $V_S = \pm 15\text{ V}$, $R_L = 10\text{ k}\Omega$, $V_{REF} = 0\text{ V}$, and $G = 1$ (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OSI}</td>
<td>Input stage offset voltage $^{(1)}$</td>
<td>$G = 100$, RTI</td>
<td>20</td>
<td>50</td>
<td>μV</td>
</tr>
<tr>
<td></td>
<td>vs temperature, $T_A = –40^\circ\text{C}$ to $+125^\circ\text{C}$</td>
<td>90</td>
<td>μV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OSO}</td>
<td>Output stage offset voltage $^{(2)}$</td>
<td>$G = 1$, RTI</td>
<td>50</td>
<td>250</td>
<td>μV</td>
</tr>
<tr>
<td></td>
<td>vs temperature, $T_A = –40^\circ\text{C}$ to $+125^\circ\text{C}$</td>
<td>500</td>
<td>μV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSRR</td>
<td>Power-supply rejection ratio</td>
<td>$G = 1$, RTI</td>
<td>110</td>
<td>120</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>$G = 10$, RTI</td>
<td>114</td>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$G = 100$, RTI</td>
<td>130</td>
<td>135</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$G = 1000$, RTI</td>
<td>136</td>
<td>140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{id}</td>
<td>Differential impedance</td>
<td>$100</td>
<td></td>
<td>1 \text{ G}$</td>
<td></td>
</tr>
<tr>
<td>z_{ic}</td>
<td>Common-mode impedance</td>
<td>$100</td>
<td></td>
<td>10 \text{ G}$</td>
<td></td>
</tr>
<tr>
<td>V_{CM}</td>
<td>Operating input range $^{(4)}$</td>
<td>$V_S = \pm 2.25 \text{ V}$ to $\pm 18 \text{ V}$, $T_A = –40^\circ\text{C}$ to $+125^\circ\text{C}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_S = –40^\circ\text{C}$ to $+125^\circ\text{C}$</td>
<td>See Figure 48 to Figure 51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_B</td>
<td>Input bias current</td>
<td>$V_{CM} = V_S / 2$</td>
<td>0.15</td>
<td>0.6</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td>$T_A = –40^\circ\text{C}$ to $+125^\circ\text{C}$</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{OS}</td>
<td>Input offset current</td>
<td>$V_{CM} = V_S / 2$</td>
<td>0.15</td>
<td>0.6</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td>$T_A = –40^\circ\text{C}$ to $+125^\circ\text{C}$</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e_{NI}</td>
<td>Input stage voltage noise $^{(5)}$</td>
<td>$f = 1 \text{ kHz}$, $G = 100$, $R_S = 0 \Omega$</td>
<td>7</td>
<td></td>
<td>nV/$\sqrt{\text{Hz}}$</td>
</tr>
<tr>
<td></td>
<td>$f = 0.1 \text{ Hz}$ to 10 Hz, $G = 100$, $R_S = 0 \Omega$</td>
<td>0.14</td>
<td>μV_{PP}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e_{NO}</td>
<td>Output stage voltage noise $^{(5)}$</td>
<td>$f = 1 \text{ kHz}$, $R_S = 0 \Omega$</td>
<td>90</td>
<td></td>
<td>nV/$\sqrt{\text{Hz}}$</td>
</tr>
<tr>
<td></td>
<td>$f = 0.1 \text{ Hz}$ to 10 Hz, $R_S = 0 \Omega$</td>
<td>7.7</td>
<td>μV_{PP}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_n</td>
<td>Noise current</td>
<td>$f = 1 \text{ kHz}$</td>
<td>170</td>
<td></td>
<td>fA/$\sqrt{\text{Hz}}$</td>
</tr>
<tr>
<td></td>
<td>$f = 0.1 \text{ Hz}$ to 10 Hz, $G = 100$</td>
<td>4.7</td>
<td></td>
<td>pA$_{\text{PP}}$</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Gain equation</td>
<td>$1 + (50 \text{ k} \Omega / R_G)$</td>
<td>V/V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Range of gain</td>
<td>1</td>
<td>1000</td>
<td>V/V</td>
<td></td>
</tr>
<tr>
<td>G_{E}</td>
<td>Gain error</td>
<td>$G = 1$, $V_O = \pm 10 \text{ V}$</td>
<td>$\pm 0.005%$</td>
<td>$\pm 0.025%$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$G = 10$, $V_O = \pm 10 \text{ V}$</td>
<td>$\pm 0.025%$</td>
<td>$\pm 0.15%$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$G = 100$, $V_O = \pm 10 \text{ V}$</td>
<td>$\pm 0.025%$</td>
<td>$\pm 0.15%$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$G = 1000$, $V_O = \pm 10 \text{ V}$</td>
<td>$\pm 0.05%$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$G > 1$, $T_A = –40^\circ\text{C}$ to $+125^\circ\text{C}$</td>
<td>± 5</td>
<td></td>
<td>ppm/$^\circ\text{C}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$G > 1$, $T_A = –40^\circ\text{C}$ to $+125^\circ\text{C}$</td>
<td>± 50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Total offset, referred-to-input (RTI): $V_{OS} = (V_{OSI}) + (V_{OSO} / G)$.
(2) Offset drifts are uncorrelated. Input-referred offset drift is calculated using: $\Delta V_{OS(RTI)} = \sqrt{\Delta V_{OS}^2 + (\Delta V_{OSO} / G)^2}$
(3) Specified by characterization.
(4) Input voltage range of the INA828 input stage. The input range depends on the common-mode voltage, differential voltage, gain, and reference voltage. See Typical Characteristic curves Figure 48 through Figure 51 for more information.
(5) Total RTI voltage noise is equal to: $e_{N(RTI)} = \sqrt{e_{NI}^2 + (e_{NO} / G)^2}$
(6) The values specified for $G > 1$ do not include the effects of the external gain-setting resistor, R_G.

Submit Documentation Feedback
Electrical Characteristics (continued)

at $T_A = 25^\circ C$, $V_S = \pm 15$ V, $R_L = 10$ kΩ, $V_{REF} = 0$ V, and $G = 1$ (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain nonlinearity</td>
<td>$G = 1$ to 10, $V_O = -10$ V to $+10$ V, $R_L = 10$ kΩ</td>
<td>1</td>
<td>10</td>
<td></td>
<td>ppm</td>
</tr>
<tr>
<td></td>
<td>$G = 100$, $V_O = -10$ V to $+10$ V, $R_L = 10$ kΩ</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$G = 1000$, $V_O = -10$ V to $+10$ V, $R_L = 10$ kΩ</td>
<td></td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$G = 1$ to 100, $V_O = -10$ V to $+10$ V, $R_L = 2$ kΩ</td>
<td></td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>OUTPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage swing</td>
<td>$(V-) + 0.15$</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Load capacitance stability</td>
<td></td>
<td>1000</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Z_O</td>
<td>Closed-loop output impedance $f = 10$ kHz</td>
<td>1.3</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>I_{ISC}</td>
<td>Short-circuit current Continuous to $V_S / 2$</td>
<td>±18</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>FREQUENCY RESPONSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BW</td>
<td>Bandwidth, –3 dB</td>
<td>2.0</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td>$G = 1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$G = 10$</td>
<td></td>
<td></td>
<td>640</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td>$G = 100$</td>
<td></td>
<td></td>
<td>260</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$G = 1000$</td>
<td></td>
<td></td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>Slew rate</td>
<td>1.2</td>
<td></td>
<td></td>
<td>V/µs</td>
</tr>
<tr>
<td></td>
<td>$G = 1$, $V_O = \pm 10$ V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_s</td>
<td>Settling time $0.01%, G = 1$ to 100, $V_{STEP} = 10$ V</td>
<td>12</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td>$0.01%, G = 1000$, $V_{STEP} = 10$ V</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$0.001%, G = 1$ to 100, $V_{STEP} = 10$ V</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$0.001%, G = 1000$, $V_{STEP} = 10$ V</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REFERENCE INPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{IN}</td>
<td>Input impedance</td>
<td>40</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td></td>
<td>Voltage range $(V-) (V+)$</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Gain to output 1 V/V</td>
<td></td>
<td></td>
<td></td>
<td>V/V</td>
</tr>
<tr>
<td></td>
<td>Reference gain error $0.01%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POWER SUPPLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_S</td>
<td>Power-supply voltage Single supply</td>
<td>4.5</td>
<td>36</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Dual supply</td>
<td>±2.25</td>
<td>±18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_Q</td>
<td>Quiescent current $V_{IN} = 0$ V</td>
<td>600</td>
<td>650</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>vs temperature, $T_A = -40^\circ C$ to $+125^\circ C$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.6 Typical Characteristics

At $T_A = 25^\circ C$, $V_S = \pm 15$ V, $R_L = 10\, k\Omega$, $V_{REF} = 0$ V, and $G = 1$ (unless otherwise noted)

![Figure 1. Typical Distribution of Input Offset Voltage](image1)

N = 1886
Mean = 4.73 μV
Std. Dev. = 13.98 μV

![Figure 2. Typical Distribution of Input Offset Voltage Drift](image2)

N = 19081
Mean = 0.16 nV/°C
Std. Dev. = 0.09 µV/°C

![Figure 3. Typical Distribution of Output Offset Voltage](image3)

N = 1886
Mean = –8.71 μV
Std. Dev. = 48.57 μV

![Figure 4. Typical Distribution of Output Offset Voltage Drift](image4)

N = 19081
Mean = –0.73 µV/°C
Std. Dev. = 0.74 µV/°C

![Figure 5. Input-Referred Offset Voltage vs Temperature](image5)

G = 100
88 units, 3 wafer lots

![Figure 6. Input-Referred Offset Voltage vs Temperature](image6)

G = 1
88 units, 3 wafer lots
Typical Characteristics (continued)

At $T_A = 25^\circ C$, $V_S = \pm 15\, V$, $R_L = 10\, k\Omega$, $V_{REF} = 0\, V$, and $G = 1$ (unless otherwise noted)

Figure 7. Typical Distribution of Input Bias Current (25°C)

- $N = 1886$
- Mean = 36.25 pA
- Std. Dev. = 65.31 pA

Figure 8. Typical Distribution of Input Bias Current (90°C)

- $N = 19081$
- Mean = -5.32 pA
- Std. Dev. = 57.46 pA

Figure 9. Typical Distribution of Input Offset Current

- $N = 1886$
- Mean = -52.64 pA
- Std. Dev. = 63.86 pA

Figure 10. Input Bias Current vs Temperature

Figure 11. Input Offset Current vs Temperature

Figure 12. Typical CMRR Distribution (G = 1)

- Mean = 1.18 µV/V
- Std. Dev. = 10.04 µV/V

$\PageIndex{8}$ Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Product Folder Links: INA828
Typical Characteristics (continued)

At $T_A = 25^\circ$C, $V_S = \pm 15$ V, $R_L = 10$ kΩ, $V_{REF} = 0$ V, and $G = 1$ (unless otherwise noted)

![Figure 13. Typical CMRR Distribution (G = 100)](image)

$N = 1886$

Mean = 0.01 µV/V

Std. Dev. = 0.1 µV/V

![Figure 14. CMRR vs Temperature (G = 1)](image)

![Figure 15. CMRR vs Temperature (G = 100)](image)

![Figure 16. Input Current vs Input Overvoltage](image)

![Figure 17. CMRR vs Frequency (RTI)](image)

![Figure 18. CMRR vs Frequency (RTI, 1-kΩ Source Imbalance)](image)
Typical Characteristics (continued)

At $T_A = 25^\circ C$, $V_S = \pm 15V$, $R_L = 10k\Omega$, $V_{REF} = 0V$, and $G = 1$ (unless otherwise noted)

Figure 19. Positive PSRR vs Frequency (RTI)

Figure 20. Negative PSRR vs Frequency (RTI)

Figure 21. Gain vs Frequency

Figure 22. Voltage Noise Spectral Density vs Frequency (RTI)

Figure 23. Current Noise Spectral Density vs Frequency (RTI)

Figure 24. 0.1-Hz to 10-Hz RTI Voltage Noise ($G = 1$)
Typical Characteristics (continued)

At \(T_A = 25^\circ C\), \(V_S = \pm 15\ V\), \(R_L = 10\ k\Omega\), \(V_{\text{REF}} = 0\ V\), and \(G = 1\) (unless otherwise noted)

Figure 25. 0.1-Hz to 10-Hz RTI Voltage Noise (G = 1000)

Figure 26. 0.1-Hz to 10-Hz RTI Current Noise

Figure 27. Input Bias Current vs Common-Mode Voltage

Figure 28. Gain Error vs Temperature (G = 1)

Figure 29. Gain Error vs Temperature (G = 100)

Figure 30. Supply Current vs Temperature
Typical Characteristics (continued)

At $T_A = 25^\circ C$, $V_S = \pm 15\, V$, $R_L = 10\, k\Omega$, $V_{REF} = 0\, V$, and $G = 1$ (unless otherwise noted)

Figure 31. Gain Nonlinearity ($G = 1$)

Figure 32. Gain Nonlinearity ($G = 100$)

Figure 33. Offset Voltage vs Negative Common-Mode Voltage

Figure 34. Offset Voltage vs Positive Common-Mode Voltage

Figure 35. Positive Output Voltage Swing vs Output Current

Figure 36. Negative Output Voltage Swing vs Output Current
Typical Characteristics (continued)

At $T_A = 25^\circ$C, $V_S = \pm 15$ V, $R_L = 10$ kΩ, $V_{REF} = 0$ V, and $G = 1$ (unless otherwise noted)

Figure 37. Large-Signal Frequency Response

Figure 38. THD+N vs Frequency

Figure 39. Overshoot vs Capacitive Loads

Figure 40. Small-Signal Response

Figure 41. Small-Signal Response

Figure 42. Small-Signal Response
Typical Characteristics (continued)

At $T_A = 25^\circ$C, $V_S = \pm15$ V, $R_L = 10$ kΩ, $V_{REF} = 0$ V, and $G = 1$ (unless otherwise noted)

- $G = 1000$, $R_L = 10$ kΩ, $C_L = 100$ pF

Figure 43. Small-Signal Response

Figure 44. Large Signal Step Response

Figure 45. Closed-Loop Output Impedance

Figure 46. Differential-Mode EMI Rejection Ratio

Figure 47. Common-Mode EMI Rejection Ratio

Figure 48. Input Common-Mode Voltage vs Output Voltage
Typical Characteristics (continued)

At $T_A = 25^\circ C$, $V_S = \pm 15 V$, $R_L = 10 \, k\Omega$, $V_{REF} = 0 V$, and $G = 1$ (unless otherwise noted)

![Graph 1](image1.png)

![Graph 2](image2.png)

![Graph 3](image3.png)

Figure 49. Input Common-Mode Voltage vs Output Voltage

Figure 50. Input Common-Mode Voltage vs Output Voltage

Figure 51. Input Common-Mode Voltage vs Output Voltage
7 Detailed Description

7.1 Overview

The INA828 is a monolithic precision instrumentation amplifier incorporating a current-feedback input stage and a 4-resistor difference amplifier output stage. The differential input voltage is buffered by Q₁ and Q₂ and is forced across R_G, which causes a signal current to flow through R_G, R₁, and R₂. The output difference amplifier, A₃, removes the common-mode component of the input signal and refers the output signal to the REF terminal. The V_BE and voltage drop across R₁ and R₂ produce output voltages on A₁ and A₂ that are approximately 0.8 V lower than the input voltages.

Each input is protected by two field-effect transistors (FETs) that provide a low series resistance under normal signal conditions, and preserve excellent noise performance. When excessive voltage is applied, these transistors limit input current to approximately 8 mA.

7.2 Functional Block Diagram
7.3 Feature Description

7.3.1 Setting the Gain

Figure 52 shows that the gain of the INA828 is set by a single external resistor, R_G, connected between the RG pins (pins 1 and 8).

The value of R_G is selected according to:

$$ G = 1 + \frac{50 \text{k} \Omega}{R_G} $$

(1)

Table 1 lists several commonly-used gains and resistor values. The 50-kΩ term in Equation 1 comes from the sum of the two internal 25-kΩ feedback resistors. These on-chip resistors are laser-trimmed to accurate absolute values. The accuracy and temperature coefficients of these resistors are included in the gain accuracy and drift specifications of the INA828.

![Simplified Diagram of the INA828 With Gain and Output Equations](https://www.ti.com/lit/an/sbos792a/sbos792a.pdf)

Figure 52. Simplified Diagram of the INA828 With Gain and Output Equations

<table>
<thead>
<tr>
<th>DESIRED GAIN</th>
<th>R_G (Ω)</th>
<th>NEAREST 1% R_G (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>2</td>
<td>50 k</td>
<td>49.9 k</td>
</tr>
<tr>
<td>5</td>
<td>12.5 k</td>
<td>12.4 k</td>
</tr>
<tr>
<td>10</td>
<td>5.556 k</td>
<td>5.49 k</td>
</tr>
<tr>
<td>20</td>
<td>2.632 k</td>
<td>2.61 k</td>
</tr>
<tr>
<td>50</td>
<td>1.02 k</td>
<td>1.02 k</td>
</tr>
<tr>
<td>100</td>
<td>505.1</td>
<td>511</td>
</tr>
<tr>
<td>200</td>
<td>251.3</td>
<td>249</td>
</tr>
<tr>
<td>500</td>
<td>100.2</td>
<td>100</td>
</tr>
<tr>
<td>1000</td>
<td>50.05</td>
<td>49.9</td>
</tr>
</tbody>
</table>
7.3.1.1 Gain Drift

The stability and temperature drift of the external gain setting resistor, R_G, also affects gain. The contribution of R_G to gain accuracy and drift can be determined from Equation 1.

The best gain drift of 5 ppm/°C (maximum) can be achieved when the INA828 uses $G = 1$ without R_G connected. In this case, gain drift is limited only by the slight mismatch of the temperature coefficient of the integrated 40-kΩ resistors in the differential amplifier (A_3). At gains greater than 1, gain drift increases as a result of the individual drift of the 25-kΩ resistors in the feedback of A_1 and A_2, relative to the drift of the external gain resistor R_G. The low temperature coefficient of the internal feedback resistors significantly improves the overall temperature stability of applications using gains greater than 1 V/V over alternate solutions.

Low resistor values required for high gain can make wiring resistance important. Sockets add to the wiring resistance and contribute additional gain error (such as a possible unstable gain error) at gains of approximately 100 or greater. To assure stability, avoid parasitic capacitance of more than a few picofarads at R_G connections. Careful matching of any parasitics on both R_G pins maintains optimal CMRR over frequency; see Typical Characteristics, Figure 17.

7.3.2 EMI Rejection

Texas Instruments developed a method to accurately measure the immunity of an amplifier over a broad frequency spectrum, extending from 10 MHz to 6 GHz. This method uses an EMI rejection ratio (EMIRR) to quantify the ability of the INA828 to reject EMI. The offset resulting from an input EMI signal can be calculated using Equation 2:

$$\Delta V_{OS} = \left(\frac{V_{RF_PEAK}^2}{100 \text{ mV}_P} \right) \cdot 10^{\left(\frac{\text{EMIRR (dB)}}{20} \right)}$$

where

- V_{RF_PEAK} is the peak amplitude of the input EMI signal.

Figure 53 and Figure 54 show the INA828 EMIRR graph for both differential and common-mode EMI rejection across this frequency range. Table 2 shows the EMIRR values for the INA828 at frequencies commonly encountered in real-world applications. Applications listed in Table 2 can be centered on or operated near the particular frequency shown. Depending on the end-system requirements, additional EMI filters may be required near the signal inputs of the system, as well as incorporating known good practices such as using short traces, low-pass filters, and damping resistors combined with parallel and shielded signal routing.
Table 2. INA828 EMIRR for Frequencies of Interest

<table>
<thead>
<tr>
<th>FREQUENCY</th>
<th>APPLICATION OR ALLOCATION</th>
<th>DIFFERENTIAL EMIRR</th>
<th>COMMON-MODE EMIRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 MHz</td>
<td>Mobile radio, mobile satellite, space operation, weather, radar, ultrahigh-frequency (UHF) applications</td>
<td>48 dB</td>
<td>87 dB</td>
</tr>
<tr>
<td>900 MHz</td>
<td>Global system for mobile communications (GSM) applications, radio communication, navigation, GPS (up to 1.6 GHz), GSM, aeronautical mobile, UHF applications</td>
<td>52 dB</td>
<td>98 dB</td>
</tr>
<tr>
<td>1.8 GHz</td>
<td>GSM applications, mobile personal communications, broadband, satellite, L-band (1 GHz to 2 GHz)</td>
<td>94 dB</td>
<td>51 dB</td>
</tr>
<tr>
<td>2.4 GHz</td>
<td>802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications, industrial, scientific and medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz)</td>
<td>66 dB</td>
<td>57 dB</td>
</tr>
<tr>
<td>3.6 GHz</td>
<td>Radiolocation, aero communication and navigation, satellite, mobile, S-band</td>
<td>79 dB</td>
<td>87 dB</td>
</tr>
<tr>
<td>5 GHz</td>
<td>802.11a, 802.11n, aero communication and navigation, mobile communication, space and satellite operation, C-band (4 GHz to 8 GHz)</td>
<td>90 dB</td>
<td>92 dB</td>
</tr>
</tbody>
</table>

7.3.3 Input Common-Mode Range

The linear input voltage range of the INA828 input circuitry extends within 2 Volts of both power supplies and maintains excellent common-mode rejection throughout this range. The common-mode range for the most common operating conditions are shown in Figure 55, Figure 50, and Figure 51. The common-mode range for other operating conditions is best calculated using the INA common-mode range calculating tool. The INA828 device can operate over a wide range of power supplies and VREF configurations, thus providing a comprehensive guide to common-mode range limits for all possible conditions is impractical.

![Figure 55. Input Common-Mode Voltage vs Output Voltage](image)

![Figure 56. Input Common-Mode Voltage vs Output Voltage](image)

![Figure 57. Input Common-Mode Voltage vs Output Voltage](image)

![Figure 58. Input Common-Mode Voltage vs Output Voltage](image)
7.3.4 Input Protection

The inputs of the INA828 device are individually protected for voltages up to ±40 V. For example, a condition of –40 V on one input and 40 V on the other input does not cause damage. Internal circuitry on each input provides low series impedance under normal signal conditions. If the input is overloaded, the protection circuitry limits the input current to a value of approximately 8 mA.

![Input Current Path During an Overvoltage Condition](image)

Figure 59. Input Current Path During an Overvoltage Condition

During an input overvoltage condition, current flows through the input protection diodes into the power supplies, see Figure 59. If the power supplies are unable to sink current, then Zener diode clamps (ZD1 and ZD2 in Figure 59) must be placed on the power supplies to provide a current pathway to ground. Figure 60 illustrates the input current for input voltages from –40 V to +40 V when the INA828 is powered by ±15-V supplies.

![Input Current vs Input Overvoltage](image)

Figure 60. Input Current vs Input Overvoltage
7.3.5 Operating Voltage

The INA828 operates over a power-supply range of 4.5 V to 36 V (±2.25 V to ±18 V).

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltages higher than 40 V (±20 V) can permanently damage the device. Parameters that vary over supply voltage or temperature are shown in the Typical Characteristics section of this data sheet.</td>
</tr>
</tbody>
</table>

7.4 Device Functional Modes

The INA828 has a single functional mode and is operational when the power-supply voltage is greater than 4.5 V (±2.25 V). The maximum power-supply voltage for the INA828 is 36 V (±18 V).
8 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Reference Terminal

The output voltage of the INA828 is developed with respect to the voltage on the reference terminal, REF. Often, in dual-supply operation, the reference pin (pin 6) is connected to the low-impedance system ground. In single-supply operation, offsetting the output signal to a precise mid-supply level is useful (for example, 2.5 V in a 5-V supply environment). To accomplish this level shift, a voltage source must be connected to the REF pin to level-shift the output so that the INA828 can drive a single-supply ADC.

The voltage source applied to the reference terminal must have a low output impedance. As illustrated in Figure 61, any resistance at the reference terminal (shown as R_{REF} in Figure 61) is in series with one of the internal 40-kΩ resistors.

![Figure 61. Parasitic Resistance Shown at the Reference Terminal](image)

The parasitic resistance at the reference terminal, R_{REF}, creates an imbalance in the 4 resistors of the internal difference amplifier, resulting in degraded common-mode rejection ratio (CMRR). Figure 62 shows the degradation in CMRR of the INA828 for increasing resistance at the reference terminal. For the best performance, keep the source impedance to the REF terminal, R_{REF}, below 5 Ω.
Reference Terminal (continued)

Figure 62. The Effect of Increasing Resistance at the Reference Terminal

Voltage reference ICs are an excellent option for providing a low-impedance voltage source for the reference terminal. However, if a resistor voltage divider is used to generate a reference voltage, it must be buffered by an op amp as shown in Figure 63 to avoid CMRR degradation.

Figure 63. Using an Op Amp to Buffer Reference Voltages
8.2 Input Bias Current Return Path

The input impedance of the INA828 is extremely high—approximately 100 GΩ. However, a path must be provided for the input bias current of both inputs. This input bias current is typically 150 pA. High input impedance means that this input bias current changes very little with varying input voltage.

Input circuitry must provide a path for this input bias current for proper operation. Figure 64 shows various provisions for an input bias current path. Without a bias current path, the inputs float to a potential that exceeds the common-mode range of the INA828, and the input amplifiers saturate. If the differential source resistance is low, the bias current return path can be connected to one input (as shown in the thermocouple example in Figure 64). With a higher source impedance, using two equal resistors provides a balanced input with possible advantages of a lower input offset voltage as a result of bias current and better high-frequency common-mode rejection.

Figure 64. Providing an Input Common-Mode Current Path
8.3 PCB Assembly Effects on Precision

The printed-circuit board (PCB) assembly process, including reflow soldering, imparts thermal stresses on the INA828 which can degrade the precision of the device and must be considered in the development of very-high-precision systems. Baking the PCBs after the assembly process can restore the precision of the device to pre-assembly values. Figure 65, Figure 66, and Figure 67 illustrate the effect of reflow soldering on the typical distribution of input offset voltage of the INA828. Figure 65 shows the distribution of input offset voltage for a set of INA828 devices prior to the PCB assembly process. Exposing the INA828 to a JEDEC-standard thermal profile for reflow soldering produces the histogram shown in Figure 66 on another set of INA828 devices. The standard deviation of input offset voltage has almost doubled due to the thermal stress imparted to the INA828 from the reflow process. However, baking INA828 units for 30 minutes at 125°C after the reflow soldering process produced the distribution given in Figure 67. The post-reflow bake restored the standard deviation of the input offset voltage to pre-assembly levels.

Figure 65. Typical Distribution of INA828 Input Offset Voltage Prior to Reflow Soldering

Figure 66. Typical Distribution of INA828 Input Offset Voltage After Reflow Soldering

Figure 67. Typical Distribution of Post-Reflow INA828 Units Baked at 125°C for 30 Minutes
8.4 Typical Application

Figure 68 shows a three-terminal programmable-logic controller (PLC) design for the INA828. This PLC reference design accepts inputs of ±10 V or ±20 mA. The output is a single-ended voltage of 2.5 V ±2.3 V (or 200 mV to 4.8 V). Many PLCs typically have these input and output ranges.

![Typical Application Diagram](image)

8.4.1 Design Requirements

For this application, the design requirements are:

- 4-mA to 20-mA input with less than 20-Ω burden
- ±20-mA input with less than 20-Ω burden
- ±10-V input with impedance of approximately 100 kΩ
- Maximum 4-mA to 20-mA or ±20-mA burden voltage equal to ±0.4 V
- Output range within 0 V to 5 V

8.4.2 Detailed Design Procedure

There are two modes of operation for the circuit shown in Figure 68: current input and voltage input. This design requires \(R_1 >> R_2 >> R_3 \). Given this relationship, Equation 3 calculates the current input mode transfer function.

\[
V_{OUT-I} = V_D \times G + V_{REF} = -(I_{IN} \times R_3) \times G + V_{REF}
\]

where

- \(G \) represents the gain of the instrumentation amplifier
- \(V_D \) represents the differential voltage at the INA828 inputs
- \(V_{REF} \) is the voltage at the INA828 REF pin
- \(I_{IN} \) is the input current

Equation 4 shows the transfer function for the voltage input mode.

\[
V_{OUT-V} = V_D \times G + V_{REF} = -\left(\frac{V_{IN} \times R_3}{R_1 + R_2}\right) \times G + V_{REF}
\]

where

- \(V_{IN} \) is the input voltage

\(R_1 \) sets the input impedance of the voltage input mode. The minimum typical input impedance is 100 kΩ. 100 kΩ is selected for \(R_1 \) because increasing the \(R_1 \) value also increases noise. The value of \(R_3 \) must be extremely small compared to \(R_1 \) and \(R_2 \). 20 Ω for \(R_3 \) is selected because that resistance value is much smaller than \(R_1 \), and yields an input voltage of ±400 mV when operated in current mode (±20 mA).
Typical Application (continued)

Use Equation 5 to calculate \(R_2 \) given \(V_D = \pm 400 \text{ mV} \), \(V_{IN} = \pm 10 \text{ V} \), and \(R_1 = 100 \text{ k}\Omega \).

\[
V_D = V_{IN} \times \frac{R_2}{R_1 + R_2} \quad \Rightarrow \quad R_2 = \frac{R_1 \times V_D}{V_{IN} - V_D} = 4.17 \text{ k}\Omega
\]

(5)

The value obtained from Equation 5 is not a standard 0.1% value, so 4.17 k\(\Omega \) is selected. \(R_1 \) and \(R_2 \) also use 0.1% tolerance resistors to minimize error.

Use Equation 6 to calculate the ideal gain of the instrumentation amplifier.

\[
G = \frac{V_{OUT} - V_{REF}}{V_D} = \frac{4.8 \text{ V} - 2.5 \text{ V}}{400 \text{ mV}} = 5.75 \frac{V}{V}
\]

(6)

Equation 7 calculates the gain-setting resistor value using the INA828 gain equation, Equation 1.

\[
R_G = \frac{50 \text{ k}\Omega}{G - 1} = \frac{50 \text{ k}\Omega}{5.75 - 1} = 10.5 \text{ k}\Omega
\]

(7)

10.5 k\(\Omega \) is a standard 0.1% resistor value that can be used in this design.

8.4.3 Application Curves

Figure 69 and Figure 70 show typical characteristic curves for the circuit in Figure 68.

![Figure 69. PLC Output Voltage vs Input Voltage](image)

![Figure 70. PLC Output Voltage vs Input Current](image)
8.5 Other Application Examples

8.5.1 Resistance Temperature Detector Interface

Figure 71 illustrates a 3-wire interface circuit for resistance temperature detectors (RTDs). The circuit incorporates analog linearization and has an output voltage range from 0 to 5 V. The linearization technique employed is described in Analog linearization of resistance temperature detectors. Series and parallel combinations of standard 1% resistor values are used to achieve less than 0.02°C of error over a 200°C temperature span.

![Figure 71. A 3-Wire Interface for RTDs With Analog Linearization](image)

![Figure 72. Transfer Function of 3-Wire RTD Interface](image)

![Figure 73. Temperature Error Over Full Temperature Range](image)
9 Power Supply Recommendations

The nominal performance of the INA828 is specified with a supply voltage of ±15 V and mid-supply reference voltage. The device can also be operated using power supplies from ±1.5 V (3 V) to ±18 V (36 V) and non mid-supply reference voltages with excellent performance. Parameters that can vary significantly with operating voltage and reference voltage are illustrated in the *Typical Characteristics* section.

10 Layout

10.1 Layout Guidelines

Attention to good layout practices is always recommended. For best operational performance of the device, use good PCB layout practices, including:

- Care must be taken to assure that both input paths are well-matched for source impedance and capacitance to avoid converting common-mode signals into differential signals. In addition, parasitic capacitance at the gain-setting pins can also affect CMRR over frequency. For example, in applications that implement gain switching using switches or PhotoMOS® relays to change the value of RG, select the component so that the switch capacitance is as small as possible.
- Noise can propagate into analog circuitry through the power pins of the circuit as a whole and of the device itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources local to the analog circuitry.
 - Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-supply applications.
- To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better than in parallel with the noisy trace.
- Place the external components as close to the device as possible. As illustrated in Figure 74, keeping RG close to the pins minimizes parasitic capacitance.
- Keep the traces as short as possible.
10.2 Layout Example

Use ground pours for shielding the input signal pairs.

- Use ground pours for shielding the input signal pairs.
- Ground plane removed at gain resistor to minimize parasitic capacitance.
- Input traces routed adjacent to each other.
- Low-impedance connection for reference terminal.
- Place bypass capacitors as close to IC as possible.

Figure 74. Example Schematic and Associated PCB Layout
11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation
For related documentation see the following:
• REF50xx Low-Noise, Very Low Drift, Precision Voltage Reference
• OPA191 Low-Power, Precision, 36-V, e-trim CMOS Amplifier
• TINA-TI software folder
• INA Common-Mode Range Calculator

11.2 Receiving Notification of Documentation Updates
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.3 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI’s Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI’s Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.4 Trademarks
E2E is a trademark of Texas Instruments.
Bluetooth is a registered trademark of Bluetooth SIG, Inc.
PhotoMOS is a registered trademark of Panasonic Electric Works Europe AG.
All other trademarks are the property of their respective owners.

11.5 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.6 Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish (6)</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>INA828ID</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>INA828</td>
<td></td>
</tr>
<tr>
<td>INA828IDR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>INA828</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) **RoHS**: TI defines “RoHS” to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, “RoHS” products are suitable for use in specified lead-free processes. TI may reference these types of products as “Pb-Free”.
- **RoHS Exempt**: TI defines “RoHS Exempt” to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
- **Green**: TI defines “Green” to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a “~” will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) **Lead/Ball Finish** - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

TAPE DIMENSIONS

<table>
<thead>
<tr>
<th>Reel Diameter (mm)</th>
<th>A0</th>
<th>B0</th>
<th>K0</th>
<th>Pitch between successive cavity centers (P1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>330.0</td>
<td>6.4</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cavity A0</th>
<th>Overall width of the carrier tape (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>12.4</td>
</tr>
</tbody>
</table>

REEL DIMENSIONS

<table>
<thead>
<tr>
<th>Reel Width (W1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4</td>
</tr>
</tbody>
</table>

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

<table>
<thead>
<tr>
<th>Pocket Quadrants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1, Q2</td>
</tr>
<tr>
<td>Q3, Q4</td>
</tr>
</tbody>
</table>

All dimensions are nominal.

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter</th>
<th>Reel Width W1</th>
<th>A0</th>
<th>B0</th>
<th>K0</th>
<th>P1</th>
<th>W</th>
<th>Pin 1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>INA828IDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>Device</td>
<td>Package Type</td>
<td>Package Drawing</td>
<td>Pins</td>
<td>SPQ</td>
<td>Length (mm)</td>
<td>Width (mm)</td>
<td>Height (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>-----------------</td>
<td>------</td>
<td>------</td>
<td>-------------</td>
<td>------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INA828IDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All dimensions are nominal
NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.