LF444 Quad Low Power JFET Input Operational Amplifier

Check for Samples: LF444

FEATURES

- ¼ Supply Current of a LM148: 200 μA/Amplifier (max)
- Low Input Bias Current: 50 pA (max)
- High Gain Bandwidth: 1 MHz
- High Slew Rate: 1 V/μs
- Low Noise Voltage for Low Power 35 nV/√Hz
- Low Input Noise Current: 0.01 pA/√Hz
- High Input Impedance: 10^{12}Ω
- High Gain: 50k (min)

DESCRIPTION

The LF444 quad low power operational amplifier provides many of the same AC characteristics as the industry standard LM148 while greatly improving the DC characteristics of the LM148. The amplifier has the same bandwidth, slew rate, and gain (10 kΩ load) as the LM148 and only draws one fourth the supply current of the LM148. In addition the well matched high voltage JFET input devices of the LF444 reduce the input bias and offset currents by a factor of 10,000 over the LM148. The LF444 also has a very low equivalent input noise voltage for a low power amplifier.

The LF444 is pin compatible with the LM148 allowing an immediate 4 times reduction in power drain in many applications. The LF444 should be used wherever low power dissipation and good electrical characteristics are the major considerations.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereeto appears at the end of this data sheet.

BI-FET is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

Copyright © 1998–2013, Texas Instruments Incorporated
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th></th>
<th>LF444A</th>
<th>LF444</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>±22V</td>
<td>±18V</td>
</tr>
<tr>
<td>Differential Input Voltage</td>
<td>±38V</td>
<td>±30V</td>
</tr>
<tr>
<td>Input Voltage Range</td>
<td>±19V</td>
<td>±15V</td>
</tr>
<tr>
<td>Output Short Circuit Duration</td>
<td>Continuous</td>
<td>Continuous</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>900 mW</td>
<td>670 mW</td>
</tr>
<tr>
<td>(T_{j \text{ max}})</td>
<td>150 °C</td>
<td>115 °C</td>
</tr>
<tr>
<td>(\theta_{jA}) (Typical)</td>
<td>100 °C/W</td>
<td>85 °C/W</td>
</tr>
<tr>
<td>ESD Tolerance</td>
<td>Rating to be determined</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>−65 °C ≤ (T_A) ≤ 150 °C</td>
<td></td>
</tr>
</tbody>
</table>

DC Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LF444A</th>
<th>LF444</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mV</td>
<td>nA</td>
</tr>
<tr>
<td>(V_{OS})</td>
<td>Input Offset Voltage</td>
<td>(R_S = 10k), (T_A = 25°C)</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0°C ≤ (T_A) ≤ +70°C</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>−55°C ≤ (T_A) ≤ +125°C</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>(\Delta V_{OS}/\Delta T)</td>
<td>Average TC of Input Offset Voltage</td>
<td>(R_S = 10 , k\Omega)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>(I_{OS})</td>
<td>Input Offset Current</td>
<td>(V_S = \pm 15V)</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_I = 25°C)</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_I = 70°C)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>(I_B)</td>
<td>Input Bias Current</td>
<td>(V_S = \pm 15V)</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_I = 25°C)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_I = 70°C)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_I = 125°C)</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

1. Unless otherwise specified the specifications apply over the full temperature range and for \(V_S = \pm 20V \) for the LF444A and for \(V_S = \pm 15V \) for the LF444. \(V_{OS}, I_B \), and \(I_{OS} \) are measured at \(V_{CM} = 0 \).
2. The input bias currents are junction leakage currents which approximately double for every 10 °C increase in the junction temperature, \(T_I \). Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, \(P_D \). \(T_I = T_A + \theta_{jA} P_D \) where \(\theta_{jA} \) is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
DC Electrical Characteristics (1) (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LF444A</th>
<th>LF444</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10(^{12})</td>
<td>10(^{12})</td>
<td>Ω</td>
</tr>
<tr>
<td>R(_{IN})</td>
<td>Input Resistance</td>
<td>(T_j = 25^\circ\ C)</td>
<td>10</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>A(_{VOL})</td>
<td>Large Signal Voltage Gain</td>
<td>(V_S = \pm 15V, V_O = \pm 10V)</td>
<td>50</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R_L = 10 , k\Omega, T_A = 25^\circ\ C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Over Temperature</td>
<td>25</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>V(_O)</td>
<td>Output Voltage Swing</td>
<td>(V_S = \pm 15V, R_L = 10 , k\Omega)</td>
<td>±12</td>
<td>±13</td>
<td>±12</td>
</tr>
<tr>
<td>V(_{CM})</td>
<td>Input Common-Mode Voltage Range</td>
<td>±16</td>
<td>+18</td>
<td>±11</td>
<td>+14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>−17</td>
<td></td>
<td>−12</td>
</tr>
<tr>
<td>CMRR</td>
<td>Common-Mode Rejection Ratio</td>
<td>(R_S \leq 10 , k\Omega)</td>
<td>80</td>
<td>100</td>
<td>70</td>
</tr>
<tr>
<td>PSRR</td>
<td>Supply Voltage Rejection Ratio</td>
<td>See((3))</td>
<td>80</td>
<td>100</td>
<td>70</td>
</tr>
<tr>
<td>I(_S)</td>
<td>Supply Current</td>
<td></td>
<td>0.6</td>
<td></td>
<td>0.6</td>
</tr>
</tbody>
</table>

(3) Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice from ±15V to ±5V for the LF444 and from ±20V to ±5V for the LF444A.

AC Electrical Characteristics (1)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LF444A</th>
<th>LF444</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>−120</td>
<td></td>
<td>−120</td>
</tr>
<tr>
<td>Amplifier-to-Amplifier Coupling</td>
<td></td>
<td>(V_S = \pm 15V, T_A = 25^\circ\ C)</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>SR</td>
<td>Slew Rate</td>
<td>(V_S = \pm 15V, T_A = 25^\circ\ C)</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>GBW</td>
<td>Gain-Bandwidth Product</td>
<td>(R_S \leq 100\Omega), (f \leq 1\ kHz)</td>
<td>35</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>e(_n)</td>
<td>Equivalent Input Noise Voltage</td>
<td>(T_A = 25^\circ\ C, f = 1\ kHz)</td>
<td>0.01</td>
<td></td>
<td>0.01</td>
</tr>
</tbody>
</table>

(1) Unless otherwise specified the specifications apply over the full temperature range and for \(V_S = \pm 20V\) for the LF444A and for \(V_S = \pm 15V\) for the LF444. \(V_{OS}, I_B,\) and \(I_{OS}\) are measured at \(V_{CM} = 0\).
Typical Performance Characteristics

Input Bias Current

\[V_S = \pm 15V \]
\[T_A = 25^\circ C \]

Figure 3.

Input Bias Current

\[V_C = 0V \]
\[V_S = \pm 15V \]

Figure 4.

Supply Current

\[125^\circ C \]
\[25^\circ C \]
\[-55^\circ C \]

Figure 5.

Positive Common-Mode Input Voltage Limit

\[-55^\circ C \leq T_A \leq 125^\circ C \]

Figure 6.

Negative Common-Mode Input Voltage Limit

\[-55^\circ C \leq T_A \leq 125^\circ C \]

Figure 7.

Positive Current Limit

\[V_S = \pm 15V \]

Figure 8.
Typical Performance Characteristics (continued)

Negative Current Limit

\[
\begin{align*}
V_s &= \pm 15\text{V} \\
T_A &= 25^\circ\text{C} \\
T_A &= 15^\circ\text{C} \\
T_A &= -55^\circ\text{C} \\
\end{align*}
\]

Output Voltage Swing

\[
\begin{align*}
R_L &= 10\text{k}\Omega \\
V_s &= \pm 15\text{V} \\
T_A &= 25^\circ\text{C} \\
C_L &= 100\text{ pF} \\
\end{align*}
\]

Figure 9.

Output Voltage Swing

\[
\begin{align*}
\text{SUPPLY VOLTAGE (V)} \\
\text{SINK CURRENT (mA)} \\
\end{align*}
\]

Figure 10.

Output Voltage Swing

\[
\begin{align*}
\text{OUTPUT VOLTAGE SWING (Vp-p)} \\
R_L \rightarrow \text{OUTPUT LOAD (k}\Omega) \\
V_s &= \pm 15\text{V} \\
T_A &= 25^\circ\text{C} \\
\end{align*}
\]

Figure 11.

Gain Bandwidth

\[
\begin{align*}
\text{UNITY GAIN BANDWIDTH (MHz)} \\
T_A &= -55^\circ\text{C} \\
T_A &= 25^\circ\text{C} \\
T_A &= 125^\circ\text{C} \\
R_L &= 10\text{k}\Omega \\
C_L &= 100\text{ pF} \\
\end{align*}
\]

Figure 12.

Slew Rate

\[
\begin{align*}
\text{SLEW RATE (V/s)} \\
V_s &= \pm 15\text{V} \\
R_L &= 10\text{k}\Omega \\
A_V &= 1 \\
\text{TEMPERATURE (C)} \\
\end{align*}
\]

Figure 13.

Copyright © 1998–2013, Texas Instruments Incorporated

Submit Documentation Feedback
Typical Performance Characteristics (continued)

Distortion vs Frequency

Undistorted Output Voltage Swing

Figure 15.

Figure 16.

Open Loop Frequency Response

Common-Mode Rejection Ratio

Figure 17.

Figure 18.

Power Supply Rejection Ratio

Equivalent Input Noise Voltage

Figure 19.

Figure 20.
Typical Performance Characteristics (continued)

Open Loop Voltage Gain

Output Impedance

Inverter Settling Time

Figure 21.

Figure 22.

Figure 23.
Pulse Response

Small Signal Inverting

Large Signal Inverting

Small Signal Non-Inverting

Large Signal Non-Inverting

Figure 24.

Figure 25.

Figure 26.

Figure 27.
APPLICATION HINTS

This device is a quad low power op amp with JFET input devices (BI-FET™). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.

Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversal of phase to the output. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.

Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.

The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3V of the negative supply, an increase in input offset voltage may occur.

Each amplifier is individually biased to allow normal circuit operation with power supplies of ±3.0V. Supply voltages less than these may degrade the common-mode rejection and restrict the output voltage swing.

The amplifiers will drive a 10 kΩ load resistance to ±10V over the full temperature range. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings.

Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize “pick-up” and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.
Typical Application

Figure 28. pH Probe Amplifier/Temperature Compensator

***For R2 = 50k, R4 = 330k ± 1%
For R2 = 100k, R4 = 75k ± 1%
For R2 = 200k, R4 = 56k ± 1%
**Polystyrene
*Film resistor type RN60C
To calibrate, insert probe in pH = 7 solution. Set the “TEMPERATURE ADJUST” pot, R2, to correspond to the solution temperature; full clockwise for 0°C, and proportionately for intermediate temperatures, using a turns-counting dial. Then set “CALIBRATE” pot so output reads 7V.
Typical probe = Ingold Electrodes #465-35

Detailed Schematic

Figure 29. 1/4 Quad
REVISION HISTORY

Changes from Revision C (March 2013) to Revision D

- Changed layout of National Data Sheet to TI format .. 10
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish (6)</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF444ACN/NOPB</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>NFF</td>
<td>14</td>
<td>25</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-NA-UNLIM</td>
<td>0 to 70</td>
<td>LF444ACN</td>
<td>Samples</td>
</tr>
<tr>
<td>LF444CM</td>
<td>NRND</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>55</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>0 to 70</td>
<td>LF444CM</td>
<td>Samples</td>
</tr>
<tr>
<td>LF444CM/NOPB</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>55</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>LF444CM</td>
<td>Samples</td>
</tr>
<tr>
<td>LF444CN/NOPB</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>NFF</td>
<td>14</td>
<td>25</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-NA-UNLIM</td>
<td>0 to 70</td>
<td>LF444CN</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

(3) MSL, Peak Temp - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

REEL DIMENSIONS

![Reel Dimensions Diagram](image)

TAPE DIMENSIONS

![Tape Dimensions Diagram](image)

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

![Quadrant Assignments Diagram](image)

All dimensions are nominal.

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width (W1) (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin 1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF444CMX/NOPB</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.35</td>
<td>2.3</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A0</th>
<th>Dimension designed to accommodate the component width</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0</td>
<td>Dimension designed to accommodate the component length</td>
</tr>
<tr>
<td>K0</td>
<td>Dimension designed to accommodate the component thickness</td>
</tr>
<tr>
<td>W</td>
<td>Overall width of the carrier tape</td>
</tr>
<tr>
<td>P1</td>
<td>Pitch between successive cavity centers</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF444CMX/NOPB</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0.15) each side.
D. Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0.43) each side.
E. Reference JEDEC MS-012 variation AB.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC–7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC–7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
DIMENSIONS ARE IN INCHES
DIMENSIONS IN () FOR REFERENCE ONLY
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated