

LM1558QML Dual Operational Amplifier

Check for Samples: LM1558QML

FEATURES

- No Frequency Compensation Required
- Short-Circuit Protection
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- 8-Lead Can and 8-Lead mini DIP
- No Latch up when Input Common Mode Range is Exceeded

Connection Diagram

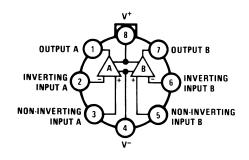


Figure 1. TO-99 Package Top View See Package Number LMC

DESCRIPTION

The LM1558 is a general purpose dual operational amplifier. The two amplifiers share a common bias network and power supply leads. Otherwise, their operation is completely independent.

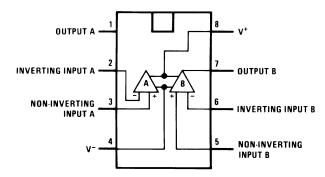
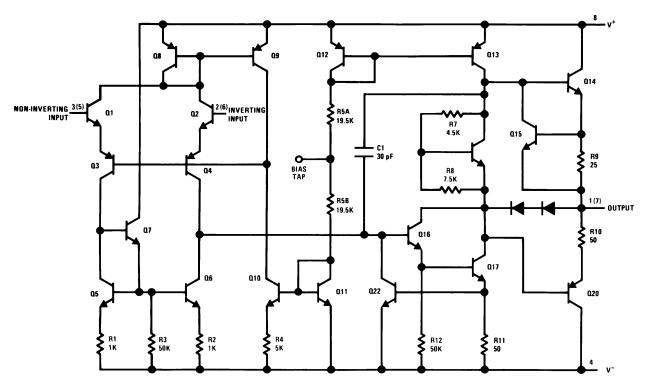



Figure 2. CDIP Package
Top View
See Package Number NAB0008A

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Schematic Diagram

Numbers in parentheses are pin numbers for amplifier B.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings⁽¹⁾

Supply Voltage				±22V
Power Dissipation (2)			8LD TO-99	500 mW
Power Dissipation (=)			8LD CERDIP	TBD
Differential Input Voltage				±30V
Input Voltage (3)	±15V			
Output Short-Circuit Duration	Continuous			
Operating Temperature Range	-55°C ≤ T _A ≤ +125°C			
Maximum Junction Temperatur	150°C			
Storage Temperature Range	-65°C ≤ T _A ≤ +150°C			
Lead Temperature (Soldering,	10 sec.)			260°C
Lead Temperature (Soldering		TO 00 81 D	Still Air	150°C/W
		.) TO-99 8LD Still Air 500LF/Min A CERDIP 8LD Still Air 500LF/Min A TO-99 8LD	500LF/Min Air flow	85°C/W
The word Decistors	θ _{JA}	CEDDID OLD	$8 LD \ CERDIP \ TBD \\ \pm 30 V \\ \pm 15 V \\ Continuou \\ -55^{\circ}C \le T_{A} \le + \\ 150^{\circ}C \\ -65^{\circ}C \le T_{A} \le + \\ 260^{\circ}C \\ TO-99 \ 8 LD \ Still \ Air \ 150^{\circ}C/W \\ 500 LF/Min \ Air \ flow \ 85^{\circ}C/W \\ CERDIP \ 8 LD \ Still \ Air \ 125^{\circ}C/W \\ 500 LF/Min \ Air \ flow \ 70^{\circ}C/W \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	125°C/W
Thermal Resistance		CERDIP 8LD		70°C/W
Thermal Resistance		TO-99 8LD	30°C/W	
	θ _{JA} TO-99 8LD 500LF/Min Air flow Still Air 500LF/Min Air flow TO-99 8LD TO-99 8LD	22°C/W		
ESD tolerance ⁽⁴⁾				300V

- (1) "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed.
- The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), θ_{JA} (package junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $P_{Dmax} = (T_{Jmax} - T_A)/\theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For supply Voltages less than ± 15 V, the absolute maximum input Voltage is equal to the supply Voltage.
- (4) Human body model, 1.5 K Ω in series with 100 pF.

Quality Conformance Inspection

MIL-STD-883, Method 5005 - Group A

Subgroup	Description	Temp (C)
1	Static tests at	+25
2	Static tests at	+125
3	Static tests at	-55
4	Dynamic tests at	+25
5	Dynamic tests at	+125
6	Dynamic tests at	-55
7	Functional tests at	+25
8A	Functional tests at	+125
8B	Functional tests at	-55
9	Switching tests at	+25
10	Switching tests at	+125
11	Switching tests at	-55

Product Folder Links: LM1558QML

LM1558 Electrical Characteristics DC Parameters

The following conditions apply, unless otherwise specified. $V_{CC} = \pm 15V$, $V_{CM} = 0V$, $R_S = 10K\Omega$

Symbol	Parameter	Conditions	Note	Min	Max	Unit	Sub- group
V_{IO}	Input Offset Voltage	V _{CM} = -12V		-5.0	5.0	mV	1
				-6.0	6.0	mV	2, 3
		V _{CM} = +12V		-5.0	5.0	mV	1
				-6.0	6.0	mV	2, 3
		$V_{CM} = 0V$		-5.0	5.0	mV	1
				-6.0	6.0	mV	2, 3
		$V_{CC} = 0V$, $R_S = 50\Omega$		-5.0	5.0	mV	1
				-6.0	6.0	mV	2, 3
		$V_{CC} = \pm 5V$, $V_{CM} = 0V$		-5.0	5.0	mV	1
				-6.0	6.0	mV	2, 3
I_{1O}	Input Offset Current	V _{CM} = -12V		-200	200	nA	1
				-500	500	nA	2, 3
		V _{CM} = +12V		-200	200	nA	1
				-500	500	nA	2, 3
		$V_{CM} = 0V$		-200	Min Max Onit Ground -5.0 5.0 mV 1 -6.0 6.0 mV 2, 3 -5.0 5.0 mV 1 -6.0 6.0 mV 2, 3 -5.0 5.0 mV 1 -6.0 6.0 mV 2, 3 -5.0 5.0 mV 1 -6.0 6.0 mV 2, 3 -5.0 5.0 mV 1 -6.0 6.0 mV 2, 3 -5.0 5.0 mV 1 -6.0 6.0 mV 2, 3 -5.0 5.0 mV 1 -6.0 6.0 mV 2, 3 -5.0 5.0 mA 1 -500 500 nA 2, 3 -200 200 nA 1 -500 500 nA 2, 3 -200 200 nA 1 -500 500 nA 2, 3 -500 500 nA 2, 3 -500 500 nA 1 -500 500 nA 2, 3 -500 500 nA 1 -500 500 nA 1 -500 500 nA 2, 3 -500 500 nA 1 -500 500 nA 2, 3 -500 500 nA 1 -500 500 nA 2, 3 -500 500 nA 1 -500 500 nA 2, 3 -500 500 nA 1 -500 500 nA 2, 3 -500 500 nA	1	
				-500	500	nA	nA 1 nA 2, 3
		$V_{CC} = \pm 5V$, $V_{CM} = 0V$		-200	200	nA	1
				-500	500	nA	2, 3
I _{IB}	Input Bias Current	V _{CM} = -12V			500	nA	1
					1500	nA	2, 3
		V _{CM} = +12V			500	nA	1
					1500	nA	2, 3
		V _{CM} = 0V			500	nA	1
					1500	nA	2, 3
		$V_{CC} = \pm 5V$, $V_{CM} = 0V$			500	nA	1
					1500	nA	2, 3
PSRR	Power Supply Rejection Ratio	±5V ≤ V _{CC} ≤ ±15V		77		dB	1, 2, 3
CMRR	Common Mode Rejection Ratio	-12V ≤ V _{CM} ≤ 12V		70		dB	1, 2, 3
I _{CC}	Power Supply Current	$R_S = 50\Omega$ (both amplifiers			5.0	mA	1, 2,
		measured together)			7.0	mA	3
+l _{OS}	Short Circuit Current	$R_S = 50\Omega$, $V_O = 0V$		-45	-14	mA	1
				-45	-9	mA	2
				-50	-9	mA	3
-l _{os}	Short Circuit Current	$R_S = 50\Omega$, $V_O = 0V$		14	45	mA	1
				9.0	45	mA	2
				9.0	50	mA	3
VI	Input Voltage Range		See ⁽¹⁾	-12	12	V	1, 2, 3
R _I	Input Resistance	$R_I = 5(KT/q I_{IB})$	See ⁽²⁾	0.3		МΩ	
+V _{OP}	Output Voltage Swing	$R_S = 50\Omega$, $R_L = 10K\Omega$, $V_{CC} = \pm 20V$		16		V	4, 5, 6
		$\begin{aligned} R_{S} &= 50\Omega, \ R_{L} = 2K\Omega, \\ V_{CC} &= \pm 20V \end{aligned}$		15		V	4, 5, 6
		$R_S = 50\Omega$, $R_L = 10K\Omega$		12		V	4, 5, 6
		$R_S = 50\Omega$, $R_L = 2K\Omega$		10		V	4, 5, 6

Submit Documentation Feedback

⁽¹⁾ Specified by the CMRR test.(2) Specified parameter not tested.

LM1558 Electrical Characteristics DC Parameters (continued)

The following conditions apply, unless otherwise specified. V_{CC} = ±15V, V_{CM} = 0V, R_S = 10K Ω

Symbol	Parameter	Conditions	Note	Min	Max	Unit	Sub- group
-V _{OP}	Output Voltage Swing	$R_S = 50\Omega$, $R_L = 10K\Omega$, $V_{CC} = \pm 20V$			-16	V	4, 5, 6
		$R_S = 50\Omega$, $R_L = 2K\Omega$, $V_{CC} = \pm 20V$			-15	V	4, 5, 6
		$R_S = 50\Omega$, $R_L = 10K\Omega$			-12	V	4, 5, 6
		$R_S = 50\Omega$, $R_L = 2K\Omega$			-10	V	4, 5, 6
+A _{VS}	Large Signal Voltage Gain	$R_S = 50\Omega$, $R_L = 2K\Omega$, $V_O = 10V$		50		V/mV	4
				25		V/mV	5, 6
-A _{VS}	Large Signal Voltage Gain	$R_S = 50\Omega$, $R_L = 2K\Omega$,		50		V/mV	4
		V _O = -10V		25		V/mV	5, 6

LM1558 Electrical Characteristics AC Parameters

The following conditions apply, unless otherwise specified. $V_{CC} = \pm 15V$, $V_{CM} = 0V$

Symbol	Parameter Conditions		Note	Min	Max	Unit	Sub- group
		V _I = -5 to 5V		0.2		V/µS	9
+SR	Slew Rate	V_I = -5 to 5V, R_L = 2K Ω , C_L = 100pF	See ⁽¹⁾	0.2		V/µS	9
		V _I = 5 to -5V		0.2		V/µS	9
-SR	Slew Rate	$V_I = 5 \text{ to } -5V, R_L = 2K\Omega, $ $C_L = 100pF$	See ⁽¹⁾	0.2		V/µS	9
GBW	Gain Bandwidth	$V_{I} = 50 \text{mV}_{\text{RMS}}, f = 20 \text{KHz},$ $R_{S} = 50 \Omega, R_{L} = 2 \text{K} \Omega$		250		KHz	9
t _R	Rise Time	$R_L = 2K\Omega$, $C_L = 100pF$	See ⁽¹⁾		1	μS	9
OS	Overshoot	$R_L = 2K\Omega$, $C_L = 100pF$	See ⁽¹⁾		30	%	9

⁽¹⁾ Specified parameter not tested.

REVISION HISTORY SECTION

Date Released	Revision	Section	Originator	Changes
05/24/05	А	New Released Corporate format. Electrical Section	R. Malone	1 MDS data sheet converted into one corp. data sheet format. MDS data MNLM1558–X, Rev. 0B0 will be achrived. Deleted Drift table from electrical section. Reason: Referenced products are 883 only.
08/04/05	В	Added Thermal Resistance limit in the Absolute Maximum Ratings Section	R. Malone	Added Thermal Resistance limit in the Absolute Maximum Ratings Section for all packages.
03/20/13	В	All		Changed layout of National Data Sheet to TI format

Submit Documentation Feedback

11-Nov-2025

www.ti.com

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
LM1558H/883	Active	Production	TO-99 (LMC) 8	20 JEDEC TRAY (5+1)	Yes	Call TI	Level-1-NA-UNLIM	-55 to 125	LM1558H/883 Q ACO LM1558H/883 Q >T
LM1558J/883	Active	Production	CDIP (NAB) 8	40 TUBE	No	SNPB	Level-1-NA-UNLIM	-55 to 125	LM1558J /883 Q ACO /883 Q >T

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

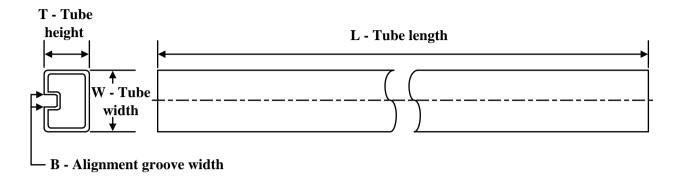
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

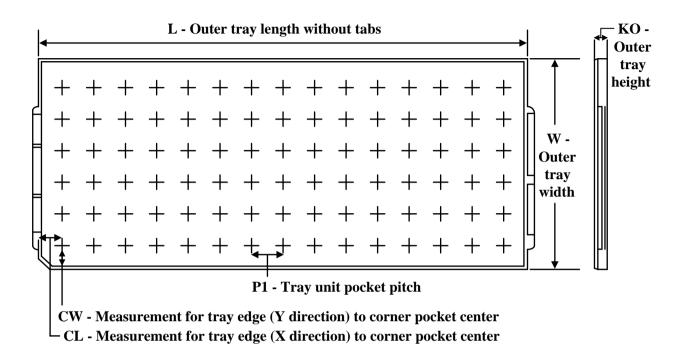

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE MATERIALS INFORMATION

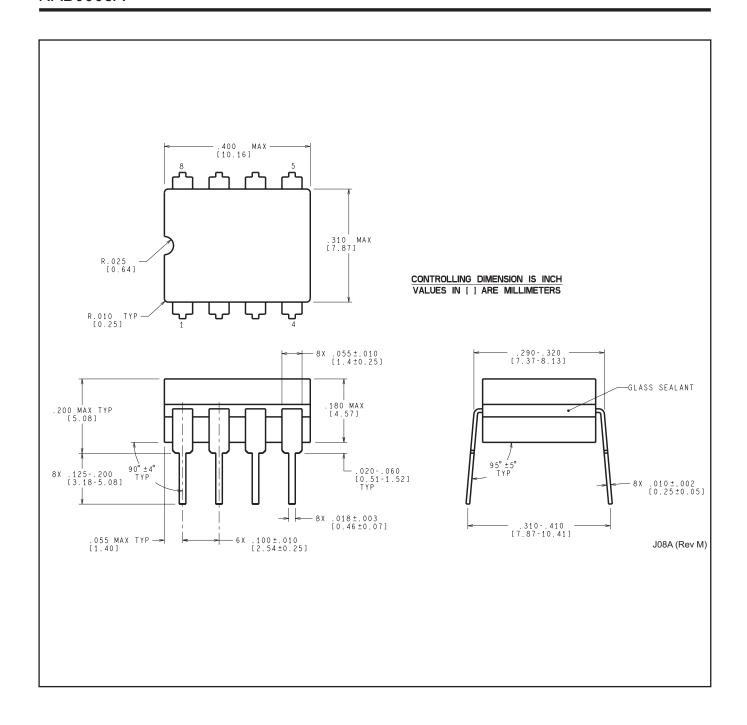
www.ti.com 21-May-2025

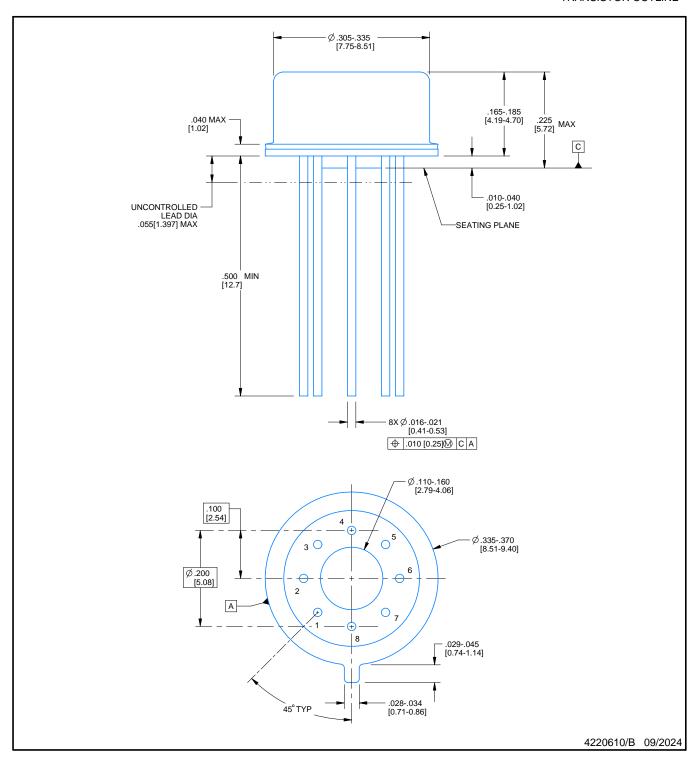
TUBE


*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)	
LM1558J/883	NAB	CDIP	8	40	506.98	15.24	13440	NA	

www.ti.com 21-May-2025


TRAY


Chamfer on Tray corner indicates Pin 1 orientation of packed units.

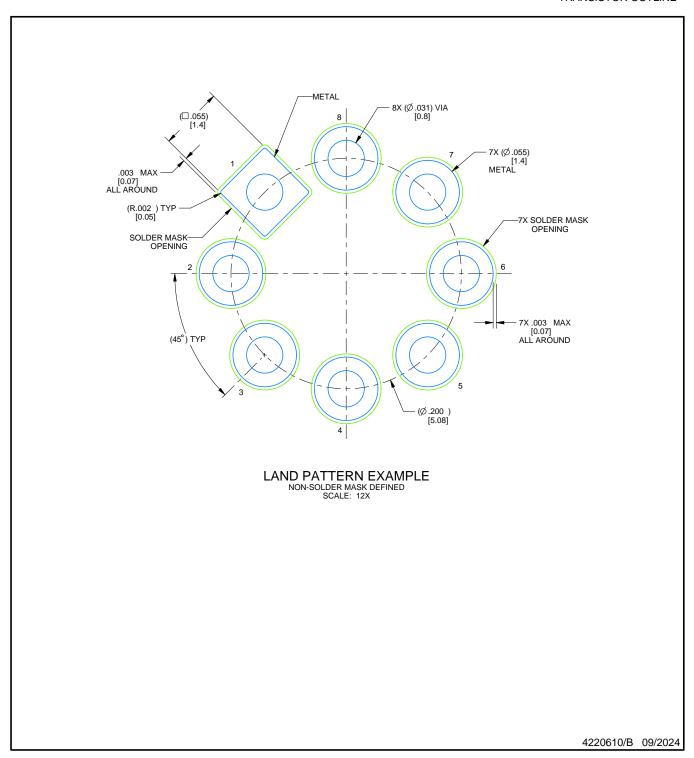
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	Unit array matrix	Max temperature (°C)	L (mm)	W (mm)	Κ0 (μm)	P1 (mm)	CL (mm)	CW (mm)
LM1558H/883	LMC	TO-CAN	8	20	2 X 10	150	126.49	61.98	8890	11.18	12.95	18.54

TRANSISTOR OUTLINE

NOTES:

- 1. All linear dimensions are in inches [millimeters]. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.


 2. This drawing is subject to change without notice.

 3. Pin numbers shown for reference only. Numbers may not be marked on package.

- 4. Reference JEDEC registration MO-002/TO-99.

TRANSISTOR OUTLINE

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025