LM25180 is a primary-side regulated (PSR) flyback converter with high efficiency over a wide input voltage range of 4.5 V to 42 V. The isolated output voltage is sampled from the primary-side flyback voltage, eliminating the need for an optocoupler, voltage reference, or third winding from the transformer for output voltage regulation. The high level of integration results in a simple, reliable and high-density design with only one component crossing the isolation barrier. Boundary conduction mode (BCM) switching enables a compact magnetic solution and better than ±1% load and line regulation performance. An integrated 65-V power MOSFET provides output power up to 7 W with enhanced headroom for line transients.

The LM25180 converter simplifies implementation of isolated DC/DC supplies with optional features to optimize performance for the target end equipment. The output voltage is set by one resistor, while an optional resistor improves output voltage accuracy by negating the thermal coefficient of the flyback diode voltage drop. Additional features include an internally-fixed or externally-programmable soft start, optional bias supply connection for higher efficiency, precision enable input with hysteresis for adjustable line UVLO, hiccup-mode overload protection, and thermal shutdown protection with automatic recovery.

The LM25180 flyback converter is available in a 8-pin, 4-mm × 4-mm, thermally-enhanced WSON package with 0.8-mm pin pitch.

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. ADVANCE INFORMATION for pre-production products; subject to change without notice.
Table of Contents

1 Features ... 1
2 Applications .. 1
3 Description ... 1
4 Revision History .. 2
5 Pin Configuration and Functions 3
6 Specifications .. 4
 6.1 Absolute Maximum Ratings 4
 6.2 Recommended Operating Conditions 4
 6.3 Thermal Information ... 4
 6.4 Electrical Characteristics 4
7 Detailed Description .. 6
 7.1 Overview ... 6
 7.2 Functional Block Diagram 6
 7.3 Feature Description ... 6
 7.4 Device Functional Modes 11
8 Application and Implementation 12
9 Power Supply Recommendations 27
10 Layout .. 28
 10.1 Layout Guidelines ... 28
 10.2 Layout Examples .. 29
11 Device and Documentation Support 30
 11.1 Device Support .. 30
 11.2 Documentation Support 30
 11.3 Receiving Notification of Documentation Updates 31
 11.4 Community Resources 31
 11.5 Trademarks ... 31
 11.6 Electrostatic Discharge Caution 31
 11.7 Glossary .. 31
12 Mechanical, Packaging, and Orderable Information 31

4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

<table>
<thead>
<tr>
<th>DATE</th>
<th>REVISION</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 2018</td>
<td>*</td>
<td>Initial release</td>
</tr>
</tbody>
</table>
Pin Configuration and Functions

5 Pin Configuration and Functions

NGU Package
8-Pin WSON With Wettable Flanks
Top View

<table>
<thead>
<tr>
<th>PIN NO.</th>
<th>NAME</th>
<th>I/O(1)</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SW</td>
<td>P</td>
<td>Switch node that is internally connected to the drain of the N-channel power MOSFET. Connect to the primary-side switching terminal of the flyback transformer.</td>
</tr>
<tr>
<td>2</td>
<td>FB</td>
<td>I</td>
<td>Primary side feedback pin. Connect a resistor from FB to SW. The ratio of the FB resistor to the resistor at the RSET pin sets the output voltage.</td>
</tr>
<tr>
<td>3</td>
<td>VIN</td>
<td>P/I</td>
<td>Input supply connection. Source for internal bias regulators and input voltage sensing pin. Connect directly to the input supply of the converter with short, low impedance paths.</td>
</tr>
<tr>
<td>4</td>
<td>EN/UVLO</td>
<td>I</td>
<td>Enable input and undervoltage lockout (UVLO) programming pin. If the EN/UVLO voltage is below 1.1 V, the converter is in shutdown mode with all functions disabled. If the EN/UVLO voltage is greater than 1.1 V and below 1.5 V, the converter is in standby mode with the internal regulator operational and no switching. If the EN/UVLO voltage is above 1.5 V, the start-up sequence begins.</td>
</tr>
<tr>
<td>5</td>
<td>SS/BIAS</td>
<td>I</td>
<td>Soft-start or bias input. Connect a capacitor from SS/BIAS to GND to adjust the output start-up time and input inrush current. If SS/BIAS is left open, the internal 6-ms soft-start timer is activated. Connect an auxiliary winding through a low leakage diode to SS/BIAS to supply bias to the internal voltage regulator and enable internal soft start.</td>
</tr>
<tr>
<td>6</td>
<td>TC</td>
<td>I</td>
<td>Temperature compensation pin. Tie a resistor from TC to RSET to compensate for the temperature coefficient of the forward voltage drop of the secondary diode, thus improving regulation at the secondary-side output.</td>
</tr>
<tr>
<td>7</td>
<td>RSET</td>
<td>I</td>
<td>Reference resistor tied to GND to set the reference current for FB. Connect a 12.1-kΩ resistor from RSET to GND.</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>G</td>
<td>Analog and power ground. Ground connection of internal control circuits and power MOSFET.</td>
</tr>
</tbody>
</table>

(1) P = Power, G = Ground, I = Input, O = Output.
6 Specifications

6.1 Absolute Maximum Ratings
Over the recommended operating junction temperature range of –40°C to 150°C (unless otherwise noted)\(^{(1)}\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>–0.3</td>
<td>45 V</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VIN to GND</td>
<td>–0.3</td>
<td>45 V</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>EN/UVLO to GND</td>
<td>–0.3</td>
<td>45 V</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>TC to GND</td>
<td>–0.3</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS to GND</td>
<td>–0.3</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FB to GND</td>
<td>–0.3</td>
<td>45.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FB to VIN</td>
<td>–0.3</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSET to GND</td>
<td>–0.3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output voltage</td>
<td>–1.5</td>
<td>70</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>SW to GND</td>
<td>–3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW to GND (20-ns transient)</td>
<td>–3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating junction temperature, (T_J)</td>
<td>–40</td>
<td>150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature, (T_{stg})</td>
<td>–55</td>
<td>150</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

\(^{(1)}\) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 Recommended Operating Conditions
Over the recommended operating junction temperature range of –40°C to 150°C (unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IN})</td>
<td>4.5</td>
<td>42</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{SW})</td>
<td></td>
<td>65</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{EN/UVLO})</td>
<td></td>
<td>42</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{BIAS})</td>
<td></td>
<td>13</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(T_J)</td>
<td>–40</td>
<td>150</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

6.3 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(^{(1)})</th>
<th>LM25180 NGU (WSON)</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{JA}) Junction-to-ambient thermal resistance</td>
<td>41.3</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{JA}(top)) Junction-to-case (top) thermal resistance</td>
<td>34.7</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{JUB}) Junction-to-board thermal resistance</td>
<td>19.1</td>
<td>°C/W</td>
</tr>
<tr>
<td>(\Psi_{JT}) Junction-to-top characterization parameter</td>
<td>0.3</td>
<td>°C/W</td>
</tr>
<tr>
<td>(\Psi_{JB}) Junction-to-board characterization parameter</td>
<td>19.2</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{JUB}(bot)) Junction-to-case (bottom) thermal resistance</td>
<td>3.2</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

\(^{(1)}\) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.4 Electrical Characteristics
Typical values correspond to \(T_J = 25°C\). Minimum and maximum limits apply over the full –40°C to 150°C junction temperature range unless otherwise indicated. \(V_{IN} = 24\) V and \(V_{EN/UVLO} = 2\) V unless otherwise stated.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPPLY CURRENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{SHUTDOWN}) VIN shutdown current</td>
<td>(V_{EN/UVLO} = 0) V</td>
<td>3</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>(I_{ACTIVE}) VIN active current</td>
<td>(V_{EN/UVLO} = 2.5) V, (V_{RSET} = 1.8) V</td>
<td>290</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>(I_{ACTIVE_BIAS}) VIN current with BIAS connected</td>
<td>(V_{SS/BIAS} = 6) V</td>
<td>25</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
</tbody>
</table>
Electrical Characteristics (continued)

Typical values correspond to \(T_J = 25°C \). Minimum and maximum limits apply over the full −40°C to 150°C junction temperature range unless otherwise indicated. \(V_{IN} = 24 \text{ V} \) and \(V_{EN/UVLO} = 2 \text{ V} \) unless otherwise stated.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENABLE AND INPUT UVLO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{SD-RISING})</td>
<td>Standby threshold</td>
<td>(V_{EN/UVLO}) rising</td>
<td>0.65</td>
<td>1.1</td>
<td>V</td>
</tr>
<tr>
<td>(V_{SD-FALLING})</td>
<td>Shutdown threshold</td>
<td>(V_{EN/UVLO}) falling</td>
<td>0.3</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{EN-RISING})</td>
<td>Enable threshold</td>
<td>(V_{EN/UVLO}) rising</td>
<td>1.47</td>
<td>1.5</td>
<td>1.53 V</td>
</tr>
<tr>
<td>(V_{EN-HYST})</td>
<td>Enable current hysteresis</td>
<td>(V_{EN/UVLO} = 1.6 \text{ V})</td>
<td>5</td>
<td></td>
<td>(\mu \text{A})</td>
</tr>
<tr>
<td>(V_{EN-HYST})</td>
<td>Enable voltage hysteresis</td>
<td>(V_{EN/UVLO}) falling</td>
<td>0.05</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>FEEDBACK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{RSET})</td>
<td>RSET current</td>
<td>(R_{RSET} = 12.1 \text{ k}\Omega)</td>
<td>100</td>
<td></td>
<td>(\mu \text{A})</td>
</tr>
<tr>
<td>(V_{RSET})</td>
<td>RSET regulation voltage</td>
<td>(R_{RSET} = 12.1 \text{ k}\Omega)</td>
<td>1.198</td>
<td>1.21</td>
<td>1.222 V</td>
</tr>
<tr>
<td>(V_{FB-VIN1})</td>
<td>FB to VIN voltage</td>
<td>(I_{FB} = 80 \mu \text{A})</td>
<td>−40</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>(V_{FB-VIN2})</td>
<td>FB to VIN voltage</td>
<td>(I_{FB} = 120 \mu \text{A})</td>
<td>40</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>SWITCHING FREQUENCY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(F_{SW-MIN})</td>
<td>Minimum switching frequency</td>
<td></td>
<td>10</td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>(F_{SW-MAX})</td>
<td>Maximum switching frequency</td>
<td></td>
<td>350</td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>(t_{ON-MIN})</td>
<td>Minimum switch on-time</td>
<td></td>
<td>150</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>DIODE THERMAL COMPENSATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{TC})</td>
<td>TC voltage</td>
<td>(I_{TC} = \pm 10 \mu \text{A}, T_J = 25°C)</td>
<td>1.2</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>POWER SWITCHES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_{DS(on)})</td>
<td>MOSFET on-state resistance</td>
<td></td>
<td>0.35</td>
<td></td>
<td>(\Omega)</td>
</tr>
<tr>
<td>SOFT-START AND BIAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{SS})</td>
<td>SS ext capacitor charging current</td>
<td></td>
<td>5</td>
<td></td>
<td>(\mu \text{A})</td>
</tr>
<tr>
<td>(I_{SS})</td>
<td>Internal SS time</td>
<td></td>
<td>6</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>(V_{BIAS-UVLO-RISE})</td>
<td>BIAS enable voltage</td>
<td>(V_{SS/BIAS}) rising</td>
<td>5.68</td>
<td>5.9</td>
<td>V</td>
</tr>
<tr>
<td>(V_{BIAS-UVLO-HYST})</td>
<td>BIAS UVLO hysteresis</td>
<td>(V_{SS/BIAS}) falling</td>
<td>180</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>CURRENT LIMIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{PEAK})</td>
<td>Peak current limit threshold</td>
<td></td>
<td>1.35</td>
<td>1.5</td>
<td>1.65 A</td>
</tr>
<tr>
<td>THERMAL SHUTDOWN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_{SD})</td>
<td>Thermal shutdown threshold</td>
<td>(T_J) rising</td>
<td>180</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>(T_{SD-HYS})</td>
<td>Thermal shutdown hysteresis</td>
<td></td>
<td>20</td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>
7 Detailed Description

7.1 Overview

The LM25180 primary-side regulated (PSR) flyback converter is a high-density, cost-effective solution for industrial systems requiring less than 7 W of isolated DC/DC power. This compact, easy-to-use flyback converter with low I_Q can be applied over a wide input voltage range from 4.5 V to 42 V, with operation down to 3.5 V after startup. Innovative frequency and current amplitude modulation enables high conversion efficiency across the entire load and line range. Primary-side regulation of the isolated output voltage using sampled values of the primary winding voltage eliminates the need for an opto-coupler or an auxiliary transformer winding for feedback. Regulation performance that rivals that of traditional opto-coupler solutions is achieved without the associated cost, solution size and reliability concerns. The LM25180 converter services a wide range of applications including IGBT-based motor drives, factory automation, and medical equipment.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Integrated Power MOSFET

The LM25180 is a flyback dc/dc converter with integrated 65-V, 1.5-A N-channel power MOSFET. During the MOSFET on-time, the transformer primary current increases from zero with slope \(V_{IN} / L_{MAG} \) (where \(L_{MAG} \) is the transformer primary-referred magnetizing inductance) while the output capacitor supplies the load current. When the high-side MOSFET is turned off by the control logic, the SW voltage \(V_{SW} \) swings up to approximately \(V_{IN} + (N_{PS} \times V_{OUT}) \), where \(N_{PS} = N_P/N_S \) is the primary-to-secondary turns ratio of the transformer. The magnetizing current flows in the secondary side through the flyback diode, charging the output capacitor and supplying current to the load. Duty cycle \(D \) is defined as \(t_{ON} / t_{SW} \), where \(t_{ON} \) is the MOSFET conduction time and \(t_{SW} \) is the switching period.

Figure 1 shows a typical schematic of the LM25180 PSR flyback circuit. Components denoted in red are optional depending on the application requirements.
Feature Description (continued)

Figure 1. LM25180 Flyback Converter Schematic (Optional Components in Red)

7.3.2 PSR Flyback Modes of Operation

The LM25180 uses a variable-frequency, peak current-mode (VFPCM) control architecture with three possible modes of operation as illustrated in Figure 2.

Figure 2. Three Modes of Operation Illustrated by Variation of Switching Frequency With Load
Feature Description (continued)

The LM25180 operates in boundary conduction mode (BCM) at heavy loads. The power MOSFET turns on when the current in the secondary winding reaches zero, and the MOSFET turns off when the peak primary current reaches the level dictated by the output of the internal error amplifier. As the load is decreased, the frequency increases in order to maintain BCM operation. The duty cycle of the flyback converter is given Equation 1, where \(V_D \) is the forward voltage drop of the flyback diode as its current approaches zero.

\[
D_{BCM} = \frac{(V_{OUT} + V_D) \cdot N_{PS}}{V_{IN} + (V_{OUT} + V_D) \cdot N_{PS}}
\]

(1)

The output power in BCM is given by Equation 2, where the applicable switching frequency and peak primary current in BCM are specified by Equation 3 and Equation 4, respectively.

\[
P_{OUT(BCM)} = \frac{L_{MAG} \cdot I_{PRI-PK(BCM)}^2}{2} \cdot F_{SW(BCM)}
\]

(2)

\[
F_{SW(BCM)} = \frac{1}{I_{PRI-PK(BCM)} \left(\frac{L_{MAG}}{V_{IN}} + \frac{L_{MAG}}{N_{PS} \cdot (V_{OUT} + V_D)} \right)}
\]

(3)

\[
I_{PRI-PK(BCM)} = \frac{2 \cdot (V_{OUT} + V_D) \cdot I_{OUT}}{V_{IN} \cdot D}
\]

(4)

As the load decreases, the LM25180 clamps the maximum switching frequency to 350 kHz, and the converter enters discontinuous conduction mode (DCM). The power delivered to the output in DCM is proportional to the peak primary current squared as given by Equation 5 and Equation 6. Thus, as the load decreases, the peak current reduces to maintain regulation at 350-kHz switching frequency.

\[
P_{OUT(DCM)} = \frac{L_{MAG} \cdot I_{PRI-PK(DCM)}^2}{2} \cdot F_{SW(DCM)}
\]

(5)

\[
I_{PRI-PK(DCM)} = \sqrt{\frac{2 \cdot I_{OUT} \cdot (V_{OUT} + V_D)}{L_{MAG} \cdot F_{SW(DCM)}}}
\]

(6)

\[
D_{DCM} = \frac{L_{MAG} \cdot I_{PRI-PK(DCM)} \cdot F_{SW(DCM)}}{V_{IN}}
\]

(7)

At even lighter loads, the primary-side peak current set by the internal error amplifier decreases to a minimum level of 0.3 A, or 20% of its 1.5-A peak value, and the MOSFET off-time extends to maintain the output load requirement. The system operates in frequency foldback mode (FFM), and the switching frequency decreases as the load current is reduced. Other than a fault condition, the lowest frequency of operation of the LM25180 is 12 kHz, which sets a minimum load requirement of approximately 0.5% full load.

7.3.3 Setting the Output Voltage

To minimize output voltage regulation error, the LM25180 senses the reflected secondary voltage when the secondary current reaches zero. The feedback (FB) resistor, which is connected between SW and FB as shown in Figure 1, is determined using Equation 8, where \(R_{SET} \) is nominally 12.1 kΩ.

\[
R_{FB} = (V_{OUT} + V_D) \cdot N_{PS} \cdot \frac{R_{SET}}{V_{REF}}
\]

(8)
Feature Description (continued)

7.3.3.1 Diode Thermal Compensation

The LM25180 employs a unique thermal compensation circuit that adjusts the feedback setpoint based on the thermal coefficient of the flyback diode's forward voltage drop. Even though the output voltage is measured when the secondary current is effectively zero, there is still a non-zero forward voltage drop associated with the flyback diode. Select the thermal compensation resistor using Equation 9.

\[
R_{TC} = \frac{R_{FB} \cdot 3\text{mV} / \text{°C}}{N_{PS} \cdot TC_{Diode}}
\]

(9)

The temperature coefficient of the diode voltage drop may not be explicitly provided in the diode datasheet, so the effective value can be estimated based on the measured output voltage shift over temperature when the TC resistor is not installed.

7.3.4 Control Loop Error Amplifier

The inputs of the error amplifier include a level-shifted version of the FB voltage and an internal 1.21-V reference set by the resistor at RSET. A type-2 internal compensation network stabilizes the converter. In BCM operation when the output voltage is in regulation, an on-time interval is initiated when the secondary current reaches zero. The power MOSFET is subsequently turned off when an amplified version of the peak primary current exceeds the error amplifier output.

7.3.5 Precision Enable

The precision EN/UVLO input supports adjustable input undervoltage lockout (UVLO) with hysteresis for application specific power-up and power-down requirements. EN/UVLO connects to a comparator with a 1.5-V reference voltage and 50-mV hysteresis. An external logic signal can be used to drive the EN/UVLO input to toggle the output on and off for system sequencing or protection. The simplest way to enable the LM25180 is to connect EN/UVLO directly to \(V_{IN}\). This allows the LM25180 to start up when \(V_{IN}\) is within its valid operating range. However, many applications benefit from using a resistor divider \(R_{UV1}\) and \(R_{UV2}\) as shown in Figure 3 to establish a precision UVLO level.

\[
V_{IN(\text{on})} = V_{UVLO1} \left(1 + \frac{R_{UV1}}{R_{UV2}}\right)
\]

(10)

\[
V_{IN(\text{off})} = V_{UVLO2} \left(1 + \frac{R_{UV1}}{R_{UV2}}\right) - I_{UVLO} \cdot R_{UV2}
\]

(11)

Figure 3. Programmable Input Voltage UVLO With Hysteresis
Feature Description (continued)

The LM25180 also provides a low-IQ shutdown mode when the EN/UVLO voltage is pulled below a base-emitter voltage drop (approximately 0.6 V at room temperature). If the EN/UVLO voltage is below this hard shutdown threshold, the internal LDO regulator powers off, and the internal bias-supply rail collapses, shutting down the bias currents of the LM25180. The LM25180 operates in standby mode when the EN/UVLO voltage is between the hard shutdown and precision-enable thresholds.

7.3.6 Configurable Soft Start

The LM25180 has a flexible and easy-to-use soft-start control pin, SS/BIAS. The soft-start feature prevents inrush current impacting the LM25180 and the input supply when power is first applied. This is achieved by controlling the voltage at the output of the internal error amplifier. Soft start is achieved by slowly ramping up the target regulation voltage when the device is first enabled or powered up. Selectable and adjustable start-up timing options include a 6-ms internally-fixed soft start and an externally-programmable soft start.

The simplest way to use the LM25180 is to leave SS/BIAS open. The LM25180 employs an internal soft-start control ramp and starts up to the regulated output voltage in 6 ms.

However, in applications with a large amount of output capacitance, higher V\textsubscript{OUT} or other special requirements, the soft-start time can be extended by connecting an external capacitor C\textsubscript{SS} from SS/BIAS to GND. A longer soft-start time further reduces the supply current needed to charge the output capacitors while sourcing the required load current. When the EN/UVLO voltage exceeds the UVLO rising threshold and a delay of 20 µs expires, an internal current source I\textsubscript{SS} of 5 µA charges C\textsubscript{SS} and generates a ramp to control the primary current amplitude. Calculate the soft-start capacitance for a desired soft-start time, T\textsubscript{SS}, using Equation 12.

\[
C_{SS}(\text{nF}) = 5 \cdot T_{SS}(\text{ms})
\]

(12)

C\textsubscript{SS} is discharged by an internal FET when switching is disabled by EN/UVLO or thermal shutdown.

7.3.7 External Bias Supply

The LM25180 has an external bias supply feature that reduces input quiescent current and increases efficiency. When the voltage at SS/BIAS exceeds a rising threshold of 5.9 V, bias power for the internal LDO regulator can be derived from an external voltage source or from a transformer auxiliary winding as shown in Figure 4. With a bias supply connected, the LM25180 then uses its internal soft-start ramp to control the primary current during start-up.

![Figure 4. External Bias Supply Using Transformer Auxiliary Winding](image-url)
Feature Description (continued)

When using a transformer auxiliary winding for bias power, the total leakage current related to \(D_{BIAS1} \) and \(D_{BIAS2} \) should be less than 1 µA across the full operating temperature range.

7.3.8 Minimum On-Time and Off-Time

When the internal power MOSFET is turned off, the leakage inductance of the transformer resonates with the SW node parasitic capacitance. The resultant ringing behavior can be excessive with large transformer leakage inductance and may corrupt the secondary zero-current detection. In order to prevent such a situation, a minimum switch off-time, designated as \(t_{OFF-MIN} \), of maximum 500 ns is set internally to ensure proper functionality. This sets a lower limit for the transformer magnetizing inductance as discussed in Detailed Design Procedure.

Furthermore, noise effects as a result of power MOSFET turn-on can impact the internal current sense circuit measurement. To mitigate this effect, the LM25180 provides a blanking time after the MOSFET turns on. This blanking time forces a minimum on-time, \(t_{ON-MIN} \), of 150 ns.

7.3.9 Overcurrent Protection

In case of an overcurrent condition on the isolated output(s), the output voltage drops lower than the regulation level since the maximum power delivered is limited by the peak current capability on the primary side. The peak primary current is maintained at 1.5 A until the output decreases to the secondary diode voltage drop to impact the reflected signal on the primary side. At this point, the LM25180 assumes the output cannot be recovered and re-calibrates its switching frequency to 9 kHz until the overload condition is removed. The LM25180 responds with similar behavior to an output short circuit condition.

7.3.10 Thermal Shutdown

Thermal shutdown is an integrated self-protection to limit junction temperature and prevent damage related to overheating. Thermal shutdown turns off the device when the junction temperature exceeds 180°C to prevent further power dissipation and temperature rise. Junction temperature decreases after shutdown, and the restarts when the junction temperature falls to 160°C.

7.4 Device Functional Modes

7.4.1 Shutdown Mode

EN/UVLO facilitates ON and OFF control for the LM25180. When \(V_{EN/UVLO} \) is below approximately 0.6 V, the device is in shutdown mode. Both the internal LDO and the switching regulator are off. The quiescent current in shutdown mode drops to 3 µA at \(V_{IN} = 24 \) V. The LM25180 also employs internal bias rail undervoltage protection. If the internal bias supply voltage is below its UV threshold, the converter remains off.

7.4.2 Standby Mode

The internal bias rail LDO regulator has a lower enable threshold than the converter itself. When \(V_{EN/UVLO} \) is above 0.6 V and below the precision-enable threshold (1.5 V typically), the internal LDO is on and regulating. The precision enable circuitry is turned on once the internal VCC is above its UV threshold. The switching action and voltage regulation are not enabled until \(V_{EN/UVLO} \) rises above the precision enable threshold.

7.4.3 Active Mode

The LM25180 is in active mode when \(V_{EN/UVLO} \) is above the precision-enable threshold and the internal bias rail is above its UV threshold. The LM25180 operates in one of three modes depending on the load current requirement:

1. Boundary conduction mode (BCM) at heavy loads.
2. Discontinuous conduction mode (DCM) at medium loads.
3. Frequency foldback mode (FFM) at light loads.

Refer to PSR Flyback Modes of Operation for more detail.
8 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The LM25180 requires only a few external components to convert from a wide range of supply voltages to one or more isolated output rails. To expedite and streamline the process of designing of a LM25180-based converter, a comprehensive LM25180 quick-start calculator is available for download to assist the designer with component selection for a given application. WEBENCH® online software is also available to generate complete designs, leveraging iterative design procedures and access to comprehensive component databases. The following sections discuss the design procedure for both single- and dual-output implementations using specific circuit design examples.

As mentioned previously, the LM25180 also integrates several optional features to meet system design requirements, including precision enable, input UVLO, programmable soft start, output voltage thermal compensation, and external bias supply connection. Each application incorporates these features as needed for a more comprehensive design.

The application circuits detailed in Typical Applications show LM25180 configuration options suitable for several application use cases. Refer to the LM5180EVM-S05 and LM5180EVM-DUAL EVM user’s guides for more detail.

8.2 Typical Applications

8.2.1 Design 1: Wide VIN, Low IQ PSR Flyback Converter Rated at 5 V, 1 A

The schematic diagram of a 5-V, 1-A PSR flyback converter is given in Figure 5.

![Schematic Diagram](Figure 5. Schematic for Design 1 With VIN(nom) = 24 V, VOUT = 5 V, IOUT = 1 A)
8.2.1.1 Design Requirements

The required input, output, and performance parameters for this application example are shown in Table 1.

<table>
<thead>
<tr>
<th>DESIGN PARAMETER</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage range</td>
<td>10 V to 36 V</td>
</tr>
<tr>
<td>Input UVLO thresholds</td>
<td>9.5 V on, 6.5 V off</td>
</tr>
<tr>
<td>Output voltage</td>
<td>5 V</td>
</tr>
<tr>
<td>Rated load current, $V_{IN} = 24$ V</td>
<td>1 A</td>
</tr>
<tr>
<td>Output voltage regulation</td>
<td>±1%</td>
</tr>
<tr>
<td>Output voltage ripple</td>
<td>< 100 mV</td>
</tr>
</tbody>
</table>

The target full-load efficiency is 86% based on a nominal input voltage of 24 V and an isolated output voltage of 5 V. The LM25180 is chosen to deliver a fixed 5-V output voltage set by resistor R_{FB} connected between the SW and FB pins. The input voltage turn-on and turn-off thresholds are established by R_{UV1} and R_{UV2}. The required components are listed in Table 2.

<table>
<thead>
<tr>
<th>REF DES</th>
<th>QTY</th>
<th>SPECIFICATION</th>
<th>VENDOR</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{IN}</td>
<td>1</td>
<td>10 µF, 50 V, X7R, 1210, ceramic</td>
<td>Taiyo Yuden</td>
<td>UMK325AB7106KM-T</td>
</tr>
<tr>
<td>C_{OUT}</td>
<td>1</td>
<td>100 µF, 6.3 V, X7S, 1210, ceramic</td>
<td>Murata</td>
<td>GRM32EC70J107ME15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 µF, 6.3 V, X6S, 1210, ceramic</td>
<td>Taiyo Yuden</td>
<td>JMK325AC7107MM-P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 µF, 6.3 V, X5R, 1210, ceramic</td>
<td>TDK</td>
<td>C3225X6S0J107M250AC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Murata</td>
<td>GRM32EC80J107ME20L</td>
</tr>
<tr>
<td>C_{SS}</td>
<td>1</td>
<td>47 nF, 16 V, X7R, 0402</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>D_{CLAMP}</td>
<td>1</td>
<td>Zener, 24 V, 1 W, PowerDI-123</td>
<td>DFLZ24-7</td>
<td>Diodes Inc.</td>
</tr>
<tr>
<td>D_{F}</td>
<td>1</td>
<td>Switching diode, 75 V, 0.25 A, SOD-323</td>
<td>CMDD4448</td>
<td>Central Semi</td>
</tr>
<tr>
<td>D_{FLY}</td>
<td>1</td>
<td>Schottky diode, 40 V, 2 A, SOD-123</td>
<td>FSV340FP</td>
<td>ONsemi</td>
</tr>
<tr>
<td>D_{OUT}</td>
<td>1</td>
<td>Zener, 5.6 V, 5%, SOD-523</td>
<td>BZX585-C5V6</td>
<td>Nexperia</td>
</tr>
<tr>
<td>R_{FB}</td>
<td>1</td>
<td>158 kΩ, 1%, 0402</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>R_{SET}</td>
<td>1</td>
<td>12.1 kΩ, 1%, 0402</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>R_{TC}</td>
<td>1</td>
<td>130 kΩ, 1%, 0402</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>R_{UV1}</td>
<td>1</td>
<td>536 kΩ, 1%, 0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>R_{UV2}</td>
<td>1</td>
<td>100 kΩ, 1%, 0402</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>T_{1}</td>
<td>1</td>
<td>30 µH, 2 A, turns ratio 3 : 1, SMT, 9 × 10 mm</td>
<td>Würth Electron</td>
<td>750317605</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 µH, 2 A, turns ratio 3 : 1, SMT, 13 × 15 mm</td>
<td>Würth Electron</td>
<td>750319374</td>
</tr>
</tbody>
</table>

8.2.1.2 Detailed Design Procedure

8.2.1.2.1 Custom Design With WEBENCH® Tools

Click here to create a custom design using the LM25180 device with WEBENCH® Power Designer.
1. Start by entering the input voltage (V_{IN}), output voltage (V_{OUT}), and output current (I_{OUT}) requirements.
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
3. Compare the generated design with other possible solutions from Texas Instruments.

The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability.
In most cases, these actions are available:
- Run electrical simulations to see important waveforms and circuit performance
- Run thermal simulations to understand board thermal performance
- Export customized schematic and layout into popular CAD formats
- Print PDF reports for the design, and share the design with colleagues

Get more information about WEBENCH tools at www.ti.com/WEBENCH.

8.2.1.2.2 Custom Design With Excel Quickstart Tool
Select components based on the converter specifications using the LM25180 quick-start calculator.

8.2.1.2.3 Flyback Transformer – \(T_1 \)
Choose a turns ratio based on an approximate 60% max duty cycle at minimum input voltage using Equation 13, rounding up or down as needed.

\[
N_{PS} = \frac{D_{MAX}}{1-D_{MAX}} \cdot \frac{V_{IN(min)}}{V_{OUT} + V_D} = \frac{0.6}{1-0.6} \cdot \frac{10 V}{5 V + 0.3 V} = 3
\]

(13)

Select a magnetizing inductance based on the minimum off-time constraint using Equation 14. Choose a value of 30 µH with a saturation current of 2 A for this application.

\[
L_{MAG} \geq \frac{(V_{OUT} + V_D) \cdot N_{PS} \cdot t_{OFF-MIN}}{l_{PRI-PK(FFM)}} = \frac{(5 V + 0.3 V) \cdot 3 \cdot 500 ns}{0.3 A} = 26.5 \mu H
\]

(14)

Note that a higher magnetizing inductance provides a larger operating range for BCM and FFM, but the leakage inductance may increase based on the increase number of primary turns, \(N_P \). The primary and secondary winding RMS currents are given by Equation 15 and Equation 16, respectively.

\[
l_{PRI-RMS} = \sqrt{\frac{2}{3}} \cdot l_{PRI-PK}
\]

(15)

\[
l_{SEC-RMS} = \sqrt{\frac{2}{3}} \cdot l_{OUT} \cdot \frac{l_{PRI-PK} \cdot N_{PS}}{3}
\]

(16)

Find the maximum output power for a given turns ratio using Equation 17, where the typical value for \(l_{PRI-PK(max)} \) from Electrical Characteristics is 1.5 A. Iterate by increasing the turns ratio if the output power is too low at minimum input voltage.

\[
P_{OUT(max)} = \frac{L_{MAG} \cdot l_{PRI-PK}}{2} \cdot F_{SW(BCM)} = \frac{l_{PRI-PK}}{2} \left[\frac{1}{V_{IN}} + \frac{1}{N_{PS} \cdot V_{OUT}} \right]
\]

(17)

8.2.1.2.4 Flyback Diode – \(D_{FLY} \)
The flyback diode reverse voltage is given by Equation 18.

\[
V_{D-REV} \geq \frac{V_{IN(max)}}{N_{PS}} + V_{OUT} = \frac{36 V}{3} + 5 V = 17 V
\]

(18)

Choose a 40-V, 3-A Schottky diode for this application to account for diode voltage overshoot and ringing related to transformer leakage inductance and diode parasitic capacitance. Connect an appropriate RC snubber circuit (for example, 100 Ω and 22 pF) across the diode if needed.

8.2.1.2.5 Clamp Circuit – \(D_{F}, D_{CLAMP} \)
Connect a diode-Zener clamp circuit across the primary winding to limit the peak SW node voltage after MOSFET turn-off below the maximum level of 100 V, as given by Equation 19.
Choosing the zener, \(D_{\text{CLAMP}} \), with clamp voltage of approximately 1.5 times the reflected output voltage, as specified by Equation 20, provides a balance between the maximum SW voltage excursion and the leakage inductance demagnetization time.

\[
V_{\text{DZ(clamp)}} < V_{\text{SW(max)}} - V_{\text{IN(max)}}
\]

(19)

Select an ultra-fast switching diode or Schottky diode for \(D_F \) with rated voltage greater than the maximum input voltage and with low forward recovery voltage drop.

8.2.1.2.6 Output Capacitor – \(C_{\text{OUT}} \)

The output capacitor determines the voltage ripple at the converter output, limits the voltage excursion during a load transient, and sets the dominant pole of the converter's small-signal response. For a flyback converter specifically, the output capacitor supplies the load current when the main switch is on, and therefore the output voltage ripple is a function of load current and duty cycle.

Select an output capacitance using Equation 21 to limit the ripple voltage amplitude to less than 1% of the output voltage at minimum input voltage.

\[
C_{\text{OUT}} \geq \frac{I_{\text{OUT}} (I_{\text{PRI-PK}} - I_{\text{OUT}})^2}{I_{\text{PRI-PK}}^2 \cdot F_{\text{SW}} \cdot \Delta V_{\text{OUT}}}
\]

(21)

Substituting the full load current, switching frequency, peak primary current and peak-to-peak voltage ripple specification gives \(C_{\text{OUT}} \) greater than 30 \(\mu \)F. Mindful of the voltage coefficient of ceramic capacitors, select a 100-\(\mu \)F, 6.3-V capacitor in 1210 case size with X5R or better dielectric. The output capacitor RMS ripple current is given by Equation 22.

\[
I_{\text{COUT-RMS}} = I_{\text{OUT}} \sqrt{\frac{2 \cdot N_{\text{PS}} \cdot I_{\text{PRI-PK}}}{3 \cdot I_{\text{OUT}}} - 1}
\]

(22)

8.2.1.2.7 Input Capacitor – \(C_{\text{IN}} \)

Select an input capacitance using Equation 23 to limit the ripple voltage amplitude to less than 5% of the input voltage when operating at nominal input voltage.

\[
C_{\text{IN}} \geq \frac{I_{\text{PRI-PK}} \cdot D \cdot \left(1 - \frac{D}{2}\right)^2}{2 \cdot F_{\text{SW}} \cdot \Delta V_{\text{IN}}}
\]

(23)

Substituting the input current at full load, switching frequency, peak primary current and peak-to-peak ripple specification gives \(C_{\text{IN}} \) greater than 2 \(\mu \)F. Mindful of the voltage coefficient of ceramic capacitors, select a in 1210 case size. The input capacitor RMS ripple current is given by Equation 24.

\[
I_{\text{CIN-RMS}} = \frac{D \cdot I_{\text{PRI-PK}}}{2} \sqrt{\frac{4}{3 \cdot D} - 1}
\]

(24)

8.2.1.2.8 Feedback Resistor – \(R_{\text{FB}} \)

Select a feedback resistor, designated \(R_{\text{FB}} \), of 158 k\(\Omega \) based on the secondary winding voltage at the end of the flyback conduction interval (the sum of the 5-V output voltage and the Schottky diode forward voltage drop) reflected by the transformer turns ratio of 3 : 1. The forward voltage drop of the flyback diode is 0.3 V as its current approaches zero.

\[
R_{\text{FB}} = \frac{(V_{\text{OUT}} + V_{D}) \cdot N_{\text{PS}}}{0.1 \text{ mA}} = \frac{(5 \text{ V} + 0.3 \text{ V}) \cdot 3}{0.1 \text{ mA}} = 158 \text{ k}\Omega
\]

(25)
8.2.1.2.9 Thermal Compensation Resistor – R_{TC}

Select a resistor for output voltage thermal compensation, designated R_{TC}, based on Equation 26.

$$R_{TC} = \frac{R_{FB}}{N_{PS}} \cdot \frac{3 \text{ mV/°C}}{3 \cdot 1.2} = 158 \text{ kΩ} \cdot 3 = 130 \text{ kΩ}$$

(26)

8.2.1.2.10 UVLO Resistors – R_{UV1}, R_{UV2}

Given $V_{IN(on)}$ and $V_{IN(off)}$ as the input voltage turn-on and turn-off thresholds of 9.5 V and 6.5 V, respectively, select the upper and lower UVLO resistors using the following expressions:

$$R_{UV1} = \frac{V_{IN(on)}}{I_{UVLO}} \cdot \frac{V_{UVLO2} - V_{IN(off)}}{9.5 \text{ V} - 6.5 \text{ V}} = 536 \text{ kΩ}$$

(27)

$$R_{UV2} = R_{UV1} \cdot \frac{V_{UVLO1}}{V_{IN(on)} - V_{UVLO1}} = 536 \text{ kΩ} \cdot \frac{1.5 \text{ V}}{9.5 \text{ V} - 1.5 \text{ V}} = 100 \text{ kΩ}$$

(28)

8.2.1.2.11 Soft-Start Capacitor – C_{SS}

Connect an external soft-start capacitor for a specific soft-start time. In this example, select a soft-start capacitance of 47 nF based on Equation 12 to achieve a soft-start time of 9 ms.

8.2.1.3 Application Curves

Unless otherwise stated, application performance curves were taken at $T_A = 25°C$.

For technical solutions, industry trends, and insights for designing and managing power supplies, please refer to TI’s Power House blog series.

8.2.1.3 Application Curves

Unless otherwise stated, application performance curves were taken at $T_A = 25°C$.

Figure 6. Efficiency (Linear Scale)

Figure 7. Efficiency (Log Scale)
Figure 8. Load Regulation (Linear Scale)

Figure 9. Load Regulation (Log Scale)

Figure 10. Start-up Characteristic

Figure 11. Enable ON Characteristic

Figure 12. SW Node Voltage

Figure 13. Flyback Diode Voltage
8.2.2 Design 2: PSR Flyback Converter With Dual Outputs of 15 V and –7.7 V at 200 mA

The schematic diagram of a dual-output flyback converter intended for isolated IGBT and SiC MOSFET gate drive power supply applications is given in Figure 14.

Figure 14. Schematic for Design 2 With \(V_{\text{IN(nom)}} = 24 \text{ V}, V_{\text{OUT1}} = 15 \text{ V}, V_{\text{OUT2}} = -7.7 \text{ V}, I_{\text{OUT}} = 200 \text{ mA} \)

8.2.2.1 Design Requirements

The required input, output, and performance parameters for this application example are shown in Table 3.

<table>
<thead>
<tr>
<th>DESIGN PARAMETER</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage range (steady state)</td>
<td>9.5 V to 36 V</td>
</tr>
<tr>
<td>Output 1 voltage and current</td>
<td>15 V, 0.2 A</td>
</tr>
<tr>
<td>Output 2 voltage and current</td>
<td>–7.7 V, –0.2 A</td>
</tr>
<tr>
<td>Input UVLO thresholds</td>
<td>9 V on, 7 V off</td>
</tr>
<tr>
<td>Output voltage regulation</td>
<td>±2%</td>
</tr>
</tbody>
</table>

The target full-load efficiency of this LM25180 design is 88% based on a nominal input voltage of 24 V and isolated output voltages of 15 V and –7.7 V sharing a common return. The selected flyback converter components are cited in Table 4, including multi-winding flyback transformer, input and output capacitors, rectifying diodes and flyback converter IC.
8.2.2.2 Detailed Design Procedure

Using the LM25180 quick-start calculator, components are selected based on the flyback converter specifications.

8.2.2.2.1 Flyback Transformer – \(T_1 \)

Set the turns ratio of the transformer secondary windings using Equation 29, where \(N_{S1} \) and \(N_{S2} \) are the number of secondary turns for the respective outputs.

\[
\frac{N_{S2}}{N_{S1}} = \frac{V_{OUT2} + V_{D2}}{V_{OUT1} + V_{D1}} = \frac{7.7 \, V + 0.3 \, V}{15 \, V + 0.3 \, V} = 0.52
\]

(29)

Choose a primary-secondary turns ratio for the 15-V output based on an approximate 60% max duty cycle at minimum input voltage using Equation 30. The transformer turns ratio for both outputs is thus specified as 1 : 1 : 0.52.

\[
N_{PS} = \frac{D_{MAX}}{1 - D_{MAX}} \cdot \frac{V_{IN(min)}}{V_{OUT} + V_D} = \frac{0.6}{1 - 0.6} \cdot \frac{9.5 \, V}{15 \, V + 0.3 \, V} \approx 1
\]

(30)

Select a magnetizing inductance based on the minimum off-time constraint using Equation 31. Choose a value of 30 \(\mu \)H with a saturation current of 2 A for this application.

\[
L_{MAQ} \geq \left(\frac{V_{OUT} + V_D}{I_{PRI-PK(FFM)}} \right) \cdot N_{PS} \cdot t_{OFF-MIN} = \frac{(15 \, V + 0.3 \, V) \cdot 1.500 \, ns}{0.3 \, A} = 25.5 \, \mu H
\]

(31)

8.2.2.2.2 Flyback Diodes – \(D_{FLY1} \) and \(D_{FLY2} \)

The flyback diode reverse voltages for the positive and negative outputs are given respectively by Equation 32 and Equation 24.
Choose 100-V, 1-A and 60-V, 1-A Schottky diodes for the positive and negative outputs, respectively, to allow some margin for inevitable voltage overshoot and ringing related to leakage inductance and diode capacitance. If needed, use a diode RC snubber circuit, for example 100 Ω and 22 pF, to mitigate such overshoot and ringing.

8.2.2.2.3 Input Capacitor – \(C_{\text{IN}} \)

The input capacitor, \(C_{\text{IN}} \), filters the primary-side triangular current waveform. To prevent large ripple voltage, use a low-ESR ceramic input capacitor sized according to Equation 23 for the RMS ripple current given by Equation 24. In this design example, choose a and 1210 footprint.

8.2.2.2.4 Feedback Resistor – \(R_{\text{FB}} \)

Install a 154-kΩ resistor from SW to FB based on an output voltage setpoint of 15 V (plus a flyback diode voltage drop) reflected to the primary by a transformer turns ratio of unity.

\[
R_{\text{FB}} = \frac{(V_{\text{OUT}} + V_{D}) \cdot N_{\text{PS}}}{0.1 \text{ mA}} = \frac{(15V + 0.3V) \cdot 1}{0.1 \text{ mA}} = 154 \text{ kΩ}
\]

(34)

8.2.2.2.5 UVLO Resistors – \(R_{\text{UV1}}, R_{\text{UV2}} \)

Given \(V_{\text{IN(on)}} \) and \(V_{\text{IN(off)}} \) as the input voltage turn-on and turn-off thresholds of 9 V and 7 V, respectively, select the upper and lower UVLO resistors using Equation 35 and Equation 36.

\[
R_{\text{UV1}} = \frac{V_{\text{UVLO2}} - V_{\text{UVLO1}}}{I_{\text{UVLO}}} = \frac{9 \text{ V} - 1.45 \text{ V} - 7 \text{ V}}{1.5 \text{ μA}} = 340 \text{ kΩ}
\]

(35)

\[
R_{\text{UV2}} = R_{\text{UV1}} \cdot \frac{V_{\text{UVLO1}}}{V_{\text{IN(on)}} - V_{\text{UVLO1}}} = 340 \text{ kΩ} \cdot \frac{1.5 \text{ V}}{9 \text{ V} - 1.5 \text{ V}} = 68 \text{ kΩ}
\]

(36)

8.2.2.3 Application Curves

![Figure 15. Efficiency (Linear Scale)](image1)

![Figure 16. Efficiency (Log Scale)](image2)
Figure 17. Load Regulation (Linear Scale)

Total of \(V_{OUT1} \) and \(V_{OUT2} \)

Figure 18. Load Regulation (Log Scale)

Total of \(V_{OUT1} \) and \(V_{OUT2} \)

Figure 19. Start-Up Characteristic

\(V_{IN} \) stepped to 24 V

75 Ω and 40 Ω Loads

Figure 20. ENABLE ON Characteristic

\(V_{IN} = 24 \) V

75 Ω and 40 Ω Loads

Figure 21. SW Node Voltage, Full Load

\(V_{IN} = 24 \) V

1 μs/DIV

Figure 22. Flyback Diode Voltages, Full Load

\(V_{IN} = 24 \) V

1 μs/DIV
Figure 23. Output 1 Load Transient, 50 mA to 200 mA

Figure 24. Output 2 Load Transient, 50 mA to 200 mA
8.2.3 Design 3: PSR Flyback Converter With Stacked Dual Outputs of 24 V and 5 V

The schematic diagram of a dual-output flyback converter with high-voltage secondary stacked on the low-voltage secondary winding is given in Figure 25. This configuration reduces the number of turns for the high-voltage output, resulting in lower secondary-to-secondary leakage inductance for improved output voltage cross regulation.

![Schematic Diagram](image)

Figure 25. Schematic for Design 3 With $V_{IN(nom)} = 24$ V, $V_{OUT1} = 24$ V, $V_{OUT2} = 5$ V

8.2.3.1 Design Requirements

The required input, output, and performance parameters for this application example are shown in Table 5.

<table>
<thead>
<tr>
<th>DESIGN PARAMETER</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage range (steady state)</td>
<td>8.5 V to 42 V</td>
</tr>
<tr>
<td>Output 1 voltage and current</td>
<td>24 V, 0.1 A</td>
</tr>
<tr>
<td>Output 2 voltage and current</td>
<td>5 V, 0.3 A</td>
</tr>
<tr>
<td>Input UVLO thresholds</td>
<td>8 V on, 7 V off</td>
</tr>
<tr>
<td>Output voltage regulation</td>
<td>±1%</td>
</tr>
</tbody>
</table>

The target full-load efficiency of this LM25180 design is 88% based on a nominal input voltage of 24 V and isolated output voltages of 24 V and 5 V. The selected flyback converter components are cited in Table 6, including multi-winding flyback transformer, input and output capacitors, rectifying diodes, and converter IC.
8.2.3.2 Detailed Design Procedure

Components are selected based on the converter specifications using the LM25180 quick-start calculator. The design procedure is similar to that outlined for Designs 1 and 2 previously.

8.2.3.2.1 Flyback Transformer – T

The 24-V output is DC stacked on top of the 5-V output as they share a common return connection. This enables lower secondary-to-secondary leakage inductance for better cross regulation and also reduced rectifier diode reverse voltage stress. Choose a primary-secondary turns ratio for the effective 19-V secondary based on an approximate 60% max duty cycle at minimum input voltage using Equation 37.

\[
N_{PS} = \frac{D_{MAX}}{1 - D_{MAX}} \cdot \frac{V_{IN(min)}}{V_{OUT} + V_D} = \frac{0.6}{1 - 0.6} \cdot \frac{8.5V}{19V + 0.3V} = 0.66
\]

(37)

Set the turns ratio of the transformer secondary windings using Equation 38. The transformer turns ratio for both outputs is thus specified as 1 : 1.5 : 0.4.

\[
\frac{N_{S2}}{N_{S1}} = \frac{V_{OUT2} + V_D}{V_{OUT1} + V_D} = \frac{5V + 0.3V}{19V + 0.3V} = 0.275
\]

(38)

As before, select a magnetizing inductance of 30 µH based on the minimum off-time constraint and specify a saturation current of 2 A to handle the peak primary current.

8.2.3.2.2 Feedback Resistor – R

Install a 130-kΩ resistor from SW to FB based on the secondary winding voltage (the sum of the 5-V output voltage and the Schottky diode forward voltage drop) reflected by the relevant transformer turns ratio, which in this design is 1 : 0.4 or 2.5 : 1.

\[
R_{FB} = \frac{(V_{OUT} + V_D) \cdot N_{PS}}{0.1mA} = \frac{(5V + 0.25V) \cdot 2.5}{0.1mA} = 130 \text{ k}\Omega
\]

(39)

8.2.3.2.3 UVLO Resistors – R

Given \(V_{IN(on)}\) and \(V_{IN(off)}\) as the input voltage turn-on and turn-off thresholds of 8 V and 7 V, respectively, select the upper and lower UVLO resistors using the following expressions:
8.2.3.3 Application Curves

\[R_{UV1} = \frac{V_{UVLO2}}{V_{UVLO1}} \cdot \frac{V_{IN(on)}}{I_{UVLO}} = \frac{8 \text{ V}}{5 \mu\text{A}} = 147k\Omega \]

\[R_{UV2} = R_{UV1} \cdot \frac{V_{UVLO1}}{V_{IN(on)}} - V_{UVLO1} = 147k\Omega \cdot \frac{1.5 \text{ V}}{8 \text{ V} - 1.5 \text{ V}} = 34k\Omega \]

Figure 26. Efficiency

Figure 27. Start-Up Characteristic

Figure 28. ENABLE ON Characteristic

Figure 29. Recovery From Short Circuit
Figure 30. SW Node Voltage, Full Load

Figure 31. Flyback Diode Voltages, Full Load

Figure 32. Output 1 Load Transient, 50 mA to 100 mA

Figure 33. Output 2 Load Transient, 100 mA to 200 mA
9 Power Supply Recommendations

The LM25180 flyback converter is designed to operate from a wide input voltage range from 4.5 V to 42 V. The characteristics of the input supply must be compatible with the Absolute Maximum Ratings and Recommended Operating Conditions. In addition, the input supply must be capable of delivering the required input current to the fully-loaded regulator. Estimate the average input current with Equation 42.

\[
I_{IN} = \frac{V_{OUT} \cdot I_{OUT}}{V_{IN} \cdot \eta}
\]

where

- \(\eta \) is the efficiency

(42)

If the converter is connected to an input supply through long wires or PCB traces with a large impedance, special care is required to achieve stable performance. The parasitic inductance and resistance of the input cables may have an adverse affect on converter operation. The parasitic inductance in combination with the low-ESR ceramic input capacitors form an underdamped resonant circuit. This circuit can cause overvoltage transients at \(V_{IN} \) each time the input supply is cycled ON and OFF. The parasitic resistance causes the input voltage to dip during a load transient. If the regulator is operating close to the minimum input voltage, this dip can cause false UVLO fault triggering and a system reset. The best way to solve such issues is to reduce the distance from the input supply to the regulator and use an aluminum electrolytic input capacitor in parallel with the ceramics. The moderate ESR of the electrolytic capacitors helps to damp the input resonant circuit and reduce any voltage overshoots. A capacitance in the range of 10 \(\mu \)F to 47 \(\mu \)F is usually sufficient to provide input damping and helps to hold the input voltage steady during large load transients. A typical ESR of 0.25 \(\Omega \) provides enough damping for most input circuit configurations.

An EMI input filter is often used in front of the regulator that, unless carefully designed, can lead to instability as well as some of the effects mentioned above. The application report Simple Success with Conducted EMI for DC-DC Converters provides helpful suggestions when designing an input filter for any switching regulator.
10 Layout

The performance of any switching converter depends as much upon PCB layout as it does the component selection. The following guidelines are provided to assist with designing a PCB with the best power conversion performance, thermal performance, and minimized generation of unwanted EMI. Figure 34 and Figure 35 provide layout examples for single-output and dual-output designs, respectively.

10.1 Layout Guidelines

PCB layout is a critical for good power supply design. There are several paths that conduct high slew-rate currents or voltages that can interact with transformer leakage inductance or parasitic capacitance to generate noise and EMI or degrade the power supply's performance.

1. Bypass the VIN pin to GND with a low-ESR ceramic capacitor, preferably of X7R or X7S dielectric. Place C_IN as close as possible to the LM25180 VIN and GND pins. Ground return paths for the input capacitor(s) must consist of localized top-side planes that connect to the GND pin and exposed PAD.

2. Minimize the loop area formed by the input capacitor connections and the VIN and GND pins.

3. Locate the transformer close to the SW pin. Minimize the area of the SW trace or plane to prevent excessive e-field or capacitive coupling.

4. Minimize the loop area formed by the diode-Zener clamp circuit connections and the primary winding terminals of the transformer.

5. Minimize the loop area formed by the flyback rectifying diode, output capacitor and the secondary winding terminals of the transformer.

6. Tie the GND pin directly to the power pad under the device and to a heat-sinking PCB ground plane.

7. Use a ground plane in one of the middle layers as a noise shielding and heat dissipation path.

8. Have a single-point ground connection to the plane. Route the return connections for the reference resistor, soft-start, and enable components directly to the GND pin. This prevents any switched or load currents from flowing in analog ground traces. If not properly handled, poor grounding results in degraded load regulation or erratic output voltage ripple behavior.

9. Make V_IN+, V_OUT+ and ground bus connections short and wide. This reduces any voltage drops on the input or output paths of the converter and maximizes efficiency.

10. Minimize trace length to the FB pin. Locate the feedback resistor close to the FB pin.

11. Locate components R_SET, R_TC and C_SS as close as possible to their respective pins. Route with minimal trace lengths.

12. Place a capacitor between input and output return connections to route common-mode noise currents directly back to their source.

13. Provide adequate heatsinking for the LM25180 to keep the junction temperature below 150°C. For operation at full rated load, the top-side ground plane is an important heat-dissipating area. Use an array of heat-sinking vias to connect the exposed PAD to the PCB ground plane. If the PCB has multiple copper layers, connect these thermal vias to inner-layer ground planes. The connection to V_OUT+ provides heatsinking for the flyback diode.
10.2 Layout Examples

Figure 34. LM25180 Single-Output PCB Layout

Figure 35. LM25180 Dual-Output PCB Layout
11 Device and Documentation Support

11.1 Device Support

11.1.1 Third-Party Products Disclaimer
TI’s publication of information regarding third-party products or services does not constitute an endorsement regarding the suitability of such products or services or a warranty, representation or endorsement of such products or services, either alone or in combination with any TI product or service.

11.1.2 Development Support
For development support, see the following:
• LM25180 Quick-start Calculator
• LM25180 Simulation Models
• For TI’s reference design library, visit TIDesigns
• For TI’s WEBENCH Design Environment, visit the WEBENCH® Design Center

11.1.3 Custom Design With WEBENCH® Tools
Click here to create a custom design using the LM25180 device with WEBENCH® Power Designer.
1. Start by entering the input voltage (V\textsubscript{IN}), output voltage (V\textsubscript{OUT}), and output current (I\textsubscript{OUT}) requirements.
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
3. Compare the generated design with other possible solutions from Texas Instruments.

The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability.

In most cases, these actions are available:
• Run electrical simulations to see important waveforms and circuit performance
• Run thermal simulations to understand board thermal performance
• Export customized schematic and layout into popular CAD formats
• Print PDF reports for the design, and share the design with colleagues

Get more information about WEBENCH tools at www.ti.com/WEBENCH.

11.2 Documentation Support

11.2.1 Related Documentation
For related documentation see the following:
• LM5180EVM-S05 EVM User’s Guide (SNVU592)
• LM5180EVM-DUAL EVM User’s Guide (SNVU609)
• Under the Hood of Flyback SMPS Designs (SLUP261)
• Flyback Transformer Design Considerations for Efficiency and EMI (SLUP338)
• TI Designs:
 – Isolated IGBT Gate-Drive Power Supply Reference Design With Integrated Switch PSR Flyback Controller
 – Snubberless Non-Isolated AC/DC Flyback Converter Reference Design with Simplified Transformer
• TI Blogs:
 – Flyback Converters: Two Outputs are Better Than One
 – Common Challenges When Choosing the Auxiliary Power Supply for Your Server PSU
 – Maximizing PoE PD Efficiency on a Budget
Documentation Support (continued)

- White Papers:
 - Valuing Wide VIN, Low EMI Synchronous Buck Circuits for Cost-driven, Demanding Applications (SLYY104)
 - An Overview of Conducted EMI Specifications for Power Supplies (SLYY136)
 - An Overview of Radiated EMI Specifications for Power Supplies (SLYY142)
- AN-2162: Simple Success with Conducted EMI from DC-DC Converters (SNVA489)
- Automotive Cranking Simulator User's Guide (SLVU984)
- Using New Thermal Metrics (SBVA025)
- Semiconductor and IC Package Thermal Metrics (SPRA953)

11.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, go to the device product folder on ti.com. In the upper right corner, click on Alert me to register for a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.5 Trademarks

E2E is a trademark of Texas Instruments.
WEBENCH is a registered trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

11.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.7 Glossary

SLYZ022 — Ti Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages have mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.
EXAMPLE BOARD LAYOUT

NGU0008C

WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE: 15X

SOLDER MASK OPENING
NON SOLDER MASK DEFINED (PREFERRED)
SOLDER MASK DETAILS

NOTES: (continued)
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>PINS</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM25180NGUR</td>
<td>PREVIEW</td>
<td>WSON</td>
<td>NGU</td>
<td>8</td>
<td>4500</td>
<td>TBD</td>
<td>TBD</td>
<td>Call TI</td>
<td>-40 to 150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM25180NGUT</td>
<td>PREVIEW</td>
<td>WSON</td>
<td>NGU</td>
<td>8</td>
<td>250</td>
<td>TBD</td>
<td>TBD</td>
<td>Call TI</td>
<td>-40 to 150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM25180NGUT</td>
<td>PREVIEW</td>
<td>WSON</td>
<td>NGU</td>
<td>8</td>
<td>250</td>
<td>TBD</td>
<td>TBD</td>
<td>Call TI</td>
<td>-40 to 150</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
 ACTIVE: Product device recommended for new designs.
 LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
 NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
 PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
 OBSOLETE: TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
 RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
 Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) **Lead/Ball Finish** - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated