FEATURES

- Wide Supply Voltage Range: 10V-22V
- Low Quiescent Power Drain: 0.13W (V_S = 18V)
- Voltage Gain Fixed at 50
- High Peak Current Capability: 1.3A
- Input Referenced to GND
- High Input Impedance: 150kΩ
- Low Distortion
- Quiescent Output Voltage is at One-Half of the Supply Voltage
- Standard Dual-In-Line Package

DESCRIPTION

The LM380 is a power audio amplifier for consumer applications. In order to hold system cost to a minimum, gain is internally fixed at 34 dB. A unique input stage allows ground referenced input signals. The output automatically self-centers to one-half the supply voltage.

The output is short circuit proof with internal thermal limiting. The package outline is standard dual-in-line. The LM380N uses a copper lead frame. The center three pins on either side comprise a heat sink. This makes the device easy to use in standard PC layouts.

Uses include simple phonograph amplifiers, intercoms, line drivers, teaching machine outputs, alarms, ultrasonic drivers, TV sound systems, AM-FM radio, small servo drivers, power converters, etc.

A selected part for more power on higher supply voltages is available as the LM384. For more information see SNAA086.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Block and Schematic Diagrams

Figure 3. 14-Pin PDIP

Figure 4. 8-Pin PDIP

Figure 5.
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td></td>
<td>22V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Current</td>
<td></td>
<td>1.3A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package Dissipation</td>
<td>14-Pin PDIP</td>
<td>8.3W</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8-Pin PDIP</td>
<td>1.67W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Voltage</td>
<td></td>
<td>±0.5V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Temperature</td>
<td></td>
<td>−65°C to +150°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td></td>
<td>0°C to +70°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction Temperature</td>
<td></td>
<td>+150°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Temperature (Soldering, 10 sec.)</td>
<td></td>
<td>+260°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESD rating to be determined</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td>θ_{JC} (14-Pin PDIP)</td>
<td>30°C/W</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>θ_{JC} (8-Pin PDIP)</td>
<td>37°C/W</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>θ_{JA} (14-Pin PDIP)</td>
<td>79°C/W</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>θ_{JA} (8-Pin PDIP)</td>
<td>107°C/W</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits.
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.
(3) The package is to be derated at 15°C/W junction to heat sink pins for 14-pin pkg; 75°C/W for 8-pin.

Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{OUT(RMS)}</td>
<td>Output Power</td>
<td>R_L = 8Ω, THD = 3%</td>
<td>2.5</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>A_V</td>
<td>Gain</td>
<td></td>
<td>40</td>
<td>14</td>
<td>V_p</td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>Output Voltage Swing</td>
<td>R_L = 8Ω</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z_{IN}</td>
<td>Input Resistance</td>
<td></td>
<td>150k</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>THD</td>
<td>Total Harmonic Distortion</td>
<td>See [2]</td>
<td>0.2</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>V_S</td>
<td>Supply Voltage</td>
<td></td>
<td>10</td>
<td>22</td>
<td>V</td>
</tr>
<tr>
<td>BW</td>
<td>Bandwidth</td>
<td>P_{OUT} = 2W, R_L = 8Ω</td>
<td>100k</td>
<td></td>
<td>Hz</td>
</tr>
<tr>
<td>I_Q</td>
<td>Quiescent Supply Current</td>
<td></td>
<td>7</td>
<td>25</td>
<td>mA</td>
</tr>
<tr>
<td>V_{OUTQ}</td>
<td>Quiescent Output Voltage</td>
<td></td>
<td>8</td>
<td>9.0</td>
<td>10</td>
</tr>
<tr>
<td>I_{BIAS}</td>
<td>Bias Current</td>
<td>Inputs Floating</td>
<td>100</td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>I_{SC}</td>
<td>Short Circuit Current</td>
<td></td>
<td>1.3</td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>

(1) V_S = 18V and T_A = 25°C unless otherwise specified.
(2) With device Pins 3, 4, 5, 10, 11, 12 soldered into a 1/16" epoxy glass board with 2 ounce copper foil with a minimum surface of 6 square inches.
(3) C_{BYPASS} = 0.47 μF on Pin 1.
(4) The maximum junction temperature of the LM380 is 150°C.
(5) Rejection ratio referred to the output with C_{BYPASS} = 5 μF.
Staver Heat Sink #V-7
Staver Company
41 Saxon Ave.
P.O. Drawer H
Bayshore, NY 11706
Tel: (516) 666-8000
Copper Wings
2 Required
Soldered to
Pins 3, 4, 5,
10, 11, 12
Thickness 0.04
Inches
Typical Performance Characteristics

Maximum Device Dissipation vs Ambient Temperature

![Graph showing maximum device dissipation vs ambient temperature](image)

\[T_A = \text{AMBIENT TEMPERATURE} \ (\degree C) \]

Note: 2 oz. copper foil, single-sided PC board.

Device Dissipation vs Output Power — 4Ω Load

![Graph showing device dissipation vs output power at 4Ω load](image)

Device Dissipation vs Output Power — 8Ω Load

![Graph showing device dissipation vs output power at 8Ω load](image)

Device Dissipation vs Output Power — 16Ω Load

![Graph showing device dissipation vs output power at 16Ω load](image)

Power Supply Current vs Supply Voltage

![Graph showing power supply current vs supply voltage](image)

Total Harmonic Distortion vs Frequency

![Graph showing total harmonic distortion vs frequency](image)
Typical Performance Characteristics (continued)

Output Voltage Gain and Phase vs Frequency

- $V_{CC} = 18V$
- $R_L = \infty$
- $P_{OUT} = 2W$

![Figure 12.](image)

Total Harmonic Distortion vs Output Power

- $f = 1kHz$
- $V_{CC} = 22V$
- $R_L = 8\Omega$
- BYPASS = 5 μF
- HEATSINK = TWO COPPER WINGS
- SEE FIG. PAGE 4

![Figure 13.](image)

Device Dissipation vs Output Power

- $R_L = 8\Omega$
- $R_L = 18\Omega$
- $R_L = 40\Omega$
- $V_{CC} = 9V$

![Figure 14.](image)

Supply Decoupling vs Frequency

- 5 μF
- 2 μF
- 5.47 μF
- NO BYPASS CAPACITOR

![Figure 15.](image)
Typical Applications

Figure 16. Phono Amplifier

Figure 17. Bridge Amplifier

Figure 18. Intercom
Figure 19. Phase Shift Oscillator
REVISION HISTORY

Changes from Revision B (April 2013) to Revision C

<table>
<thead>
<tr>
<th>Change Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changed layout of National Data Sheet to TI format</td>
<td>8</td>
</tr>
</tbody>
</table>
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM380N-8/NOPB</td>
<td>LIFEBUY</td>
<td>PDIP</td>
<td>P</td>
<td>8</td>
<td>40</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-NA-UNLIM</td>
<td>0 to 70</td>
<td>LM 380N-8</td>
<td></td>
</tr>
<tr>
<td>LM380N/NOPB</td>
<td>LIFEBUY</td>
<td>PDIP</td>
<td>NFF</td>
<td>14</td>
<td>25</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-NA-UNLIM</td>
<td>0 to 70</td>
<td>LM380N</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE:** Product device recommended for new designs.
- **LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
- **Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
- **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
- **Green (RoHS & no Sb/Br):** TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

(3) **MSL, Peak Temp:** The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
NOTES:

A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001 variation BA.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Automotive and Transportation</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DSP</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Industrial</td>
</tr>
<tr>
<td>Interface</td>
<td>Medical</td>
</tr>
<tr>
<td>Logic</td>
<td>Security</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>TI E2E Community</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated