LM195/LM395 Ultra Reliable Power Transistors

Check for Samples: LM195, LM395

FEATURES
- Internal Thermal Limiting
- Greater than 1.0A Output Current
- 3.0 μA Typical Base Current
- 500 ns Switching Time
- 2.0V Saturation
- Base Can be Driven up to 40V without Damage
- Directly Interfaces with CMOS or TTL
- 100% Electrical Burn-in

DESCRIPTION
The LM195/LM395 are fast, monolithic power integrated circuits with complete overload protection. These devices, which act as high gain power transistors, have included on the chip, current limiting, power limiting, and thermal overload protection making them virtually impossible to destroy from any type of overload. In the standard TO-3 transistor power package, the LM195 will deliver load currents in excess of 1.0A and can switch 40V in 500 ns.

The inclusion of thermal limiting, a feature not easily available in discrete designs, provides virtually absolute protection against overload. Excessive power dissipation or inadequate heat sinking causes the thermal limiting circuitry to turn off the device preventing excessive heating.

The LM195 offers a significant increase in reliability as well as simplifying power circuitry. In some applications, where protection is unusually difficult, such as switching regulators, lamp or solenoid drivers where normal power dissipation is low, the LM195 is especially advantageous.

The LM195 is easy to use and only a few precautions need be observed. Excessive collector to emitter voltage can destroy the LM195 as with any power transistor. When the device is used as an emitter follower with low source impedance, it is necessary to insert a 5.0k resistor in series with the base lead to prevent possible emitter follower oscillations. Although the device is usually stable as an emitter follower, the resistor eliminates the possibility of trouble without degrading performance. Finally, since it has good high frequency response, supply bypassing is recommended.

For low-power applications (under 100 mA), refer to the LP395 Ultra Reliable Power Transistor.

The LM195/LM395 are available in the standard TO-3, Kovar TO-5, and TO-220 packages. The LM195 is rated for operation from −55°C to +150°C and the LM395 from 0°C to +125°C.

Simplified Circuit

Figure 1. 1.0 Amp Lamp Flasher

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

Copyright © 1999–2013, Texas Instruments Incorporated
Connection Diagram

Figure 2. TO-3 Metal Can Package
Bottom View
See Package Number NDS0002A

Figure 3. TO-5 Metal Can Package
Bottom View

Figure 4. TO-220 Plastic Package
Top View
See Package Number NDE0003B
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector to Emitter Voltage</td>
<td>LM195: 42V, LM395: 36V</td>
</tr>
<tr>
<td>Collector to Base Voltage</td>
<td>LM195: 42V, LM395: 36V</td>
</tr>
<tr>
<td>Base to Emitter Voltage (Forward)</td>
<td>LM195: 42V, LM395: 36V</td>
</tr>
<tr>
<td>Base to Emitter Voltage (Reverse)</td>
<td>20V</td>
</tr>
<tr>
<td>Collector Current</td>
<td>Internally Limited</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>Internally Limited</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>LM195: −55°C to +150°C, LM395: 0°C to +125°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>−65°C to +150°C</td>
</tr>
<tr>
<td>Lead Temperature</td>
<td>260°C</td>
</tr>
</tbody>
</table>

(1) “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits.

(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.

PRECONDITIONING

100% Burn-In In Thermal Limit

ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-Emitter Operating Voltage</td>
<td>$I_Q \leq I_C \leq I_{MAX}$</td>
</tr>
<tr>
<td></td>
<td>LM195: 42V, LM395: 36V</td>
</tr>
<tr>
<td>Base to Emitter Breakdown Voltage</td>
<td>$0 \leq V_{CE} \leq V_{CEMAX}$</td>
</tr>
<tr>
<td></td>
<td>LM195: 42V, LM395: 36V, 60V</td>
</tr>
<tr>
<td>Collector Current</td>
<td>TO-3, TO-220: $V_{CE} \leq 15V$, TO-5: $V_{CE} \leq 7.0V$</td>
</tr>
<tr>
<td></td>
<td>LM195: 1.2, 2.2, LM395: 1.0, 2.2</td>
</tr>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Saturation Voltage $I_C \leq 1.0A$, $T_A = 25°C$</td>
</tr>
<tr>
<td></td>
<td>LM195: 1.8, 2.0, LM395: 1.8, 2.2</td>
</tr>
<tr>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Base Current</td>
<td>$0 \leq I_C \leq I_{MAX}$ $0 \leq V_{CE} \leq V_{CEMAX}$</td>
</tr>
<tr>
<td></td>
<td>LM195: 3.0, 5.0, LM395: 3.0, 10</td>
</tr>
<tr>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>Quiescent Current (I_Q)</td>
<td>$V_{BE} = 0$, $0 \leq V_{CE} \leq V_{CEMAX}$</td>
</tr>
<tr>
<td></td>
<td>LM195: 2.0, 5.0, LM395: 2.0, 10</td>
</tr>
<tr>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Base to Emitter Voltage</td>
<td>$I_C = 1.0A$, $T_A = +25°C$</td>
</tr>
<tr>
<td></td>
<td>LM195: 0.9, 0.9</td>
</tr>
<tr>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Switching Time</td>
<td>$V_{CE} = 36V$, $R_L = 36Ω$, $T_A = 25°C$</td>
</tr>
<tr>
<td></td>
<td>LM195: 500, 500</td>
</tr>
<tr>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

(1) Unless otherwise specified, these specifications apply for $−55°C \leq T_j \leq +150°C$ for the LM195 and $0°C \leq +125°C$ for the LM395.

(2) Selected devices with higher breakdown available.
ELECTRICAL CHARACTERISTICS (continued)

(1)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>LM195</th>
<th>LM395</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance Junction to Case (3)</td>
<td>TO-3 Package (NDS)</td>
<td>2.3</td>
<td>3.0</td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td>TO-5 Package</td>
<td>12</td>
<td>15</td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td>TO-220 Package (NDE)</td>
<td>4</td>
<td>6</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

(3) Without a heat sink, the thermal resistance of the TO-5 package is about +150°C/W, while that of the TO-3 package is +35°C/W.
TYPICAL PERFORMANCE CHARACTERISTICS
(for NDS and NDE Packages)

Collector Characteristics

Short Circuit Current

Bias Current

Quiescent Current

Base Emitter Voltage

Base Current

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

(for NDS and NDE Packages)

Saturation Voltage

![Saturation Voltage Graph]

Response Time

![Response Time Graph]

10V Transfer Function

![10V Transfer Function Graph]

Transconductance

![Transconductance Graph]
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

(for NDS and NDE Packages)

Figure 17.

Small Signal Frequency Response

- $T_A = +25^\circ$ C

- **Phase**
 - $I_C = 1.0A$
 - $I_C = 0.1A$

- **GM**

Frequency (Hz)

Relativ Trans Conductance (dB)

Phase Lag (°)

100k 1.0M 10M
TYPICAL APPLICATIONS

*Solid Tantalum

Figure 18. 1.0 Amp Voltage Follower

*Protects against excessive base drive

**Needed for stability

Figure 19. Power PNP
Figure 20. Time Delay

Figure 21. 1.0 MHz Oscillator

Figure 22. 1.0 Amp Negative Regulator

†Solid Tantalum
†Solid Tantalum

Figure 23. 1.0 Amp Positive Voltage Regulator

Figure 24. Fast Optically Isolated Switch

Figure 25. Optically Isolated Power Transistor

Figure 26. CMOS or TTL Lamp Interface

Figure 27. Two Terminal Current Limiter
*Drive Voltage $0V \leq \leq 10V \leq 42V$

Figure 28. 40V Switch

Figure 29. 6.0V Shunt Regulator with Crowbar

Figure 30. Two Terminal 100 mA Current Regulator
Turn ON = 350 mV
Turn OFF = 200 mV

Figure 31. Low Level Power Switch

Figure 32. Power One-Shot

*Need for Stability

Figure 33. Emitter Follower
Figure 34. High Input Impedance AC Emitter Follower

*Prevents storage with fast fall time square wave drive

Figure 35. Fast Follower
*Adjust for 50 mA quiescent current
†Solid Tantalum

Figure 36. Power Op Amp

*Sixty turns wound on Arnold Type A-083081-2 core.
**Four devices in parallel
†Solid tantalum

Figure 37. 6.0 Amp Variable Output Switching Regulator
REVISION HISTORY

Changes from Revision B (April 2013) to Revision C

<table>
<thead>
<tr>
<th>Change Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changed layout of National Data Sheet to TI format</td>
<td>15</td>
</tr>
</tbody>
</table>
PACKAGE OPTION ADDENDUM

PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM395T</td>
<td>NRND</td>
<td>TO-220</td>
<td>NDE</td>
<td>3</td>
<td>45</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>0 to 125</td>
<td>LM395T</td>
<td></td>
</tr>
<tr>
<td>LM395T/NOPB</td>
<td>ACTIVE</td>
<td>TO-220</td>
<td>NDE</td>
<td>3</td>
<td>45</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-NA-UNLIM</td>
<td>0 to 125</td>
<td>LM395T</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBsolete: TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) **Lead/Ball Finish** - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers’ applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designers represent that, with respect to their applications, Designers has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designers agrees that prior to using or distributing any applications that include TI products, Designers will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for the purpose and subject to the terms of this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY TECHNOLOGY, COPYRIGHT, PATENT, TRADE SECRET OR ANY OTHER INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designers may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.