LM4674A Boomer® Audio Power Amplifier Series Filterless 2.5W Stereo Class D Audio Power Amplifier

Check for Samples: LM4674A

FEATURES
- Output Short Circuit Protection
- Stereo Class D Operation
- No Output Filter Required
- Logic Selectable Gain
- Independent Shutdown Control
- Minimum External Components
- Click and Pop Suppression
- Micro-Power Shutdown
- Available in Space-Saving 2mm x 2mm x 0.6mm DSBGA Package

DESCRIPTION
The LM4674A is a single supply, high efficiency, 2.5W/channel, filterless switching audio amplifier. A low noise PWM architecture eliminates the output filter, reducing external component count, board area consumption, system cost, and simplifying design.

The LM4674A is designed to meet the demands of mobile phones and other portable communication devices. Operating from a single 5V supply, the device is capable of delivering 2.5W/channel of continuous output power to a 4Ω load with less than 10% THD+N. Flexible power supply requirements allow operation from 2.4V to 5.5V.

The LM4674A features high efficiency compared to conventional Class AB amplifiers. When driving an 8Ω speaker from a 3.6V supply, the device features 85% efficiency at P_{O} = 500mW. Four gain options are pin selectable through the GAIN0 and GAIN1 pins.

Output short circuit protection prevents the device from being damaged during fault conditions. Superior click and pop suppression eliminates audible transients on power-up/down and during shutdown. Independent left/right shutdown controls maximizes power savings in mixed mono/stereo applications.

APPLICATIONS
- Mobile Phones
- PDAs
- Laptops

KEY SPECIFICATIONS
- Efficiency at 3.6V, 100mW into 8Ω 80% (typ)
- Efficiency at 3.6V, 500mW into 8Ω 85% (typ)
- Efficiency at 5V, 1W into 8Ω 85% (typ)
- Quiescent Power Supply Current at 3.6V Supply 4mA
- Power Output at V_{DD} = 5V, R_{L} = 4Ω, THD ≤ 10% 2.5W (typ)
- Power Output at V_{DD} = 5V, R_{L} = 8Ω, THD ≤ 10% 1.5W (typ)
- Shutdown Current 0.1μA (typ)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

Copyright © 2006–2013, Texas Instruments Incorporated

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
Typical Application

Figure 1. Typical Audio Amplifier Application Circuit

Connection Diagram

Figure 2. DSBGA - Top View
See YZR0016 Package
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>6.0V</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>–65°C to +150°C</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>–0.3V to VDD +0.3V</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>Internally Limited</td>
</tr>
<tr>
<td>ESD Susceptibility, all other pins</td>
<td>2000V</td>
</tr>
<tr>
<td>ESD Susceptibility, all pins</td>
<td>200V</td>
</tr>
<tr>
<td>Junction Temperature (TMAX)</td>
<td>150°C</td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td>θJA</td>
</tr>
</tbody>
</table>

(1) All voltages are measured with respect to the ground pin, unless otherwise specified.

(2) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which ensure specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance.

(3) If Military/Aerospace specified devices are required, please contact the TI Sales Office/Distributors for availability and specifications.

(4) The maximum power dissipation must be derated at elevated temperatures and is dictated by TMAX, θJA, and the ambient temperature, TA. The maximum allowable power dissipation is PDMAX = (TMAX – TA)/θJA or the number given in Absolute Maximum Ratings, whichever is lower. For the LM4674A see power derating currents for more information.

(5) Human body model, 100pF discharged through a 1.5kΩ resistor.

Operating Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Range TMIN ≤ TA ≤ TMAX</td>
<td>–40°C ≤ TA ≤ 85°C</td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>2.4V ≤ VDD ≤ 5.5V</td>
</tr>
</tbody>
</table>

(1) All voltages are measured with respect to the ground pin, unless otherwise specified.

(2) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which ensure specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance.
Electrical Characteristics \(V_{DD} = 3.6V \)\(^{(1)(2)}\)

The following specifications apply for \(A_V = 6dB, R_L = 15\mu H + 8\Omega + 15\mu H, f = 1kHz \) unless otherwise specified. Limits apply for \(T_A = 25°C \).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LM4674A Limits (Limits)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Typicals(^{(3)})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Limit(^{(4)})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{DS})</td>
<td>Differential Output Offset Voltage</td>
<td>(V_{IN} = 0, V_{DD} = 2.4V) to (5.0) V</td>
<td>5 mV</td>
</tr>
<tr>
<td>(I_{DD})</td>
<td>Quiescent Power Supply Current</td>
<td>(V_{IN} = 0, R_L = \infty), Both channels active, (V_{DD} = 3.6V)</td>
<td>4 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 mA</td>
</tr>
<tr>
<td>(I_{SD})</td>
<td>Shutdown Current</td>
<td>(V_{SD1} = V_{SD2} = GND)</td>
<td>0.03 μA</td>
</tr>
<tr>
<td>(V_{SDH})</td>
<td>Shutdown Voltage Input High</td>
<td></td>
<td>1.4 V (min)</td>
</tr>
<tr>
<td>(V_{SDL})</td>
<td>Shutdown Voltage Input Low</td>
<td></td>
<td>0.4 V (max)</td>
</tr>
<tr>
<td>(T_{WU})</td>
<td>Wake Up Time</td>
<td>(V_{SHUTDOWN} = 0.4V)</td>
<td>4.2 ms</td>
</tr>
<tr>
<td>(A_V)</td>
<td>Gain</td>
<td>(GAIN0, GAIN1 = GND)</td>
<td>6 dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 ± 0.5 dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 ± 0.5 dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18 dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18 ± 0.5 dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24 dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24 ± 0.5 dB</td>
</tr>
<tr>
<td>(R_{IN})</td>
<td>Input Resistance</td>
<td>(A_V = 6dB)</td>
<td>28 kΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18.75 kΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11.25 kΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.25 kΩ</td>
</tr>
<tr>
<td>(P_O)</td>
<td>Output Power</td>
<td>(R_L = 15\mu H + 4\Omega + 15\mu H, THD = 10%)</td>
<td>2.5 W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2 W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.530 W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.5 W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.78 W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.350 W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.9 W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.430 W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.25 W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.63 W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.285 W</td>
</tr>
<tr>
<td>(THD+N)</td>
<td>Total Harmonic Distortion</td>
<td>(P_O = 500mW, f = 1kHz, RL = 8\Omega)</td>
<td>0.07 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.05 %</td>
</tr>
</tbody>
</table>

\(^{(1)}\) All voltages are measured with respect to the ground pin, unless otherwise specified.

\(^{(2)}\) **Absolute Maximum Ratings** indicate limits beyond which damage to the device may occur. **Operating Ratings** indicate conditions for which the device is functional, but do not ensure specific performance limits. **Electrical Characteristics** state DC and AC electrical specifications under particular test conditions which ensure specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance.

\(^{(3)}\) Typicals are measured at 25°C and represent the parametric norm.

\(^{(4)}\) Limits are specified to TI’s AOQL (Average Outgoing Quality Level).
Electrical Characteristics \(V_{DD} = 3.6V \) (continued)

The following specifications apply for \(A_V = 6\,\text{dB}, R_L = 15\,\mu\text{H} + 8\,\Omega + 15\,\mu\text{H}, f = 1\,\text{kHz} \) unless otherwise specified. Limits apply for \(T_A = 25^\circ\text{C} \).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>(\text{LM4674A})</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSRR</td>
<td>Power Supply Rejection Ratio</td>
<td>(V_{\text{RIPPLE}} = 200,\text{mV}{\text{P-P Sine}}, f{\text{Ripple}} = 217,\text{Hz}, \text{Inputs AC GND}, C_i = 1,\mu\text{F}, \text{input referred})</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{RIPPLE}} = 1,\text{V}{\text{P-P Sine}}, f{\text{Ripple}} = 1,\text{kHz}, \text{Inputs AC GND}, C_i = 1,\mu\text{F}, \text{input referred})</td>
<td>75</td>
</tr>
<tr>
<td>CMRR</td>
<td>Common Mode Rejection Ratio</td>
<td>(V_{\text{RIPPLE}} = 1,\text{V}{\text{P-P}}, f{\text{Ripple}} = 217,\text{Hz})</td>
<td>67</td>
</tr>
<tr>
<td>(\eta)</td>
<td>Efficiency</td>
<td>(P_O = 1,\text{W}, f = 1,\text{kHz}, R_L = 8,\Omega, V_{DD} = 5,\text{V})</td>
<td>85</td>
</tr>
<tr>
<td>Crosstalk</td>
<td></td>
<td>(P_O = 500,\text{mW}, f = 1,\text{kHz})</td>
<td>84</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal to Noise Ratio</td>
<td>(V_{DD} = 5,\text{V}, P_O = 1,\text{W})</td>
<td>96</td>
</tr>
<tr>
<td>(\varepsilon_{OS})</td>
<td>Output Noise</td>
<td>Input referred, A-Weighted Filter</td>
<td>20</td>
</tr>
</tbody>
</table>

External Components Description

(Figure 1)

<table>
<thead>
<tr>
<th>Components</th>
<th>Functional Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (C_S)</td>
<td>Supply bypass capacitor which provides power supply filtering. Refer to the Power Supply Bypassing section for information concerning proper placement and selection of the supply bypass capacitor.</td>
</tr>
<tr>
<td>2. (C_I)</td>
<td>Input AC coupling capacitor which blocks the DC voltage at the amplifier’s input terminals.</td>
</tr>
</tbody>
</table>
Block Diagrams

Figure 3. Differential Input Configuration
Typical Performance Characteristics

Figure 4. THD+N vs Output Power
frequency = 1kHz, AV = 24dB, RL = 8Ω

Figure 5. THD+N vs Output Power
frequency = 1kHz, AV = 6dB, RL = 8Ω

Figure 6. THD+N vs Output Power
frequency = 1kHz, AV = 24dB, RL = 4Ω

Figure 7. THD+N vs Output Power
frequency = 1kHz, AV = 6dB, RL = 4Ω

Figure 8. THD+N vs Frequency
VDD = 2.5V, POUT = 100mW, RL = 8Ω

Figure 9. THD+N vs Frequency
VDD = 3.6V, POUT = 250mW, RL = 8Ω
Typical Performance Characteristics (continued)

THD+N vs Frequency

Figure 10.

THD+N vs Frequency

Figure 11.

THD+N vs Frequency

Figure 12.

THD+N vs Frequency

Figure 13.

Efficiency vs. Output Power

Figure 14.

Efficiency vs. Output Power

Figure 15.
Typical Performance Characteristics (continued)

Power Dissipation vs. Output Power
\(R_L = 4\Omega, f = 1\text{kHz} \)

\[\text{Power Dissipation (mW)} \]

\[\text{Output Power (mW)} \]

\[V_{DD} = 5V \]

\[V_{DD} = 3.6V \]

\[P_{OUT} = P_{OUTL} + P_{OUTR} \]

Figure 16.

Power Dissipation vs. Output Power
\(R_L = 8\Omega, f = 1\text{kHz} \)

\[\text{Power Dissipation (mW)} \]

\[\text{Output Power (mW)} \]

\[V_{DD} = 5V \]

\[V_{DD} = 3.6V \]

\[P_{OUT} = P_{OUTL} + P_{OUTR} \]

Figure 17.

Output Power vs. Supply Voltage
\(R_L = 4\Omega, f = 1\text{kHz} \)

\[\text{Output Power (mW)} \]

\[\text{Supply Voltage (V)} \]

\[\text{THD+N = 10\%} \]

\[\text{THD+N = 1\%} \]

Figure 18.

Output Power vs. Supply Voltage
\(R_L = 8\Omega, f = 1\text{kHz} \)

\[\text{Output Power (mW)} \]

\[\text{Supply Voltage (V)} \]

\[\text{THD+N = 10\%} \]

\[\text{THD+N = 1\%} \]

Figure 19.

PSRR vs. Frequency
\(V_{DD} = 3.6V, V_{RIPPLE} = 200mV_{P-P}, R_L = 8\Omega \)

\[\text{PSRR (dB)} \]

\[\text{Frequency (Hz)} \]

Figure 20.

Crosstalk vs. Frequency
\(V_{DD} = 3.6V, V_{RIPPLE} = 1V_{P-P}, R_L = 8\Omega \)

\[\text{Crosstalk (dB)} \]

\[\text{Frequency (Hz)} \]

Figure 21.
Typical Performance Characteristics (continued)

CMRR vs. Frequency

\[V_{DD} = 3.6V, V_{CM} = 1V_{P-P}, R_L = 8\Omega \]

Supply Current vs. Supply Voltage

\[\text{No Load} \]

Figure 22.

Figure 23.
APPLICATION INFORMATION

GENERAL AMPLIFIER FUNCTION

The LM4674A stereo Class D audio power amplifier features a filterless modulation scheme that reduces external component count, conserving board space and reducing system cost. The outputs of the device transition from \(V_{DD}\) to GND with a 300kHz switching frequency. With no signal applied, the outputs (OUT_A and OUT_B) switch with a 50% duty cycle, in phase, causing the two outputs to cancel. This cancellation results in no net voltage across the speaker, thus there is no current to the load in the idle state.

With the input signal applied, the duty cycle (pulse width) of the LM4674A outputs changes. For increasing output voltage, the duty cycle of OUT_A increases, while the duty cycle of OUT_B decreases. For decreasing output voltages, the converse occurs. The difference between the two pulse widths yields the differential output voltage.

DIFFERENTIAL AMPLIFIER EXPLANATION

As logic supplies continue to shrink, system designers are increasingly turning to differential analog signal handling to preserve signal to noise ratios with restricted voltage signs. The LM4674A features two fully differential amplifiers. A differential amplifier amplifies the difference between the two input signals. Traditional audio power amplifiers have typically offered only single-ended inputs resulting in a 6dB reduction of SNR relative to differential inputs. The LM4674A also offers the possibility of DC input coupling which eliminates the input coupling capacitors. A major benefit of the fully differential amplifier is the improved common mode rejection ratio (CMRR) over single ended input amplifiers. The increased CMRR of the differential amplifier reduces sensitivity to ground offset related noise injection, especially important in noisy systems.

POWER DISSIPATION AND EFFICIENCY

The major benefit of a Class D amplifier is increased efficiency versus a Class AB. The efficiency of the LM4674A is attributed to the region of operation of the transistors in the output stage. The Class D output stage acts as current steering switches, consuming negligible amounts of power compared to their Class AB counterparts. Most of the power loss associated with the output stage is due to the IR loss of the MOSFET on-resistance, along with switching losses due to gate charge.

SHUTDOWN FUNCTION

The LM4674A features independent left and right channel shutdown controls, allowing each channel to be disabled independently. /SDR controls the right channel, while /SDL controls the left channel. Driving either low disables the corresponding channel, reducing supply current to 0.03µA.

It is best to switch between ground and \(V_{DD}\) for minimum current consumption while in shutdown. The LM4674A may be disabled with shutdown voltages in between GND and \(V_{DD}\), the idle current will be greater than the typical 0.03µA value. Increased THD+N may also be observed when a voltage of less than \(V_{DD}\) is applied to /SD_ for logic levels between GND and \(V_{DD}\) Bypass /SD_ with a 0.1µF capacitor.

The LM4674A shutdown inputs have internal pulldown resistors. The purpose of these resistors is to eliminate any unwanted state changes when /SD_ is floating. To minimize shutdown current, /SD_ should be driven to GND or left floating. If /SD_ is not driven to GND or floating, an increase in shutdown supply current will be noticed.

SINGLE-ENDED AUDIO AMPLIFIER CONFIGURATION

The LM4674A is compatible with single-ended sources. When configured for single-ended inputs, input capacitors must be used to block and DC component at the input of the device. Figure 25 shows the typical single-ended applications circuit.

AUDIO AMPLIFIER POWER SUPPLY BYPASSING/FILTERING

Proper power supply bypassing is critical for low noise performance and high PSRR. Place the supply bypass capacitor as close to the device as possible. Typical applications employ a voltage regulator with 10µF and 0.1µF bypass capacitors that increase supply stability. These capacitors do not eliminate the need for bypassing of the LM4674A supply pins. A 1µF capacitor is recommended.
AUDIO AMPLIFIER INPUT CAPACITOR SELECTION

Input capacitors may be required for some applications, or when the audio source is single-ended. Input capacitors block the DC component of the audio signal, eliminating any conflict between the DC component of the audio source and the bias voltage of the LM4674A. The input capacitors create a high-pass filter with the input resistors RI. The -3dB point of the high pass filter is found using Equation 1 below.

\[
f = \frac{1}{2\pi R_I C_{IN}}
\]

The values for RI can be found in the EC table for each gain setting.

The input capacitors can also be used to remove low frequency content from the audio signal. Small speakers cannot reproduce, and may even be damaged by low frequencies. High pass filtering the audio signal helps protect the speakers. When the LM4674A is using a single-ended source, power supply noise on the ground is seen as an input signal. Setting the high-pass filter point above the power supply noise frequencies, 217Hz in a GSM phone, for example, filters out the noise such that it is not amplified and heard on the output. Capacitors with a tolerance of 10% or better are recommended for impedance matching and improved CMRR and PSRR.

AUDIO AMPLIFIER GAIN SETTING

The LM4674A features four internally configured gain settings. The device gain is selected through the two logic inputs, G0 and G1. The gain settings are as shown in the following table.

<table>
<thead>
<tr>
<th>G1</th>
<th>G0</th>
<th>V/V</th>
<th>dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>16</td>
<td>24</td>
</tr>
</tbody>
</table>

PCB LAYOUT GUIDELINES

As output power increases, interconnect resistance (PCB traces and wires) between the amplifier, load and power supply create a voltage drop. The voltage loss due to the traces between the LM4674A and the load results in lower output power and decreased efficiency. Higher trace resistance between the supply and the LM4674A has the same effect as a poorly regulated supply, increasing ripple on the supply line, and reducing peak output power. The effects of residual trace resistance increases as output current increases due to higher output power, decreased load impedance or both. To maintain the highest output voltage swing and corresponding peak output power, the PCB traces that connect the output pins to the load and the supply pins to the power supply should be as wide as possible to minimize trace resistance.

The use of power and ground planes will give the best THD+N performance. In addition to reducing trace resistance, the use of power planes creates parasitic capacitors that help to filter the power supply line.

The inductive nature of the transducer load can also result in overshoot on one of both edges, clamped by the parasitic diodes to GND and VDD in each case. From an EMI standpoint, this is an aggressive waveform that can radiate or conduct to other components in the system and cause interference. It is essential to keep the power and output traces short and well shielded if possible. Use of ground planes beads and micro-strip layout techniques are all useful in preventing unwanted interference.

As the distance from the LM4674A and the speaker increases, the amount of EMI radiation increases due to the output wires or traces acting as antennas become more efficient with length. Ferrite chip inductors places close to the LM4674A outputs may be needed to reduce EMI radiation.
Figure 24. Differential Input Configuration

Figure 25. Single-Ended Input Configuration
REVISION HISTORY

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>9/13/06</td>
<td>Initial WEB release.</td>
</tr>
</tbody>
</table>

Changes from Original (May 2013) to Revision A Page 13

- Changed layout of National Data Sheet to TI format
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Top-Side Markings (4)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM4674ATL/NOPB</td>
<td>ACTIVE</td>
<td>DSBGA</td>
<td>YZR</td>
<td>16</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>SNAGCU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>GI2</td>
<td></td>
</tr>
<tr>
<td>LM4674ATLX/NOPB</td>
<td>ACTIVE</td>
<td>DSBGA</td>
<td>YZR</td>
<td>16</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>SNAGCU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>GI2</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM4674ATL/NOPB</td>
<td>DSBGA</td>
<td>YZR</td>
<td>16</td>
<td>250</td>
<td>178.0</td>
<td>8.4</td>
<td>2.08</td>
<td>2.08</td>
<td>0.76</td>
<td>4.0</td>
<td>8.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM4674ATLX/NOPB</td>
<td>DSBGA</td>
<td>YZR</td>
<td>16</td>
<td>3000</td>
<td>178.0</td>
<td>8.4</td>
<td>2.08</td>
<td>2.08</td>
<td>0.76</td>
<td>4.0</td>
<td>8.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

All dimensions are nominal.

- **Device**
- **Package Type**
- **Package Drawing**
- **Pins**
- **SPQ**
- **Reel Diameter (mm)**
- **Reel Width W1 (mm)**
- **A0 (mm)**
- **B0 (mm)**
- **K0 (mm)**
- **P1 (mm)**
- **W (mm)**
- **Pin1 Quadrant**
PACKAGE MATERIALS INFORMATION

TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM4674ATL/NOPB</td>
<td>DSBGA</td>
<td>YZR</td>
<td>16</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LM4674ATLX/NOPB</td>
<td>DSBGA</td>
<td>YZR</td>
<td>16</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
NOTES:

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.

D: Max = 1.99 mm, Min = 1.93 mm

E: Max = 1.99 mm, Min = 1.93 mm
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties, and all associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY TECHNICAL INFORMATION, TRADE SECRETS, PATENTS, COPYRIGHTS, TRADEMARKS, INTELLECTUAL PROPERTY RIGHTS OR ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designers may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated