LM48520 Boomer® Audio Power Amplifier Series
Boosted Stereo Class D Audio Power Amplifier
with Output Speaker Protection and Spread Spectrum
Check for Samples: LM48520, LM48520TLBD

FEATURES
- Click and Pop Suppression
- Low 0.04μA Shutdown Current
- 78% Efficiency
- Filterless Class D
- 2.7V - 5.0V Operation
- 4 Adjustable Gain Settings
- Adjustable Output Swing Limiter with Soft Clipping
- Speaker Protection
- Short Circuit Protection on Audio Amps
- Independent Boost and Amplifier Shutdown Pins

APPLICATIONS
- Mobile Phones
- PDAs
- Portable media
- Cameras
- Handheld games

KEY SPECIFICATIONS
- Quiescent Power Supply Current: 11.5 mA(typ)
- Output Power (R_L = 8Ω, THD+N ≤ 1%, V_DD = 3.3V, PV1 = 5.0V): 1.1 W(typ)
- Shutdown Current: 0.04 μA(typ)

DESCRIPTION
The LM48520 integrates a boost converter with a high efficiency Class D stereo audio power amplifier to provide up to 1W/ch continuous power into an 8Ω speaker when operating from 2.7V to 5.0V power supply with boost voltage (PV1) of 5.0V. The LM48520 utilizes a proprietary spread spectrum pulse width modulation technique that lowers RF interference and EMI levels. The Class D amplifier is a low noise, filterless PWM architecture that eliminates the output filter, reducing external component count, board area, power consumption, system cost, and simplifying design.

The LM48520 is designed for use in mobile phones and other portable communication devices. The high (78%) efficiency extends battery life when compared to Boosted Class AB amplifiers. The LM48520 features a low-power consumption shutdown mode. Shutdown may be enabled by driving the Shutdown pin to a logic low (GND). Also, external leakage is minimized via control of the ground reference via the SW-OUT pin.

The LM48520 has 4 gain options which are pin selectable via Gain0 and Gain1 pins. Output short circuit prevents the device from damage during fault conditions. Superior click and pop suppression eliminates audible transients during power-up and shutdown.
Typical Application

Figure 1. Typical LM48520 Audio Amplifier Application Circuit

Connection Diagram

Figure 2. DSBGA Package
See Package Number YZR0025AAA
Pin Descriptions

<table>
<thead>
<tr>
<th>Pin Designator</th>
<th>Pin Name</th>
<th>Pin Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>VDD</td>
<td>Power Supply</td>
</tr>
<tr>
<td>A2</td>
<td>BstFB</td>
<td>Regulator Feedback Input. Connect BstFB to an external resistive voltage divider to set the boost output voltage.</td>
</tr>
<tr>
<td>A3</td>
<td>Soft Start</td>
<td>Soft start capacitor</td>
</tr>
<tr>
<td>A4</td>
<td>SW_GND</td>
<td>Booster ground</td>
</tr>
<tr>
<td>A5</td>
<td>SW</td>
<td>Drain of the Internal FET switch</td>
</tr>
<tr>
<td>B1</td>
<td>INR+</td>
<td>Non-inverting right channel input</td>
</tr>
<tr>
<td>B2</td>
<td>INR-</td>
<td>Inverting right channel input</td>
</tr>
<tr>
<td>B3</td>
<td>FB_GND</td>
<td>Ground return for R1, R2 resistor divider</td>
</tr>
<tr>
<td>B4</td>
<td>INL-</td>
<td>Inverting left channel input</td>
</tr>
<tr>
<td>B5</td>
<td>INL+</td>
<td>Non-inverting left channel input</td>
</tr>
<tr>
<td>C1</td>
<td>V1</td>
<td>Amplifier supply voltage. Connect to PV1.</td>
</tr>
<tr>
<td>C2</td>
<td>BstSD</td>
<td>Regulator active low shutdown</td>
</tr>
<tr>
<td>C3</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>C4</td>
<td>Gain0</td>
<td>Gain setting input 0</td>
</tr>
<tr>
<td>C5</td>
<td>PV1</td>
<td>Amplifier H-bridge power supply. Connect to V1.</td>
</tr>
<tr>
<td>D1</td>
<td>AmpSD</td>
<td>Amplifier active low shutdown</td>
</tr>
<tr>
<td>D2</td>
<td>OUTR+</td>
<td>Non-inverting right channel output</td>
</tr>
<tr>
<td>D3</td>
<td>NC</td>
<td>No connect</td>
</tr>
<tr>
<td>D4</td>
<td>OUTL+</td>
<td>Non-inverting left channel output</td>
</tr>
<tr>
<td>D5</td>
<td>Gain1</td>
<td>Gain setting input 1</td>
</tr>
<tr>
<td>E1</td>
<td>VLimit</td>
<td>Set to control output clipping level</td>
</tr>
<tr>
<td>E2</td>
<td>OUTR-</td>
<td>Inverting right channel output</td>
</tr>
<tr>
<td>E3</td>
<td>PGND</td>
<td>Power ground</td>
</tr>
<tr>
<td>E4</td>
<td>OUTL-</td>
<td>Inverting left channel output</td>
</tr>
<tr>
<td>E5</td>
<td>NC</td>
<td>No connect</td>
</tr>
</tbody>
</table>

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1)(2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage (V_{DD}, V_{1})</td>
<td>6V</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>−65°C to +150°C</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>−0.3V to V_{DD} + 0.3V</td>
</tr>
<tr>
<td>Power Dissipation (3)</td>
<td>Internally limited</td>
</tr>
<tr>
<td>ESD Susceptibility (4)</td>
<td>2000V</td>
</tr>
<tr>
<td>ESD Susceptibility (5)</td>
<td>200V</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>150°C</td>
</tr>
<tr>
<td>Thermal Resistance (\theta_{JA}) (YZR0025AAA)</td>
<td>40.5 °C/W</td>
</tr>
</tbody>
</table>

(1) *Absolute Maximum Ratings* indicate limits beyond which damage to the device may occur. *Operating Ratings* indicate conditions for which the device is functional, but do not ensure specific performance limits. *Electrical Characteristics* state DC and AC electrical specifications under particular test conditions which ensure specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance.

(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

(3) The maximum power dissipation must be derated at elevated temperatures and is dictated by \(T_{JMAX} \cdot \theta_{JA}\), and the ambient temperature, \(T_A\). The maximum allowable power dissipation is \(P_{DMAX} = (T_{JMAX} - T_A) / \theta_{JA}\) or the given in Absolute Maximum Ratings, whichever is lower.

(4) Human body model, 100pF discharged through a 1.5kΩ resistor.

Operating Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>LM48520</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD = 3.3V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I<sub>DD</sub></td>
<td>Quiescent Power Supply Current</td>
<td></td>
</tr>
<tr>
<td>V<sub>IN</sub> = 0, R<sub>LOAD</sub> = ∞</td>
<td>14.8</td>
<td>dB</td>
</tr>
<tr>
<td>V<sub>DD</sub> = 2.7V</td>
<td>11.5</td>
<td>mA (max)</td>
</tr>
<tr>
<td>V<sub>DD</sub> = 3.3V</td>
<td>8.0</td>
<td>μA (max)</td>
</tr>
<tr>
<td>V<sub>DD</sub> = 5.0V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I<sub>SD</sub></td>
<td>Shutdown Current</td>
<td></td>
</tr>
<tr>
<td>V<sub>SHUTDOWN</sub> = GND</td>
<td>0.04</td>
<td>μA (max)</td>
</tr>
<tr>
<td>V<sub>SDIH</sub></td>
<td>Shutdown Voltage Input High</td>
<td>1.4</td>
</tr>
<tr>
<td>For SD Boost, SD Amp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<sub>SDLIL</sub></td>
<td>Shutdown Voltage Input Low</td>
<td>0.4</td>
</tr>
<tr>
<td>For SD Boost, SD Amp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T<sub>WU</sub></td>
<td>Wake-up Time</td>
<td>3</td>
</tr>
<tr>
<td>Amplifier + Booster Wakeup</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<sub>OS</sub></td>
<td>Output Offset Voltage</td>
<td>5</td>
</tr>
</tbody>
</table>

Electrical Characteristics $V_{DD} = 3.3V$ (1)(2)

The following specifications apply for $V_{DD} = 3.3V$, $A_V = 6dB$, $R_L = 15μH + 8Ω + 15μH$, $f_{IN} = 1kHz$, unless otherwise specified. Limits apply for $T_A = 25°C$, $R_1 = 40.2kΩ$, $R_2 = 16.2kΩ$, $V_1 = PV_1 = 5V$, $V_{limit} = GND$. All electrical specifications are for amplifier and booster.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>LM48520</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_V</td>
<td>Gain</td>
<td></td>
</tr>
<tr>
<td>$R_L = 15μH + 8Ω + 15μH$</td>
<td>$1%$ (max), $f = 1kHz$, $22kHz$, BW</td>
<td></td>
</tr>
<tr>
<td>$V_{DD} = 3.3V$</td>
<td>1.1</td>
<td>W (min)</td>
</tr>
<tr>
<td>P_0</td>
<td>Output Power</td>
<td></td>
</tr>
<tr>
<td>$R_L = 15μH + 8Ω + 15μH$</td>
<td>$10%$ (max), $f = 1kHz$, $22kHz$, BW</td>
<td></td>
</tr>
<tr>
<td>$V_{DD} = 3.3V$</td>
<td>1.3</td>
<td>W</td>
</tr>
<tr>
<td>THD+N</td>
<td>Total Harmonic Distortion + Noise</td>
<td></td>
</tr>
<tr>
<td>$P_0 = 500mW, f = 1kHz$, $R_L = 15μH + 8Ω + 15μH$, $V_{DD} = 3.3V$</td>
<td>0.04</td>
<td>%</td>
</tr>
<tr>
<td>$ε_{OS}$</td>
<td>Output Noise</td>
<td></td>
</tr>
<tr>
<td>$V_{DD} = 3.6V, f = 20Hz – 20kHz$</td>
<td>32</td>
<td>μV<sub>RMS</sub></td>
</tr>
</tbody>
</table>

(1) All voltages are measured with respect to the GND pin, unless otherwise specified.
(2) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which ensure specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance.
(3) Typicals are measured at 25°C and represent the parametric norm.
(4) Limits are specified to AOQL (Average Outgoing Quality Level).
(5) Datasheet min/max specification limits are ensured by design, test, or statistical analysis.
Electrical Characteristics \(V_{\text{DD}} = 3.3 \text{V} \) (1)(2) (continued)

The following specifications apply for \(V_{\text{DD}} = 3.3 \text{V}, A_V = 6 \text{dB}, R_L = 15 \mu\text{H} + 8 \Omega + 15 \mu\text{H}, f_{\text{IN}} = 1 \text{kHz}, \) unless otherwise specified. Limits apply for \(T_A = 25 \degree \text{C}, R_1 = 40.2k \Omega, R_2 = 16.2k \Omega, V_1 = PV_1 = 5 \text{V}, V_{\text{limit}} = \text{GND}. \) All electrical specifications are for amplifier and booster.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>LM48520</th>
<th>Units (Limits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSRR (Power Supply Rejection Ratio)</td>
<td>(V_{\text{RIPPLE}} = 200 \text{mV}{\text{P-P}} \text{ Sine}, f{\text{RIPPLE}} = 217\text{Hz})</td>
<td>82</td>
<td>dB</td>
</tr>
<tr>
<td>CMRR (Common Mode Rejection Ratio)</td>
<td>(V_{\text{RIPPLE}} = 1 \text{V}{\text{P-P}}, f{\text{RIPPLE}} = 217\text{Hz})</td>
<td>67</td>
<td>dB</td>
</tr>
<tr>
<td>(\eta) (Efficiency)</td>
<td>(P_O = 1 \text{W}, f = 1 \text{kHz}, R_L = 15 \mu\text{H} + 8 \Omega + 15 \mu\text{H}) (V_{\text{DD}} = 3.3 \text{V}) (V_{\text{DD}} = 4.2 \text{V})</td>
<td>78</td>
<td>%</td>
</tr>
<tr>
<td>(V_{\text{FB}}) (Feedback Pin Reference Voltage)</td>
<td>See (6)</td>
<td>1.24</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{out clipped}}) (Output Voltage in clipped state with soft clip activated)</td>
<td>(V_{\text{limit}} = 2 \text{V}, R_L = 8 \Omega, V_{\text{IN}} = 2V_p) (V_{\text{out clipped}} = \frac{8}{3} \left(PV_1 - 2V_{\text{limit}} \right))</td>
<td>2.5 1.9</td>
<td>Vpk (min) Vpk (max)</td>
</tr>
</tbody>
</table>

(6) Feedback pin reference voltage is measured with the Audio Amplifier disconnected from the Boost converter (the Boost converter is unloaded).
Typical Performance Characteristics

THD+N vs Frequency

- **V\textsubscript{DD} = 2.7V, P\textsubscript{OUT} = 800mW, R\textsubscript{L} = 8\Omega**
 - Frequency vs THD+N (%)
 - Figure 3.

- **V\textsubscript{DD} = 3.3V, P\textsubscript{OUT} = 900mW, R\textsubscript{L} = 8\Omega**
 - Frequency vs THD+N (%)
 - Figure 4.

THD+N vs Output Power

- **V\textsubscript{DD} = 5.0V, P\textsubscript{OUT} = 1W, R\textsubscript{L} = 8\Omega**
 - Output Power vs THD+N (%)
 - Figure 5.

- **V\textsubscript{DD} = 2.7V, R\textsubscript{L} = 8\Omega**
 - Output Power vs THD+N (%)
 - Figure 6.

- **V\textsubscript{DD} = 3.3V, R\textsubscript{L} = 8\Omega**
 - Output Power vs THD+N (%)
 - Figure 7.

- **V\textsubscript{DD} = 5.0V, R\textsubscript{L} = 8\Omega**
 - Output Power vs THD+N (%)
 - Figure 8.
Typical Performance Characteristics (continued)

Power Dissipation vs Output Power

Figure 9.

\[P_{\text{OUT}} = P_{\text{OUTL}} + P_{\text{OUTR}} \]

Power Dissipation vs Output Power
\[V_{\text{DD}} = 2.7\text{V}, R_L = 8\Omega, f = 1\text{kHz} \]

Efficiency vs Output Power

Figure 11.

\[P_{\text{OUT}} = P_{\text{OUTL}} + P_{\text{OUTR}} \]

Efficiency vs Output Power
\[V_{\text{DD}} = 5.0\text{V}, R_L = 8\Omega, f = 1\text{kHz} \]

Figure 12.

\[V_{\text{DD}} = 2.7\text{V}, R_L = 8\Omega, f = 1\text{kHz} \]

Figure 13.

\[V_{\text{DD}} = 3.3\text{V}, R_L = 8\Omega, f = 1\text{kHz} \]

Figure 14.
Typical Performance Characteristics (continued)

CMRR vs Frequency

- $V_{DD} = 3.3V$, $V_{RIPPLE} = 1V_{P-P}$, $R_L = 8\Omega$

PSRR vs Frequency

- $V_{DD} = 3.3V$, $V_{RIPPLE} = 200mV_{P-P}$, $R_L = 8\Omega$

Supply Current vs Supply Voltage

- No Load

Output Power vs Supply Voltage

- $R_L = 8\Omega$, $f = 1kHz$

Boost Output Voltage vs Load Current

- $V_{DD} = 2.7V$

- $V_{DD} = 3.3V$

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

Figure 20.
Typical Performance Characteristics (continued)

Boost Output Voltage vs Load Current

$V_{DD} = 5.0V$

Figure 21.
APPLICATION INFORMATION

General Amplifier Function
The LM48520 features a Class D audio power amplifier that utilizes a filterless modulation scheme, reducing external component count, conserving board space and reducing system cost. The outputs of the device transition from PV1 to GND with a 300kHz switching frequency. With no signal applied, the outputs (V_{LS+} and V_{LS-}) switch with a 50% duty cycle, in phase, causing the two outputs to cancel. This cancellation results in no net voltage across the speaker, thus there is no current to the load in the idle state.

With the input signal applied, the duty cycle (pulse width) of the LM48520 outputs changes. For increasing output voltage, the duty cycle of V_{LS+} increases, while the duty cycle of V_{LS-} decreases. For decreasing output voltages, the converse occurs. The difference between the two pulse widths yields the differential output voltage.

Differential Amplifier Explanation
The amplifier portion of the LM48520 is a fully differential amplifier that features differential input and output stages. A differential amplifier amplifies the difference between the two input signals. Traditional audio power amplifiers have typically offered only single-ended inputs resulting in a 6dB reduction in signal to noise ratio relative to differential inputs. The amplifier also offers the possibility of DC input coupling which eliminates the two external AC coupling, DC blocking capacitors. The amplifier can be used, however, as a single ended input amplifier while still retaining it's fully differential benefits. In fact, completely unrelated signals may be placed on the input pins. The amplifier portion of the LM48520 simply amplifies the difference between the signals. A major benefit of a differential amplifier is the improved common mode rejection ratio (CMRR) over single input amplifiers. The common-mode rejection characteristic of the differential amplifier reduces sensitivity to ground offset related noise injection, especially important in high noise applications.

Amplifier Dissipation and Efficiency
The major benefit of a Class D amplifier is increased efficiency versus a Class AB. The efficiency of the LM48520 is attributed to the region of operation of the transistors in the output stage. The Class D output stage acts as current steering switches, consuming negligible amounts of power compared to their Class AB counterparts. Most of the power loss associated with the output stage is due to the IR loss of the MOSFET on-resistance, along with switching losses due to gate charge.

Regulator Power Dissipation
At higher duty cycles, the increased ON-time of the switch FET means the maximum output current will be determined by power dissipation within the LM48520 FET switch. The switch power dissipation from ON-time conduction is calculated by:

\[P_{D(SWITCH)} = DC \times (I_{INDUCTOR(AVE)})^2 \times R_{DS(ON)} \]

where:

Where DC is the duty cycle

Shutdown Function
The LM48520 features independent amplifier and regulator shutdown controls, allowing each portion of the device to be disabled or enabled independently. AmpSD controls the Class D amplifiers, while BstSD controls the regulator. Driving either inputs low disables the corresponding portion of the device, and reducing supply current.

When the regulator is disabled, both FB_GND switches open, further reducing shutdown current by eliminating the current path to GND through the regulator feedback network. With the regulator disabled, there is still a current path from V_{DD}, through the inductor and diode, to the amplifier power supply. This allows the amplifier to operate even when the regulator is disabled. The voltage at PV1 and V1 will be:

\[V_{DD} - [V_D + (I_L \times DCR)] \]

where:

V_{D} is the forward voltage of the Schottky diode
I_{L} is the current through the inductor
DCR is the DC resistance of the inductor

Additionally, when the regulator is disabled, an external voltage between 2.4V and 5.5V can be applied directly to PV1 and V1 to power the amplifier.

It is best to switch between ground and \(V_{\text{DD}} \) for minimum current consumption while in shutdown. The LM48520 may be disabled with shutdown voltages in between GND and \(V_{\text{DD}} \); the idle current will be greater than the typical 0.1µA value. Increased THD+N may also be observed when a voltage of less than \(V_{\text{DD}} \) is applied to AmpSD.

Proper Selection of External Components

Proper selection of external components in applications using integrated power amplifiers, and switching DC-DC converters, is critical for optimizing device and system performance. Consideration to component values must be used to maximize overall system quality.

The best capacitors for use with the switching converter portion of the LM48520 are multi-layer ceramic capacitors. They have the lowest ESR (equivalent series resistance) and highest resonance frequency, which makes them optimum for high frequency switching converters.

When selecting a ceramic capacitor, only X5R and X7R dielectric types should be used. Other types such as Z5U and Y5F have such severe loss of capacitance due to effects of temperature variation and applied voltage, they may provide as little as 20% of rated capacitance in many typical applications. Always consult capacitor manufacturer’s data curves before selecting a capacitor. High-quality ceramic capacitors can be obtained from Taiyo-Yuden, AVX, and Murata.

Power Supply Bypassing for Amplifier

As with any amplifier, proper supply bypassing is critical for low noise performance and high power supply rejection. The capacitor location on both PV1, V1 and \(V_{\text{DD}} \) pins should be as close to the device as possible.

Selecting Input Capacitor for Audio Amplifier

Input capacitors, \(C_{\text{IN}} \), in conjunction with the input impedance of the LM48520 forms a high pass filter that removes the DC bias from an incoming signal. The AC-coupling capacitor allows the amplifier to bias the signal to an optimal DC level. Assuming zero source impedance, the -3dB point of the high pass filter is given by:

\[
f_{\text{-3dB}} = \frac{1}{2\pi R_{\text{in}} C_{\text{IN}}}
\]

Choose \(C_{\text{IN}} \) such that \(f_{\text{-3dB}} \) is well below that lowest frequency of interest. Setting \(f_{\text{-3dB}} \) too high affects the low-frequency responses of the amplifier. Use capacitors with low voltage coefficient dielectrics, such as tantalum or aluminum electrolytic. Capacitors with high-voltage coefficients, such as ceramics, may result in increased distortion at low frequencies. Other factors to consider when designing the input filter include the constraints of the overall system. Although high fidelity audio requires a flat frequency response between 20Hz and 20kHz, portable devices such as cell phones may only concentrate on the frequency range of the spoken human voice (typically 300Hz to 4kHz). In addition, the physical size of the speakers used in such portable devices limits the low frequency response; in this case, frequencies below 150Hz may be filtered out.

Selecting Output Capacitor (\(C_{\text{O}} \)) for Boost Converter

A single 100µF low ESR tantalum capacitor provides sufficient output capacitance for most applications. Higher capacitor values improve line regulation and transient response. Typical electrolytic capacitors are not suitable for switching converters that operate above 500kHz because of significant ringing and temperature rise due to self-heating from ripple current. An output capacitor with excessive ESR reduces phase margin and causes instability.

Selecting Input Capacitor (\(C_{\text{s1}} \)) for Boost Converter

An input capacitor is required to serve as an energy reservoir for the current which must flow into the coil each time the switch turns ON. This capacitor must have extremely low ESR, so ceramic is the best choice. We recommend a nominal value of 2.2µF, but larger values can be used. Since this capacitor reduces the amount of voltage ripple seen at the input pin, it also reduces the amount of EMI passed back along that line to other circuitry.
Selecting Soft-Start (CSS) Capacitor

The soft-start function charges the boost converter reference voltage slowly. This allows the output of the boost converter to ramp up slowly thus limiting the transient current at startup. Selecting a soft-start capacitor (CSS) value presents a trade-off between the wake-up time and the startup transient current. Using a larger capacitor value will increase wake-up time and decrease startup transient current while the opposite effect happens with a smaller capacitor value. A general guideline is to use a capacitor value 1000 times smaller than the output capacitance of the boost converter (CO). A 0.1μF soft-start capacitor is recommended for a typical application.

Setting the Output Voltage (Vı) of boost Converter

The output voltage is set using the external resistors R1 and R2 (see Figure 1). A value of approximately 13.3kΩ is recommended for R2 to establish a divider current of approximately 92μA. R1 is calculated using the formula:

\[R1 = R2 \times \left(\frac{Vı}{1.23} - 1 \right) \] (4)

Feed-Forward Compensation for Boost Converter

Although the LM48520’s internal Boost converter is internally compensated, the external feed-forward capacitor Ci is required for stability (see Figure 1). Adding this capacitor puts a zero in the loop response of the converter. The recommended frequency for the zero fz should be approximately 6kHz. Ci can be calculated using the formula:

\[C_i = \frac{1}{2 \times R1 \times f_z} \] (5)

Selecting Diodes for Boost

The external diode used in Figure 1 should be a Schottky diode. A 20V diode such as the MBRS320T3 is recommended.

The MBRS320T3 series of diodes are designed to handle a maximum average current of 3A.

Duty Cycle

The maximum duty cycle of the boost converter determines the maximum boost ratio of output-to-input voltage that the converter can attain in continuous mode of operation. The duty cycle for a given boost application is defined as:

\[\text{Duty Cycle} = \frac{V_{\text{OUT}} + V_{\text{DIODE}} - V_{\text{IN}}}{V_{\text{OUT}} + V_{\text{DIODE}} - V_{\text{SW}}} \] (6)

This applies for continuous mode operation.

Selecting Inductor Value

Inductor value involves trade-offs in performance. Larger inductors reduce inductor ripple current, which typically means less output voltage ripple (for a given size of output capacitor). Larger inductors also mean more load power can be delivered because the energy stored during each switching cycle is:

\[E = \frac{L}{2} \times (I_p)^2 \] (7)

Where “Ip” is the peak inductor current. The LM48520 will limit its switch current based on peak current. With Ip fixed, increasing L will increase the maximum amount of power available to the load. Conversely, using too little inductance may limit the amount of load current which can be drawn from the output. Best performance is usually obtained when the converter is operated in “continuous” mode at the load current range of interest, typically giving better load regulation and less output ripple. Continuous operation is defined as not allowing the inductor current to drop to zero during the cycle. Boost converters shift over to discontinuous operation if the load is reduced far enough, but a larger inductor stays continuous over a wider load current range.

During the TBDMs ON-time, the inductor current ramps up TBDA and ramps down an equal amount during the OFF-time. This is defined as the inductor “ripple current”. It can also be seen that if the load current drops to about TBDMa, the inductor current will begin touching the zero axis which means it will be in discontinuous mode. A similar analysis can be performed on any boost converter, to make sure the ripple current is reasonable and continuous operation will be maintained at the typical load current values.
Maximum Switch Current

The maximum FET switch current available before the current limiter cuts in is dependent on duty cycle of the application. This is illustrated in a graph in the Typical Performance Characteristics section which shows typical values of switch current as a function of effective (actual) duty cycle.

Calculating Output Current of Boost Converter (I_{AMP})

The load current is related to the average inductor current by the relation:

$$I_{\text{LOAD}} = I_{\text{IND}}(\text{AVG}) \times (1 - \text{DC})$$

where:

"DC" is the duty cycle of the application

The switch current can be found by:

$$I_{\text{SW}} = I_{\text{IND}}(\text{AVG}) + 1/2 (I_{\text{ripp}})$$

Inductor ripple current is dependent on inductance, duty cycle, input voltage and frequency:

$$I_{\text{ripp}} = DC \times (V_{IN} - V_{SW}) / (f \times L)$$

combining all terms, we can develop an expression which allows the maximum available load current to be calculated:

$$I_{\text{LOAD}}(\text{max}) = (1 – DC) \times (I_{\text{SW}}(\text{max}) – DC(V_{IN} - V_{SW})) / fL$$

The equation shown to calculate maximum load current takes into account the losses in the inductor or turn-OFF switching losses of the FET and diode.

Design Parameters V_{SW} and I_{SW}

The value of the FET "ON" voltage (referred to as V_{SW} in Equation 4 thru Equation 9) is dependent on load current. A good approximation can be obtained by multiplying the "ON Resistance" of the FET times the average inductor current.

FET on resistance increases at V_{IN} values below 5V, since the internal N-FET has less gate voltage in this input voltage range (see Typical Performance Characteristics curves). Above $V_{IN} = 5V$, the FET gate voltage is internally clamped to 5V.

The maximum peak switch current the device can deliver is dependent on duty cycle. For higher duty cycles, see Typical Performance Characteristics curves.

Inductor Suppliers

The recommended inductor for the LM48520 is the NR8040T6R8N from Taiyo Yuden. When selecting an inductor, make certain that the continuous current rating is high enough to avoid saturation at peak currents, where:

$$I_{\text{IND}} = (PV1 / V_{DD}) \times I_{\text{LOAD(BOOST)}}$$

A suitable core type must be used to minimize core (switching) losses, and wire power losses must be considered when selecting the current rating.

PCB Layout Guidelines

High frequency boost converters require very careful layout of components in order to get stable operation and low noise.

All components must be as close as possible to the LM48520 device. It is recommended that a four layer PCB be used so that internal ground planes are available.

Some additional guidelines to be observed (all designators are referencing Figure 1):

1. Keep the path between L1, D1, and Co extremely short. Parasitic trace inductance in series with D1 and Co will increase noise and ringing.
2. The feedback components R1, R2 and Cf1 must be kept close to the FB pin to prevent noise injection on the FB pin trace.
3. Since the external components of the boost converter are switching, L1 and D1 should be kept away from...
the input traces to prevent the noise from injecting into the input.
4. The power supply bypass capacitors, Cs1 and Cs2 should be placed as close to the LM48520 device as possible.

GROUNDING GUIDELINES

There are three grounds on the LM48520, GND, SW_GND, and PGND. When laying out the PCB, it is critical to connect the grounds as close to the device as possible. The simplest way to do that is to place vias close to the GND, SW_GND, and PGND bumps and connect the GND, SW_GND, and PGND vias using a single ground plane in an inner layer of the PCB.

Output Speaker Protection Function

The LM48520’s output voltage limiter can be used to set a minimum and maximum output voltage swing magnitude. The voltage applied to the VLimit pin controls the limit on the output voltage level. The output level is determined by the following equation:

\[V_{\text{out clipped}} = \frac{8}{3} \times (P_{V1} - 2 \times V_{\text{limit}}) \] (13)

where:
- \(V_{\text{out clipped}} \) = the desired output level measured in Vpk
- \(P_{V1} \) = Boost output voltage
- \(V_{\text{limit}} \) is the voltage applied the the VLimit pin on the LM48520

or

\[V_{\text{out clipped}} = \frac{1}{2} \times (P_{V1} - \frac{3}{8} \times V_{\text{out clipped}}) \] (14)

To disable the limiter, set \(V_{\text{limit}} \) = 0V.

Figure 22 provides an example of how the output voltage limiter functions with \(V_{DD} = 3.3V \), \(A_V = 6dB \), \(P_{V1} = 5V \), \(V_{\text{limit}} = 2V \), \(R_L = 8\Omega \), \(V_{IN} = 2V_P \).

![Figure 22. Soft Clipping vs No Clipping](image_url)
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>PIns</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM48520TL/NOPB</td>
<td>ACTIVE</td>
<td>DSBGA</td>
<td>YZR</td>
<td>25</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>SNAGCU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>GI5</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

- **ACTIVE:** Product device recommended for new designs.
- **LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM48520TL/NOPB</td>
<td>DSBGA</td>
<td>YZR</td>
<td>25</td>
<td>250</td>
<td>178.0</td>
<td>8.4</td>
<td>2.69</td>
<td>2.69</td>
<td>0.76</td>
<td>4.0</td>
<td>8.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

All dimensions are nominal.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>Dimension designed to accommodate the component width</td>
</tr>
<tr>
<td>B0</td>
<td>Dimension designed to accommodate the component length</td>
</tr>
<tr>
<td>K0</td>
<td>Dimension designed to accommodate the component thickness</td>
</tr>
<tr>
<td>W</td>
<td>Overall width of the carrier tape</td>
</tr>
<tr>
<td>P1</td>
<td>Pitch between successive cavity centers</td>
</tr>
</tbody>
</table>

TAPE DIMENSIONS

REEL DIMENSIONS

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

www.ti.com 2-Sep-2015
TAPE AND REEL BOX DIMENSIONS

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM48520TL/NOPB</td>
<td>DSBGA</td>
<td>YZR</td>
<td>25</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>
NOTES:
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI’s published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties, for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers’ applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY TECHNOLOGY, COPYRIGHT, TRADE SECRET, PATENT, TRADEMARK, OTHER INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated