LM4915 Pseudo-Differential Mono Headphone Amplifier with Fixed 6dB Gain

FEATURES
- Pseudo-Differential Amplification
- Internal Gain-Setting Resistors
- Available in Space-Saving WQFN Package
- Ultra Low Current Shutdown Mode
- Can Drive Capacitive Loads up to 500pF
- Improved Pop & Click Circuitry Virtually Eliminates Noises During Turn-On and Turn-Off Transitions
- 2.2 - 5.5V Operation
- No Output Coupling Capacitors, Snubber Networks, Bootstrap Capacitors or Gain-Setting Resistors Required
- Ultra Low Noise

KEY SPECIFICATIONS
- Improved PSRR at 217Hz and 1kHz: 75dB (Typ)
- Power Output at 5.0V & 1% THD into 32Ω: 280mW (Typ)
- Power Output at 3.0V & 1% THD into 32Ω: 90mW (Typ)
- Output Noise, A-weighted: 20μV (Typ)

APPLICATIONS
- Mobile Phones
- PDAs
- Portable Electronics Devices

DESCRIPTION
The LM4915 is a pseudo-differential audio power amplifier primarily designed for demanding applications in mobile phones and other portable audio device applications with mono headphones. It is capable of delivering 90 miliwatts of continuous average power to a 32Ω BTL load with less than 1% distortion (THD+N) from a 3V DC power supply.

Boomer audio power amplifiers were designed specifically to provide high quality output power with a minimal amount of external components. The LM4915 does not require output coupling capacitors or bootstrap capacitors, and therefore is ideally suited for mobile phone and other low voltage applications where minimal power consumption is a primary requirement.

The LM4915 features a low-power consumption shutdown mode. To facilitate this, Shutdown may be enabled by driving the shutdown pin low. Additionally, the LM4915 features an internal thermal shutdown protection mechanism.

The LM4915 contains advanced pop & click circuitry which virtually eliminates noises which would otherwise occur during turn-on and turn-off transitions.

The LM4915 has an internally fixed gain of 6dB.
Typical Application

Figure 1. Typical Audio Amplifier Application Circuit

Connection Diagrams

Figure 2. WQFN Package – Top View
See Package Number NGP0008A
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>6.0V</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>−65°C to +150°C</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>−0.3V to $V_{DD} + 0.3V$</td>
</tr>
<tr>
<td>Power Dissipation$^{(3)}$</td>
<td>Internally Limited</td>
</tr>
<tr>
<td>ESD Susceptibility$^{(4)}$</td>
<td>Human Body Model</td>
</tr>
<tr>
<td></td>
<td>2000V</td>
</tr>
<tr>
<td>Machine Model$^{(5)}$</td>
<td>200V</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>150°C</td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td>θ_{JC} (WQFN)</td>
</tr>
<tr>
<td></td>
<td>57°C/W</td>
</tr>
<tr>
<td></td>
<td>θ_{JA} (WQFN)</td>
</tr>
<tr>
<td></td>
<td>140°C/W</td>
</tr>
</tbody>
</table>

1. Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which ensure specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance.
2. If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.
3. The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J\text{MAX}}$, θ_{JA}, and the ambient temperature, T_A. The maximum allowable power dissipation is $P_{D\text{MAX}} = (T_{J\text{MAX}} - T_A) / \theta_{JA}$ or the number given in Absolute Maximum Ratings, whichever is lower. For the LM4915, see power derating curves for more information.
4. Human body model, 100pF discharged through a 1.5kΩ resistor.

Operating Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Range ($T_{\text{MIN}} \leq T_A \leq T_{\text{MAX}}$)</td>
<td>$-40^\circ C \leq T_A \leq +85^\circ C$</td>
</tr>
<tr>
<td>Supply Voltage (V_{DD})</td>
<td>$2.2V \leq V_{CC} \leq 5.5V$</td>
</tr>
</tbody>
</table>
Electrical Characteristics $V_{DD} = 5V^{(1)(2)(3)}$

The following specifications apply for $V_{DD} = 5V$, $R_L = 16\Omega$ unless otherwise specified. Limits apply to $T_A = 25^\circ C$.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LM4915</th>
<th>Units (Limits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{DD}</td>
<td>Quiescent Power Supply Current</td>
<td>$V_{IN} = 0V, I_O = 0A$</td>
<td>2</td>
<td>3.5 mA (max)</td>
</tr>
<tr>
<td>I_{SD}</td>
<td>Shutdown Current</td>
<td>$V_{SHUTDOWN} = GND$</td>
<td>0.1</td>
<td>See$^{(6)}$ μA (max)</td>
</tr>
<tr>
<td>V_{SDIH}</td>
<td>Shutdown Voltage Input High</td>
<td></td>
<td>1.8</td>
<td>V</td>
</tr>
<tr>
<td>V_{SDIL}</td>
<td>Shutdown Voltage Input Low</td>
<td></td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>P_O</td>
<td>Output Power</td>
<td>THD = 1% (max); $f = 1kHz$, $R_L = 16\Omega$, $R_L = 32\Omega$</td>
<td>400</td>
<td>280 μW</td>
</tr>
<tr>
<td>V_{NO}</td>
<td>Output Noise Voltage</td>
<td>BW = 20Hz to 20kHz, A-weighted</td>
<td>20</td>
<td>μV</td>
</tr>
<tr>
<td>PSRR</td>
<td>Power Supply Rejection Ratio</td>
<td>$V_{RIPPLE} = 200mV$ sine p-p</td>
<td>75</td>
<td>dB</td>
</tr>
<tr>
<td>V_{OS}</td>
<td>Output Offset Voltage</td>
<td>$V_{IN} = 0V$</td>
<td>2</td>
<td>20 mV (max)</td>
</tr>
</tbody>
</table>

(1) All voltages are measured with respect to the GND pin unless otherwise specified.
(2) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which ensure specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance.
(3) Datasheet min/max specifications are specified by design, test, or statistical analysis.
(4) Typicals are measured at $25^\circ C$ and represent the parametric norm.
(5) Limits are specified to AOQL (Average Outgoing Quality Level).
(6) See I_{SD} distribution values shown in the I_{SD} Distribution curves, $V_{DD} = 5V$ and $V = 3V$, (Figure 29 and Figure 30, respectively) shown in the Typical Performance Characteristics section.
Electrical Characteristics $V_{DD} = 3.0V^{(1)(2)(3)}$

The following specifications apply for $V_{DD} = 3.0V$, $R_L = 16\Omega$ unless otherwise specified. Limits apply to $T_A = 25^\circ C$.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LM4915</th>
<th>Units (Limits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{DD}</td>
<td>Quiescent Power Supply Current</td>
<td>$V_{IN} = 0V$, $I_O = 0A$</td>
<td>1.5</td>
<td>2.5 mA (max)</td>
</tr>
<tr>
<td>I_{SD}</td>
<td>Shutdown Current</td>
<td>$V_{SHUTDOWN} = GND$</td>
<td>0.1</td>
<td>See $^{(6)}$ μA (max)</td>
</tr>
<tr>
<td>V_{SDIH}</td>
<td>Shutdown Voltage Input High</td>
<td></td>
<td>1.8</td>
<td>V</td>
</tr>
<tr>
<td>V_{SDL}</td>
<td>Shutdown Voltage Input Low</td>
<td></td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>P_O</td>
<td>Output Power</td>
<td>$THD = 1%$ (max); $f = 1kHz$</td>
<td>125</td>
<td>100 mW (min)</td>
</tr>
<tr>
<td>V_{NO}</td>
<td>Output Noise Voltage</td>
<td>$BW = 20Hz$ to $20kHz$, A-weighted</td>
<td>20</td>
<td>μV</td>
</tr>
<tr>
<td>PSRR</td>
<td>Power Supply Rejection Ratio</td>
<td>$V_{RIPPLE} = 200mV$ sine p-p</td>
<td>70</td>
<td>dB</td>
</tr>
<tr>
<td>V_{DS}</td>
<td>Output Offset Voltage</td>
<td>$V_{IN} = 0V$</td>
<td>2</td>
<td>20 mV (max)</td>
</tr>
</tbody>
</table>

(1) All voltages are measured with respect to the GND pin unless otherwise specified.

(2) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which ensure specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance.

(3) Datasheet min/max specifications are specified by design, test, or statistical analysis.

(4) Typicals are measured at $25^\circ C$ and represent the parametric norm.

(5) Limits are specified to AOQL (Average Outgoing Quality Level).

(6) See I_{SD} distribution values shown in the I_{SD} Distribution curves, $V_{DD} = 5V$ and $V = 3V$, (Figure 29 and Figure 30, respectively) shown in the Typical Performance Characteristics section.

External Components Description

(Figure 1)

<table>
<thead>
<tr>
<th>Components</th>
<th>Functional Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. C_B</td>
<td>Bypass pin capacitor that provides half-supply filtering. Refer to the section Proper Selection of External Components for information concerning proper placement and selection of C_B.</td>
</tr>
<tr>
<td>2. C_i</td>
<td>Input coupling capacitor which blocks the DC voltage at the amplifier's input terminals. Also creates a high-pass filter with the internal input resistance R_i. For the LM4915, $R_i = 20k\Omega$, thus creating a high-pass filter $f_c = 1/(2\pi R_i C_i)$. Refer to the section Proper Selection of External Components for an explanation of how to determine the value of C_i.</td>
</tr>
</tbody>
</table>
Typical Performance Characteristics

THD+N vs Frequency

<table>
<thead>
<tr>
<th>Condition</th>
<th>Graph 1</th>
<th>Graph 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{DD} = 5V, R_L = 16\Omega$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{DD} = 5V, R_L = 32\Omega$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{DD} = 3V, R_L = 16\Omega, P_O = 100mW$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{DD} = 3V, R_L = 32\Omega, P_O = 80mW$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{DD} = 2.6V, R_L = 16\Omega, P_O = 50mW$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{DD} = 2.6V, R_L = 32\Omega, P_O = 40mW$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.
Typical Performance Characteristics (continued)

THD+N vs Output Power
\(V_{DD} = 5V, R_L = 16\Omega \)

Figure 9.

THD+N vs Output Power
\(V_{DD} = 5V, R_L = 32\Omega \)

Figure 10.

THD+N vs Output Power
\(V_{DD} = 3V, R_L = 16\Omega \)

Figure 11.

THD+N vs Output Power
\(V_{DD} = 3V, R_L = 32\Omega \)

Figure 12.

THD+N vs Output Power
\(V_{DD} = 2.6V, R_L = 16\Omega \)

Figure 13.

THD+N vs Output Power
\(V_{DD} = 2.6V, R_L = 32\Omega \)

Figure 14.
Typical Performance Characteristics (continued)

Figure 15.

PSRR vs Frequency

$V_{DD} = 5V$, $R_L = 16\Omega$, $P_O = 375mW$

Input 10Ω Terminated

Figure 16.

PSRR vs Frequency

$V_{DD} = 5V$, $R_L = 32\Omega$, $P_O = 250mW$

Input 10Ω Terminated

Figure 17.

PSRR vs Frequency

$V_{DD} = 3V$, $R_L = 16\Omega$

Input 10Ω Terminated

Figure 18.

PSRR vs Frequency

$V_{DD} = 3V$, $R_L = 32\Omega$

Input 10Ω Terminated

Figure 19.

PSRR vs Frequency

$V_{DD} = 2.6V$, $R_L = 16\Omega$

Input 10Ω Terminated

Figure 20.

PSRR vs Frequency

$V_{DD} = 2.6V$, $R_L = 32\Omega$

Input 10Ω Terminated
Typical Performance Characteristics (continued)

Output Power vs Load Resistance

\(V_{DD} = 2.6V, R_L = 32\Omega \)

Output Power vs Supply Voltage

\(R_L = 16\Omega \)

Power Dissipation vs Output Power

\(V_{DD} = 5V \)

Frequency Response

vs Input Capacitor Size

\(V_{DD} = 3V \)

\(C_i = 0.33\mu F \)
\(C_i = 0.47\mu F \)
\(C_i = 0.1\mu F \)
Typical Performance Characteristics (continued)

Figure 27.

Output Noise Voltage

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>20</th>
<th>100</th>
<th>1k</th>
<th>10k</th>
<th>20k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage (V)</td>
<td>100n</td>
<td>1u</td>
<td>10u</td>
<td>100u</td>
<td></td>
</tr>
</tbody>
</table>

Figure 28.

Shutdown Hysteresis Voltage

- **V_{DD} = 5V**
 - Supply Current (mA)
 - SD ON
 - SD OFF (Play)

Figure 29.

I_{SD} Distribution

- **V_{DD} = 3V**
 - Distribution

Figure 30.

I_{SD} Distribution

- **V_{DD} = 3V**
 - Distribution
APPLICATION INFORMATION

DIFFERENTIAL AMPLIFIER EXPLANATION

The LM4915 is a pseudo-differential audio amplifier that features a fixed gain of 6dB. Internally this is accomplished by two separate sets of inverting amplifiers, each set to a gain of 2. The LM4915 features precisely matched internal gain-setting resistors set to $R_i = 20k\Omega$ and $R_f = 40k\Omega$, thus eliminating the need for external resistors and fixing the differential gain at $A_{VD} = 6dB$.

A differential amplifier works in a manner where the difference between the two input signals is amplified. In most applications, this would require input signals that are 180° out of phase with each other. The LM4915 works in a pseudo-differential manner, so DC offset normally cancelled by a fully differential amplifier needs to be blocked by input coupling capacitors for the LM4915 to amplify the difference between the inputs.

The LM4915 provides what is known as a ‘bridged mode’ output (bridge-tied-load, BTL). This results in output signals at Vo1 and Vo2 that are 180° out of phase with respect to each other. Bridged mode operation is different from the single-ended amplifier configuration that connects the load between the amplifier output and ground. A bridged amplifier design has distinct advantages over the single-ended configuration: it provides differential drive to the load, thus doubling maximum possible output swing for a specific supply voltage. Four times the output power is possible compared with a single-ended amplifier under the same conditions.

This increase in attainable output power assumes that the amplifier is not current limited or clipped. A bridged configuration, such as the one used in the LM4915, also creates a second advantage over single-ended amplifiers. Since the differential outputs, Vo1 and Vo2, are biased at half-supply, no net DC voltage exists across the load. BTL configuration eliminates the output coupling capacitor required in single-supply, single-ended amplifier configurations. If an output coupling capacitor is not used in a single-ended output configuration, the half-supply bias across the load would result in both increased internal IC power dissipation as well as permanent loudspeaker damage.

POWER DISSIPATION

Power dissipation is a major concern when designing a successful amplifier, whether the amplifier is bridged or single-ended. Equation 1 states the maximum power dissipation point for a single-ended amplifier operating at a given supply voltage and driving a specified output load.

$$P_{DMAX} = \frac{(V_{DD})^2}{(2\pi^2R_L)} \quad \text{Single-Ended}$$

(1)

However, a direct consequence of the increased power de-livered to the load by a bridge amplifier is an increase in internal power dissipation versus a single-ended amplifier operating at the same conditions.

$$P_{DMAX} = 4\left(\frac{V_{DD})^2}{(2\pi^2R_L)} \quad \text{Bridge Mode}$$

(2)

Since the LM4915 has bridged outputs, the maximum internal power dissipation is 4 times that of a single-ended amplifier.

Even with this substantial increase in power dissipation, the LM4915 does not require additional heatsinking under most operating conditions and output loading. From Equation 2, assuming a 5V power supply and an 16Ω load, the maximum power dissipation point is 316mW. The maximum power dissipation point obtained from Equation 2 must not be greater than the power dissipation results from Equation 3:

$$P_{DMAX} = \frac{(T_{JMAX} - T_A)}{\theta_{JA}}$$

(3)

The LM4915's θ_{JA} in an NGP0008A package is 140°C/W. Depending on the ambient temperature, T_A, of the system surroundings, Equation 3 can be used to find the maximum internal power dissipation supported by the IC packaging. If the result of Equation 2 is greater than that of Equation 3, then either the supply voltage must be decreased, the load impedance increased, the ambient temperature reduced, or the θ_{JA} reduced with heatsinking. In many cases, larger traces near the output, V_{DD}, and GND pins can be used to lower the θ_{JA}. The larger areas of copper provide a form of heatsinking allowing higher power dissipation. For the typical application of a 5V power supply, with a 16Ω load power dissipation is not an issue. Recall that internal power dissipation is a function of output power. If typical operation is not around the maximum power dissipation point, the LM4915 can operate at higher ambient temperatures. Refer to the Typical Performance Characteristics curves for power dissipation information.
POWER SUPPLY BYPASSING

As with any power amplifier, proper supply bypassing is critical for low noise performance and high power supply rejection ratio (PSRR). The capacitor location on both the bypass and power supply pins should be as close to the device as possible. A larger half-supply bypass capacitor improves PSRR because it increases half-supply stability.

Typical applications employ a 5V regulator with 10µF and 0.1µF bypass capacitors that increase supply stability. This, however, does not eliminate the need for bypassing the supply nodes of the LM4915. A 1µF capacitor is recommended for \(C_S \). A 4.7µF capacitor is recommended for \(C_B \). This value coupled with small input capacitors (0.1µF to 0.47µF) gives virtually zero click and pop with outstanding PSRR performance.

MICRO POWER SHUTDOWN

The voltage applied to the SHUTDOWN pin controls the LM4915’s shutdown function. Activate micro-power shutdown by applying a logic-low voltage to the SHUTDOWN pin. When active, the LM4915’s micro-power shutdown feature turns off the amplifier’s bias circuitry, reducing the supply current. The trigger point is 0.4V for a logic-low level, and 1.8V for a logic-high level. The low 0.1µA (typ) shutdown current is achieved by applying a voltage that is as near as ground as possible to the SHUTDOWN pin. A voltage that is higher than ground may increase the shutdown current. There are a few ways to control the micro-power shutdown. These include using a single-pole, single-throw switch, a microprocessor, or a microcontroller. When using a switch, connect an external 100k pull-up resistor between the SHUTDOWN pin and \(V_{DD} \). Connect the switch between the SHUTDOWN pin and ground. Select normal amplifier operation by opening the switch. Closing the switch connects the SHUTDOWN pin to ground, activating micro-power shutdown.

The switch and resistor ensure that the SHUTDOWN pin will not float. This prevents unwanted state changes. In a system with a microprocessor or microcontroller, use a digital output to apply the control voltage to the SHUTDOWN pin. Driving the SHUTDOWN pin with active circuitry eliminates the pull-up resistor.

PROPER SELECTION OF EXTERNAL COMPONENTS

Proper selection of external components in applications using integrated power amplifiers is critical to optimize device and system performance. While the LM4915 is tolerant of external component combinations, and requires minimal external components, consideration to component values must be used to maximize overall system quality.

The input coupling capacitor, \(C_i \), forms a first order high pass filter which limits low frequency response given by \(f_c = \frac{1}{2\pi R_i C_i} \). \(R_i \) is internally set to 20kΩ. This value should be chosen based on needed frequency response for a few distinct reasons.

Selection of Input Capacitor Size

Large input capacitors are both expensive and space hungry for portable designs. Clearly, a certain sized capacitor is needed to couple in low frequencies without severe attenuation. But in many cases the speakers used in portable systems, whether internal or external, have little ability to reproduce signals below 100Hz to 150Hz. Thus, using a large input capacitor may not increase actual system performance.

In addition to system cost and size, click and pop performance is affected by the size of the input coupling capacitor, \(C_i \). A larger input coupling capacitor requires more charge to reach its quiescent DC voltage (nominally 1/2 \(V_{DD} \)). This charge comes from the output via the feedback and is apt to create pops upon device enable. Thus, by minimizing the capacitor size based on necessary low frequency response, turn-on pops can be minimized.

Besides minimizing the input capacitor size, careful consideration should be paid to the bypass capacitor value. Bypass capacitor, \(C_B \), is the most critical component to minimize turn-on pops since it determines how fast the LM4915 turns on. The slower the LM4915’s outputs ramp to their quiescent DC voltage (nominally 1/2 \(V_{DD} \)), the smaller the turn-on pop. Choosing \(C_B \) equal to 4.7µF along with a small value of \(C_i \) (in the range of 0.1µF to 0.47µF), should produce a virtually clickless and popless shutdown function. While the device will function properly, (no oscillations or motorboating), with \(C_B \) equal to 1.0µF, the device will be much more susceptible to turn-on clicks and pops. Thus, a value of \(C_B \) equal to 4.7µF is recommended in all but the most cost sensitive designs.
REVISION HISTORY

<table>
<thead>
<tr>
<th>Changes from Original (May 2013) to Revision A</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Changed layout of National Data Sheet to TI format</td>
<td>12</td>
</tr>
</tbody>
</table>
PACKAGE OPTION ADDENDUM

PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Top-Side Markings (4)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM4915LQX/NOPB</td>
<td>ACTIVE</td>
<td>WQFN</td>
<td>NGP</td>
<td>8</td>
<td>4500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-3-260C-168 HR</td>
<td>-40 to 85</td>
<td>GAS</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin 1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM4915LQX/NOPB</td>
<td>WQFN</td>
<td>NGP</td>
<td>8</td>
<td>4500</td>
<td>330.0</td>
<td>12.4</td>
<td>2.2</td>
<td>2.2</td>
<td>1.0</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

All dimensions are nominal

Notes:
- **Device:** LM4915LQX/NOPB
- **Package Type:** WQFN
- **Package Drawing:** NGP
- **Pins:** 8
- **SPQ:** 4500
- **Reel Diameter:** 330.0 mm
- **Reel Width W1:** 12.4 mm
- **A0:** 2.2 mm
- **B0:** 2.2 mm
- **K0:** 1.0 mm
- **P1:** 8.0 mm
- **W:** 12.0 mm
- **Pin 1 Quadrant:** Q1

Legend:
- **A0:** Dimension designed to accommodate the component width
- **B0:** Dimension designed to accommodate the component length
- **K0:** Dimension designed to accommodate the component thickness
- **W:** Overall width of the carrier tape
- **P1:** Pitch between successive cavity centers
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM4915LQX/NOPB</td>
<td>WQFN</td>
<td>NGP</td>
<td>8</td>
<td>4500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

<table>
<thead>
<tr>
<th>Audio</th>
<th>www.ti.com/audio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>amplifier.ti.com</td>
</tr>
<tr>
<td>Data Converters</td>
<td>dataconverter.ti.com</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>www.dlp.com</td>
</tr>
<tr>
<td>DSP</td>
<td>dsp.ti.com</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>www.ti.com/clocks</td>
</tr>
<tr>
<td>Interface</td>
<td>interface.ti.com</td>
</tr>
<tr>
<td>Logic</td>
<td>logic.ti.com</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>power.ti.com</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>microcontroller.ti.com</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>www.ti.com/omap</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
</tr>
</tbody>
</table>

Applications

<table>
<thead>
<tr>
<th>Automotive and Transportation</th>
<th>www.ti.com/automotive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communications and Telecom</td>
<td>www.ti.com/communications</td>
</tr>
<tr>
<td>Computers and Peripherals</td>
<td>www.ti.com/computers</td>
</tr>
<tr>
<td>Consumer Electronics</td>
<td>www.ti.com/consumer-apps</td>
</tr>
<tr>
<td>Energy and Lighting</td>
<td>www.ti.com/energy</td>
</tr>
<tr>
<td>Industrial</td>
<td>www.ti.com/industrial</td>
</tr>
<tr>
<td>Medical</td>
<td>www.ti.com/medical</td>
</tr>
<tr>
<td>Security</td>
<td>www.ti.com/security</td>
</tr>
<tr>
<td>Space, Avionics and Defense</td>
<td>www.ti.com/space-avionics-defense</td>
</tr>
<tr>
<td>Video and Imaging</td>
<td>www.ti.com/video</td>
</tr>
<tr>
<td>TI E2E Community</td>
<td>e2e.ti.com</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated