LM5000 High Voltage Switch Mode Regulator

Check for Samples: LM5000

FEATURES
- 80V Internal Switch
- Operating Input Voltage Range of 3.1V to 40V
- Pin Selectable Operating Frequency
 - 300kHz/700kHz (-3)
 - 600kHz/1.3MHz (-6)
- Adjustable Output Voltage
- External Compensation
- Input Undervoltage Lockout
- Softstart
- Current Limit
- Over Temperature Protection
- External Shutdown
- Small 16-Lead TSSOP or 16-Lead WSON Package

APPLICATIONS
- Flyback Regulator
- Forward Regulator
- Boost Regulator
- DSL Modems
- Distributed Power Converters

DESCRIPTION
The LM5000 is a monolithic integrated circuit specifically designed and optimized for flyback, boost or forward power converter applications. The internal power switch is rated for a maximum of 80V, with a current limit set to 2A. Protecting the power switch are current limit and thermal shutdown circuits. The current mode control scheme provides excellent rejection of line transients and cycle-by-cycle current limiting. An external compensation pin and the built-in slope compensation allow the user to optimize the frequency compensation. Other distinctive features include softstart to reduce stresses during start-up and an external shutdown pin for remote ON/OFF control. There are two operating frequency ranges available. The LM5000-3 is pin selectable for either 300kHz (FS Grounded) or 700kHz (FS Open). The LM5000-6 is pin selectable for either 600kHz (FS Grounded) or 1.3MHz (FS Open). The device is available in a low profile 16-lead TSSOP package or a thermally enhanced 16-lead WSON package.

Typical Application Circuit

Figure 1. LM5000 Flyback Converter

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.
PIN DESCRIPTIONS

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COMP</td>
<td>Compensation network connection. Connected to the output of the voltage error amplifier. The RC compensation network should be connected from this pin to AGND. An additional 100pF high frequency capacitor to AGND is recommended.</td>
</tr>
<tr>
<td>2</td>
<td>FB</td>
<td>Output voltage feedback input.</td>
</tr>
<tr>
<td>3</td>
<td>SHDN</td>
<td>Shutdown control input. Open = enable, Ground = disable.</td>
</tr>
<tr>
<td>4</td>
<td>AGND</td>
<td>Analog ground, connect directly to PGND.</td>
</tr>
<tr>
<td>5</td>
<td>PGND</td>
<td>Power ground.</td>
</tr>
<tr>
<td>6</td>
<td>PGND</td>
<td>Power ground.</td>
</tr>
<tr>
<td>7</td>
<td>PGND</td>
<td>Power ground.</td>
</tr>
<tr>
<td>8</td>
<td>PGND</td>
<td>Power ground.</td>
</tr>
<tr>
<td>9</td>
<td>SW</td>
<td>Power switch input. Switch connected between SW pins and PGND pins</td>
</tr>
<tr>
<td>10</td>
<td>SW</td>
<td>Power switch input. Switch connected between SW pins and PGND pins</td>
</tr>
<tr>
<td>11</td>
<td>SW</td>
<td>Power switch input. Switch connected between SW pins and PGND pins</td>
</tr>
<tr>
<td>12</td>
<td>BYP</td>
<td>Bypass-Decouple Capacitor Connection, 0.1µF ceramic capacitor recommended.</td>
</tr>
<tr>
<td>13</td>
<td>V<sub>IN</sub></td>
<td>Analog power input. A small RC filter is recommended, to suppress line glitches. Typical values of 10Ω and ≥ 0.1µF are recommended.</td>
</tr>
<tr>
<td>14</td>
<td>SS</td>
<td>Softstart Input. External capacitor and internal current source sets the softstart time.</td>
</tr>
<tr>
<td>15</td>
<td>FS</td>
<td>Switching frequency select input. Open = F<sub>High</sub>, Ground = F<sub>Low</sub></td>
</tr>
<tr>
<td>16</td>
<td>TEST</td>
<td>Factory test pin, connect to ground.</td>
</tr>
<tr>
<td></td>
<td>Exposed Pad</td>
<td>Connect to system ground plane for reduced thermal resistance.</td>
</tr>
<tr>
<td></td>
<td>underside of WSON package</td>
<td>Connect to system ground plane for reduced thermal resistance.</td>
</tr>
</tbody>
</table>
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>-0.3V to 40V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW Voltage</td>
<td>-0.3V to 80V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FB Voltage</td>
<td>-0.3V to 5V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP Voltage</td>
<td>-0.3V to 3V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Other Pins</td>
<td>-0.3V to 7V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>150°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>Internally Limited</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Temperature</td>
<td>216°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infrared (15 sec.)</td>
<td>235°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESD Susceptibility</td>
<td>Human Body Model</td>
<td>2kV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>−65°C to +150°C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Absolute maximum ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions for which the device is intended to be functional, but device parameter specifications may not be ensured. For ensured specifications and test conditions, see the Electrical Characteristics.

(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.

(3) The maximum allowable power dissipation is a function of the maximum junction temperature, T_J(MAX), the junction-to-ambient thermal resistance, θ_{JA}, and the ambient temperature, T_A. See the Electrical Characteristics table for the thermal resistance of various layouts. The maximum allowable power dissipation at any ambient temperature is calculated using: $P_{D}(MAX) = (T_J(MAX) - T_A)/\theta_{JA}$. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown.

(4) The human body model is a 100 pF capacitor discharged through a 1.5kΩ resistor into each pin. The machine model is a 200pF capacitor discharged directly into each pin.

Operating Conditions

<table>
<thead>
<tr>
<th>Operating Junction Temperature Range</th>
<th>−40°C to +125°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>3.1V to 40V</td>
</tr>
</tbody>
</table>

(1) Supply voltage, bias current product will result in aditional device power dissipation. This power may be significant. The thermal dissipation design should take this into account.

Electrical Characteristics

Specifications in standard type face are for $T_J = 25°C$ and those with boldface type apply over the full Operating Temperature Range ($T_J = −40°C to +125°C$) Unless otherwise specified. $V_{IN} = 12V$ and $I_L = 0A$, unless otherwise specified.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_Q</td>
<td>Quiescent Current</td>
<td>$FB = 2V$ (Not Switching) $FS = 0V$</td>
<td>2.0</td>
<td>2.5</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$FB = 2V$ (Not Switching) $FS = Open$</td>
<td>2.1</td>
<td>2.5</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{SHDN} = 0V$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{FB}</td>
<td>Feedback Voltage</td>
<td></td>
<td>1.2330</td>
<td>1.259</td>
<td>1.2840</td>
<td>V</td>
</tr>
<tr>
<td>I_{CL}</td>
<td>Switch Current Limit</td>
<td></td>
<td>1.35</td>
<td>2.0</td>
<td>2.7</td>
<td>A</td>
</tr>
<tr>
<td>$%V_{FB}/\Delta V_{IN}$</td>
<td>Feedback Voltage Line Regulation</td>
<td></td>
<td>3.1V ≤ V_{IN} ≤ 40V</td>
<td>0.001</td>
<td>0.04</td>
<td>%/V</td>
</tr>
<tr>
<td>I_B</td>
<td>FB Pin Bias Current</td>
<td></td>
<td>55</td>
<td></td>
<td>200</td>
<td>nA</td>
</tr>
</tbody>
</table>

(1) All limits specified at room temperature (standard typeface) and at temperature extremes (bold typeface). All room temperature limits are 100% production tested. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).

(2) Typical numbers are at 25°C and represent the most likely norm.

(3) Bias current flows into FB pin.
Electrical Characteristics (continued)

Specifications in standard type face are for $T_J = 25°C$ and those with **boldface type** apply over the full Operating Temperature Range ($T_J = -40°C$ to $+125°C$) Unless otherwise specified. $V_{IN} = 12V$ and $I_L = 0A$, unless otherwise specified.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min$^{(1)}$</th>
<th>Typ$^{(2)}$</th>
<th>Max$^{(1)}$</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV</td>
<td>Output Switch Breakdown Voltage</td>
<td>$T_J = 25°C$, $I_{SW} = 0.1µA$</td>
<td>80</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_J = -40°C$ to $+125°C$, $I_{SW} = 0.5µA$</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{IN}</td>
<td>Input Voltage Range</td>
<td></td>
<td>3.1</td>
<td>40</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>g_m</td>
<td>Error Amp Transconductance</td>
<td>$\Delta I = 5µA$</td>
<td>150</td>
<td>410</td>
<td>750</td>
<td>μmho</td>
</tr>
<tr>
<td>A_V</td>
<td>Error Amp Voltage Gain</td>
<td></td>
<td>280</td>
<td></td>
<td></td>
<td>V/V</td>
</tr>
<tr>
<td>D_{MAX}</td>
<td>Maximum Duty Cycle</td>
<td>LM5000-3</td>
<td>FS = 0V</td>
<td>85</td>
<td>90</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Maximum Duty Cycle</td>
<td>LM5000-6</td>
<td>FS = 0V</td>
<td>85</td>
<td>90</td>
<td>%</td>
</tr>
<tr>
<td>T_{MIN}</td>
<td>Minimum On Time</td>
<td></td>
<td>165</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>f_S</td>
<td>Switching Frequency LM5000-3</td>
<td>FS = 0V</td>
<td>240</td>
<td>300</td>
<td>360</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td>Switching Frequency LM5000-6</td>
<td>FS = 0V</td>
<td>485</td>
<td>600</td>
<td>715</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switching Frequency LM5000-6</td>
<td>FS = Open</td>
<td>1.055</td>
<td>1.3</td>
<td>1.545</td>
<td>MHz</td>
</tr>
<tr>
<td>I_{SHDN}</td>
<td>Shutdown Pin Current</td>
<td>$V_{SHDN} = 0V$</td>
<td>-1</td>
<td>-2</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>I_L</td>
<td>Switch Leakage Current</td>
<td>$V_{SW} = 80V$</td>
<td>0.008</td>
<td>5</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>R_{DSON}</td>
<td>Switch R_{DSON}</td>
<td>$I_{SW} = 1A$</td>
<td>160</td>
<td>445</td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>θ_{SHDN}</td>
<td>SHDN Threshold</td>
<td>Output High</td>
<td>0.9</td>
<td>0.6</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Output Low</td>
<td></td>
<td>0.6</td>
<td>0.3</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>UVLO</td>
<td>On Threshold</td>
<td></td>
<td>2.74</td>
<td>2.92</td>
<td>3.10</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Off Threshold</td>
<td></td>
<td>2.60</td>
<td>2.77</td>
<td>2.96</td>
<td>V</td>
</tr>
<tr>
<td>OVP</td>
<td>V_{COMP} Trip</td>
<td></td>
<td>0.67</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{SS}</td>
<td>Softstart Current</td>
<td></td>
<td>8</td>
<td>11</td>
<td>14</td>
<td>μA</td>
</tr>
<tr>
<td>θ_{JA}</td>
<td>Thermal Resistance</td>
<td>TSSOP, Package only</td>
<td>150</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td>WSON, Package only</td>
<td></td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Submit Documentation Feedback

Copyright © 2004–2007, Texas Instruments Incorporated

Product Folder Links: **LM5000**
Typical Performance Characteristics

Figure 3.
I_q (non-switching) vs V_{IN} @ $f_{\text{SW}} = 300\text{kHz}$

Figure 4.
I_q (non-switching) vs V_{IN} @ $f_{\text{SW}} = 700\text{kHz}$

Figure 5.
I_q (switching) vs V_{IN} @ $f_{\text{SW}} = 300\text{kHz}$

Figure 6.
I_q (switching) vs V_{IN} @ $f_{\text{SW}} = 700\text{kHz}$

Figure 7.
V_{fb} vs Temperature

Figure 8.
$R_{\text{DS(ON)}}$ vs V_{IN} @ $I_{\text{SW}} = 1\text{A}$
Typical Performance Characteristics (continued)

Current Limit vs Temperature

Figure 9.

Current Limit vs \(V_{IN}\)

Figure 10.

\(f_{SW} \text{ vs. } V_{IN} \) @ FS = Low (-3)

Figure 11.

\(f_{SW} \text{ vs. } V_{IN} \) @ FS = OPEN (-3)

Figure 12.

\(f_{SW} \text{ vs. Temperature} \) @ FS = Low (-3)

Figure 13.

\(f_{SW} \text{ vs. Temperature} \) @ FS = OPEN (-3)

Figure 14.
Typical Performance Characteristics (continued)

Figure 15. f_{SW} vs. Temperature @ FS = Low (-6)

Figure 16. f_{SW} vs. Temperature @ FS = OPEN (-6)

Figure 17. Error Amp. Transconductance vs Temp.

Figure 18. BYP Pin Voltage vs V_{IN}
Typical Application Diagrams

Figure 19. 300 kHz operation, 48V output

Figure 20. 700 kHz operation, 48V output
BOOST REGULATOR OPERATION

The LM5000 utilizes a PWM control scheme to regulate the output voltage over all load conditions. The operation can best be understood referring to the block diagram and Figure 21. At the start of each cycle, the oscillator sets the driver logic and turns on the NMOS power device conducting current through the inductor, cycle 1 of Figure 21 (a). During this cycle, the voltage at the COMP pin controls the peak inductor current. The COMP voltage will increase with larger loads and decrease with smaller. This voltage is compared with the summation of the SW voltage and the ramp compensation. The ramp compensation is used in PWM architectures to eliminate the sub-harmonic oscillations that occur during duty cycles greater than 50%. Once the summation of the ramp compensation and switch voltage equals the COMP voltage, the PWM comparator resets the driver logic turning off the NMOS power device. The inductor current then flows through the output diode to the load and output capacitor, cycle 2 of Figure 21 (b). The NMOS power device is then set by the oscillator at the end of the period and current flows through the inductor once again.

The LM5000 has dedicated protection circuitry running during the normal operation to protect the IC. The Thermal Shutdown circuitry turns off the NMOS power device when the die temperature reaches excessive levels. The UVP comparator protects the NMOS power device during supply power startup and shutdown to prevent operation at voltages less than the minimum input voltage. The OVP comparator is used to prevent the output voltage from rising at no loads allowing full PWM operation over all load conditions. The LM5000 also features a shutdown mode. An external capacitor sets the softstart time by limiting the error amp output range, as the capacitor charges up via an internal 10µA current source.

The LM5000 is available in two operating frequency ranges. The LM5000-3 is pin selectable for either 300kHz (FS Grounded) or 700kHz (FS Open). The LM5000-6 is pin selectable for either 600kHz (FS Grounded) or 1.3MHz (FS Open).

Operation

CONTINUOUS CONDUCTION MODE

The LM5000 is a current-mode, PWM regulator. When used as a boost regulator the input voltage is stepped up to a higher output voltage. In continuous conduction mode (when the inductor current never reaches zero at steady state), the boost regulator operates in two cycles.

In the first cycle of operation, shown in Figure 21 (a), the transistor is closed and the diode is reverse biased. Energy is collected in the inductor and the load current is supplied by \(C_{OUT} \).
The second cycle is shown in Figure 21 (b). During this cycle, the transistor is open and the diode is forward biased. The energy stored in the inductor is transferred to the load and output capacitor.

The ratio of these two cycles determines the output voltage. The output voltage is defined approximately as:

\[
V_{OUT} = \frac{V_{IN}}{1-D}, \quad D' = \frac{V_{IN}}{V_{OUT}}
\]

where

- D is the duty cycle of the switch
- D and D’ will be required for design calculations

(1)

SETTING THE OUTPUT VOLTAGE

The output voltage is set using the feedback pin and a resistor divider connected to the output as shown in Figure 19. The feedback pin is always at 1.259V, so the ratio of the feedback resistors sets the output voltage.

\[
R_{FB1} = R_{FB2} \times \frac{V_{OUT} - 1.259}{1.259} \Omega
\]

(2)

INTRODUCTION TO COMPENSAITION

The LM5000 is a current mode PWM regulator. The signal flow of this control scheme has two feedback loops, one that senses switch current and one that senses output voltage.

![Diagram](image-url)

Figure 22. (a) Inductor current. (b) Diode current.

The LM5000 is a current mode PWM regulator. The signal flow of this control scheme has two feedback loops, one that senses switch current and one that senses output voltage.
To keep a current programmed control converter stable above duty cycles of 50%, the inductor must meet certain criteria. The inductor, along with input and output voltage, will determine the slope of the current through the inductor (see Figure 22 (a)). If the slope of the inductor current is too great, the circuit will be unstable above duty cycles of 50%.

The LM5000 provides a compensation pin (COMP) to customize the voltage loop feedback. It is recommended that a series combination of R_C and C_C be used for the compensation network, as shown in Figure 19. The series combination of R_C and C_C introduces pole-zero pair according to the following equations:

$$f_{PC} = \frac{1}{2\pi R_C C_C} \text{Hz}$$

$$f_{ZC} = \frac{1}{2\pi (R_C + R_O) C_C} \text{Hz}$$

where

- R_O is the output impedance of the error amplifier, 850kΩ

For most applications, performance can be optimized by choosing values within the range $5kΩ \leq R_C \leq 20kΩ$ and $680pF \leq C_C \leq 4.7nF$.

COMPENSATION

This section will present a general design procedure to help insure a stable and operational circuit. The designs in this datasheet are optimized for particular requirements. If different conversions are required, some of the components may need to be changed to ensure stability. Below is a set of general guidelines in designing a stable circuit for continuous conduction operation (loads greater than 100mA), in most all cases this will provide for stability during discontinuous operation as well. The power components and their effects will be determined first, then the compensation components will be chosen to produce stability.

INDUCTOR SELECTION

To ensure stability at duty cycles above 50%, the inductor must have some minimum value determined by the minimum input voltage and the maximum output voltage. This equation is:

$$L > \frac{V_{IN} R_{DSON}}{0.144 \, fs} \left(\frac{D}{D'} \right)^{0.5} \left(\frac{1}{\left(\frac{D}{D'} \right)^{0.5}} \right) \text{ (in H)}$$

where

- fs is the switching frequency
- D is the duty cycle
- R_{DSON} is the ON resistance of the internal switch

This equation is only good for duty cycles greater than 50% ($D>0.5$).

$$\Delta i_L = \frac{V_w D}{2Lfs} \text{ (in Amps)}$$

The inductor ripple current is important for a few reasons. One reason is because the peak switch current will be the average inductor current (input current) plus Δi_L. Care must be taken to make sure that the switch will not reach its current limit during normal operation. The inductor must also be sized accordingly. It should have a saturation current rating higher than the peak inductor current expected. The output voltage ripple is also affected by the total ripple current.

DC GAIN AND OPEN-LOOP GAIN

Since the control stage of the converter forms a complete feedback loop with the power components, it forms a closed-loop system that must be stabilized to avoid positive feedback and instability. A value for open-loop DC gain will be required, from which you can calculate, or place, poles and zeros to determine the crossover frequency and the phase margin. A high phase margin (greater than 45°) is desired for the best stability and transient response. For the purpose of stabilizing the LM5000, choosing a crossover point well below where the right half plane zero is located will ensure sufficient phase margin. A discussion of the right half plane zero and checking the crossover using the DC gain will follow.
OUTPUT CAPACITOR SELECTION

The choice of output capacitors is somewhat more arbitrary. It is recommended that low ESR (Equivalent Series Resistance, denoted \(R_{ESR}\)) capacitors be used such as ceramic, polymer electrolytic, or low ESR tantalum. Higher ESR capacitors may be used but will require more compensation which will be explained later on in the section. The ESR is also important because it determines the output voltage ripple according to the approximate equation:

\[
\Delta V_{OUT} \approx 2\Delta iL \frac{R_{ESR}}{2} \text{ (in Volts)}
\]

(7)

After choosing the output capacitor you can determine a pole-zero pair introduced into the control loop by the following equations:

\[
f_{z1} = \frac{1}{2\pi (R_{ESR} + R_{L})C_{OUT}} \text{ (in Hz)}
\]

(8)

\[
f_{z2} = \frac{1}{2\pi R_{ESR}C_{OUT}} \text{ (in Hz)}
\]

(9)

where

- \(R_{L}\) is the minimum load resistance corresponding to the maximum load current

The zero created by the ESR of the output capacitor is generally very high frequency if the ESR is small. If low ESR capacitors are used it can be neglected. If higher ESR capacitors are used see the HIGH OUTPUT CAPACITOR ESR COMPENSATION section.

RIGHT HALF PLANE ZERO

A current mode control boost regulator has an inherent right half plane zero (RHP zero). This zero has the effect of a zero in the gain plot, causing an imposed +20dB/decade on the rolloff, but has the effect of a pole in the phase, subtracting another 90° in the phase plot. This can cause undesirable effects if the control loop is influenced by this zero. To ensure the RHP zero does not cause instability issues, the control loop should be designed to have a bandwidth of \(\frac{1}{2}\) the frequency of the RHP zero or less. This zero occurs at a frequency of:

\[
RHP\text{zero} = \frac{V_{OUT}(\Delta i^{2})^{2}}{2\pi I_{LOAD}L} \text{ (in Hz)}
\]

where

- \(I_{LOAD}\) is the maximum load current

(10)

SELECTING THE COMPENSATION COMPONENTS

The first step in selecting the compensation components \(R_{C}\) and \(C_{C}\) is to set a dominant low frequency pole in the control loop. Simply choose values for \(R_{C}\) and \(C_{C}\) within the ranges given in the INTRODUCTION TO COMPENSATION section to set this pole in the area of 10Hz to 100Hz. The frequency of the pole created is determined by the equation:

\[
f_{p} = \frac{1}{2\pi (R_{C} + R_{O})C_{C}} \text{ (in Hz)}
\]

where

- \(R_{O}\) is the output impedance of the error amplifier, 850kΩ

(11)

Since \(R_{C}\) is generally much less than \(R_{O}\), it does not have much effect on the above equation and can be neglected until a value is chosen to set the zero \(f_{ZC}\). \(f_{ZC}\) is created to cancel out the pole created by the output capacitor, \(f_{P1}\). The output capacitor pole will shift with different load currents as shown by the equation, so setting the zero is not exact. Determine the range of \(f_{P1}\) over the expected loads and then set the zero \(f_{ZC}\) to a point approximately in the middle. The frequency of this zero is determined by:

\[
f_{ZC} = \frac{1}{2\pi C_{C}R_{C}} \text{ (in Hz)}
\]

(12)
Now \(R_C \) can be chosen with the selected value for \(C_C \). Check to make sure that the pole \(f_{PC} \) is still in the 10Hz to 100Hz range, change each value slightly if needed to ensure both component values are in the recommended range. After checking the design at the end of this section, these values can be changed a little more to optimize performance if desired. This is best done in the lab on a bench, checking the load step response with different values until the ringing and overshoot on the output voltage at the edge of the load steps is minimal. This should produce a stable, high performance circuit. For improved transient response, higher values of \(R_C \) (within the range of values) should be chosen. This will improve the overall bandwidth which makes the regulator respond more quickly to transients. If more detail is required, or the most optimal performance is desired, refer to a more in depth discussion of compensating current mode DC/DC switching regulators.

HIGH OUTPUT CAPACITOR ESR COMPENSATION

When using an output capacitor with a high ESR value, or just to improve the overall phase margin of the control loop, another pole may be introduced to cancel the zero created by the ESR. This is accomplished by adding another capacitor, \(C_{C2} \), directly from the compensation pin \(V_C \) to ground, in parallel with the series combination of \(R_C \) and \(C_C \). The pole should be placed at the same frequency as \(f_{Z1} \), the ESR zero. The equation for this pole follows:

\[
f_{PC2} = \frac{1}{2\pi C_C (R_C / R_D)} \text{ (in Hz)}
\]

(13)

To ensure this equation is valid, and that \(C_{C2} \) can be used without negatively impacting the effects of \(R_C \) and \(C_C \), \(f_{PC2} \) must be greater than \(10f_{PC} \).

CHECKING THE DESIGN

The final step is to check the design. This is to ensure a bandwidth of \(\frac{1}{2} \) or less of the frequency of the RHP zero. This is done by calculating the open-loop DC gain, \(A_{DC} \). After this value is known, you can calculate the crossover visually by placing a \(-20\text{dB/decade}\) slope at each pole, and a \(+20\text{dB/decade}\) slope for each zero. The point at which the gain plot crosses unity gain, or 0dB, is the crossover frequency. If the crossover frequency is at less than \(\frac{1}{2} \) the RHP zero, the phase margin should be high enough for stability. The phase margin can also be improved some by adding \(C_{C2} \) as discussed earlier in the section. The equation for \(A_{DC} \) is given below with additional equations required for the calculation:

\[
A_{DC(DB)} = 20\log_{10}\left(\frac{R_{FB2}}{R_{FB1} + R_{FB2}}\right)\left(\frac{9mR_{C}D'}{R_{DSON}}\left(\frac{\omega C L(eff)}{R_L / R_L}\right)\right) \text{ (in dB)}
\]

(14)

\[
\omega C \equiv \frac{2fs}{\pi D'} \text{ (in rad/s)}
\]

(15)

\[
L_{eff} = \frac{L}{(D')^2}
\]

(16)

\[
n = 1 + \frac{2mc}{m3} \text{ (no unit)}
\]

(17)

\[
mc \equiv 0.072fs \text{ (in A/s)}
\]

(18)

\[
m1 \equiv \frac{V_{IN}R_{DSON}}{L} \text{ (in V/s)}
\]

where

- \(R_L \) is the minimum load resistance
- \(V_{IN} \) is the maximum input voltage
- \(R_{DSON} \) is the value chosen from the graph "\(R_{DSON} \) vs. \(V_{IN} \)" in the Typical Performance Characteristics section

SWITCH VOLTAGE LIMITS

In a flyback regulator, the maximum steady-state voltage appearing at the switch, when it is off, is set by the transformer turns ratio, \(N \), the output voltage, \(V_{OUT} \), and the maximum input voltage, \(V_{IN} \text{ (Max)} \):

\[
V_{SW(OFF)} = V_{IN} \text{ (Max)} + (V_{OUT} + V_F) / N
\]

where

- \(V_F \) is the forward biased voltage of the output diode, and is typically 0.5V for Schottky diodes and 0.8V for ultra-fast recovery diodes
In certain circuits, there exists a voltage spike, V_{LL}, superimposed on top of the steady-state voltage. Usually, this voltage spike is caused by the transformer leakage inductance and/or the output rectifier recovery time. To "clamp" the voltage at the switch from exceeding its maximum value, a transient suppressor in series with a diode is inserted across the transformer primary.

If poor circuit layout techniques are used, negative voltage transients may appear on the Switch pin. Applying a negative voltage (with respect to the IC's ground) to any monolithic IC pin causes erratic and unpredictable operation of that IC. This holds true for the LM5000 IC as well. When used in a flyback regulator, the voltage at the Switch pin can go negative when the switch turns on. The "ringing" voltage at the switch pin is caused by the output diode capacitance and the transformer leakage inductance forming a resonant circuit at the secondary(ies). The resonant circuit generates the "ringing" voltage, which gets reflected back through the transformer to the switch pin. There are two common methods to avoid this problem. One is to add an RC snubber around the output rectifier(s). The values of the resistor and the capacitor must be chosen so that the voltage at the Switch pin does not drop below -0.4V. The resistor may range in value between 10Ω and 1kΩ, and the capacitor will vary from 0.001μF to 0.1μF. Adding a snubber will (slightly) reduce the efficiency of the overall circuit.

The other method to reduce or eliminate the "ringing" is to insert a Schottky diode clamp between the SW pin and the PGND pin. The reverse voltage rating of the diode must be greater than the switch off voltage.

OUTPUT VOLTAGE LIMITATIONS

The maximum output voltage of a boost regulator is the maximum switch voltage minus a diode drop. In a flyback regulator, the maximum output voltage is determined by the turns ratio, N, and the duty cycle, D, by the equation:

$$V_{OUT} \approx N \times V_{IN} \times D/(1 - D)$$

The duty cycle of a flyback regulator is determined by the following equation:

$$D = \frac{V_{OUT} + V_F}{N(V_{IN} - V_{SAT}) + V_{OUT}} = \frac{V_{OUT}}{N(V_{IN}) + V_{OUT}}$$

Theoretically, the maximum output voltage can be as large as desired—just keep increasing the turns ratio of the transformer. However, there exists some physical limitations that prevent the turns ratio, and thus the output voltage, from increasing to infinity. The physical limitations are capacitances and inductances in the LM5000 switch, the output diode(s), and the transformer—such as reverse recovery time of the output diode (mentioned above).

INPUT LINE CONDITIONING

A small, low-pass RC filter should be used at the input pin of the LM5000 if the input voltage has an unusually large amount of transient noise. Additionally, the RC filter can reduce the dissipation within the device when the input voltage is high.

Flyback Regulator Operation

The LM5000 is ideally suited for use in the flyback regulator topology. The flyback regulator can produce a single output voltage, or multiple output voltages.

The operation of a flyback regulator is as follows: When the switch is on, current flows through the primary winding of the transformer, $T1$, storing energy in the magnetic field of the transformer. Note that the primary and secondary windings are out of phase, so no current flows through the secondary when current flows through the primary. When the switch turns off, the magnetic field collapses, reversing the voltage polarity of the primary and secondary windings. Now rectifier $D5$ is forward biased and current flows through it, releasing the energy stored in the transformer. This produces voltage at the output.

The output voltage is controlled by modulating the peak switch current. This is done by feeding back a portion of the output voltage to the error amp, which amplifies the difference between the feedback voltage and a 1.259V reference. The error amp output voltage is compared to a ramp voltage proportional to the switch current (i.e., inductor current during the switch on time). The comparator terminates the switch on time when the two voltages are equal, thereby controlling the peak switch current to maintain a constant output voltage.
Figure 23. LM5000 Flyback Converter
<table>
<thead>
<tr>
<th>ITEM</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 1</td>
<td>C4532X7R2A105MT</td>
<td>Capacitor, CER, TDK</td>
<td>1µ, 100V</td>
</tr>
<tr>
<td>C 2</td>
<td>C4532X7R2A105MT</td>
<td>Capacitor, CER, TDK</td>
<td>1µ, 100V</td>
</tr>
<tr>
<td>C 3</td>
<td>C1206C224K5RAC</td>
<td>Capacitor, CER, KEMET</td>
<td>0.22µ, 50V</td>
</tr>
<tr>
<td>C 4</td>
<td>C1206C104K5RAC</td>
<td>Capacitor, CER, KEMET</td>
<td>0.1µ, 50V</td>
</tr>
<tr>
<td>C 5</td>
<td>C1206C104K5RAC</td>
<td>Capacitor, CER, KEMET</td>
<td>0.1µ, 50V</td>
</tr>
<tr>
<td>C 6</td>
<td>C1206C101K1GAC</td>
<td>Capacitor, CER, KEMET</td>
<td>100p, 100V</td>
</tr>
<tr>
<td>C 7</td>
<td>C1206C104K5RAC</td>
<td>Capacitor, CER, KEMET</td>
<td>0.1µ, 50V</td>
</tr>
<tr>
<td>C 8</td>
<td>C4532X7S0G686M</td>
<td>Capacitor, CER, TDK</td>
<td>68µ, 4V</td>
</tr>
<tr>
<td>C 9</td>
<td>C4532X7S0G686M</td>
<td>Capacitor, CER, TDK</td>
<td>68µ, 4V</td>
</tr>
<tr>
<td>C 10</td>
<td>C1206C221K1GAC</td>
<td>Capacitor, CER, KEMET</td>
<td>220p, 100V</td>
</tr>
<tr>
<td>C 11</td>
<td>C1206C102K5RAC</td>
<td>Capacitor, CER, KEMET</td>
<td>1000p, 500V</td>
</tr>
<tr>
<td>D 1</td>
<td>BZX84C10-NSA</td>
<td>Central, 10V Zener, SOT-23</td>
<td></td>
</tr>
<tr>
<td>D 2</td>
<td>CMZ5930B-NSA</td>
<td>Central, 16V Zener, SMA</td>
<td></td>
</tr>
<tr>
<td>D 3</td>
<td>CMPD914-NSA</td>
<td>Central, Switching, SOT-23</td>
<td></td>
</tr>
<tr>
<td>D 4</td>
<td>CMPD914-NSA</td>
<td>Central, Switching, SOT-23</td>
<td></td>
</tr>
<tr>
<td>D 5</td>
<td>CMSH3-40L-NSA</td>
<td>Central, Schottky, SMC</td>
<td></td>
</tr>
<tr>
<td>T 1</td>
<td>A0009-A</td>
<td>Coilcraft, Transformer</td>
<td></td>
</tr>
<tr>
<td>R 1</td>
<td>CRCW12064992F</td>
<td>Resistor</td>
<td>49.9K</td>
</tr>
<tr>
<td>R 2</td>
<td>CRCW12061001F</td>
<td>Resistor</td>
<td>1K</td>
</tr>
<tr>
<td>R 3</td>
<td>CRCW12061002F</td>
<td>Resistor</td>
<td>10K</td>
</tr>
<tr>
<td>R 4</td>
<td>CRCW12066191F</td>
<td>Resistor</td>
<td>6.19K</td>
</tr>
<tr>
<td>R 5</td>
<td>CRCW120610R0F</td>
<td>Resistor</td>
<td>10</td>
</tr>
<tr>
<td>R 6</td>
<td>CRCW12062003F</td>
<td>Resistor</td>
<td>200K</td>
</tr>
<tr>
<td>R 7</td>
<td>CRCW12061002F</td>
<td>Resistor</td>
<td>10K</td>
</tr>
<tr>
<td>Q 1</td>
<td>CXT5551-NSA</td>
<td>Central, NPN, 180V</td>
<td></td>
</tr>
<tr>
<td>U 1</td>
<td>LM5000-3</td>
<td>Regulator, TI</td>
<td></td>
</tr>
</tbody>
</table>
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM5000-3MTC</td>
<td>NRND</td>
<td>TSSOP</td>
<td>PW</td>
<td>16</td>
<td>92</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>-40 to 125</td>
<td>LM5000 3MTC</td>
<td>Samples</td>
</tr>
<tr>
<td>LM5000-3MTC/NOPB</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>16</td>
<td>92</td>
<td>Green</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>LM5000 3MTC</td>
<td>Samples</td>
</tr>
<tr>
<td>LM5000-3MTCX</td>
<td>NRND</td>
<td>TSSOP</td>
<td>PW</td>
<td>16</td>
<td>2500</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>-40 to 125</td>
<td>LM5000 3MTC</td>
<td>Samples</td>
</tr>
<tr>
<td>LM5000-3MTCX/NOPB</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>16</td>
<td>2500</td>
<td>Green</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>LM5000 3MTC</td>
<td>Samples</td>
</tr>
<tr>
<td>LM5000SD-3/NOPB</td>
<td>ACTIVE</td>
<td>WSON</td>
<td>NHQ</td>
<td>16</td>
<td>1000</td>
<td>Green</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>5000-3</td>
<td>Samples</td>
</tr>
<tr>
<td>LM5000SD-6/NOPB</td>
<td>ACTIVE</td>
<td>WSON</td>
<td>NHQ</td>
<td>16</td>
<td>1000</td>
<td>Green</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>5000-6</td>
<td>Samples</td>
</tr>
<tr>
<td>LM5000SDX-3/NOPB</td>
<td>ACTIVE</td>
<td>WSON</td>
<td>NHQ</td>
<td>16</td>
<td>4500</td>
<td>Green</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>5000-3</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE:** Product device recommended for new designs.
- **LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE:** TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
- **RoHS Exempt:** TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
- **Green:** TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

TAPE DIMENSIONS

- **A0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component length
- **K0**: Dimension designed to accommodate the component thickness
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers

REEL DIMENSIONS

- Reel Diameter
- Reel Width (W1)

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

- **Sprocket Holes**
- **User Direction of Feed**
- **Pocket Quadrants**

All dimensions are nominal.

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin 1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM5000-3MTCX</td>
<td>TSSOP</td>
<td>PW</td>
<td>16</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.95</td>
<td>5.6</td>
<td>1.6</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM5000-3MTCX/NOPB</td>
<td>TSSOP</td>
<td>PW</td>
<td>16</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.95</td>
<td>5.6</td>
<td>1.6</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM5000SD-3/NOPB</td>
<td>WSON</td>
<td>NHQ</td>
<td>16</td>
<td>1000</td>
<td>178.0</td>
<td>12.4</td>
<td>5.3</td>
<td>5.3</td>
<td>1.3</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM5000SD-6/NOPB</td>
<td>WSON</td>
<td>NHQ</td>
<td>16</td>
<td>1000</td>
<td>178.0</td>
<td>12.4</td>
<td>5.3</td>
<td>5.3</td>
<td>1.3</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM5000SDX-3/NOPB</td>
<td>WSON</td>
<td>NHQ</td>
<td>16</td>
<td>4500</td>
<td>330.0</td>
<td>12.4</td>
<td>5.3</td>
<td>5.3</td>
<td>1.3</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM5000-3MTCX</td>
<td>TSSOP</td>
<td>PW</td>
<td>16</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LM5000-3MTCX/NOPB</td>
<td>TSSOP</td>
<td>PW</td>
<td>16</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LM5000SD-3/NOPB</td>
<td>WSON</td>
<td>NHQ</td>
<td>16</td>
<td>1000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LM5000SD-6/NOPB</td>
<td>WSON</td>
<td>NHQ</td>
<td>16</td>
<td>1000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LM5000SDX-3/NOPB</td>
<td>WSON</td>
<td>NHQ</td>
<td>16</td>
<td>4500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>
NOTES:
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 each side.
D. Body width does not include interlead flash. Interlead flash shall not exceed 0.25 each side.
E. Falls within JEDEC MO-153
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and/or implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers’ applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY TECHNOLOGY, PATENT RIGHT, COPYRIGHT, TRADE SECRET OR ANY OTHER INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.