LMC6492 Dual/LMC6494 Quad CMOS Rail-to-Rail Input and Output Operational Amplifier

Check for Samples: LMC6492, LMC6494

FEATURES

(Typical Unless Otherwise Noted)
- Rail-to-Rail Input Common-Mode Voltage Range, Ensured Over Temperature
- Rail-to-Rail Output Swing within 20 mV of Supply Rail, 100 kΩ Load
- Operates from 5V to 15V Supply
- Excellent CMRR and PSRR 82 dB
- Ultra Low Input Current 150 fA
- High Voltage Gain ($R_L = 100 \, kΩ$) 120 dB
- Low Supply Current ($@ V_S = 5V$) 500 μA/Amplifier
- Low Offset Voltage Drift 1.0 μV/°C

APPLICATIONS
- Automotive Transducer Amplifier
- Pressure Sensor
- Oxygen Sensor
- Temperature Sensor
- Speed Sensor

DESCRIPTION

The LMC6492/LMC6494 amplifiers were specifically developed for single supply applications that operate from −40°C to +125°C. This feature is well-suited for automotive systems because of the wide temperature range. A unique design topology enables the LMC6492/LMC6494 common-mode voltage range to accommodate input signals beyond the rails. This eliminates non-linear output errors due to input signals exceeding a traditionally limited common-mode voltage range. The LMC6492/LMC6494 signal range has a high CMRR of 82 dB for excellent accuracy in non-inverting circuit configurations.

The LMC6492/LMC6494 rail-to-rail input is complemented by rail-to-rail output swing. This assures maximum dynamic signal range which is particularly important in 5V systems.

Ultra-low input current of 150 fA and 120 dB open loop gain provide high accuracy and direct interfacing with high impedance sources.

Connection Diagram

![Connection Diagram](image)

Figure 1. 8-Pin PDIP/SOIC - Top View

Figure 2. 14-Pin PDIP/SOIC - Top View

⚠️ Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2000–2013, Texas Instruments Incorporated
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Units</th>
<th>Limit(2)</th>
<th>Limit(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD Tolerance</td>
<td></td>
<td></td>
<td>2000V</td>
<td></td>
</tr>
<tr>
<td>Differential Input Voltage</td>
<td></td>
<td>±Supply Voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage at Input/Output Pin</td>
<td></td>
<td>(V+) + 0.3V, (V−) − 0.3V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Voltage (V+ − V−)</td>
<td></td>
<td></td>
<td>16V</td>
<td></td>
</tr>
<tr>
<td>Current at Input Pin</td>
<td></td>
<td>±5 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current at Output Pin(4)</td>
<td></td>
<td>±30 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current at Power Supply Pin</td>
<td></td>
<td>40 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Temp. (Soldering, 10 sec.)</td>
<td></td>
<td>260°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td></td>
<td>−65°C to +150°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction Temperature</td>
<td></td>
<td>150°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test conditions, see the Electrical Characteristics.

(2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/ Distributors for availability and specifications.

(3) Human body model, 1.5 kΩ in series with 100 pF.

(4) Applies to both single-supply and split-supply operation. Continuous short operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature at 150°C. Output currents in excess of ±30 mA over long term may adversely affect reliability.

(5) The maximum power dissipation is a function of T_{J\text{(max)}}, \theta_JA and T_A. The maximum allowable power dissipation at any ambient temperature is P_D = (T_{J\text{(max)}} − T_A)/\theta_JA. All numbers apply for packages soldered directly into a PC board.

Operating Conditions

<table>
<thead>
<tr>
<th>Supply Voltage</th>
<th>Junction Temperature Range</th>
<th>Thermal Resistance (\theta_{JA})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5V ≤ V+ ≤ 15.5V</td>
<td>LMC6492AE, LMC6492BE</td>
<td>108°C/W</td>
</tr>
<tr>
<td>−40°C ≤ T_J ≤ +125°C</td>
<td>LMC6494AE, LMC6494BE</td>
<td>171°C/W</td>
</tr>
<tr>
<td>−40°C ≤ T_J ≤ +125°C</td>
<td>P Package, 8-Pin PDIP</td>
<td>78°C/W</td>
</tr>
<tr>
<td></td>
<td>D Package, 8-Pin SOIC</td>
<td>118°C/W</td>
</tr>
<tr>
<td></td>
<td>P Package, 14-Pin PDIP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D Package, 14-Pin SOIC</td>
<td></td>
</tr>
</tbody>
</table>

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test conditions, see the Electrical Characteristics.

DC Electrical Characteristics

Unless otherwise specified, all limits specified for T_J = 25°C, V+ = 5V, V− = 0V, V_{CM} = V_O = V+2 and R_L > 1 MΩ. **Boldface** limits apply at the temperature extremes.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Typ(1)</th>
<th>LMC6492AE Limit(2)</th>
<th>LMC6494AE Limit(2)</th>
<th>LMC6492BE Limit(2)</th>
<th>LMC6494BE Limit(2)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OS}</td>
<td>Input Offset Voltage</td>
<td></td>
<td>0.11</td>
<td>3.0</td>
<td>6.0</td>
<td></td>
<td></td>
<td>mV max</td>
</tr>
<tr>
<td>TCV_{OS}</td>
<td>Input Offset Voltage Average Drift</td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>μV/°C</td>
</tr>
<tr>
<td>I_B</td>
<td>Input Bias Current</td>
<td>See(3)</td>
<td>0.15</td>
<td>200</td>
<td>200</td>
<td></td>
<td></td>
<td>pA max</td>
</tr>
<tr>
<td>I_{OS}</td>
<td>Input Offset Current</td>
<td>See(3)</td>
<td>0.075</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
<td>pA max</td>
</tr>
<tr>
<td>R_{IN}</td>
<td>Input Resistance</td>
<td></td>
<td>>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tera Ω</td>
</tr>
</tbody>
</table>

(1) Typical Values represent the most likely parametric norm.

(2) All limits are specified by testing or statistical analysis.

(3) Specified limits are dictated by tester limits and not device performance. Actual performance is reflected in the typical value.
DC Electrical Characteristics (continued)

Unless otherwise specified, all limits specified for $T_J = 25^\circ\text{C}$, $V^+ = 5V$, $V^- = 0V$, $V_{\text{CM}} = V_O = V^+/2$ and $R_L > 1 \, \text{M}\Omega$. **Boldface** limits apply at the temperature extremes.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Typ$^{(1)}$</th>
<th>LMC6492AE Limit$^{(2)}$</th>
<th>LMC6494AE Limit$^{(2)}$</th>
<th>LMC6492BE Limit$^{(2)}$</th>
<th>LMC6494BE Limit$^{(2)}$</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{IN}</td>
<td>Common-Mode Input Capacitance</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>CMRR</td>
<td>Common-Mode Rejection Ratio</td>
<td>$0V \leq V_{\text{CM}} \leq 15V$</td>
<td>82</td>
<td>60</td>
<td>60</td>
<td>58</td>
<td>58</td>
<td>dB min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V^+ = 15V$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0V \leq V_{\text{CM}} \leq 5V$</td>
<td>82</td>
<td>60</td>
<td>60</td>
<td>58</td>
<td>58</td>
<td>dB min</td>
</tr>
<tr>
<td>$+\text{PSRR}$</td>
<td>Positive Power Supply Rejection Ratio</td>
<td>$5V \leq V^+ \leq 15V$, $V_O = 2.5V$</td>
<td>82</td>
<td>60</td>
<td>60</td>
<td>58</td>
<td>58</td>
<td>dB min</td>
</tr>
<tr>
<td>$-\text{PSRR}$</td>
<td>Negative Power Supply Rejection Ratio</td>
<td>$0V \leq V^- \leq -10V$, $V_O = 2.5V$</td>
<td>82</td>
<td>60</td>
<td>60</td>
<td>58</td>
<td>58</td>
<td>dB min</td>
</tr>
<tr>
<td>V_{CM}</td>
<td>Input Common-Mode Voltage Range</td>
<td>$V^+ = 5V$ and $15V$</td>
<td>$V^- - 0.3$</td>
<td>-0.25</td>
<td>-0.25</td>
<td>V</td>
<td>V</td>
<td>max</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For $\text{CMRR} \geq 50 , \text{dB}$</td>
<td>$V^+ + 0.3$</td>
<td>$V^+ + 0.25$</td>
<td>$V^+ + 0.25$</td>
<td>V</td>
<td>V</td>
<td>min</td>
</tr>
<tr>
<td>A_V</td>
<td>Large Signal Voltage Gain</td>
<td>$R_L = 2 , \text{k}\Omega$ $^{(4)}$</td>
<td>Sourcing</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td>V/mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sinking</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_O</td>
<td>Output Swing</td>
<td>$V^+ = 5V$</td>
<td>4.9</td>
<td>4.8</td>
<td>4.8</td>
<td>V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_L = 2 , \text{k}\Omega$ to $V^+/2$</td>
<td>4.7</td>
<td>4.7</td>
<td>4.7</td>
<td>V</td>
<td>V</td>
<td>min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>0.18</td>
<td>0.18</td>
<td>V</td>
<td>V</td>
<td>max</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.24</td>
<td>0.24</td>
<td>V</td>
<td>V</td>
<td>min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V^+ = 5V$</td>
<td>4.7</td>
<td>4.5</td>
<td>4.5</td>
<td>V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_L = 6000\Omega$ to $V^+/2$</td>
<td>4.24</td>
<td>4.24</td>
<td>4.24</td>
<td>V</td>
<td>V</td>
<td>min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
<td>0.5</td>
<td>0.5</td>
<td>V</td>
<td>V</td>
<td>max</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.65</td>
<td>0.65</td>
<td>V</td>
<td>V</td>
<td>min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V^+ = 15V$</td>
<td>14.7</td>
<td>14.4</td>
<td>14.4</td>
<td>V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_L = 2 , \text{k}\Omega$ to $V^+/2$</td>
<td>14.0</td>
<td>14.0</td>
<td>14.0</td>
<td>V</td>
<td>V</td>
<td>min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.16</td>
<td>0.35</td>
<td>0.35</td>
<td>V</td>
<td>V</td>
<td>max</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td>0.5</td>
<td>V</td>
<td>V</td>
<td>max</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V^+ = 15V$</td>
<td>14.1</td>
<td>13.4</td>
<td>13.4</td>
<td>V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_L = 6000\Omega$ to $V^+/2$</td>
<td>13.0</td>
<td>13.0</td>
<td>13.0</td>
<td>V</td>
<td>V</td>
<td>min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td>1.0</td>
<td>1.0</td>
<td>V</td>
<td>V</td>
<td>max</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
<td>1.5</td>
<td>V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{SC}</td>
<td>Output Short Circuit Current</td>
<td>Sourcing, $V_O = 0V$</td>
<td>25</td>
<td>16</td>
<td>16</td>
<td>mA</td>
<td>mA</td>
<td>min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sinking, $V_O = 5V$</td>
<td>22</td>
<td>11</td>
<td>11</td>
<td>mA</td>
<td>mA</td>
<td>min</td>
</tr>
<tr>
<td>I_{SC}</td>
<td>Output Short Circuit Current</td>
<td>$V^+ = 15V$</td>
<td>30</td>
<td>28</td>
<td>28</td>
<td>mA</td>
<td>mA</td>
<td>min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sourcing, $V_O = 0V$</td>
<td>30</td>
<td>28</td>
<td>28</td>
<td>mA</td>
<td>mA</td>
<td>min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sinking, $V_O = 5V$ $^{(5)}$</td>
<td>30</td>
<td>28</td>
<td>28</td>
<td>mA</td>
<td>mA</td>
<td>min</td>
</tr>
</tbody>
</table>

(4) $V^+ = 15V$, $V_{\text{CM}} = 7.5V$ and R_L connected to $7.5V$. For Sourcing tests, $7.5V \leq V_O \leq 11.5V$. For Sinking tests, $3.5V \leq V_O \leq 7.5V$.

(5) Do not short circuit output to V^+, when V^+ is greater than $13V$ or reliability will be adversely affected.

Copyright © 2000–2013, Texas Instruments Incorporated

Product Folder Links: LMC6492 LMC6494
DC Electrical Characteristics (continued)

Unless otherwise specified, all limits specified for $T_J = 25^\circ C$, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$ and $R_L > 1 \, \Omega$. **Boldface** limits apply at the temperature extremes.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Typ(1) Limit(2)</th>
<th>LMC6492AE Limit(2)</th>
<th>LMC6494AE Limit(2)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_S</td>
<td>Supply Current</td>
<td>LMC6492 $V^+ = 5V$, $V_O = V^+/2$</td>
<td>1.0</td>
<td>1.75</td>
<td>1.75</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LMC6492 $V^+ = 15V$, $V_O = V^+/2$</td>
<td>1.3</td>
<td>1.95</td>
<td>1.95</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LMC6494 $V^+ = 5V$, $V_O = V^+/2$</td>
<td>2.0</td>
<td>3.5</td>
<td>3.5</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LMC6494 $V^+ = 15V$, $V_O = V^+/2$</td>
<td>2.6</td>
<td>3.9</td>
<td>3.9</td>
<td>mA</td>
</tr>
</tbody>
</table>

AC Electrical Characteristics

Unless otherwise specified, all limits specified for $T_J = 25^\circ C$, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$ and $R_L > 1 \, \Omega$. **Boldface** limits apply at the temperature extremes.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Typ(1)</th>
<th>LMC6492AE Limit(2)</th>
<th>LMC6494AE Limit(2)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR</td>
<td>Slew Rate</td>
<td>See(3)</td>
<td>1.3</td>
<td>0.7</td>
<td>0.7</td>
<td>Vμs min</td>
</tr>
<tr>
<td>GBW</td>
<td>Gain-Bandwidth</td>
<td>$V^+ = 15V$</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>MHz</td>
</tr>
<tr>
<td>Φ_m</td>
<td>Phase Margin</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td>Deg</td>
</tr>
<tr>
<td>G_m</td>
<td>Gain Margin</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>Amp-to-Amp Isolation</td>
<td>See(4)</td>
<td>150</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>e_n</td>
<td>Input-Referred</td>
<td>$F = 1 , kHz$ $V_{CM} = 1V$</td>
<td>37</td>
<td></td>
<td></td>
<td>nV/√HZ</td>
</tr>
<tr>
<td>I_n</td>
<td>Input-Referred</td>
<td>$F = 1 , kHz$</td>
<td>0.06</td>
<td></td>
<td></td>
<td>pA/√HZ</td>
</tr>
<tr>
<td>T.H.D.</td>
<td>Total Harmonic</td>
<td>$F = 1 , kHz$, $A_V = -2$ $R_L = 10 , kΩ$, $V_O = -4.1 , V_{PP}$</td>
<td>0.01</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Distortion</td>
<td>$F = 10 , kHz$, $A_V = -2$ $R_L = 10 , kΩ$, $V_O = 8.5 , V_{PP}$ $V^+ = 10V$</td>
<td>0.01</td>
<td></td>
<td></td>
<td>%</td>
</tr>
</tbody>
</table>

(1) Typical Values represent the most likely parametric norm.
(2) All limits are specified by testing or statistical analysis.
(3) $V^+ = 15V$. Connected as voltage follower with 10V step input. Number specified is the slower of the positive and negative slew rates.
(4) Input referred, $V^+ = 15V$ and $R_L = 100 \, kΩ$ connected to 7.5V. Each amp excited in turn with 1 kHz to produce $V_O = 12 \, V_{PP}$.

Submit Documentation Feedback
Typical Performance Characteristics

$V_S = +15\text{V}$, Single Supply, $T_A = 25^\circ\text{C}$ unless otherwise specified

Figure 3. Supply Current vs Supply Voltage

Figure 4. Input Current vs Temperature

Figure 5. Sourcing Current vs Output Voltage

Figure 6. Sourcing Current vs Output Voltage

Figure 7. Sourcing Current vs Output Voltage

Figure 8. Sinking Current vs Output Voltage
Typical Performance Characteristics (continued)

\(V_S = +15\text{V}, \) Single Supply, \(T_A = 25^\circ\text{C} \) unless otherwise specified

- **Figure 9.** Sinking Current vs Output Voltage
- **Figure 10.** Sinking Current vs Output Voltage
- **Figure 11.** Output Voltage Swing vs Supply Voltage
- **Figure 12.** Input Voltage Noise vs Frequency
- **Figure 13.** Input Voltage Noise vs Input Voltage
- **Figure 14.** Input Voltage Noise vs Input Voltage

\(V_S = 5\text{V} \)

\(R_L = 100\text{k}\Omega \)

\(V_S = 15\text{V} \)

\(F = 1\text{kHz} \)
Typical Performance Characteristics (continued)

\(V_S = +15 \text{V}, \) Single Supply, \(T_A = 25\degree C \) unless otherwise specified

Input Voltage Noise vs Input Voltage

- \(V_S = 3 \text{V} \)
- \(F = 1 \text{kHz} \)

Crosstalk Rejection vs Frequency

- \(V_S = 15 \text{V} \)
- \(R_L = 5 \text{k}\Omega \)

Positive PSRR vs Frequency

- \(V_S = 5 \text{V} \)
- \(R_L = 5 \text{k}\Omega \)

Negative PSRR vs Frequency

- \(V_S = 5 \text{V} \)
- \(R_L = 5 \text{k}\Omega \)

CMRR vs Frequency

- \(V_S = 15 \text{V} \)
- \(R_L = 5 \text{k}\Omega \)
Typical Performance Characteristics (continued)

\(V_S = +15\text{V} \), Single Supply, \(T_A = 25^\circ\text{C} \) unless otherwise specified

CMRR vs Input Voltage

\(V_S = \pm 7.5\text{V} \)
\(F = 10\ \text{kHz} \)
\(R_L = 5\ \text{k}\Omega \)

CMRR vs Input Voltage

\(V_S = \pm 2.5\text{V} \)
\(F = 10\ \text{kHz} \)
\(R_L = 5\ \text{k}\Omega \)

\(\Delta V_{OS} \) vs CMR

\(V_S = \pm 1.5\text{V} \)

\(\Delta V_{OS} \) vs Input Voltage

\(V_S = \pm 2.5\text{V} \)

Input Voltage vs Output Voltage

\(V_S = \pm 7.5\text{V} \)

\(R_L = 50\ \text{k}\Omega \)
Typical Performance Characteristics (continued)

$V_S = +15V$, Single Supply, $T_A = 25^\circ C$ unless otherwise specified

Input Voltage vs Output Voltage

![Input Voltage vs Output Voltage](image)

Open Loop Frequency Response

![Open Loop Frequency Response](image)

Open Loop Frequency Response vs Temperature

![Open Loop Frequency Response vs Temperature](image)

Maximum Output Swing vs Frequency

![Maximum Output Swing vs Frequency](image)

Gain and Phase vs Capacitive Load

![Gain and Phase vs Capacitive Load](image)
Typical Performance Characteristics (continued)

$V_S = +15\text{V}$, Single Supply, $T_A = 25^\circ\text{C}$ unless otherwise specified

Gain and Phase vs Capacitive Load

$V_S = 15\text{V}$, $R_L = 600\Omega$

Open Loop Output Impedance vs Frequency

$V_S = 15\text{V}$

Slew Rate vs Supply Voltage

$A_V = +1$

$R_L = 10 \text{ k}\Omega$

$V_{IN} = 1 \text{ Vpp}$

Non-Inverting Large Signal Pulse Response

$T_A = +125^\circ\text{C}$,

$R_L = 2 \text{ k}\Omega$

Time (1 μs/Div)

Submit Documentation Feedback

Copyright © 2000–2013, Texas Instruments Incorporated

Product Folder Links: LMC6492 LMC6494
Typical Performance Characteristics (continued)

$V_S = +15V$, Single Supply, $T_A = 25^\circ C$ unless otherwise specified

Non-Inverting Large Signal Pulse Response

- $T_A = -55^\circ C$, $R_L = 2k \Omega$

Non-Inverting Small Signal Pulse Response

- $T_A = +25^\circ C$, $R_L = 2k \Omega$

Inverting Large Signal Pulse Response

- $T_A = +125^\circ C$, $R_L = 2k \Omega$

Inverting Small Signal Pulse Response

- $T_A = -55^\circ C$, $R_L = 2k \Omega$
Typical Performance Characteristics (continued)

$V_S = +15V$, Single Supply, $T_A = 25^\circ C$ unless otherwise specified

Inverting Large Signal Pulse Response

![Inverting Large Signal Pulse Response](image)

Inverting Small Signal Pulse Response

![Inverting Small Signal Pulse Response](image)

Stability vs Capacitive Load

![Stability vs Capacitive Load](image)
Typical Performance Characteristics (continued)

\(V_S = +15V \), Single Supply, \(T_A = 25^\circ C \) unless otherwise specified

Stability vs Capacitive Load

- **Figure 51.**
 - \(A_V = 1 \)
 - \(V_S = \pm 7.5V \)
 - \(R_L = 600\Omega \)

- **Figure 53.**
 - \(A_V = 10 \)
 - \(V_S = \pm 7.5V \)
 - \(R_L = 2k \)

Stability vs Capacitive Load

- **Figure 52.**
 - \(A_V = 10 \)
 - \(V_S = \pm 7.5V \)
 - \(R_L = 1M \)

- **Figure 54.**
 - \(A_V = 10 \)
 - \(V_S = \pm 7.5V \)
 - \(R_L = 600\Omega \)
APPLICATION HINTS

INPUT COMMON-MODE VOLTAGE RANGE

Unlike Bi-FET amplifier designs, the LMC6492/4 does not exhibit phase inversion when an input voltage exceeds the negative supply voltage. Figure 55 shows an input voltage exceeding both supplies with no resulting phase inversion on the output.

![Figure 55. An Input Voltage Signal Exceeds the LMC6492/4 Power Supply Voltages with No Output Phase Inversion](image)

The absolute maximum input voltage is 300 mV beyond either supply rail at room temperature. Voltages greatly exceeding this absolute maximum rating, as in Figure 56, can cause excessive current to flow in or out of the input pins possibly affecting reliability.

![Figure 56. A ±7.5V Input Signal Greatly Exceeds the 5V Supply in Figure 57 Causing No Phase Inversion Due to R₁](image)
Applications that exceed this rating must externally limit the maximum input current to ±5 mA with an input resistor \(R_I \) as shown in Figure 57.

![Figure 57. \(R_I \) Input Current Protection for Voltages Exceeding the Supply Voltages](image)

RAIL-TO-RAIL OUTPUT

The approximate output resistance of the LMC6492/4 is 110\(\Omega \) sourcing and 80\(\Omega \) sinking at \(V_s = 5V \). Using the calculated output resistance, maximum output voltage swing can be estimated as a function of load.

COMPENSATING FOR INPUT CAPACITANCE

It is quite common to use large values of feedback resistance for amplifiers with ultra-low input current, like the LMC6492/4.

Although the LMC6492/4 is highly stable over a wide range of operating conditions, certain precautions must be met to achieve the desired pulse response when a large feedback resistor is used. Large feedback resistors with even small values of input capacitance, due to transducers, photodiodes, and circuit board parasitics, reduce phase margins.

When high input impedances are demanded, guarding of the LMC6492/4 is suggested. Guarding input lines will not only reduce leakage, but lowers stray input capacitance as well. (See Printed-Circuit-Board Layout for High Impedance Work).

The effect of input capacitance can be compensated for by adding a capacitor, \(C_f \), around the feedback resistors (as in Figure 55) such that:

\[
\frac{1}{2\pi R_1 C_{IN}} \geq \frac{1}{2\pi R_2 C_f}
\]

or

\[
R_1 \ C_{IN} \leq R_2 \ C_f
\]

Since it is often difficult to know the exact value of \(C_{IN} \), \(C_f \) can be experimentally adjusted so that the desired pulse response is achieved. Refer to the LMC660 and LMC662 for a more detailed discussion on compensating for input capacitance.

![Figure 58. Cancelling the Effect of Input Capacitance](image)

CAPACITIVE LOAD TOLERANCE

All rail-to-rail output swing operational amplifiers have voltage gain in the output stage. A compensation capacitor is normally included in this integrator stage. The frequency location of the dominant pole is affected by the resistive load on the amplifier. Capacitive load driving capability can be optimized by using an appropriate resistive load in parallel with the capacitive load (see Typical Curves).
Direct capacitive loading will reduce the phase margin of many op-amps. A pole in the feedback loop is created by the combination of the op-amp's output impedance and the capacitive load. This pole induces phase lag at the unity-gain crossover frequency of the amplifier resulting in either an oscillatory or underdamped pulse response. With a few external components, op amps can easily indirectly drive capacitive loads, as shown in Figure 59.

Figure 59. LMC6492/4 Noninverting Amplifier, Compensated to Handle Capacitive Loads

PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK

It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6492/4, typically 150 fA, it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable.

To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC6492/4’s inputs and the terminals of components connected to the op-amp’s inputs, as in Figure 60. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of $10^{13} \Omega$, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5V bus adjacent to the pad of the input.

This would cause a 33 times degradation from the LMC6492/4’s actual performance. If a guard ring is used and held within 5 mV of the inputs, then the same resistance of $10^{13} \Omega$ will only cause 0.05 pA of leakage current. See Figure 61 for typical connections of guard rings for standard op-amp configurations.

Figure 60. Examples of Guard Ring in PC Board Layout
The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure 62.

(Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board).
Application Circuits

Where: \(V_0 = V_1 + V_2 - V_3 - V_4 \)
\((V_1 + V_2 \geq (V_3 + V_4)) \) to keep \(V_0 > 0 \) \(V_{DC} \)

Figure 63. DC Summing Amplifier \((V_{IN} \geq 0 \) \(V_{DC} \) and \(V_O \geq V_{DC} \)

For

\[
\frac{R_1}{R_2} = \frac{R_4}{R_3}
\]

(CMRR depends on this resistor ratio match)

As shown: \(V_O = 2(V_2 - V_1) \)

Figure 64. High Input Z, DC Differential Amplifier

Figure 65. Photo Voltaic-Cell Amplifier
If $R_1 = R_5$, $R_3 = R_6$, and $R_4 = R_7$; then

$$\therefore A_V = 100 \text{ for circuit shown (} R_2 = 9.3k)\text{.}$$

Figure 66. Instrumentation Amplifier

This low-pass filter circuit can be used as an anti-aliasing filter with the same supply as the A/D converter. Filter designs can also take advantage of the LMC6492/4 ultra-low input current. The ultra-low input current yields negligible offset error even when large value resistors are used. This in turn allows the use of smaller valued capacitors which take less board space and cost less.

Figure 67. Rail-to-Rail Single Supply Low Pass Filter

Dielectric absorption and leakage is minimized by using a polystyrene or polypropylene hold capacitor. The droop rate is primarily determined by the value of C_H and diode leakage current. Select low-leakage current diodes to minimize drooping.

Figure 68. Low Voltage Peak Detector with Rail-to-Rail Peak Capture Range
In a manifold absolute pressure sensor application, a strain gauge is mounted on the intake manifold in the engine unit. Manifold pressure causes the sensing resistors, R1, R2, R3 and R4 to change. The resistors change in a way such that R2 and R4 increase by the same amount R1 and R3 decrease. This causes a differential voltage between the input of the amplifier. The gain of the amplifier is adjusted by R_f.

Spice Macromodel

A spice macromodel is available for the LMC6492/4. This model includes accurate simulation of:

- Input common-model voltage range
- Frequency and transient response
- GBW dependence on loading conditions
- Quiescent and dynamic supply current
- Output swing dependence on loading conditions

and many other characteristics as listed on the macromodel disk.

Contact your local Texas Instruments sales office to obtain an operational amplifier spice model library disk.
REVISION HISTORY

Changes from Revision C (March 2013) to Revision D

<table>
<thead>
<tr>
<th>Change Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changed layout of National Data Sheet to TI format</td>
<td>20</td>
</tr>
</tbody>
</table>
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC6492AEM</td>
<td>NRND</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>95</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>-40 to 125</td>
<td>LMC6492AEM</td>
<td></td>
</tr>
<tr>
<td>LMC6492AEM/NOPB</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>95</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>LMC6492AEM</td>
<td></td>
</tr>
<tr>
<td>LMC6492AEMX/NOPB</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>95</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>LMC6492AEM</td>
<td></td>
</tr>
<tr>
<td>LMC6492BEM</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>LMC6492BEM</td>
<td></td>
</tr>
<tr>
<td>LMC6492BEMX/NOPB</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>LMC6492BEM</td>
<td></td>
</tr>
<tr>
<td>LMC6494AEM</td>
<td>NRND</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>55</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>-40 to 125</td>
<td>LMC6494AEM</td>
<td></td>
</tr>
<tr>
<td>LMC6494AEM/NOPB</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>55</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>LMC6494AEM</td>
<td></td>
</tr>
<tr>
<td>LMC6494AEMX/NOPB</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>LMC6494AEM</td>
<td></td>
</tr>
<tr>
<td>LMC6494BEM</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>55</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>LMC6494BEM</td>
<td></td>
</tr>
<tr>
<td>LMC6494BEMX/NOPB</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>LMC6494BEM</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC6492AEMX/NOPB</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.5</td>
<td>5.4</td>
<td>2.0</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LMC6492BEMX/NOPB</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.5</td>
<td>5.4</td>
<td>2.0</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LMC6494AEMX/NOPB</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.35</td>
<td>2.3</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LMC6494BEMX/NOPB</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.35</td>
<td>2.3</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

All dimensions are nominal.

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- K0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P1: Pitch between successive cavity centers

Images of TAPE DIMENSIONS and QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE.
TAPE AND REEL BOX DIMENSIONS

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC6492AEMX/NOPB</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LMC6492BEMX/NOPB</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LMC6494AEMX/NOPB</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LMC6494BEMX/NOPB</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>
MECHANICAL DATA

D (R-PDSO-G14) PLASTIC SMALL OUTLINE

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0.15) each side.
D. Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0.43) each side.
E. Reference JEDEC MS-012 variation AB.

4040047-5/M 06/11
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated