LMC7111 Tiny CMOS Operational Amplifier with Rail-to-Rail Input and Output

Check for Samples: LMC7111

FEATURES

- Tiny 5-Pin SOT-23 Package Saves Space
- Very Wide Common Mode Input Range
- Specified at 2.7V, 5V, and 10V
- Typical Supply Current 25 μA at 5V
- 50 kHz Gain-Bandwidth at 5V
- Similar to Popular LMC6462
- Output to Within 20 mV of Supply Rail at 100kΩ Load
- Good Capacitive Load Drive

DESCRIPTION

The LMC7111 is a micropower CMOS operational amplifier available in the space saving SOT-23 package. This makes the LMC7111 ideal for space and weight critical designs. The wide common-mode input range makes it easy to design battery monitoring circuits which sense signals above the V+ supply. The main benefits of the Tiny package are most apparent in small portable electronic devices, such as mobile phones, pagers, and portable computers. The tiny amplifiers can be placed on a board where they are needed, simplifying board layout.

APPLICATIONS

- Mobile Communications
- Portable Computing
- Current Sensing for Battery Chargers
- Voltage Reference Buffering
- Sensor Interface
- Stable Bias for GaAs RF Amps

Connection Diagram

Figure 1. 8-Pin PDIP
Top View

Figure 2. 5-Pin SOT-23
Top View

Figure 3. Actual Size

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SOT-23 Package</th>
<th>PDIP Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD Tolerance (3)</td>
<td></td>
<td>2000V</td>
</tr>
<tr>
<td>Differential Input Voltage</td>
<td></td>
<td>1500V</td>
</tr>
<tr>
<td>Voltage at Input/Output Pin</td>
<td>±Supply Voltage</td>
<td>(V⁺) + 0.3V, (V⁻) − 0.3V</td>
</tr>
<tr>
<td>Supply Voltage (V⁺ − V⁻)</td>
<td>11V</td>
<td></td>
</tr>
<tr>
<td>Current at Input Pin</td>
<td>±5 mA</td>
<td></td>
</tr>
<tr>
<td>Current at Output Pin (4)</td>
<td>±30 mA</td>
<td></td>
</tr>
<tr>
<td>Current at Power Supply Pin</td>
<td>30 mA</td>
<td></td>
</tr>
<tr>
<td>Lead Temp. (Soldering, 10 sec.)</td>
<td>260°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>−65°C to +150°C</td>
<td></td>
</tr>
<tr>
<td>Junction Temperature (5)</td>
<td>150°C</td>
<td></td>
</tr>
</tbody>
</table>

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test conditions, see the Electrical Characteristics.

(2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/ Distributors for availability and specifications.

(3) Human Body Model is 1.5 kΩ in series with 100 pF.

(4) Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature at 150°C.

(5) The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} and T_A. The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly into a PC board.

Operating Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>LMC7111AI Limit (2)</th>
<th>LMC7111BI Limit (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>2.5V ≤ V⁺ ≤ 11V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction Temperature Range</td>
<td>LMC7111AI, LMC7111BI</td>
<td>−40°C ≤ T_J ≤ +85°C</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance (θJA)</td>
<td>8-Pin PDIP</td>
<td>115°C/W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-Pin SOT-23</td>
<td>325°C/W</td>
<td></td>
</tr>
</tbody>
</table>

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not specified. For ensured specifications and the test conditions, see the Electrical Characteristics.

2.7V DC Electrical Characteristics

Unless otherwise specified, all limits specified for $T_J = 25^\circ C$, $V⁺ = 2.7V$, $V⁻ = 0V$, $V_{CM} = V_O = V⁺/2$ and $R_L > 1 \text{ MΩ}$. **Boldface** limits apply at the temperature extremes.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Typ (1)</th>
<th>LMC7111AI Limit (2)</th>
<th>LMC7111BI Limit (2)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OS}</td>
<td>Input Offset Voltage</td>
<td>$V⁺ = 2.7V$</td>
<td>0.9</td>
<td>3</td>
<td>7</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>9</td>
<td>max</td>
<td></td>
</tr>
<tr>
<td>T_{CVOS}</td>
<td>Input Offset Voltage Average Drift</td>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
<td>µV/°C</td>
</tr>
<tr>
<td>I_B</td>
<td>Input Bias Current</td>
<td>See (3)</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>pA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>max</td>
<td></td>
</tr>
<tr>
<td>I_{OS}</td>
<td>Input Offset Current</td>
<td>See (3)</td>
<td>0.01</td>
<td>0.5</td>
<td>0.5</td>
<td>pA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>max</td>
<td></td>
</tr>
<tr>
<td>R_{IN}</td>
<td>Input Resistance</td>
<td>>10</td>
<td></td>
<td></td>
<td></td>
<td>Tera Ω</td>
</tr>
<tr>
<td>$+PSRR$</td>
<td>Positive Power Supply Rejection Ratio</td>
<td>$2.7V ≤ V⁺ ≤ 5.0V$, $V⁻ = 0V$, $V_O = 2.5V$</td>
<td>60</td>
<td>55</td>
<td>55</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>50</td>
<td>min</td>
</tr>
<tr>
<td>$-PSRR$</td>
<td>Negative Power Supply Rejection Ratio</td>
<td>$−2.7V ≤ V⁺ ≤ −5.0V$, $V⁻ = 0V$, $V_O = 2.5V$</td>
<td>60</td>
<td>55</td>
<td>55</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>50</td>
<td>min</td>
</tr>
</tbody>
</table>

(1) Typical Values represent the most likely parametric norm.

(2) All limits are specified by testing or statistical analysis.

(3) Bias Current specified by design and processing.
2.7V DC Electrical Characteristics (continued)

Unless otherwise specified, all limits specified for $T_J = 25^\circ C$, $V^+ = 2.7V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$ and $R_L > 1 \, \text{M}\Omega$. **Boldface** limits apply at the temperature extremes.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Typ (1)</th>
<th>LMC7111AI Limit (2)</th>
<th>LMC7111BI Limit (2)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CM}</td>
<td>Input Common-Mode Voltage Range</td>
<td>$V^+ = 2.7V$ For CMRR $\geq 50 , \text{dB}$</td>
<td>-0.10</td>
<td>0.0</td>
<td>0.40</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.8</td>
<td>2.7</td>
<td>2.25</td>
</tr>
<tr>
<td>C_N</td>
<td>Common-Mode Input Capacitance</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_O</td>
<td>Output Swing</td>
<td>$V^+ = 2.7V$ $R_L = 100 , \text{k}\Omega$</td>
<td>2.69</td>
<td>2.68</td>
<td>2.68</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V^+ = 2.7V$ $R_L = 10 , \text{k}\Omega$</td>
<td>2.65</td>
<td>2.6</td>
<td>2.6</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.03</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>I_{SC}</td>
<td>Output Short Circuit Current</td>
<td>Sourcing, $V_O = 0V$</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>Sinking, $V_O = 2.7V$</td>
<td></td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>0.7</td>
</tr>
<tr>
<td>A_{VOL}</td>
<td>Voltage Gain</td>
<td>Sourcing</td>
<td>400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sinking</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td>V/mV</td>
</tr>
<tr>
<td>I_S</td>
<td>Supply Current</td>
<td>$V^+ = +2.7V$, $V_O = V^+/2$</td>
<td>20</td>
<td>45</td>
<td>50</td>
<td>60</td>
</tr>
</tbody>
</table>

2.7V AC Electrical Characteristics

Unless otherwise specified, all limits specified for $T_J = 25^\circ C$, $V^+ = 2.7V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$ and $R_L > 1 \, \text{M}\Omega$. **Boldface** limits apply at the temperature extremes.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Typ (1)</th>
<th>LMC7111AI Limit (2)</th>
<th>LMC7111BI Limit (2)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR</td>
<td>Slew Rate</td>
<td>See (3)</td>
<td>0.015</td>
<td></td>
<td></td>
<td>$V/\mu s$</td>
</tr>
<tr>
<td>GBW</td>
<td>Gain-Bandwidth Product</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
</tbody>
</table>

(1) Typical Values represent the most likely parametric norm.
(2) All limits are specified by testing or statistical analysis.
(3) Connected as Voltage Follower with 1.0V step input. Number specified is the slower of the positive and negative slew rates. Input referred, $V^+ = 2.7V$ and $R_L = 100 \, \text{k}\Omega$ connected to 1.35V. Amp excited with 1 kHz to produce $V_O = 1 \, \text{Vpp}$.

3V DC Electrical Characteristics

Unless otherwise specified, all limits specified for $T_J = 25^\circ C$, $V^+ = 3V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$ and $R_L > 1 \, \text{M}\Omega$. **Boldface** limits apply at the temperature extremes.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Typ (1)</th>
<th>LMC7111AI Limit (2)</th>
<th>LMC7111BI Limit (2)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CM}</td>
<td>Input Common-Mode Voltage Range</td>
<td>$V^+ = 3V$ For CMRR $\geq 50 , \text{dB}$</td>
<td>-0.25</td>
<td>0.0</td>
<td>0.0</td>
<td>V min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.2</td>
<td>3.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

(1) Typical Values represent the most likely parametric norm.
(2) All limits are specified by testing or statistical analysis.
3.3V DC Electrical Characteristics

Unless otherwise specified, all limits specified for $T_J = 25^\circ\text{C}$, $V^+ = 3.3\text{V}$, $V^- = 0\text{V}$, $V_{CM} = V_O = V^+/2$ and $R_L > 1 \text{ M}\Omega$. **Boldface** limits apply at the temperature extremes.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>$\text{Typ}^{(1)}$</th>
<th>LMC7111AI Limit (2)</th>
<th>LMC7111BI Limit (2)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CM}</td>
<td>Input Common-Mode Voltage Range</td>
<td>$V^+ = 3.3\text{V}$ For CMRR $\geq 50 \text{ dB}$</td>
<td>-0.25</td>
<td>-0.1</td>
<td>-0.1</td>
<td>V_{min}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.5</td>
<td>3.4</td>
<td>3.4</td>
<td>V_{max}</td>
</tr>
</tbody>
</table>

(1) Typical Values represent the most likely parametric norm.
(2) All limits are specified by testing or statistical analysis.

5V DC Electrical Characteristics

Unless otherwise specified, all limits specified for $T_J = 25^\circ\text{C}$, $V^+ = 5\text{V}$, $V^- = 0\text{V}$, $V_{CM} = V_O = V^+/2$ and $R_L > 1 \text{ M}\Omega$. **Boldface** limits apply at the temperature extremes.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>$\text{Typ}^{(1)}$</th>
<th>LMC7111AI Limit (2)</th>
<th>LMC7111BI Limit (2)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OS}</td>
<td>Input Offset Voltage</td>
<td>$V^+ = 5\text{V}$</td>
<td>0.9</td>
<td></td>
<td></td>
<td>mV_{max}</td>
</tr>
<tr>
<td>TCV_{OS}</td>
<td>Input Offset Voltage Average Drift</td>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
<td>$\mu\text{V}/^\circ\text{C}$</td>
</tr>
<tr>
<td>I_B</td>
<td>Input Bias Current</td>
<td>See $^{(3)}$</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>pA_{max}</td>
</tr>
<tr>
<td>I_{OS}</td>
<td>Input Offset Current</td>
<td>See $^{(3)}$</td>
<td>0.01</td>
<td>0.5</td>
<td>0.5</td>
<td>pA_{max}</td>
</tr>
<tr>
<td>R_{IN}</td>
<td>Input Resistance</td>
<td>> 10</td>
<td></td>
<td></td>
<td></td>
<td>Tera Ω</td>
</tr>
<tr>
<td>CMRR</td>
<td>Common Mode Rejection Ratio</td>
<td>$0\text{V} \leq V_{CM} \leq 5\text{V}$</td>
<td>85</td>
<td>70</td>
<td>60</td>
<td>dB_{min}</td>
</tr>
<tr>
<td>$+\text{PSRR}$</td>
<td>Positive Power Supply Rejection Ratio</td>
<td>$5\text{V} \leq V^+ \leq 10\text{V}$, $V^- = 0\text{V}$, $V_O = 2.5\text{V}$</td>
<td>85</td>
<td>70</td>
<td>60</td>
<td>dB_{min}</td>
</tr>
<tr>
<td>$-\text{PSRR}$</td>
<td>Negative Power Supply Rejection Ratio</td>
<td>$-5\text{V} \leq V^- \leq -10\text{V}$, $V^+ = 0\text{V}$, $V_O = -2.5\text{V}$</td>
<td>85</td>
<td>70</td>
<td>60</td>
<td>dB_{min}</td>
</tr>
<tr>
<td>V_{CM}</td>
<td>Input Common-Mode Voltage Range</td>
<td>$V^+ = 5\text{V}$ For CMRR $\geq 50 \text{ dB}$</td>
<td>-0.3</td>
<td>-0.2</td>
<td>-0.2</td>
<td>V_{min}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.25</td>
<td>5.20</td>
<td>5.20</td>
<td>V_{max}</td>
</tr>
<tr>
<td>C_{IN}</td>
<td>Common-Mode Input Capacitance</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>V_O</td>
<td>Output Swing</td>
<td>$V^+ = 5\text{V}$ $R_L = 100 \text{ k}\Omega$</td>
<td>4.99</td>
<td>4.98</td>
<td>4.98</td>
<td>V_{min}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>V_{max}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.98</td>
<td>4.9</td>
<td>4.9</td>
<td>V_{min}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.02</td>
<td>0.1</td>
<td>0.1</td>
<td>V_{min}</td>
</tr>
<tr>
<td>I_{SC}</td>
<td>Output Short Circuit Current</td>
<td>Sourcing, $V_O = 0\text{V}$</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>mAmin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>mAmin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sinking, $V_O = 3\text{V}$</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>mAmin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>mAmin</td>
</tr>
<tr>
<td>A_{VOL}</td>
<td>Voltage Gain</td>
<td>Sourcing</td>
<td>500</td>
<td></td>
<td></td>
<td>V/mvmin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sinking</td>
<td>200</td>
<td></td>
<td></td>
<td>V/mvmin</td>
</tr>
<tr>
<td>I_S</td>
<td>Supply Current</td>
<td>$V^+ = +5\text{V}$, $V_O = V^+/2$</td>
<td>25</td>
<td></td>
<td></td>
<td>μA_{max}</td>
</tr>
</tbody>
</table>

(1) Typical Values represent the most likely parametric norm.
(2) All limits are specified by testing or statistical analysis.
(3) Bias Current specified by design and processing.
5V AC Electrical Characteristics

Unless otherwise specified, all limits specified for $T_J = 25^\circ$C, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$ and $R_L > 1 \, \text{M} \Omega$. **Boldface** limits apply at the temperature extremes.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>$\text{Typ} , (1)$</th>
<th>$\text{LMC7111AI} , \text{Limit} , (2)$</th>
<th>$\text{LMC7111BI} , \text{Limit} , (2)$</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR</td>
<td>Slew Rate</td>
<td>Positive Going Slew Rate $^{(3)}$</td>
<td>0.027</td>
<td>0.015</td>
<td>0.010</td>
<td>V/μs</td>
</tr>
<tr>
<td>GBW</td>
<td>Gain-Bandwidth Product</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
</tbody>
</table>

1. Typical Values represent the most likely parametric norm.
2. All limits are specified by testing or statistical analysis.
3. Connected as Voltage Follower with 1.0V step input. Number specified is the slower of the positive slew rate. The negative slew rate is faster. Input referred, $V^+ = 5V$ and $R_L = 100 \, \text{k}\Omega$ connected to 1.5V. Amp excited with 1 kHz to produce $V_O = 1 \, \text{Vpp}$.

10V DC Electrical Characteristics

Unless otherwise specified, all limits specified for $T_J = 25^\circ$C, $V^+ = 10V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$ and $R_L > 1 \, \text{M} \Omega$. **Boldface** limits apply at the temperature extremes.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>$\text{Typ} , (1)$</th>
<th>$\text{LMC7111AI} , \text{Limit} , (2)$</th>
<th>$\text{LMC7111BI} , \text{Limit} , (2)$</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OS}</td>
<td>Input Offset Voltage</td>
<td>$V^+ = 10V$</td>
<td>0.9</td>
<td>3</td>
<td>7</td>
<td>mV</td>
</tr>
<tr>
<td>TCV_{OS}</td>
<td>Input Offset Voltage Average Drift</td>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
<td>μV/°C</td>
</tr>
<tr>
<td>I_B</td>
<td>Input Bias Current</td>
<td></td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>pA</td>
</tr>
<tr>
<td>I_{OS}</td>
<td>Input Offset Current</td>
<td></td>
<td>0.01</td>
<td>0.5</td>
<td>0.5</td>
<td>max</td>
</tr>
<tr>
<td>R_{IN}</td>
<td>Input Resistance</td>
<td>>10</td>
<td></td>
<td></td>
<td></td>
<td>Tera Ω</td>
</tr>
<tr>
<td>$+\text{PSRR}$</td>
<td>Positive Power Supply Rejection Ratio</td>
<td>$5V \leq V^+ \leq 10V$, $V^- = 0V$, $V_O = 2.5V$</td>
<td>80</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>$-\text{PSRR}$</td>
<td>Negative Power Supply Rejection Ratio</td>
<td>$-5V \leq V^- \leq -10V$, $V^+ = 0V$, $V_O = 2.5V$</td>
<td>80</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>V_{CM}</td>
<td>Input Common-Mode Voltage Range</td>
<td>$V^+ = 10V$</td>
<td>-0.2</td>
<td>0.00</td>
<td>-0.15</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For CMRR ≥ 50 dB</td>
<td></td>
<td>0.00</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$10V$</td>
<td>10.2</td>
<td>10.15</td>
<td>10.15</td>
<td>max</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.00</td>
<td></td>
<td>10.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{IN}</td>
<td>Common-Mode Input Capacitance</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>I_{SC}</td>
<td>Output Short Circuit Current $^{(3)}$</td>
<td>Sourcing, $V_O = 0V$</td>
<td>30</td>
<td>20</td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sinking, $V_O = 10V$</td>
<td>30</td>
<td>20</td>
<td>20</td>
<td>max</td>
</tr>
<tr>
<td>A_{VOL}</td>
<td>Voltage Gain 100 kΩ Load</td>
<td>Sourcing</td>
<td>500</td>
<td></td>
<td></td>
<td>V/mv</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sinking</td>
<td>200</td>
<td></td>
<td></td>
<td>min</td>
</tr>
<tr>
<td>I_S</td>
<td>Supply Current</td>
<td>$V^+ = +10V$, $V_O = V^+/2$</td>
<td>25</td>
<td>50</td>
<td>65</td>
<td>60</td>
</tr>
<tr>
<td>V_O</td>
<td>Output Swing</td>
<td>$V^+ = 10V$</td>
<td>9.99</td>
<td>9.98</td>
<td>9.98</td>
<td>Vmin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_L = 100 , \text{k}\Omega$</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>Vmax</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V^+ = 10V$</td>
<td>9.98</td>
<td>9.9</td>
<td>9.9</td>
<td>Vmin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_L = 10 , \text{k}\Omega$</td>
<td>0.02</td>
<td>0.1</td>
<td>0.1</td>
<td>Vmin</td>
</tr>
</tbody>
</table>

1. Typical Values represent the most likely parametric norm.
2. All limits are specified by testing or statistical analysis.
3. Bias Current specified by design and processing.
10V AC Electrical Characteristics

Unless otherwise specified, all limits specified for \(T_J = 25^\circ C, V^+ = 10V, V^- = 0V, V_{CM} = V_O = V^+/2 \) and \(R_L > 1 \, \text{M}\Omega \). **Boldface** limits apply at the temperature extremes.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Typ(^{(1)})</th>
<th>LMC7111AI Limit(^{(2)})</th>
<th>LMC7111BI Limit(^{(2)})</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR</td>
<td>Slew Rate</td>
<td>See (^{(3)})</td>
<td>0.03</td>
<td></td>
<td></td>
<td>V/\mu s</td>
</tr>
<tr>
<td>GBW</td>
<td>Gain-Bandwidth Product</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>(\varphi_m)</td>
<td>Phase Margin</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td>deg</td>
</tr>
<tr>
<td>(G_m)</td>
<td>Gain Margin</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>Input-Referred Voltage Noise</td>
<td>(f = 1 , \text{kHz})</td>
<td>110</td>
<td></td>
<td></td>
<td>nV/\sqrt{Hz}</td>
</tr>
<tr>
<td></td>
<td>Input-Referred Current Noise</td>
<td>(f = 1 , \text{kHz})</td>
<td>0.03</td>
<td></td>
<td></td>
<td>pA/\sqrt{Hz}</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Typical Values represent the most likely parametric norm.
\(^{(2)}\) All limits are specified by testing or statistical analysis.
\(^{(3)}\) Connected as Voltage Follower with 1.0V step input. Number specified is the slower of the positive and negative slew rates. Input referred, \(V^+ = 10V \) and \(R_L = 100 \, \text{k}\Omega \) connected to 5V. Amp excited with 1 kHz to produce \(V_O = 2 \, V_{PP} \).
Typical Performance Characteristics

$T_A = 25^\circ C$ unless specified, Single Supply

Supply Current vs. Supply Voltage

Voltage Noise vs. Frequency

2.7V Performance

Offset Voltage vs. Common Mode Voltage @ 2.7V

Sinking Output vs. Output Voltage

Sourcing Output vs. Output Voltage

Gain and Phase vs. Capacitive Load @ 2.7V

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.
2.7V Performance (continued)

Gain and Phase vs. Capacitive Load @ 2.7V

Gain and Phase vs. Capacitive Load @ 2.7V

3V Performance

Voltage Noise vs. Common Mode Voltage @ 3V

Output Voltage vs. Input Voltage @ 3V

Offset Voltage vs. Common Mode Voltage @ 3V

Sourcing Output vs. Output Voltage

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.
3V Performance (continued)

Sinking Output versus Output Voltage

![Sinking Output vs. Output Voltage Graph](image1)

Gain and Phase versus Capacitive Load @ 3V

![Gain and Phase vs. Capacitive Load Graph](image2)

Gain and Phase vs. Capacitive Load @ 3V

![Gain and Phase vs. Capacitive Load Graph](image3)

5V Performance

Voltage Noise versus Common Mode Voltage @ 5V

![Voltage Noise vs. Common Mode Voltage Graph](image4)

Output Voltage versus Input Voltage @ 5V

![Output Voltage vs. Input Voltage Graph](image5)
5V Performance (continued)

Offset Voltage vs. Common Mode Voltage @ 5V

Sinking Output vs. Output Voltage

Gain and Phase vs. Capacitive Load @ 5V

Sourcing Output vs. Output Voltage

Gain and Phase vs. Capacitive Load @ 5V

Gain and Phase vs. Capacitive Load @ 5V

Gain and Phase vs. Capacitive Load @ 5V

Submit Documentation Feedback

Copyright © 1999–2013, Texas Instruments Incorporated

Product Folder Links: LMC7111
5V Performance (continued)

Non-Inverting Small Signal Pulse Response at 5V

\[V_s = \pm 2.5V \]
\[R_1 = 100k_\Omega \]
\[T_A = -55^\circ C \]
\[A_V = +1 \]

50 mV/Div
20 µsec/Div

Figure 28.

Non-Inverting Small Signal Pulse Response at 5V

\[V_s = \pm 2.5V \]
\[R_1 = 100k_\Omega \]
\[T_A = 25^\circ C \]
\[A_V = +1 \]

50 mV/Div
20 µsec/Div

Figure 29.

Non-Inverting Small Signal Pulse Response at 5V

\[V_s = \pm 2.5V \]
\[R_1 = 100k_\Omega \]
\[T_A = 125^\circ C \]
\[A_V = +1 \]

50 mV/Div
20 µsec/Div

Figure 30.

Non-Inverting Large Signal Pulse Response at 5V

\[V_s = \pm 2.5V \]
\[R_1 = 100k_\Omega \]
\[T_A = -55^\circ C \]
\[A_V = +1 \]

500 mV/Div
20 µsec/Div

Figure 31.

Non-Inverting Large Signal Pulse Response at 5V

\[V_s = \pm 2.5V \]
\[R_1 = 100k_\Omega \]
\[T_A = 25^\circ C \]
\[A_V = +1 \]

500 mV/Div
20 µsec/Div

Figure 32.

Non-Inverting Large Signal Pulse Response at 5V

\[V_s = \pm 2.5V \]
\[R_1 = 100k_\Omega \]
\[T_A = 125^\circ C \]
\[A_V = +1 \]

500 mV/Div
20 µsec/Div

Figure 33.
5V Performance (continued)

Inverting Small Signal Pulse Response at 5V

- $V_c = \pm 2.5\text{V}$
- $R_i = 100\text{k}\Omega$
- $T_A = -55^\circ\text{C}$
- $A_v = -1$

![Graph of Inverting Small Signal Pulse Response at 5V](Image)

Inverting Large Signal Pulse Response at 5V

- $V_c = \pm 2.5\text{V}$
- $R_i = 100\text{k}\Omega$
- $T_A = -125^\circ\text{C}$
- $A_v = -1$

![Graph of Inverting Large Signal Pulse Response at 5V](Image)

Inverting Small Signal Pulse Response at 5V

- $V_c = \pm 2.5\text{V}$
- $R_i = 100\text{k}\Omega$
- $T_A = 25^\circ\text{C}$
- $A_v = -1$

![Graph of Inverting Small Signal Pulse Response at 5V](Image)

Inverting Large Signal Pulse Response at 5V

- $V_c = \pm 2.5\text{V}$
- $R_i = 100\text{k}\Omega$
- $T_A = 25^\circ\text{C}$
- $A_v = -1$

![Graph of Inverting Large Signal Pulse Response at 5V](Image)
10V Performance

Voltage Noise

VS = ±5V
F = 100 Hz

Common Mode Voltage (V)

Output Voltage vs. Common Mode Voltage @ 10V

Figure 40.

Offset Voltage

VS = ±5V

Common Mode Voltage (V)

Offset Voltage (µV)

Figure 42.

Sinking Output

VS = 10V

Output Voltage

Isink (mA)

Figure 44.

Gain and Phase

VS = ±5V
RI = 100k
T = -55°C
C = 500 pF

Frequency (Hz)

Phase (deg)

Figure 45.

Output Voltage vs. Input Voltage @ 10V

VS = ±5V
RI = 100k

Input Voltage (V)

Figure 41.

Sourcing Output vs. Output Voltage

VS = 10V

Output Voltage (V)

Isource (mA)

Figure 43.
10V Performance (continued)

Gain and Phase vs. Capacitive Load @ 10V

Figure 46.

Non-Inverting Small Signal Pulse Response at 10V

Figure 48.

Inverting Small Signal Pulse Response at 10V

Figure 50.

Gain and Phase vs. Capacitive Load @ 10V

Figure 47.

Non-Inverting Large Signal Pulse Response at 10V

Figure 49.

Inverting Large Signal Pulse Response at 10V

Figure 51.
APPLICATION INFORMATION

BENEFITS OF THE LMC7111 TINY AMP

Size
The small footprint of the SOT-23 packaged Tiny amp, (0.120 x 0.118 inches, 3.05 x 3.00 mm) saves space on printed circuit boards, and enable the design of smaller electronic products. Because they are easier to carry, many customers prefer smaller and lighter products.

Height
The height (0.056 inches, 1.43 mm) of the Tiny amp makes it possible to use it in PCMCIA type III cards.

Signal Integrity
Signals can pick up noise between the signal source and the amplifier. By using a physically smaller amplifier package, the Tiny amp can be placed closer to the signal source, reducing noise pickup and increasing signal integrity. The Tiny amp can also be placed next to the signal destination, such as a buffer for the reference of an analog to digital converter.

Simplified Board Layout
The Tiny amp can simplify board layout in several ways. First, by placing an amp where amps are needed, instead of routing signals to a dual or quad device, long pc traces may be avoided.
By using multiple Tiny amps instead of duals or quads, complex signal routing and possibly crosstalk can be reduced.

DIPs available for prototyping
LMC7111 amplifiers packaged in conventional 8-pin dip packages can be used for prototyping and evaluation without the need to use surface mounting in early project stages.

Low Supply Current
The typical 25 μA supply current of the LMC7111 extends battery life in portable applications, and may allow the reduction of the size of batteries in some applications.

Wide Voltage Range
The LMC7111 is characterized at 2.7V, 3V, 3.3V, 5V and 10V. Performance data is provided at these popular voltages. This wide voltage range makes the LMC7111 a good choice for devices where the voltage may vary over the life of the batteries.

INPUT COMMON MODE VOLTAGE RANGE
The LMC7111 does not exhibit phase inversion when an input voltage exceeds the negative supply voltage.

The absolute maximum input voltage is 300 mV beyond either rail at room temperature. Voltages greatly exceeding this maximum rating can cause excessive current to flow in or out of the input pins, adversely affecting reliability.

Applications that exceed this rating must externally limit the maximum input current to ±5 mA with an input resistor as shown in Figure 52.

Figure 52. R_I Input Current Protection for Voltages Exceeding the Supply Voltage
CAPACITIVE LOAD TOLERANCE

The LMC7111 can typically directly drive a 300 pF load with $V_S = 10\text{V}$ at unity gain without oscillating. The unity gain follower is the most sensitive configuration. Direct capacitive loading reduces the phase margin of op-amps. The combination of the op-amp's output impedance and the capacitive load induces phase lag. This results in either an underdamped pulse response or oscillation.

Capacitive load compensation can be accomplished using resistive isolation as shown in Figure 53. This simple technique is useful for isolating the capacitive input of multiplexers and A/D converters.

![Figure 53. Resistive Isolation of a 330 pF Capacitive Load](image)

COMPENSATING FOR INPUT CAPACITANCE WHEN USING LARGE VALUE FEEDBACK RESISTORS

When using very large value feedback resistors, (usually > 500 kΩ) the large feedback resistance can react with the input capacitance due to transducers, photodiodes, and circuit board parasitics to reduce phase margins.

The effect of input capacitance can be compensated for by adding a feedback capacitor. The feedback capacitor (as in Figure 54), C_f is first estimated by:

$$\frac{1}{2\pi R_1 C_{IN}} \geq \frac{1}{2\pi R_2 C_f} \quad (1)$$

or

$$R_1 C_{IN} \leq R_2 C_f \quad (2)$$

which typically provides significant overcompensation.

Printed circuit board stray capacitance may be larger or smaller than that of a breadboard, so the actual optimum value for C_f may be different. The values of C_f should be checked on the actual circuit. (Refer to the LMC660 quad CMOS amplifier data sheet for a more detailed discussion.)

![Figure 54. Cancelling the Effect of Input Capacitance](image)

OUTPUT SWING

The output of the LMC7111 will go to within 100 mV of either power supply rail for a 10 kΩ load and to 20 mV of the rail for a 100 kΩ load. This makes the LMC7111 useful for driving transistors which are connected to the same power supply. By going very close to the supply, the LMC7111 can turn the transistors all the way on or all the way off.
BIASING GaAs RF AMPLIFIERS

The capacitive load capability, low current draw, and small size of the SOT-23 LMC7111 make it a good choice for providing a stable negative bias to other integrated circuits.

The very small size of the LMC7111 and the LM4040 reference take up very little board space.

![Biasing GaAs RF Amplifiers](image)

Figure 55. Stable Negative Bias

REFERENCE BUFFER FOR A-TO-D CONVERTERS

The LMC7111 can be used as a voltage reference buffer for analog-to-digital converters. This works best for A-to-D converters whose reference input is a static load, such as dual slope integrating A-to-Ds. Converters whose reference input is a dynamic load (the reference current changes with time) may need a faster device, such as the LMC7101 or the LMC7131.

The small size of the LMC7111 allows it to be placed close to the reference input. The low supply current (25 μA typical) saves power.

For A-to-D reference inputs which require higher accuracy and lower offset voltage, please see the LMC6462 datasheet. The LMC6462 has performance similar to the LMC7111. The LMC6462 is available in two grades with reduced input voltage offset.

DUAL AND QUAD DEVICES WITH SIMILAR PERFORMANCE

The LMC6462 and LMC6464 are dual and quad devices with performance similar to the LMC7111. They are available in both conventional through-hole and surface mount packaging. Please see the LMC6462/4 datasheet for details.

SPICE MACROMODEL

A SPICE macromodel is available for the LMC7111. This model includes simulation of:

- Input common-mode voltage range
- Frequency and transient response
• Quiescent and dynamic supply current
• Output swing dependence on loading conditions and many more characteristics as listed on the macro model disk. Visit the LMC7111 product page on http://www.ti.com for the spice model.

ADDITIONAL SOT-23 TINY DEVICES
Additional parts are available in the space saving SOT-23 Tiny package, including amplifiers, voltage references, and voltage regulators. These devices include—

LMC7101 1 MHz gain-bandwidth rail-to-rail input and output amplifier—high input impedance and high gain, 700 \(\mu \text{A} \) typical current 2.7V, 3V, 5V and 15V specifications.

LM7131 Tiny Video amp with 70 MHz gain bandwidth. Specified at 3V, 5V and ± 5V supplies.

LMC7211 Comparator in a tiny package with rail-to-rail input and push-pull output. Typical supply current of 7 \(\mu \text{A} \). Typical propagation delay of 7 \(\mu \text{s} \). Specified at 2.7V, 5V and 15V supplies.

LMC7221 Comparator with an open drain output for use in mixed voltage systems. Similar to the LMC7211, except the output can be used with a pull-up resistor to a voltage different than the supply voltage.

LP2980 Micropower SOT 50 mA Ultra Low-Dropout Regulator.

LM4040 Precision micropower shunt voltage reference. Fixed voltages of 2.5000V, 4.096V, 5.000V, 8.192V and 10.000V.

LM4041 Precision micropower shunt voltage reference 1.225V and adjustable.

Visit http://www.ti.com for more information.
REVISION HISTORY

Changes from Revision D (March 2013) to Revision E

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changed layout of National Data Sheet to TI format</td>
<td>18</td>
</tr>
</tbody>
</table>
Package Option Addendum

Packaging Information

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish (6)</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC7111BIM5</td>
<td>NRND</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>-40 to 85</td>
<td>A01B</td>
<td>Samples</td>
</tr>
<tr>
<td>LMC7111BIM5/NOPB</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>A01B</td>
<td>Samples</td>
</tr>
<tr>
<td>LMC7111BIM5X</td>
<td>NRND</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>-40 to 85</td>
<td>A01B</td>
<td>Samples</td>
</tr>
<tr>
<td>LMC7111BIM5X/NOPB</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>A01B</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and...
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

TAPE DIMENSIONS

- **K0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component length
- **A0**: Dimension designed to accommodate the component thickness
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers

REEL DIMENSIONS

- **Reel Diameter**: Diameter of the reel
- **Reel Width (W1)**

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

- **Soldering Side**: Orientation of the component for soldering
- **User Direction of Feed**: Direction for feeding the tape
- **Pocket Quadrants**: Quadrants of the tape
- **Screwet Holes**: Holes for screwets

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC7111BIM5</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LMC7111BIM5/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LMC7111BIM5X</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LMC7111BIM5X/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
</tbody>
</table>

All dimensions are nominal.
TAPE AND REEL BOX DIMENSIONS

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC7111BIM5</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LMC7111BIM5/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LMC7111BIM5X</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LMC7111BIM5X/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
D. Falls within JEDEC MO-178 Variation AA.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
D. Publication IPC-7351 is recommended for alternate designs.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Automotive and Transportation</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DSP</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Industrial</td>
</tr>
<tr>
<td>Interface</td>
<td>Medical</td>
</tr>
<tr>
<td>Logic</td>
<td>Security</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>TI E2E Community</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated