LMG1210 200-V, 1.5-A, 3-A half-bridge MOSFET and GaN FET driver with adjustable dead time for applications up to 50 MHz

1 Features
- Up to 50-MHz operation
- 10-ns typical propagation delay
- 3.4-ns high-side to low-side matching
- Minimum pulse width of 4 ns
- Two control input options
 - Single PWM input with adjustable dead time
 - Independent input mode
- 1.5-A peak source and 3-A peak sink currents
- External bootstrap diode for flexibility
- Internal LDO for adaptability to voltage rails
- High 300-V/ns CMTI
- HO to LO capacitance less than 1 pF
- UVLO and overtemperature protection
- Low-inductance WQFN package

2 Applications
- High-speed DC-DC converters
- RF envelope tracking
- Class-D audio amplifiers
- Class-E wireless charging
- High-precision motor control

3 Description
The LMG1210 is a 200-V, half-bridge MOSFET and Gallium Nitride Field Effect Transistor (GaN FET) driver designed for ultra-high frequency, high-efficiency applications that features adjustable deadtime capability, very small propagation delay, and 3.4-ns high-side low-side matching to optimize system efficiency. This part also features an internal LDO which ensures a gate-drive voltage of 5-V regardless of supply voltage.

To enable best performance in a variety of applications, the LMG1210 allows the designer to choose the optimal bootstrap diode to charge the high-side bootstrap capacitor. An internal switch turns the bootstrap diode off when the low side is off, effectively preventing the high-side bootstrap from overcharging and minimizing the reverse recovery charge. Additional parasitic capacitance across the GaN FET is minimized to less than 1 pF to reduce additional switching losses.

The LMG1210 features two control input modes: Independent Input Mode (IIM) and PWM mode. In IIM each of the outputs is independently controlled by a dedicated input. In PWM mode the two complementary output signals are generated from a single input and the user can adjust the dead time from 0 to 20 ns for each edge. The LMG1210 operates over a wide temperature range from –40°C to 125°C and is offered in a low-inductance WQFN package.

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMG1210</td>
<td>WQFN (19)</td>
<td>3.00 mm × 4.00 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.
Table of Contents

1 Features .. 1
2 Applications ... 1
3 Description ... 1
4 Revision History ... 2
5 Pin Configuration and Functions 3
6 Specifications .. 4
 6.1 Absolute Maximum Ratings 4
 6.2 ESD Ratings .. 4
 6.3 Recommended Operating Conditions 4
 6.4 Thermal Information ... 5
 6.5 Electrical Characteristics 5
 6.6 Switching Characteristics .. 7
 6.7 Typical Characteristics .. 8
 6.8 Timing Diagrams .. 10
7 Detailed Description ... 11
 7.1 Overview .. 11
 7.2 Functional Block Diagram 11
 7.3 Feature Description .. 11
7.4 Device Functional Modes 15
8 Application and Implementation 16
 8.1 Application Information .. 16
 8.2 Typical Application ... 16
 8.3 Do's and Don'ts ... 20
9 Power Supply Recommendations 20
10 Layout ... 21
 10.1 Layout Guidelines ... 21
 10.2 Layout Example .. 21
11 Device and Documentation Support 22
 11.1 Documentation Support 22
 11.2 Receiving Notification of Documentation Updates 22
 11.3 Community Resources .. 22
 11.4 Trademarks ... 22
 11.5 Electrostatic Discharge Caution 22
 11.6 Glossary .. 22
12 Mechanical, Packaging, and Orderable Information 22

4 Revision History

Changes from Revision C (December 2018) to Revision D

• Changed Maximum High-side dynamic current from 0.61mA/MHz to 0.7mA/MHz .. 5

Changes from Revision B (November 2018) to Revision C

• Changed mismatch from 2.5 ns to 3.4 ns .. 1
• Changed minimum pulse width from 3 ns to 4 ns .. 1
• Changed Reordered Pin Functions table in alphabetical order .. 3
• Added Figure 14 IIM Timing Diagram ... 10
• Added CMTI performance reference app note .. 13
• Added charge per cycle removed from the bootstrap due to dynamic high side current 17
• Added Power Consumption Calculation reference app note .. 19

Changes from Revision A (May 2018) to Revision B

• Changed marketing status from Product Preview to final. Initial release .. 1
5 Pin Configuration and Functions

Pin Functions

<table>
<thead>
<tr>
<th>PIN NAME</th>
<th>NO.</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>BST</td>
<td>17</td>
<td>O</td>
<td>Bootstrap diode anode connection point.</td>
</tr>
<tr>
<td>DHL</td>
<td>5</td>
<td>I</td>
<td>Sets the dead time for a high-to-low transition in PWM mode by connecting a resistor to VSS. If using IIM this pin can be left floating, tied to GND, tied to VDD.</td>
</tr>
<tr>
<td>DLH</td>
<td>6</td>
<td>I</td>
<td>Sets the dead time for a low-to-high transition in PWM mode by connecting a resistor to VSS. Tie to VDD to select IIM.</td>
</tr>
<tr>
<td>EN/HI</td>
<td>18</td>
<td>I</td>
<td>Enable input or high-side driver control. In PWM mode this is the EN pin. In IIM mode this is the HI pin.</td>
</tr>
<tr>
<td>PWM/LI</td>
<td>19</td>
<td>I</td>
<td>PWM input or low-side driver control. In PWM mode this is the PWM pin. In IIM mode this is the LI pin.</td>
</tr>
<tr>
<td>HB</td>
<td>12</td>
<td>I</td>
<td>High-side driver supply. Bootstrap diode cathode connection point.</td>
</tr>
<tr>
<td>HO</td>
<td>10</td>
<td>O</td>
<td>High-side driver output.</td>
</tr>
<tr>
<td>HS</td>
<td>9,13,16</td>
<td>I</td>
<td>Switch node and high-side driver ground. These pins are internally connected.</td>
</tr>
<tr>
<td>LO</td>
<td>8</td>
<td>O</td>
<td>Low-side driver output.</td>
</tr>
<tr>
<td>NC</td>
<td>1,11,15</td>
<td>—</td>
<td>Not internally connected.</td>
</tr>
<tr>
<td>NC1</td>
<td>14</td>
<td>I</td>
<td>For proper operation, this pin should be either unconnected or tied to HS.</td>
</tr>
<tr>
<td>Thermal Pad (HS)</td>
<td>21</td>
<td>I</td>
<td>Connected to HS.</td>
</tr>
<tr>
<td>Thermal Pad (VSS)</td>
<td>20</td>
<td>I</td>
<td>Connected to VSS.</td>
</tr>
<tr>
<td>VDD</td>
<td>4</td>
<td>O</td>
<td>Low-side driver supply and LDO output. 5 V</td>
</tr>
<tr>
<td>VIN</td>
<td>2</td>
<td>I</td>
<td>6 V to 18 V input to LDO. If LDO is not required, connect to VDD.</td>
</tr>
<tr>
<td>VSS</td>
<td>3,7</td>
<td>—</td>
<td>Low-side ground return; all low-side signals are referenced to this ground.</td>
</tr>
</tbody>
</table>
6 Specifications

6.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)\(^1\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{IN}})</td>
<td>-0.5</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{DD}})</td>
<td>-0.5</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{HS}})</td>
<td>-300</td>
<td>300</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{HS}^{-}V_{\text{HS}}})</td>
<td>-0.5</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{HB}}, V_{\text{HV/EN}})</td>
<td>-0.5</td>
<td>10</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{DHL}}, V_{\text{DHL}})</td>
<td>-0.5</td>
<td>(V_{\text{DD}} + 0.5)</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{LO}})</td>
<td>-0.5</td>
<td>(V_{\text{DD}} + 0.5)</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{HO}})</td>
<td>(V_{\text{HS}} - 0.5)</td>
<td>(V_{\text{HB}} + 0.5)</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{BST}})</td>
<td>-0.5</td>
<td>(V_{\text{DD}} + 0.5)</td>
<td>V</td>
</tr>
<tr>
<td>(T_{J})</td>
<td>-40</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>(T_{\text{STG}})</td>
<td>-55</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

\(^1\) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th>Electrostatic discharge</th>
<th>(V_{\text{ESD}})</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(^1)</td>
<td>±2000</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Charged-device model (CDM), per JEDEC specification JESD22-C101(^2)</td>
<td>±500</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions. Pins listed as ±XXX V may actually have higher performance.

\(^2\) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions. Pins listed as ±YYY V may actually have higher performance.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{IN}})</td>
<td>6</td>
<td>18</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{DD}})</td>
<td>4.75</td>
<td>5.00</td>
<td>5.25</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{HB}}, V_{\text{SS}})</td>
<td>-200</td>
<td>200</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{HS}}, V_{\text{HS}^{-}V_{\text{SS}}})</td>
<td>3.80</td>
<td>5.25</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{IN}}, V_{\text{HV}})</td>
<td>-0.3</td>
<td>10</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(T_{J})</td>
<td>-40</td>
<td>125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>(C_{\text{MTI}})</td>
<td>300</td>
<td>V/ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_{\text{DHL}}, R_{\text{DLH}})</td>
<td>20</td>
<td>1800</td>
<td>kΩ</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{DT}})</td>
<td>0.8</td>
<td>1.8</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) If using a bootstrap diode, actual negative HS pin voltage may be more limited, see Section 7.3.6 for details.
6.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(1)</th>
<th>LMG1210 RVR (QFN)</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{JA}</td>
<td>Junction-to-ambient thermal resistance</td>
<td>40.5</td>
</tr>
<tr>
<td>$R_{JUC(top)}$</td>
<td>Junction-to-case (top) thermal resistance</td>
<td>40</td>
</tr>
<tr>
<td>R_{JB}</td>
<td>Junction-to-board thermal resistance</td>
<td>16.2</td>
</tr>
<tr>
<td>V_{JT}</td>
<td>Junction-to-top characterization parameter</td>
<td>2.9</td>
</tr>
<tr>
<td>V_{JB}</td>
<td>Junction-to-board characterization parameter</td>
<td>16.4</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

VDD=5V, HB-HS=4.6V, outputs unloaded over operating junction temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{DD}</td>
<td>Quiescent Current for Low-Side Circuits Only, Vin=6V, powered through LDO</td>
<td>300</td>
<td>475</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{HB}</td>
<td>HB Quiescent Current</td>
<td>520</td>
<td>850</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{HBS}</td>
<td>HB to VSS Quiescent Current</td>
<td>1</td>
<td>na</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{HBSO}</td>
<td>HB to VSS Operating Current</td>
<td>1</td>
<td>1.25</td>
<td>mA/MHz</td>
<td></td>
</tr>
<tr>
<td>I_{LSDyn}</td>
<td>Low-side dynamic current</td>
<td>0.5</td>
<td>0.7</td>
<td>mA/MHz</td>
<td></td>
</tr>
<tr>
<td>I_{HSDyn}</td>
<td>High-side dynamic current</td>
<td>Unloaded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{ISO}</td>
<td>Capacitance from High to Low Side</td>
<td>0.25</td>
<td>pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{5V}</td>
<td>LDO Output</td>
<td>4.75</td>
<td>5.00</td>
<td>5.25</td>
<td>V</td>
</tr>
<tr>
<td>I_{DOM}</td>
<td>Dropout Voltage</td>
<td>400</td>
<td>750</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>I_{SC}</td>
<td>Short Circuit Current</td>
<td>105</td>
<td>250</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>C_{OUT}</td>
<td>Minimum Required Output Capacitance(1)</td>
<td>0.3</td>
<td>μF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{IR}</td>
<td>Input Rising Edge Threshold</td>
<td>1.70</td>
<td>2.45</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{IF}</td>
<td>Input Falling Edge Threshold</td>
<td>0.70</td>
<td>1.30</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{IHYS}</td>
<td>Input Hysteresis</td>
<td>1</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>R_{PDD}</td>
<td>Input Pull-Down Resistance</td>
<td>100</td>
<td>200</td>
<td>300</td>
<td>kΩ</td>
</tr>
<tr>
<td>V_{DDR}</td>
<td>V_{DD} Rising Threshold</td>
<td>4.00</td>
<td>4.25</td>
<td>4.50</td>
<td>V</td>
</tr>
<tr>
<td>V_{DDF}</td>
<td>V_{DD} Falling Threshold</td>
<td>3.8</td>
<td>4.05</td>
<td>4.3</td>
<td>V</td>
</tr>
<tr>
<td>V_{DDH}</td>
<td>V_{DD} Hysteresis</td>
<td>200</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>V_{HBR}</td>
<td>HB-HS Rising Threshold</td>
<td>3.40</td>
<td>3.55</td>
<td>3.8</td>
<td>V</td>
</tr>
<tr>
<td>V_{HBF}</td>
<td>HB-HS Falling Threshold</td>
<td>3.30</td>
<td>3.45</td>
<td>3.65</td>
<td>V</td>
</tr>
<tr>
<td>V_{HH}</td>
<td>HB-HS Hysteresis</td>
<td>130</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>R_{SW}</td>
<td>Diode Switch On Resistance</td>
<td>0.4</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>V_{DL}</td>
<td>Low-Level Output Voltage</td>
<td></td>
<td></td>
<td>0.16</td>
<td>V</td>
</tr>
</tbody>
</table>

(1) Ensured by design
Electrical Characteristics (continued)

VDD=5V, HB-HS=4.6V, outputs unloaded over operating junction temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{DD-V_{OH}})</td>
<td>High-Level Output Voltage, (I_{OH} = -100\text{mA})</td>
<td></td>
<td></td>
<td>0.30</td>
<td>V</td>
</tr>
<tr>
<td>(I_{OL})</td>
<td>Peak Sink Current, (V_{LO}, V_{HO}=5\text{V})</td>
<td>2.0</td>
<td>3.1</td>
<td>4.3</td>
<td>A</td>
</tr>
<tr>
<td>(I_{OH})</td>
<td>Peak Source Current, (V_{LO}, V_{HO}=0\text{V})</td>
<td>0.85</td>
<td>1.58</td>
<td>2.4</td>
<td>A</td>
</tr>
<tr>
<td>(V_{CLAMP})</td>
<td>Unpowered Gate Clamp Voltage, (V_{DD}, V_{HB}) Floating, 1 mA pull-up applied to (LO/HO)</td>
<td>0.55</td>
<td></td>
<td>0.8</td>
<td>V</td>
</tr>
</tbody>
</table>

THERMAL SHUTDOWN

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{SD})</td>
<td>Thermal Shutdown Switching, Rising Edge (^{(2)})</td>
<td>150</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>(T_{SD_LDO})</td>
<td>Thermal Shut Down LDO, Rising Edge (^{(2)})</td>
<td>160</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>(T_{HYS_SD})</td>
<td>Thermal Hysteresis, LDO & Switching (^{(2)})</td>
<td>3</td>
<td>10</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>(T_{SD_HS})</td>
<td>Thermal Shutdown for High-Side, Rising Edge (^{(2)})</td>
<td>160</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>

DEADTIME CONTROL RESISTORS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{PU})</td>
<td>Internal Pullup Resistor</td>
<td>23.5</td>
<td>25</td>
<td>27</td>
<td>kΩ</td>
</tr>
</tbody>
</table>

\(^{(2)}\) Ensured by design
6.6 Switching Characteristics

$V_{DD}=5V$, $V_{HB-HS}=4.6V$, outputs unloaded over operating junction temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{PHL}</td>
<td>Turn-Off Delay</td>
<td>10</td>
<td>18</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{PLH}</td>
<td>Turn-On Delay</td>
<td>10</td>
<td>18</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{MTCH}</td>
<td>High-Off to Low-On and Low-Off to High-On Delay Mismatch</td>
<td>Over temperature, $T_{jHI}=T_{jLO}$</td>
<td>1</td>
<td>3.4</td>
<td>ns</td>
</tr>
</tbody>
</table>

PWM INPUT MODE

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{PHL}</td>
<td>Turn-Off Delay</td>
<td>PWM rising to LO falling and PWM falling to HO falling</td>
<td>11</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>t_{DEAD_MIN}</td>
<td>Minimum Dead Time</td>
<td>$R_{ext}=1.78,\text{M\Omega}$</td>
<td>-0.55</td>
<td>0.8</td>
<td>3.1</td>
</tr>
<tr>
<td>t_{DEAD_MAX}</td>
<td>Maximum Dead Time</td>
<td>$R_{ext}=20,\text{k\Omega}$</td>
<td>16</td>
<td>20</td>
<td>26</td>
</tr>
<tr>
<td>t_{EN}</td>
<td>Enable Propagation Time</td>
<td></td>
<td>11</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

OTHER CHARACTERISTICS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{OR}</td>
<td>Output Rise Time, Unloaded</td>
<td>10%-90%</td>
<td>0.5</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{OF}</td>
<td>Output Fall Time, Unloaded</td>
<td>90%-10%</td>
<td>0.5</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{ORL}</td>
<td>Output Rise Time, Loaded</td>
<td>$C_{O}=1\text{nF}$, 10%-90%</td>
<td>3.5</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>t_{OFL}</td>
<td>Output Fall Time, Loaded</td>
<td>$C_{O}=1\text{nF}$, 90%-10%</td>
<td>2.3</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>t_{PW}</td>
<td>Minimum Input Pulse Width (1)</td>
<td>Minimum input pulse width which changes the output</td>
<td>1.8</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>$t_{PW,ext}$</td>
<td>H-L-H Pulse extender width (1)</td>
<td>Unloaded (2)</td>
<td>4.5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>t_{STLS}</td>
<td>Start-Up Time of low side after V_{DD}-GND goes over $UVLO$ threshold.</td>
<td>Independent Control Mode</td>
<td>25</td>
<td>60</td>
<td>μs</td>
</tr>
<tr>
<td>t_{STHS}</td>
<td>Start-Up Time of High-Side After V_{HB-HS} Goes Above $UVLO$</td>
<td>PWM Control Mode</td>
<td>100</td>
<td>150</td>
<td>μs</td>
</tr>
<tr>
<td>t_{PWD}</td>
<td>Pulse-Width Distortion</td>
<td>$</td>
<td>t_{PHL}-t_{PLH}</td>
<td>$, Independent Input Mode</td>
<td>1</td>
</tr>
</tbody>
</table>

(1) Ensured by design
(2) Pulses longer than t_{PW}, but shorter than $t_{PW,ext}$ get extended to $t_{PW,ext}$
6.7 Typical Characteristics

Figure 1. Peak Source Current vs Output Voltage

Figure 2. Peak Sink Current vs Output Voltage

Figure 3. IDD vs Frequency, Unloaded

Figure 4. I_{HBO} vs Frequency, Unloaded

Figure 5. IDD vs Temperature

Figure 6. I_{HB} vs Temperature
Typical Characteristics (continued)

Figure 7. Propagation Delay vs Temperature

Figure 8. Minimum Dead Time vs Temperature

Figure 9. Propagation Delay Change vs Bootstrap voltage

Figure 10. Propagation Delay vs relative phase of CMTI

Phase

Figure 11. LO and HO Output Current vs Temperature

Figure 12. 1 nF Loaded Rise and Fall Time vs Temperature
6.8 Timing Diagrams

Figure 13. Timing diagram of LMG1210 in PWM mode under no load condition

Figure 14. Timing diagram of LMG1210 in IIM mode under no load condition
7 Detailed Description

7.1 Overview

The LMG1210 is a high-speed half-bridge driver specifically designed to work with enhancement mode GaN FETs. Designed to operate up to 50 MHz, the LMG1210 is optimized for maximum performance and highly efficient operation. This includes reducing additional capacitance at the switch node (HS) to less than 1 pF and increased dV/dt noise immunity up to 300 V/ns on the HS pin to minimize additional switching losses. By having a 21 ns maximum propagation delay with 3.4 ns maximum mismatch, excessive dead times can be greatly reduced.

Auxiliary input voltages applied above 5 V enables an internal LDO to precisely regulate the output voltage at 5-V, preventing damage on the gate. An external bootstrap diode allows the designer to select an optimal diode. An integrated switch in series with the bootstrap diode stops overcharging of the bootstrap capacitor and decreases Qrr losses in the diode.

The LMG1210 comes in a low-inductance WQFN package designed for small gate drive loops with minimal voltage overshoot.

7.2 Functional Block Diagram

7.3 Feature Description

The LMG1210 provides numerous features optimized for driving external GaN FETs.

7.3.1 Bootstrap Diode Operation

An internal low impedance switch enables the bootstrap only when the low-side GaN FET is on. If used in a converter where the low-side FET operates in third quadrant conduction during the dead times, this provides two main benefits. First, it stops the bootstrap diode from overcharging the high-side bootstrap rail. Second, if using a p-n junction diode with Qrr as the bootstrap diode, it decreases the Qrr losses of the diode. There is a 1 kΩ resistor connected between the drain and source of this internal bootstrap switch to allow the bootstrap capacitor to slowly charge at start-up before the low-side FET is turned on.
Feature Description (continued)

The part does not have an actual clamp on the high-side bootstrap supply. The bootstrap switch disables conduction during the dead times, and the actual bootstrap capacitor voltage is set by the operating conditions of the circuit during the low-side on-time. The bootstrap voltage can be approximately calculated in Equation 1 through Equation 3.

The bootstrap voltage is given by Equation 1:

\[V_{\text{BST}} = V_{\text{DD}} - V_F - V_{\text{HS}} \]

where

\[V_F \] is the forward voltage drop of the bootstrap diode and series bootstrap switch. \hspace{1cm} (1)

\[V_{\text{HS}} \] is calculated in Equation 2:

\[V_{\text{HS}} = -I_L \times R_{\text{DS(on)}} \]

where

\[I_L \] is the inductor current defined as flowing out of the half-bridge

and \[R_{\text{DS(on)}} \] is the FET on resistance. \hspace{1cm} (2)

Substituting (2) into (1) gives the expression for the bootstrap voltage as Equation 3:

\[V_{\text{BST}} = V_{\text{DD}} - V_F + I_L \times R_{\text{DS(on)}} \]

From (3) one can determine that in an application where the current flows out of the half-bridge (\(I_L \) is positive) the bootstrap voltage can be charged up to a voltage higher than \(V_{\text{DD}} \) if \(I_L \times R_{\text{DS(on)}} \) is greater than \(V_F \). Take care not to overcharge the bootstrap too much in this application by choosing a diode with a larger \(V_F \) or limiting the \(I_L \times R_{\text{DS(on)}} \) product.

In an application where \(I_L \) is negative, the \(I_L \times R_{\text{DS(on)}} \) product subtracts from the available bootstrap cap voltage. In this case using a smaller \(V_F \) diode is recommended if \(I_L \times R_{\text{DS(on)}} \) is large.

7.3.2 LDO Operation

An internal LDO allows the driver to run off higher voltages from 6 V to 18 V and regulates the supply to 5 V, so the LMG1210 can run off of higher input voltages with wide tolerances. To maintain stability of the internal LDO, care must be taken to make sure a capacitor of at least 0.3 µF from VDD to VSS with an ESR below 500 mΩ is used. A high-quality ceramic capacitor with an X7R dielectric is recommended. There is no maximum limit on the capacitance allowed on the output of the LDO.

If the input supply is already 5 V ±5%, then the LDO can be bypassed. This is achieved by connecting the 5 V supply directly to the VDD pin. The VIN pin should be tied to the VDD pin, and the capacitor on the VIN pin can be removed. Do not ground the VIN pin.
Feature Description (continued)

7.3.3 Dead Time Selection

In PWM mode the dead time can be set with a resistor placed between DHL/DLH and V_{SS}. For a desired dead time \(t_{\text{dt}} \), the corresponding required resistance can be calculated in Equation 4 with \(t_{\text{dt}} \) in ns and \(R_{\text{ext}} \) in kΩ.

\[
R_{\text{ext}} = \left(\frac{900}{t_{\text{dt}}} \right) - 25 \tag{4}
\]

The maximum dead time is 20 ns, which gives a minimum resistor value of 20 kΩ. The minimum dead time is 0.5ns, which gives a maximum resistor value of 1.8 MΩ. There is an internal pull-up resistor at DHL/DLH pin, which forms a voltage divider with the external resistor. This voltage decides the final dead time. The calculation between dead time \(t_{\text{DT}} \) in ns and \(V_{\text{DT}} \) is shown in Equation 5.

\[
t_{\text{dt}} = \left(1.8 - V_{\text{DT}} \right) \times 20 \tag{5}
\]

Before being used to generate the dead times, the voltages on the DHL and DLH pins are first filtered through an internal RC filter with a nominal corner frequency of 10 kHz to attenuate switching noise.

The pulse widths of the HO and LO outputs are decreased from the PWM input by the chosen dead-times. The timing diagram under no load condition is shown in Figure 13 and Figure 14. PWM mode and Independent mode configurations can be found in Figure 16.

7.3.4 Overtemperature Protection

The LMG1210 has three separate overtemperature thresholds: two on the low-side and one on the high-side. The lowest overtemperature threshold is the low-side switching threshold at 150 degrees minimum. When exceeded, this disables switching on both the low and high sides. However, the 5 V LDO continues to operate.

If the low-side temperature continues to rise, due to a short or external load on the 5 V LDO, then at 10 degrees higher, the low-side shuts down the 5 V LDO.

The high-side has an independent overtemperature threshold at 160 minimum. When triggered, it only shuts off the high-side while the low-side may continue to operate.

If it is undesirable in an application to have only the high side shut off and not the low side, TI recommends designing the thermal cooling of the board in a way to make the low-side die hotter. This can be achieved by controlling the size of the thermal planes connected to each thermal pad.

7.3.5 High-Performance Level Shifter

The LMG1210 uses a high-performance level shifter to translate the signal from the low side to the high side. The level shifter is built using TI's proprietary high-voltage capacitor technology, which showcases best-in-class CMTI (common-mode transient immunity), or dV/dt on the HS pin. The level shifter can handle very high CMT (common-mode transient) rates while simultaneously providing low propagation time which does not vary depending on CMT rate. For more information on LMG1210 CMTI performance refer to section 2.4 from Design Considerations for LMG1205 Advanced GaN FET Driver During High-Frequency Operation.

7.3.6 Negative HS Voltage Handling

The LMG1210 by itself can operate with -200V on the HS pin as stated in the recommended operating conditions table. However, if using a bootstrap diode, the system will be more limited based on the potential of high-currents flowing through the bootstrap diode.

HS goes most negative during the dead times when the low-side FET is off. This also means the bootstrap switch is off so the BST pin is relatively high impedance. Therefore as HS goes negative, the bootstrap diode becomes forward biased and pulls the voltage at BST down with it. Because the bootstrap switch is off, very little current will flow until the bootstrap diode attempts to pull the BST pin below ground at which point the ESD diode on the BST pin will clamp the voltage at a diode drop below ground. The point where significant current begins to flow through the bootstrap diode is given in Equation 6

\[
V_{\text{HS}} = - V_{\text{BST}} - V_{\text{ESD}} - (V_{\text{HB}} - V_{\text{HS}}) \tag{6}
\]

Where \(V_{\text{BST}} \) is the forward voltage drop of the selected bootstrap diode and \(V_{\text{ESD}} \) is the forward voltage drop of the ESD diode of the BST pin which is typically 0.7V at room temp. Figure 15 shows a schematic of this current path.
Once this negative voltage is exceeded, large currents will begin to flow out of the BST pin and through the bootstrap diode. The currents may be limited by the following: resistance of the BST ESD diode, resistance of the bootstrap diode, inductance of the bootstrap loop, or additional resistance purposely added in series with the bootstrap diode. If this current is too high, damage to the bootstrap diode or the LMG1210 can result. If this current delivers significant enough total charge, this can over-charge the bootstrap rail as well.

The BST pin ESD diode has been specifically designed to be robust to carry up to a couple amps surge current without damage.
7.4 Device Functional Modes

The mode of operation is determined by the state of DHL and DLH pins during power up. The state of the pins is sampled at power up and cannot be changed during operation. There are two different modes: independent operation where separate HI and LI signals are required, and PWM mode where one PWM input signal is required and the LMG1210 generates the complementary HI and LI signals. For PWM input, the dead time for the low-to-high and high-to-low switch-node transition is independently set by an external resistor at DHL and DLH. For independent input mode, DLH is tied to V\textsubscript{DD} and DHL is internally set to high-impedance and can be tied to V\textsubscript{DD}, tied to ground or left floating.

![Figure 16. Operation Mode Selection](image)

Table 1 lists the functional modes for the LMG1210.

<table>
<thead>
<tr>
<th>Operating Mode</th>
<th>DHL</th>
<th>DLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWM</td>
<td>![Diagram]</td>
<td>![Diagram]</td>
</tr>
<tr>
<td>Independent Input Mode</td>
<td>Leave Floating or Tie to VSS</td>
<td>V\textsubscript{DD}</td>
</tr>
</tbody>
</table>

Table 1. LMG1210 Truth Table

<table>
<thead>
<tr>
<th>INPUTS</th>
<th>PWM MODE</th>
<th>INDEPENDENT MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN/HI</td>
<td>PWM/LI</td>
<td>HO</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The LMG1210 is designed to optimally drive GaN FETs in half-bridge configurations, such as synchronous buck and boost converters, as well as more complex topologies. By integrating the level shifting and bootstrap operation the complexities of driving the high-side device are solved for the designer.

The list below shows some sample values for a typical 48 V to 12 V application synchronous buck.

- Input Voltage: 48 V
- Output Voltage: 12 V
- Output Current: 10 A
- Bias Voltage: 6 V
- Duty Cycle: 25 %
- Switching Frequency: 1 MHz
- Inductor: 4.7 µH

8.2 Typical Application

Figure 17. Simplified LMG1210 Configured as Synchronous Buck Converter
Typical Application (continued)

8.2.1 Design Requirements

When designing a multi-MHz application that incorporates the LMG1210 gate driver and GaN power FETs, some design considerations must be evaluated first to make the most appropriate selection. Among these considerations are layout optimization, circuit voltages, passive components, operating frequency, and controller selection.

8.2.2 Detailed Design Procedure

8.2.2.1 Bypass Capacitor

To properly drive the GaN FETs, TI recommends placing high-quality ceramic bypass capacitors as close as possible between the HB to HS and V_{DD} to V_{SS}. If using the LDO, the V_{DD}-V_{SS} capacitor is required to be at least 0.3 µF at bias for stability. However, a larger capacitor may be required for many applications.

The bootstrap capacitor must be large enough to support charging the high-side FET and supplying the high-side quiescent current when the high-side FET is on. The required capacitance can be calculated as Equation 7:

$C_{BST,\text{min}} = \frac{0.5 \text{ nC} + Q_{\text{gH}} + I_{\text{qH}} \times t_{\text{on}}/\Delta V}{\Delta V}$

where

- Q_{gH} is the gate charge of the high-side GaN FET,
- I_{qH} is the quiescent current of the high-side driver,
- t_{on} is the maximum on time period of the high side,
- Q_{r} is the reverse recovery of the bootstrap diode,
- 0.5 nC is the additional charge per cycle removed from the bootstrap due to high side dynamic current,
- and ΔV is the acceptable droop on the bootstrap capacitor voltage. (7)

When using larger bootstrap capacitors, TI recommends that the V_{DD}-V_{SS} capacitor also be increased to keep the ratio at least 5 to 1. If this is not maintained, the charging of the bootstrap capacitor can pull the V_{DD}-V_{SS} rail down sufficiently to cause UVLO conditions and potentially unwanted behavior.

8.2.2.2 Bootstrap Diode Selection

The bootstrap diode blocks the high voltage from the gate drive circuitry when the switch node swings high, with the rated blocking voltage equal to the maximum V_{ds} of the GaN FET. For low or moderate frequency operation ultra-fast recovery diodes (<50 ns) are recommended. The internal low voltage switch in the LMG1210 acts to reduce the reverse recovery. For high-frequency operation a Schottky diode is recommended. To minimize switching losses and improve performance, it is important to select a diode with low capacitance.

For extreme cases, where the low-side FET on time is less than 20 ns, TI recommends using a small GaN FET as synchronous bootstrap instead of a diode. In this case, TI recommends leaving the BST pin floating or connected to V_{DD}, and to connect the source of the synchronous bootstrap directly to V_{DD}.

8.2.2.3 Handling Ground Bounce

For the best switching performance, it is important to connect the V_{SS} gate return to the source of the low-side FET with a very low-inductance path.

However, doing so can cause the ground of the LMG1210 to bounce relative to the system or controller ground and cause erroneous switching transitions on the inputs. Multiple strategies can be employed to eliminate these undesired transitions.

The LMG1210 has input hysteresis built into the input buffers to help counteract this effect, but this alone may not be sufficient in all applications. The simplest option is to tie the system ground together and the power ground only at the LMG1210 (single-point connection). This gives the cleanest solution but may not always be possible depending on system grounding requirements.

For moderate ground-bounce cases, a simple R-C filter can be built with a simple resistor in series with the inputs. The resistor should be close to the inputs of the LMG1210. The input capacitance of the LMG1210 produces an RC filter which can help decrease ringing at the inputs. The addition of a small C on the inputs to supplement the LMG1210 input capacitance can also be helpful. This solution is acceptable for moderate cases in applications where the extra delay is acceptable.
Typical Application (continued)

For more extreme cases or where no delay is tolerable, using a common-mode choke provides the best results. One example application where the ground bounce is particularly challenging is when using a current sense resistor. In this application, the LMG1210 ground is connected to the GaN source, while the controller ground is connected to the other side of the current sense resistor as shown in Figure 18.

![Figure 18. LMG1210 Configured With Current Sense Resistor Using a CMC as Filter](image)

The combination of high dI/dt experienced through the sense resistor inductance will cause severe ground noise that could cause false triggering or even damage the part. To prevent this, a common-mode choke (CMC) can be used. Each signal requires its own CMC. Also, to provide additional RC filtering, a 100 Ω resistor should be added to the signal output line before the LMG1210.

8.2.2.4 Independent Input Mode

In independent input mode, the signals LI and HI will propagate to the outputs LO and HO maintaining the same phase shift, varied only by the timing mismatch.

In this mode, the dead time-generating circuit will be inoperative, and the correct dead time value would have to be generated by the controller.

LI and HI cannot be high at the same time. The controller is responsible for assuring that the LI and HI on-times do not overlap and cause shoot-through.

8.2.2.5 Computing Power Dissipation

The power dissipation of the LMG1210 can be divided up into three parts. One is the quiescent current which is defined in the Electrical Characteristics table. This is the current consumed when no switching is taking place.

The second is the dynamic power consumed in the internal circuits of the driver at each switching transition regardless of the load on the output. This can be measured by switching the driver with no output load.

The third component is the power used to switch the load capacitance presented by the external FET.
Typical Application (continued)

If operating in PWM mode, there is an additional quiescent current consumed in the dead time resistors. The additional current consumed in each dead time pin can be calculated as Equation 8.

\[I_{qdx} = \frac{1.8}{(25k + R_{ext})} \]

(8)

The first component, the quiescent power, is given in the Electrical Characteristics table. The second component, the dynamic power dissipation can be calculated as Equation 9.

\[I_{\text{INT}} = I_{\text{DYN}} \times F_{\text{sw}} \]

where

- \(I_{\text{DYN}} \) is the dynamic current consumption found in the Electrical Characteristics table
- and \(F_{\text{sw}} \) is the switching frequency in MHz.

(9)

The third component of the power dissipation is the gate driver power. The current associated to this loss can be calculated given the \(Q_g \) of the FET as Equation 10:

\[I_{\text{FET,g}} = Q_g \times F_{\text{sw}} \]

(10)

or alternatively in terms of \(C_{iss} \) as Equation 11:

\[I_{\text{FET,g}} = C_{iss} \times V_{\text{sup}} \times F_{\text{sw}} \]

(11)

These current consumption numbers should be calculated for both the high side and low side separately and added together. When a total current consumption is computed, multiplying it by the input supply voltage gives a worst-case approximation for the total power dissipation of the LMG1210. If using a non-zero external gate resistor of value \(R_{g,\text{ext}} \), some of this power will be dissipated in this external resistor, and can be subtracted from the power consumed inside the IC. For further details when calculating total driver power loss see section 2 from Design Considerations for LMG1205 Advanced GaN FET Driver During High-Frequency Operation.

The WQFN package has two thermal pads: one for the low-side die and another for the high-side die. Though there is good thermal coupling between the die and the associated thermal pad, there is very limited thermal coupling between a die and the opposite thermal pad. This means that if power dissipation calculations indicate a die needs improved cooling, the cooling must be focused on cooling the correct thermal pad.

8.2.3 Application Curves

![Figure 19. 1-MHz, 80-V Operation](image1)

![Figure 20. 10-MHz Operation, No Bus Voltage](image2)
8.3 Do's and Don'ts

When using the LMG1210, DO:
1. Read and fully understand the data sheet, including the application notes and layout recommendations.
2. Use a four-layer board and place the return power path on an inner layer to minimize power-loop inductance.
3. Use small, surface-mount bypass and bus capacitors to minimize parasitic inductance.
4. Use the proper size decoupling capacitors and place them close to the IC as described in the Layout Guidelines section.
5. Use common-mode chokes for the input signals to reduce ground bounce noise. If not, ensure the signal source is connected to the signal VSS plane which is tied to the power source only at the LMG1210 IC.

To avoid issues in your system when using the LMG1210, DON'T:
1. Use a single-layer or two-layer PCB for the LMG1210 as the power-loop and bypass capacitor inductances will be excessive and prevent proper operation of the IC.
2. Reduce the bypass capacitor values below the recommended values.
3. Allow the device to experience pin transients above 200 V as they may damage the device.
4. Drive the IC from a controller with a separate ground connection than the VSS pin of the IC, unless connecting though a CMC.

9 Power Supply Recommendations

The power to the LMG1210 can be supplied either through the LDO or the LDO can be bypassed and 5 V can be supplied directly. The maximum input voltage to the LDO of the LMG1210 is specified in the electrical characteristics table. The minimum input voltage of the LDO is set by the minimum drop-out of the LDO at the operational current. The dropout at max current is specified in the electrical characteristics table, but a lower dropout can be used in a lower-current application. A local bypass capacitor must be placed between the VIN and VSS pins, and the VDD and VSS pins. This capacitor must be placed as close as possible to the device. TI recommends a low-ESR, ceramic, surface-mount capacitor. TI also recommends using 2 capacitors across VDD and VSS pin: a 100 nF ceramic surface-mount capacitor for high frequency filtering placed very close to VDD and VSS pin, and another surface-mount capacitor, 220 nF to 10 μF, for IC bias requirement. The VIN and VSS capacitor can be removed if the LDO is bypassed.
10 Layout

10.1 Layout Guidelines

The layout of the LMG1210 is critical for performance and functionality. The low inductance WQFN package helps mitigate many of the problems associated with board level parasitics, but take care with layout and placement with components to ensure proper operation. The following design rules are recommended.

- Place LMG1210 as close to the GaN FETs as possible to minimize the length of high-current traces between the HO/LO and the Gate of the GaN FETs.
- Place bootstrap diode as close as possible to the LMG1210 to minimize the inductance of the BST to HB loop.
- Place the bypass capacitors across V_{IN} to V_{SS}, V_{DD} to V_{SS}, and HB to HS as close to the LMG1210 pins as possible. The V_{DD} to V_{SS} cap is a higher priority than the V_{IN} to V_{SS} cap.
- Separate power traces and signal traces, such as output and input signals, and minimize any overlaps between layers.
- Minimize capacitance from the high-side pins to the input pins to minimize noise injection.

10.2 Layout Example

![Figure 21. LMG1210 Layout Example](image-url)
11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation

For related documentation see the following:

- Dead Time Optimization for the LMG1210 Half-Bridge GaN Driver (SNVA815)
- Design Considerations for LMG1205 Advanced GaN FET Driver During High-Frequency Operation (SNVA723)
- LMG1210 TINA-TI Reference Design (SNOM617)
- LMG1210 TINA-TI Transient Spice Model (SNOM616)
- LMG1210 PSpice Transient Model (SNOM615)

11.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community Ti's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support Ti's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.4 Trademarks

E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

11.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.6 Glossary

SLYZ022 — Ti Glossary.
This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

LMG1210 is released as MSL3. Products that exceed their floor life can be re-worked with a bake to drive out residual moisture. IPC/JEDEC J-STD-033C provides guidance about the baking procedure and where you should take care to ensure that the plastic housing (trays, tape and reel or tubes) can withstand the temperatures being considered.
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.
EXAMPLE BOARD LAYOUT

RVR0019A

WQFN - 0.8 mm max height
PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any via is implemented, refer to their locations shown on this view. It is recommended that via be filled, plugged or tinned.

Submit Documentation Feedback

Product Folder Links: LMG1210
EXAMPLE STENCIL DESIGN

RVR0019A

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
EXPOSED PADS 20 & 21:
83% PRINTED SOLDER COVERAGE BY AREA
SCALE: 25X

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMG1210RVRR</td>
<td>ACTIVE</td>
<td>WQFN</td>
<td>RVR</td>
<td>19</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>SN</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>LMG1210</td>
<td></td>
</tr>
<tr>
<td>LMG1210RVRT</td>
<td>ACTIVE</td>
<td>WQFN</td>
<td>RVR</td>
<td>19</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>SN</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>LMG1210</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE:** Product device recommended for new designs.
- **LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE:** TI has discontinued the production of the device.

(2) **RoHS:** TI defines “RoHS” to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, “RoHS” products are suitable for use in specified lead-free processes. TI may reference these types of products as “Pb-Free”.

RoHS Exempt: TI defines “RoHS Exempt” to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines “Green” to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp:** The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a “~” will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) **Lead/Ball Finish -** Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

TAPE DIMENSIONS

- **A0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component length
- **K0**: Dimension designed to accommodate the component thickness
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

- **Q1**
- **Q2**
- **Q3**
- **Q4**

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMG1210RVRR</td>
<td>WQFN</td>
<td>RVR</td>
<td>19</td>
<td>3000</td>
<td>330.0</td>
<td>12.4</td>
<td>3.3</td>
<td>4.3</td>
<td>1.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
</tr>
<tr>
<td>LMG1210RVRT</td>
<td>WQFN</td>
<td>RVR</td>
<td>19</td>
<td>250</td>
<td>180.0</td>
<td>12.4</td>
<td>3.3</td>
<td>4.3</td>
<td>1.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMG1210RVRR</td>
<td>WQFN</td>
<td>RVR</td>
<td>19</td>
<td>3000</td>
<td>370.0</td>
<td>355.0</td>
<td>55.0</td>
</tr>
<tr>
<td>LMG1210RVRT</td>
<td>WQFN</td>
<td>RVR</td>
<td>19</td>
<td>250</td>
<td>195.0</td>
<td>200.0</td>
<td>45.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated