LMH6628 Dual Wideband, Low Noise, Voltage Feedback Op Amp

Check for Samples: LMH6628

FEATURES

- Wide Unity Gain Bandwidth: 300MHz
- Low Noise: 2nV/√Hz
- Low Distortion: −65/−74dBc (10MHz)
- Settling Time: 12ns to 0.1%
- Wide Supply Voltage Range: ±2.5V to ±6V
- High Output Current: ±85mA
- Improved Replacement for CLC428

APPLICATIONS

- High Speed Dual Op Amp
- Low Noise Integrators
- Low Noise Active Filters
- Driver/receiver for Transmission Systems
- High Speed Detectors
- I/Q Channel Amplifiers

DESCRIPTION

The Texas Instruments LMH6628 is a high speed dual op amp that offers a traditional voltage feedback topology featuring unity gain stability and slew enhanced circuitry. The LMH6628's low noise and very low harmonic distortion combine to form a wide dynamic range op amp that operates from a single (5V to 12V) or dual (±5V) power supply.

Each of the LMH6628's closely matched channels provides a 300MHz unity gain bandwidth and low input voltage noise density (2nV/√Hz). Low 2nd/3rd harmonic distortion (−65/−74dBc at 10MHz) make the LMH6628 a perfect wide dynamic range amplifier for matched I/Q channels.

With its fast and accurate settling (12ns to 0.1%), the LMH6628 is also an excellent choice for wide dynamic range, anti-aliasing filters to buffer the inputs of hi resolution analog-to-digital converters. Combining the LMH6628's two tightly matched amplifiers in a single 8-pin SOIC package reduces cost and board space for many composite amplifier applications such as active filters, differential line drivers/receivers, fast peak detectors and instrumentation amplifiers.

The LMH6628 is fabricated using TI's VIP10™ complimentary bipolar process.

To reduce design times and assist in board layout, the LMH6628 is supported by an evaluation board (CLC730036).

Connection Diagram

![Connection Diagram](image)

Figure 1. 8-Pin SOIC, Top View
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Body Model</td>
<td>2kV</td>
</tr>
<tr>
<td>Machine Model</td>
<td>200V</td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>13.5V</td>
</tr>
<tr>
<td>Short Circuit Current</td>
<td>See (4)</td>
</tr>
<tr>
<td>Common-Mode Input Voltage</td>
<td>V⁺ - V⁻</td>
</tr>
<tr>
<td>Differential Input Voltage</td>
<td>V⁺ - V⁻</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>+150°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>−65°C to +150°C</td>
</tr>
<tr>
<td>Lead Temperature</td>
<td>+300°C</td>
</tr>
</tbody>
</table>

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured. For ensured specifications, see the Electrical Characteristics tables.

(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

(3) Human body model, 1.5kΩ in series with 100pF. Machine model, 0Ω in series with 200pF.

(4) Output is short circuit protected to ground, however maximum reliability is obtained if output current does not exceed 160mA.

Operating Ratings

<table>
<thead>
<tr>
<th>Package</th>
<th>(θJC)</th>
<th>(θJA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOIC</td>
<td>65°C/W</td>
<td>145°C/W</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>−40°C to +85°C</td>
<td></td>
</tr>
<tr>
<td>Nominal Supply Voltage</td>
<td>±2.5V to ±6V</td>
<td></td>
</tr>
</tbody>
</table>

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured. For ensured specifications, see the Electrical Characteristics tables.

(2) The maximum power dissipation is a function of \(T_{J(MAX)} \), \(\theta_JA \) and \(T_A \). The maximum allowable power dissipation at any ambient temperature is \(P_D = (T_{J(MAX)} - T_A) / \theta_JA \). All numbers apply for packages soldered directly onto a PC board.
Electrical Characteristics

$V_{CC} = \pm 5V$, $A_V = +2V/V$, $R_F = 100\Omega$, $R_S = 100\Omega$, $R_L = 100\Omega$; unless otherwise specified. **Boldface** limits apply at the temperature extremes.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB</td>
<td>Gain Bandwidth Product</td>
<td>$V_O < 0.5V_{PP}$</td>
<td>200</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSBW</td>
<td>-3dB Bandwidth, $A_V = +1$</td>
<td>$V_O < 0.5V_{PP}$</td>
<td>180</td>
<td>300</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>SSBWB</td>
<td>-3dB Bandwidth, $A_V = +2$</td>
<td>$V_O < 0.5V_{PP}$</td>
<td>100</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GFL</td>
<td>Gain Flatness</td>
<td>$V_O < 0.5V_{PP}$</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GFP</td>
<td>Peaking</td>
<td>DC to 200MHz</td>
<td>0.0</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GFR</td>
<td>Rolloff</td>
<td>DC to 20MHz</td>
<td>.1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPD</td>
<td>Linear Phase Deviation</td>
<td>DC to 20MHz</td>
<td>.1</td>
<td>deg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Domain Response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GB</td>
<td>Gain Bandwidth Product</td>
<td>$V_O < 0.5V_{PP}$</td>
<td>200</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>SSBW</td>
<td>-3dB Bandwidth, $A_V = +1$</td>
<td>$V_O < 0.5V_{PP}$</td>
<td>180</td>
<td>300</td>
<td>MHz</td>
</tr>
<tr>
<td>SSBWB</td>
<td>-3dB Bandwidth, $A_V = +2$</td>
<td>$V_O < 0.5V_{PP}$</td>
<td>100</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>GFL</td>
<td>Gain Flatness</td>
<td>$V_O < 0.5V_{PP}$</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GFP</td>
<td>Peaking</td>
<td>DC to 200MHz</td>
<td>0.0</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>GFR</td>
<td>Rolloff</td>
<td>DC to 20MHz</td>
<td>.1</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>LPD</td>
<td>Linear Phase Deviation</td>
<td>DC to 20MHz</td>
<td>.1</td>
<td>deg</td>
<td></td>
</tr>
</tbody>
</table>

Time Domain Response					
TR	Rise and Fall Time	1V Step	4 ns		
TS	Settling Time	2V Step to 0.1%	12 ns		
OS	Overshoot	1V Step	1 %		
SR	Slew Rate	4V Step	300 550 V/µs		

Distortion And Noise Response					
HD2	2nd Harmonic Distortion	$1V_{PP}, 10$MHz	-65 dBC		
HD3	3rd Harmonic Distortion	$1V_{PP}, 10$MHz	-74 dBC		

V_N	Equivalent Input Noise Voltage	1MHz to 100MHz	2 nV/√Hz
I_N	Equivalent Input Current	1MHz to 100MHz	2 pA/√Hz
XTLKA	Crosstalk Input Referred, 10MHz	-62 dB	

Static, DC Performance					
G_{OL}	Open-Loop Gain	56 53	63	dB	
V_{ID}	Input Offset Voltage	±5	±2	±2.6	mV
DV_{IO}	Average Drift	5	µV/°C		
I_{IBN}	Input Bias Current	±7	±20	±30	µA
D_{IBN}	Average Drift	150	nA/°C		
I_{IOS}	Input Offset Current	0.3	±6	µA	
I_{IOSD}	Average Drift	5	nA/°C		
PSRR	Power Supply Rejection Ratio	60 46	70	dB	
CMRR	Common-Mode Rejection Ratio	57 54	62	dB	
I_{CC}	Supply Current Per Channel, $R_L = \infty$	7.5 7.0	9 12	12.5	mA

Miscellaneous Performance					
R_{IN}	Input Resistance	Common-Mode	500	kΩ	
C_{IN}	Input Capacitance	Common-Mode	200	kΩ	
R_{OUT}	Output Resistance	Closed-Loop	.1	Ω	

(1) Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that $T_J = T_A$. No specification of parametric performance is indicated in the electrical tables under conditions of internal self heating where $T_J > T_A$. See Note 6 for information on temperature de-rating of this device. * Min/Max ratings are based on product characterization and simulation. Individual parameters are tested as noted.
Electrical Characteristics

$V_{CC} = \pm 5\, \text{V}, \ A_V = +2\, \text{V/V}, \ R_F = 100\, \Omega, \ R_O = 100\, \Omega, \ R_L = 100\, \Omega$; unless otherwise specified. **Boldface** limits apply at the temperature extremes.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_O</td>
<td>Output Voltage Range</td>
<td>$R_L = \infty$</td>
<td>± 3.8</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{OL}</td>
<td></td>
<td>$R_L = 100, \Omega$</td>
<td>± 3.2</td>
<td>± 3.1</td>
<td>± 3.5</td>
<td>V</td>
</tr>
<tr>
<td>CMIR</td>
<td>Input Voltage Range</td>
<td>Common-Mode</td>
<td>± 3.7</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_O</td>
<td>Output Current</td>
<td></td>
<td>± 50</td>
<td>± 85</td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>
Typical Performance Characteristics

\(T_A = +25^\circ, A_V = +2, V_{CC} = \pm 5V, R_f = 100 \Omega, R_L = 100 \Omega, \) unless specified

Non-Inverting Frequency Response

Inverting Frequency Response

Frequency Response vs. Load Resistance

Frequency Response vs. Capacitive Load

Frequency Response vs. Output Amplitude

Gain Flatness & Linear Phase

Copyright © 2002–2013, Texas Instruments Incorporated

Submit Documentation Feedback

Product Folder Links: LMH6628
Typical Performance Characteristics (continued)

\(T_A = +25^\circ, \ A_V = +2, \ V_{CC} = \pm 5V, \ R_i = 100\Omega, \ R_L = 100\Omega, \) unless specified

Channel Matching

Channel to Channel Crosstalk

Pulse Response (\(V_O = 2V \))

Pulse Response (\(V_O = 100mV \))

2nd Harmonic Distortion vs. Output Voltage

3rd Harmonic Distortion vs. Output Voltage

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.
Typical Performance Characteristics (continued)

\(T_A = +25^\circ, \, A_V = +2, \, V_{CC} = \pm 5V, \, R_i = 100\Omega, \, R_L = 100\Omega, \) unless specified

2nd & 3rd Harmonic Distortion

\[V_O = 1V_{pp} \]

\(\text{Frequency (MHz)} \)

Figure 15.

PSRR and CMRR (±5V)

\(\text{Frequency (Hz)} \)

Figure 16.

PSRR and CMRR (±2.5V)

\(\text{Frequency (Hz)} \)

Figure 17.

Closed Loop Output Resistance (±2.5V)

\(\text{Frequency (Hz)} \)

Figure 18.

Closed Loop Output Resistance (±5V)

\(\text{Frequency (Hz)} \)

Figure 19.

Open Loop Gain & Phase (±2.5V)

\(\text{Frequency (Hz)} \)

Figure 20.
Typical Performance Characteristics (continued)

\((T_A = +25^\circ, A_V = +2, V_{CC} = \pm 5V, R_i = 100\Omega, R_L = 100\Omega, \text{unless specified})\)

Open Loop Gain & Phase (±5V)

![Open Loop Gain & Phase](figure1)

Recommended \(R_S\)

\[\text{RECOMMENDED } R_S (\Omega) \]

![Recommended \(R_S\)](figure2)

DC Errors vs. Temperature

\[V_{S} = \pm 5V\]

\[V_{IO}, I_{BN}, I_{BI}\]

![DC Errors](figure3)

Maximum \(V_O\) vs. Load Resistance

\[\text{MAXIMUM } V_O (\text{VOLTS})\]

![Maximum \(V_O\)](figure4)
Typical Performance Characteristics (continued)

\(T_A = +25^\circ, \ A_V = +2, \ V_{CC} = \pm 5V, \ R_I = 100\Omega, \ R_L = 100\Omega, \) unless specified

- **2-Tone, 3rd Order Intermodulation Intercept**

 ![Graph of 2-Tone, 3rd Order Intermodulation Intercept](image)

 Figure 25.

- **Voltage & Current Noise vs. Frequency**

 ![Graph of Voltage & Current Noise vs. Frequency](image)

 Figure 26.

- **Settling Time vs. Accuracy**

 ![Graph of Settling Time vs. Accuracy](image)

 Figure 27.
APPLICATION SECTION

LOW NOISE DESIGN

Ultimate low noise performance from circuit designs using the LMH6628 requires the proper selection of external resistors. By selecting appropriate low valued resistors for RF and RG, amplifier circuits using the LMH6628 can achieve output noise that is approximately the equivalent voltage input noise of 2nV/√Hz multiplied by the desired gain (AV).

DC BIAS CURRENTS AND OFFSET VOLTAGES

Cancellation of the output offset voltage due to input bias currents is possible with the LMH6628. This is done by making the resistance seen from the inverting and non-inverting inputs equal. Once done, the residual output offset voltage will be the input offset voltage (VOS) multiplied by the desired gain (AV). Application Note OA-7 (SNOA365) offers several solutions to further reduce the output offset.

OUTPUT AND SUPPLY CONSIDERATIONS

With ±5V supplies, the LMH6628 is capable of a typical output swing of ±3.8V under a no-load condition. Additional output swing is possible with slightly higher supply voltages. For loads of less than 50Ω, the output swing will be limited by the LMH6628's output current capability, typically 85mA.

Output settling time when driving capacitive loads can be improved by the use of a series output resistor. See Figure 22.

LAYOUT

Proper power supply bypassing is critical to insure good high frequency performance and low noise. De-coupling capacitors of 0.1μF should be placed as close as possible to the power supply pins. The use of surface mounted capacitors is recommended due to their low series inductance.

A good high frequency layout will keep power supply and ground traces away from the inverting input and output pins. Parasitic capacitance from these nodes to ground causes frequency response peaking and possible circuit oscillation. See OA-15 (SNOA367) for more information. Texas Instruments suggests the CLC730036 (SOIC) dual op amp evaluation board as a guide for high frequency layout and as an aid in device evaluation.

ANALOG DELAY CIRCUIT (ALL-PASS NETWORK)

The circuit in Figure 28 implements an all-pass network using the LMH6628. A wide bandwidth buffer (LM7121) drives the circuit and provides a high input impedance for the source. As shown in Figure 29, the circuit provides a 13.1ns delay (with R = 40.2Ω, C = 47pF). RF and RG should be of equal and low value for parasitic insensitive operation.

![Figure 28. Circuit That Implements an All-pass Network Using the LMH6628](image-url)
The circuit gain is +1 and the delay is determined by the following equations.

\[
T_{\text{delay}} = 2(2RC + T_d)
\]

(1)

\[
T_d = \frac{1}{360} \frac{d\phi}{df}
\]

(2)

where \(T_d\) is the delay of the op amp at \(A_V = +1\).

The LMH6628 provides a typical delay of 2.8ns at its −3dB point.

FULL DUPLEX DIGITAL OR ANALOG TRANSMISSION

Simultaneous transmission and reception of analog or digital signals over a single coaxial cable or twisted-pair line can reduce cabling requirements. The LMH6628’s wide bandwidth and high common-mode rejection in a differential amplifier configuration allows full duplex transmission of video, telephone, control and audio signals.

In the circuit shown in Figure 30, one of the LMH6628’s amps is used as a “driver” and the other as a difference “receiver” amplifier. The output impedance of the “driver” is essentially zero. The two R’s are chosen to match the characteristic impedance of the transmission line. The “driver” op amp gain can be selected for unity or greater.

Receiver amplifier \(A_2\) (\(B_2\)) is connected across \(R\) and forms differential amplifier for the signals transmitted by driver \(A_1\) (\(B_1\)). If \(R_f\) equals \(R_g\), receiver \(A_2\) (\(B_1\)) will then reject the signals from driver \(A_1\) (\(B_1\)) and pass the signals from driver \(B_1\) (\(A_1\)).

![Figure 30. Full Duplex Transmit and Receive Using the LMH6628](image)

The output of the receiver amplifier will be:

\[
V_{\text{out}}^{A(B)} = \frac{1}{2} V_{\text{in}}^{A(B)} \left[1 - \frac{R_f}{R_g}\right] + \frac{1}{2} V_{\text{in}}^{B(A)} \left[1 + \frac{R_f}{R_g}\right]
\]

(3)
Care must be given to layout and component placement to maintain a high frequency common-mode rejection. The plot of Figure 31 shows the simultaneous reception of signals transmitted at 1MHz and 10MHz.

![Figure 31. Simultaneous Reception of Signals Transmitted at 1MHz and 10MHz](image)

POSITIVE PEAK DETECTOR

The LMH6628’s dual amplifiers can be used to implement a unity-gain peak detector circuit as shown in Figure 32.

![Figure 32. LMH6628’s Dual Amplifiers Used to Implement a Unity-Gain Peak Detector Circuit](image)

The acquisition speed of this circuit is limited by the dynamic resistance of the diode when charging C_{hold}. A plot of the circuit’s performance is shown in Figure 33 with a 1MHz sinusoidal input.

![Figure 33. Circuit’s Performance With a 1MHz Sinusoidal Input](image)
A current source, built around Q1, provides the necessary bias current for the second amplifier and prevents saturation when power is applied. The resistor, R, closes the loop while diode D2 prevents negative saturation when \(V_{IN} \) is less than \(V_C \). A MOS-type switch (not shown) can be used to reset the capacitor's voltage.

The maximum speed of detection is limited by the delay of the op amps and the diodes. The use of Schottky diodes will provide faster response.

ADJUSTABLE OR BANDPASS EQUALIZER

A "boost" equalizer can be made with the LMH6628 by summing a bandpass response with the input signal, as shown in Figure 34.

![Figure 34. "Boost" Equalizer Made With the LMH6628 by Summing a Bandpass Response With the Input Signal](image)

The overall transfer function is shown in Equation 4.

\[
\frac{V_{out}}{V_{in}} = \left[\frac{R_b}{K(R_a + R_b)} \right] \frac{s2Q\omega_o}{s^2 + s\frac{\omega_o}{Q} + \frac{\omega_o^2}{2}} - 1
\]

(4)

To build a boost circuit, use the design equations Equation 5 and Equation 6.

\[
\frac{R_aC}{2} = \frac{Q}{\omega_o}
\]

(5)

\[
2C (R_a || R_b) = \frac{1}{Q\omega_o}
\]

(6)

Select \(R_2 \) and \(C \) using **Equation 5**. Use reasonable values for high frequency circuits - \(R_2 \) between 10Ω and 5kΩ, \(C \) between 10pF and 2000pF. Use **Equation 6** to determine the parallel combination of \(R_a \) and \(R_b \). Select \(R_a \) and \(R_b \) by either the 10Ω to 5kΩ criteria or by other requirements based on the impedance \(V_{in} \) is capable of driving. Finish the design by determining the value of \(K \) from **Equation 7**.

\[
\text{Peak Gain} = \frac{V_{out}}{V_{in}} \left(\omega_o \right) = \frac{R_2}{2KR_a} - 1
\]

(7)

Figure 35 shows an example of the response of the circuit of **Figure 34**, where \(f_o \) is 2.3MHz. The component values are as follows: \(R_a = 2.1k\Omega\), \(R_b = 68.5\Omega\), \(R_2 = 4.22k\Omega\), \(R = 500\Omega\), \(KR = 50\Omega\), \(C = 120\text{pF} \).
Figure 35. Example of Response of Circuit of Figure 34, Where f_o is 2.3MHz
<table>
<thead>
<tr>
<th>Changes from Revision C (March 2013) to Revision D</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Changed layout of National Data Sheet to TI format</td>
<td>14</td>
</tr>
</tbody>
</table>
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMH6628MA</td>
<td>NRND</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>95</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>-40 to 85</td>
<td>LMH6628MA</td>
<td></td>
</tr>
<tr>
<td>LMH6628MA/NOPB</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>95</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>LMH6628MA</td>
<td></td>
</tr>
<tr>
<td>LMH6628MAX/NOPB</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>LMH6628MA</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE:** Product device recommended for new designs.
- **LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
- **TBD:** The Pb-Free/Green conversion plan has not been defined.
- **Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
- **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
- **Green (RoHS & no Sb/Br):** TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

TAPE DIMENSIONS

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>Dimension designed to accommodate the component width</td>
</tr>
<tr>
<td>B0</td>
<td>Dimension designed to accommodate the component length</td>
</tr>
<tr>
<td>W</td>
<td>Overall width of the carrier tape</td>
</tr>
<tr>
<td>P1</td>
<td>Pitch between successive cavity centers</td>
</tr>
</tbody>
</table>

REEL DIMENSIONS

- Reel Diameter
- Reel Width (W1)

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

<table>
<thead>
<tr>
<th>Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
</tr>
<tr>
<td>Q2</td>
</tr>
<tr>
<td>Q3</td>
</tr>
<tr>
<td>Q4</td>
</tr>
</tbody>
</table>

*All dimensions are nominal.

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMH6628MAX/NOPB</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.5</td>
<td>5.4</td>
<td>2.0</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMH6628MAX/NOPB</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>
NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.
 Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.
IMPORTANT NOTICE AND DISCLAIMER

TI provides technical and reliability data (including datasheets), design resources (including reference designs), application or other design advice, web tools, safety information, and other resources “as is” and with all faults, and disclaims all warranties, express and implied, including without limitation any implied warranties of merchantability, fitness for a particular purpose or non-infringement of third party intellectual property rights.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated