The LMP7715/LMP7716/LMP7716Q are single and dual low noise, low offset, CMOS input, rail-to-rail output precision amplifiers with high gain bandwidth products. The LMP7715/LMP7716/LMP7716Q are part of the LMP™ precision amplifier family and are ideal for a variety of instrumentation applications.

Utilizing a CMOS input stage, the LMP7715/LMP7716/LMP7716Q achieve an input bias current of 100 fA, an input referred voltage noise of 5.8 nV/√Hz, and an input offset voltage of less than ±150 μV. These features make the LMP7715/LMP7716/LMP7716Q superior choices for precision applications.

Consuming only 1.15 mA of supply current, the LMP7715 offers a high gain bandwidth product of 17 MHz, enabling accurate amplification at high closed loop gains.

The LMP7715/LMP7716/LMP7716Q have a supply voltage range of 1.8V to 5.5V, which makes these ideal choices for portable low power applications with low supply voltage requirements.

The LMP7715/LMP7716/LMP7716Q are built with TI’s advanced VIP50 process technology. The LMP7715 is offered in a 5-pin SOT-23 package and the LMP7716/LMP7716Q is offered in an 8-pin VSSOP.

The LMP7716Q incorporates enhanced manufacturing and support processes for the automotive market, including defect detection methodologies. Reliability qualification is compliant with the requirements and temperature grades defined in the AEC-Q100 standard.
Typical Performance

![Offset Voltage Distribution](image1)

![Input Referred Voltage Noise](image2)

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>ESD Tolerance (3)</th>
<th>Human Body Model</th>
<th>2000V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Machine Model</td>
<td>200V</td>
</tr>
<tr>
<td></td>
<td>Charge-Device Model</td>
<td>1000V</td>
</tr>
<tr>
<td>V_{IN} Differential</td>
<td></td>
<td>±0.3V</td>
</tr>
<tr>
<td>Supply Voltage (V_S = V^+ – V^-)</td>
<td></td>
<td>6.0V</td>
</tr>
<tr>
<td>Voltage on Input/Output Pins</td>
<td></td>
<td>V^+ +0.3V, V^- –0.3V</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td></td>
<td>-65°C to 150°C</td>
</tr>
<tr>
<td>Junction Temperature (4)</td>
<td></td>
<td>+150°C</td>
</tr>
<tr>
<td>Soldering Information</td>
<td>Infrared or Convection (20 sec)</td>
<td>235°C</td>
</tr>
<tr>
<td></td>
<td>Wave Soldering Lead Temp. (10 sec)</td>
<td>260°C</td>
</tr>
</tbody>
</table>

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test conditions, see the Electrical Characteristics Tables.

(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

(4) The maximum power dissipation is a function of T_{J(\text{MAX})} - \theta_{JA}. The maximum allowable power dissipation at any ambient temperature is

\[P_D = \frac{T_{J(\text{MAX})} - T_A}{\theta_{JA}} \]

All numbers apply for packages soldered directly onto a PC Board.

Operating Ratings

<table>
<thead>
<tr>
<th>Temperature Range (2)</th>
<th>-40°C to 125°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage (V_S = V^+ – V^-)</td>
<td>0°C ≤ T_A ≤ 125°C, 1.8V to 5.5V</td>
</tr>
<tr>
<td></td>
<td>-40°C ≤ T_A ≤ 125°C, 2.0V to 5.5V</td>
</tr>
<tr>
<td>Package Thermal Resistance (\theta_{JA} (2))</td>
<td>5-Pin SOT-23, 180°C/W</td>
</tr>
<tr>
<td></td>
<td>8-Pin VSSOP, 236°C/W</td>
</tr>
</tbody>
</table>

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test conditions, see the Electrical Characteristics Tables.

(2) The maximum power dissipation is a function of T_{J(\text{MAX})} - \theta_{JA}. The maximum allowable power dissipation at any ambient temperature is

\[P_D = \frac{T_{J(\text{MAX})} - T_A}{\theta_{JA}} \]

All numbers apply for packages soldered directly onto a PC Board.
2.5V Electrical Characteristics

Unless otherwise specified, all limits are ensured for $T_A = 25^\circ C$, $V^+ = 2.5V$, $V^- = 0V$, $V_O = V_{CM} = V^+/2$. **Boldface** limits apply at the temperature extremes.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min(^{(1)})</th>
<th>Typ(^{(2)})</th>
<th>Max(^{(1)})</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OS}</td>
<td>Input Offset Voltage</td>
<td>$-20^\circ C \leq T_A \leq 85^\circ C$</td>
<td>± 20</td>
<td>± 180</td>
<td>± 330</td>
<td>μV</td>
</tr>
<tr>
<td>&</td>
<td></td>
<td>$-40^\circ C \leq T_A \leq 125^\circ C$</td>
<td>± 20</td>
<td>± 180</td>
<td>± 430</td>
<td></td>
</tr>
<tr>
<td>$TC V_{OS}$</td>
<td>Input Offset Voltage Temperature Drift(^{(3)})(^{(4)})</td>
<td>LMP7715</td>
<td>-1</td>
<td>± 4</td>
<td></td>
<td>$\mu V/^\circ C$</td>
</tr>
<tr>
<td>&</td>
<td></td>
<td>LMP7716/LMP7716Q</td>
<td>-1.75</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| I_B | Input Bias Current | $V_{CM} = 1.0V$\(^{(4)}\)
$V_{CM} = 1V$\(^{(4)}\) | $-40^\circ C \leq T_A \leq 85^\circ C$ | $0.05 \mu A$ | $100 \mu A$ | pA |
| & | | $-40^\circ C \leq T_A \leq 125^\circ C$ | $0.05 \mu A$ | | | |
| I_{OS} | Input Offset Current | $V_{CM} = 1V$\(^{(4)}\) | | $0.006 \mu A$ | $0.5 \mu A$ | pA |
| CMRR | Common Mode Rejection Ratio | $0V \leq V_{CM} \leq 1.4V$ | 83 | 100 | dB |
| PSRR | Power Supply Rejection Ratio | $2.0V \leq V^+ \leq 5.5V$
$V^- = 0V$, $V_{CM} = 0$
$1.8V \leq V^+ \leq 5.5V$
$V^- = 0V$, $V_{CM} = 0$ | 85 | 100 | dB |
| CMVR | Common Mode Voltage Range | $CMRR \geq 60 dB$
$CMRR \geq 78 dB$ | $-0.3V$ | $0.5V$ | $1.5V$ | V |
| A_{VOL} | Open Loop Voltage Gain | LMP7715, $V_O = 0.15$ to $2.2V$
$R_L = 2 k\Omega$ to $V^+/2$
LMP7716/LMP7716Q, $V_O = 0.15$ to $2.2V$
$R_L = 2 k\Omega$ to $V^+/2$
LMP7715, $V_O = 0.15$ to $2.2V$
$R_L = 10 k\Omega$ to $V^+/2$
LMP7716/LMP7716Q, $V_O = 0.15$ to $2.2V$
$R_L = 10 k\Omega$ to $V^+/2$ | 88 | 82 | 98 | dB |
| V_{OUT} | Output Voltage Swing
High | $R_L = 2 k\Omega$ to $V^+/2$
$R_L = 10 k\Omega$ to $V^+/2$ | 25 | 70 | mV from either rail |
| & | | $R_L = 2 k\Omega$ to $V^+/2$
$R_L = 10 k\Omega$ to $V^+/2$ | 20 | 60 | mV from either rail |
| & | | $R_L = 10 k\Omega$ to $V^+/2$ | 15 | 60 | mV from either rail |
| I_{OUT} | Output Current | Sourcing to V^+
$V_{IN} = 200 mV$\(^{(6)}\) | 36 | 52 | mA |
| & | | Sinking to V^+
$V_{IN} = -200 mV$\(^{(6)}\) | 7.5 | 15 | mA |
| I_S | Supply Current | LMP7715 | 0.95 | 1.30 | mA |
| & | | LMP7716/LMP7716Q (per channel) | 1.10 | 1.50 | mA |
| SR | Slew Rate | $A_V = +1$, Rising (10% to 90%)
$A_V = +1$, Falling (90% to 10%) | 8.3 | 10.3 | $V/\mu s$ |

\(^{(1)}\) Limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlations using the Statistical Quality Control (SQC) method.

\(^{(2)}\) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not specified on shipped production material.

\(^{(3)}\) Offset voltage average drift is determined by dividing the change in V_{OS} at the temperature extremes by the total temperature change.

\(^{(4)}\) This parameter is specified by design and/or characterization and is not tested in production.

\(^{(5)}\) Positive current corresponds to current flowing into the device.

\(^{(6)}\) The short circuit test is a momentary open loop test.
2.5V Electrical Characteristics (continued)

Unless otherwise specified, all limits are ensured for \(T_A = 25^\circ C, V^+ = 2.5V, V^- = 0V, V_O = V_{CM} = V^+/2 \). **Boldface** limits apply at the temperature extremes.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min (^{(1)})</th>
<th>Typ (^{(2)})</th>
<th>Max (^{(1)})</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBW</td>
<td>Gain Bandwidth</td>
<td>f = 400 Hz</td>
<td>14</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>(e_n)</td>
<td>Input Referred Voltage Noise Density</td>
<td>f = 1 kHz</td>
<td>6.8</td>
<td></td>
<td></td>
<td>nV/√Hz</td>
</tr>
<tr>
<td>(i_n)</td>
<td>Input Referred Current Noise Density</td>
<td>f = 1 kHz</td>
<td>0.01</td>
<td></td>
<td></td>
<td>pA/√Hz</td>
</tr>
<tr>
<td>THD+N</td>
<td>Total Harmonic Distortion + Noise</td>
<td>f = 1 kHz, (A_V = 1, R_L = 100 \Omega) (V_D = 0.9 \ V_{PP})</td>
<td>0.003</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f = 1 kHz, (A_V = 1, R_L = 600 \Omega) (V_D = 0.9 \ V_{PP})</td>
<td>0.004</td>
<td></td>
<td></td>
<td>%</td>
</tr>
</tbody>
</table>

5V Electrical Characteristics

Unless otherwise specified, all limits are ensured for \(T_A = 25^\circ C, V^+ = 5V, V^- = 0V, V_{CM} = V^+/2 \). **Boldface** limits apply at the temperature extremes.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min (^{(1)})</th>
<th>Typ (^{(2)})</th>
<th>Max (^{(1)})</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{OS})</td>
<td>Input Offset Voltage</td>
<td>(-20^\circ C \leq T_A \leq 85^\circ C)</td>
<td>±10</td>
<td>±150</td>
<td>±300</td>
<td>(\mu) V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-40^\circ C \leq T_A \leq 125^\circ C)</td>
<td>±10</td>
<td>±150</td>
<td>±400</td>
<td>(\mu) V</td>
</tr>
<tr>
<td>(TC \ V_{OS})</td>
<td>Input Offset Voltage Temperature Drift (^{(3)})((^{(4)}))</td>
<td>LMP7715</td>
<td>-1</td>
<td></td>
<td></td>
<td>(\mu) V/°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LMP7716/LMP7716Q</td>
<td>-1.75</td>
<td></td>
<td></td>
<td>(\mu) V/°C</td>
</tr>
<tr>
<td>(I_B)</td>
<td>Input Bias Current</td>
<td>(V_{CM} = 2.0V)(^{(4)})((^{(5)})) (-40^\circ C \leq T_A \leq 85^\circ C)</td>
<td>0.1</td>
<td>1</td>
<td>25</td>
<td>pA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-40^\circ C \leq T_A \leq 125^\circ C)</td>
<td>0.1</td>
<td>1</td>
<td>100</td>
<td>pA</td>
</tr>
<tr>
<td>(I_{OS})</td>
<td>Input Offset Current</td>
<td>(V_{CM} = 2.0V)(^{(4)})</td>
<td>0.01</td>
<td>0.5</td>
<td>50</td>
<td>pA</td>
</tr>
<tr>
<td>CMRR</td>
<td>Common Mode Rejection Ratio</td>
<td>(0V \leq V_{CM} \leq 3.7V)</td>
<td>85</td>
<td>82</td>
<td>100</td>
<td>dB</td>
</tr>
<tr>
<td>PSRR</td>
<td>Power Supply Rejection Ratio</td>
<td>(2.0V \leq V^+ \leq 5.5V, V^- = 0V, V_{CM} = 0)</td>
<td>85</td>
<td>80</td>
<td>100</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.8V \leq V^+ \leq 5.5V, V^- = 0V, V_{CM} = 0)</td>
<td>85</td>
<td>98</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>CMVR</td>
<td>Common Mode Voltage Range</td>
<td>CMRR (\geq 80) dB</td>
<td>-0.3</td>
<td>4</td>
<td>4</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMRR (\geq 78) dB</td>
<td>-0.3</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(A_{VOL})</td>
<td>Open Loop Voltage Gain</td>
<td>LMP7715, (V_O = 0.3) to 4.7V (R_L = 2) kΩ to (V^+/2)</td>
<td>88</td>
<td>82</td>
<td>107</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LMP7716/LMP7716Q, (V_O = 0.3) to 4.7V (R_L = 2) kΩ to (V^+/2)</td>
<td>84</td>
<td>80</td>
<td>90</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LMP7715, (V_O = 0.3) to 4.7V (R_L = 10) kΩ to (V^+/2)</td>
<td>92</td>
<td>88</td>
<td>110</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LMP7716/LMP7716Q, (V_O = 0.3) to 4.7V (R_L = 10) kΩ to (V^+/2)</td>
<td>90</td>
<td>86</td>
<td>95</td>
<td>dB</td>
</tr>
</tbody>
</table>

(1) Limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlations using the Statistical Quality Control (SQC) method.

(2) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not specified on shipped production material.

(3) Offset voltage average drift is determined by dividing the change in \(V_{OS} \) at the temperature extremes by the total temperature change.

(4) This parameter is specified by design and/or characterization and is not tested in production.

(5) Positive current corresponds to current flowing into the device.
5V Electrical Characteristics (continued)

Unless otherwise specified, all limits are ensured for $T_A = 25^\circ C, V^+ = 5V, V^- = 0V, V_{CM} = V^+/2$. **Boldface** limits apply at the temperature extremes.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min(1)</th>
<th>Typ(2)</th>
<th>Max(1)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OUT}</td>
<td>Output Voltage Swing High</td>
<td>$R_L = 2 , k\Omega$ to $V^+/2$</td>
<td>32</td>
<td>70</td>
<td>77</td>
<td>mV from either rail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_L = 10 , k\Omega$ to $V^+/2$</td>
<td>22</td>
<td>60</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output Voltage Swing Low</td>
<td>$R_L = 2 , k\Omega$ to $V^+/2$ (LMP7715)</td>
<td>42</td>
<td>70</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_L = 2 , k\Omega$ to $V^+/2$ (LMP7716/LMP7716Q)</td>
<td>45</td>
<td>75</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_L = 10 , k\Omega$ to $V^+/2$</td>
<td>20</td>
<td>60</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>I_{OUT}</td>
<td>Output Current</td>
<td>Sourcing to V^-, $V_{IN} = 200 , mV^{(6)}$</td>
<td>46</td>
<td>38</td>
<td>66</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sinking to V^+, $V_{IN} = -200 , mV^{(6)}$</td>
<td>10.5</td>
<td>6.5</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>I_S</td>
<td>Supply Current</td>
<td>LMP7715</td>
<td>1.15</td>
<td>1.40</td>
<td>1.75</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LMP7716/LMP7716Q (per channel)</td>
<td>1.30</td>
<td>1.70</td>
<td>2.05</td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>Slew Rate</td>
<td>$A_V = +1$, Rising (10% to 90%)</td>
<td>6.0</td>
<td>9.5</td>
<td></td>
<td>V/μs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$A_V = +1$, Falling (90% to 10%)</td>
<td>7.5</td>
<td>11.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBW</td>
<td>Gain Bandwidth</td>
<td></td>
<td>17</td>
<td></td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>e_n</td>
<td>Input Referred Voltage Noise Density</td>
<td>$f = 400 , Hz$</td>
<td>7.0</td>
<td></td>
<td>nV/√Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$f = 1 , kHz$</td>
<td>5.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i_n</td>
<td>Input Referred Current Noise Density</td>
<td>$f = 1 , kHz$</td>
<td>0.01</td>
<td></td>
<td>pA/√Hz</td>
<td></td>
</tr>
<tr>
<td>THD+N</td>
<td>Total Harmonic Distortion + Noise</td>
<td>$f = 1 , kHz$, $A_V = 1$, $R_L = 100 , k\Omega$, $V_O = 4 , V_{PP}$</td>
<td>0.001</td>
<td></td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$f = 1 , kHz$, $A_V = 1$, $R_L = 600 , k\Omega$, $V_O = 4 , V_{PP}$</td>
<td>0.004</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(6) The short circuit test is a momentary open loop test.

Connection Diagram

5-Pin SOT-23

8-Pin VSSOP

Figure 3. Top View

Figure 4. Top View
Typical Performance Characteristics

Unless otherwise noted: $T_A = 25\,^\circ\text{C}$, $V_S = 5\,\text{V}$, $V_{CM} = V_S/2$.

Offset Voltage Distribution

- $V_S = 2.5\,\text{V}$
- $V_{CM} = V_S/2$
- UNITS TESTED: 10,000

TCVOS Distribution (LMP7715)

- $-40\,^\circ\text{C} \leq T_A \leq 125\,^\circ\text{C}$
- $V_S = 2.5\,\text{V}, 5\,\text{V}$
- $V_{CM} = V_S/2$
- UNITS TESTED: 10,000

Offset Voltage Distribution

- $V_S = 5\,\text{V}$
- $V_{CM} = V_S/2$
- UNITS TESTED: 10,000

TCVOS Distribution (LMP7716/LMP7716Q)

- $-40\,^\circ\text{C} \leq T_A \leq 125\,^\circ\text{C}$
- $V_S = 2.5\,\text{V}, 5\,\text{V}$
- $V_{CM} = V_S/2$
- UNITS TESTED: 10,000

Offset Voltage vs. V_{CM}

- $V_S = 1.8\,\text{V}$

Offset Voltage vs. V_{CM}

- $V_S = 2.5\,\text{V}$
Typical Performance Characteristics (continued)

Unless otherwise noted: $T_A = 25^\circ C$, $V_S = 5V$, $V_{CM} = V_S/2$.

Offset Voltage vs. V_{CM}

Offset Voltage vs. Supply Voltage

Offset Voltage vs. Temperature

CMRR vs. Frequency

Input Bias Current vs. V_{CM}

Copyright © 2006–2013, Texas Instruments Incorporated

Submit Documentation Feedback

Product Folder Links: LMP7715 LMP7716 LMP7716Q
Typical Performance Characteristics (continued)

Unless otherwise noted: $T_A = 25^\circ C$, $V_S = 5V$, $V_{CM} = V_S/2$.

Supply Current vs. Supply Voltage (LMP7715)

![Supply Current vs. Supply Voltage (LMP7715)](image1)

Supply Current vs. Supply Voltage (LMP7716/LMP7716Q)

![Supply Current vs. Supply Voltage (LMP7716/LMP7716Q)](image2)

Crosstalk Rejection Ratio (LMP7716/LMP7716Q)

![Crosstalk Rejection Ratio (LMP7716/LMP7716Q)](image3)

Sourcing Current vs. Supply Voltage

![Sourcing Current vs. Supply Voltage](image4)

Sucking Current vs. Supply Voltage

![Sucking Current vs. Supply Voltage](image5)

Sourcing Current vs. Output Voltage

![Sourcing Current vs. Output Voltage](image6)
Typical Performance Characteristics (continued)

Unless otherwise noted: \(T_A = 25°C, V_S = 5V, V_{CM} = V_S/2. \)

Sinking Current vs. Output Voltage

![Graph showing sinking current vs. output voltage](image1)

Output Swing Low vs. Supply Voltage

![Graph showing output swing low vs. supply voltage](image2)

Output Swing High vs. Supply Voltage

- For \(R_L = 10 \, k\Omega \):
 - 125°C
 - 25°C
 - -40°C

- For \(R_L = 2 \, k\Omega \):
 - 125°C
 - 25°C
 - -40°C

- For \(R_L = 8 \, k\Omega \):
 - 125°C
 - 25°C
 - -40°C

Output Swing Low vs. Supply Voltage

![Graph showing output swing low vs. supply voltage](image3)

Output Swing High vs. Supply Voltage

![Graph showing output swing high vs. supply voltage](image4)
Typical Performance Characteristics (continued)

Unless otherwise noted: $T_A = 25^\circ C$, $V_S = 5V$, $V_{CM} = V_S/2$.

Output Swing Low vs. Supply Voltage

![Graph showing output swing low vs. supply voltage]

Figure 29.

Open Loop Frequency Response

![Graph showing open loop frequency response]

Figure 30.

Phase Margin vs. Capacitive Load

![Graph showing phase margin vs. capacitive load]

Figure 31.

Overshoot and Undershoot vs. Capacitive Load

![Graph showing overshoot and undershoot vs. capacitive load]

Figure 32.

Phase Margin vs. Capacitive Load

![Graph showing phase margin vs. capacitive load]

Figure 33.

Overshoot and Undershoot vs. Capacitive Load

![Graph showing overshoot and undershoot vs. capacitive load]

Figure 34.
Typical Performance Characteristics (continued)

Unless otherwise noted: $T_A = 25^\circ C$, $V_S = 5\text{V}$, $V_{CM} = V_S/2$.

Slew Rate vs. Supply Voltage

![Slew Rate vs. Supply Voltage](image1)

Small Signal Step Response

![Small Signal Step Response](image2)

Large Signal Step Response

![Large Signal Step Response](image3)

Small Signal Step Response

![Small Signal Step Response](image4)

THD+N vs. Output Voltage

![THD+N vs. Output Voltage](image5)
Typical Performance Characteristics (continued)

Unless otherwise noted: $T_A = 25^\circ C$, $V_S = 5V$, $V_{CM} = V_S/2$.

THD+N vs. Output Voltage

THD+N vs. Frequency

PSRR vs. Frequency

Time Domain Voltage Noise
Typical Performance Characteristics (continued)

Unless otherwise noted: $T_A = 25^\circ C$, $V_S = 5V$, $V_{CM} = V_S/2$.

Closed Loop Frequency Response

- $V_S = 5V$
- $R_L = 2 \, k\Omega$
- $C_L = 20 \, pF$
- $V_O = 2 \, V_{PP}$
- $A_V = +1$

Closed Loop Output Impedance vs. Frequency

- $V_S = 5V$
- $R_L = 2 \, k\Omega$
- $C_L = 20 \, pF$
- $V_O = 2 \, V_{PP}$
- $A_V = +1$

![Figure 47. Closed Loop Frequency Response](image1)

![Figure 48. Closed Loop Output Impedance vs. Frequency](image2)
APPLICATION INFORMATION

LMP7715/LMP7716/LMP7716Q

The LMP7715/LMP7716/LMP7716Q are single and dual, low noise, low offset, rail-to-rail output precision amplifiers with a wide gain bandwidth product of 17 MHz and low supply current. The wide bandwidth makes the LMP7715/LMP7716/LMP7716Q ideal choices for wide-band amplification in portable applications.

The LMP7715/LMP7716/LMP7716Q are superior for sensor applications. The very low input referred voltage noise of only 5.8 nV/√Hz at 1 kHz and very low input referred current noise of only 10 fA/√Hz mean more signal fidelity and higher signal-to-noise ratio.

The LMP7715/LMP7716/LMP7716Q have a supply voltage range of 1.8V to 5.5V over a wide temperature range of 0 °C to 125 °C. This is optimal for low voltage commercial applications. For applications where the ambient temperature might be less than 0 °C, the LMP7715/LMP7716/LMP7716Q are fully operational at supply voltages of 2.0V to 5.5V over the temperature range of −40 °C to 125 °C.

The outputs of the LMP7715/LMP7716/LMP7716Q swing within 25 mV of either rail providing maximum dynamic range in applications requiring low supply voltage. The input common mode range of the LMP7715/LMP7716/LMP7716Q extends to 300 mV below ground. This feature enables users to utilize this device in single supply applications.

The use of a very innovative feedback topology has enhanced the current drive capability of the LMP7715/LMP7716/LMP7716Q, resulting in sourcing currents of as much as 47 mA with a supply voltage of only 1.8V.

The LMP7715 is offered in the space saving SOT-23 package and the LMP7716/LMP7716Q is offered in an 8-pin VSSOP. These small packages are ideal solutions for applications requiring minimum PC board footprint.

CAPACITIVE LOAD

The unity gain follower is the most sensitive configuration to capacitive loading. The combination of a capacitive load placed directly on the output of an amplifier along with the output impedance of the amplifier creates a phase lag which in turn reduces the phase margin of the amplifier. If phase margin is significantly reduced, the response will be either underdamped or the amplifier will oscillate.

The LMP7715/LMP7716/LMP7716Q can directly drive capacitive loads of up to 120 pF without oscillating. To drive heavier capacitive loads, an isolation resistor, R_{ISO} as shown in Figure 49, should be used. This resistor and C_i form a pole and hence delay the phase lag or increase the phase margin of the overall system. The larger the value of R_{ISO}, the more stable the output voltage will be. However, larger values of R_{ISO} result in reduced output swing and reduced output current drive.

![Figure 49. Isolating Capacitive Load](image)

INPUT CAPACITANCE

CMOS input stages inherently have low input bias current and higher input referred voltage noise. The LMP7715/LMP7716/LMP7716Q enhance this performance by having the low input bias current of only 50 fA, as well as, a very low input referred voltage noise of 5.8 nV/√Hz. In order to achieve this a larger input stage has been used. This larger input stage increases the input capacitance of the LMP7715/LMP7716/LMP7716Q. Figure 50 shows typical input common mode capacitance of the LMP7715/LMP7716/LMP7716Q.
This input capacitance will interact with other impedances, such as gain and feedback resistors which are seen on the inputs of the amplifier, to form a pole. This pole will have little or no effect on the output of the amplifier at low frequencies and under DC conditions, but will play a bigger role as the frequency increases. At higher frequencies, the presence of this pole will decrease phase margin and also cause gain peaking. In order to compensate for the input capacitance, care must be taken in choosing feedback resistors. In addition to being selective in picking values for the feedback resistor, a capacitor can be added to the feedback path to increase stability.

The DC gain of the circuit shown in Figure 51 is simply \(-R_2/R_1\).

For the time being, ignore \(C_F\). The AC gain of the circuit in Figure 51 can be calculated as follows:

\[
\frac{V_{OUT}}{V_{IN}}(s) = \frac{-R_2}{R_1} \left[1 + \frac{s}{A_0 \frac{R_1}{R_1 + R_2}} + \frac{s^2}{A_0 \frac{C_{IN} R_2}{R_1 + R_2}} \right]
\]

(1)

This equation is rearranged to find the location of the two poles:

\[
P_{1,2} = -\frac{1}{2C_{IN}} \left[\frac{1}{R_1} + \frac{1}{R_2} \pm \sqrt{\left(\frac{1}{R_1} + \frac{1}{R_2} \right)^2 - 4 \frac{A_0 C_{IN}}{R_2}} \right]
\]

(2)

As shown in Equation 2, as the values of \(R_1\) and \(R_2\) are increased, the magnitude of the poles are reduced, which in turn decreases the bandwidth of the amplifier. Figure 52 shows the frequency response with different value resistors for \(R_1\) and \(R_2\). Whenever possible, it is best to chose smaller feedback resistors.
Figure 52. Closed Loop Frequency Response

As mentioned before, adding a capacitor to the feedback path will decrease the peaking. This is because C_F will form yet another pole in the system and will prevent pairs of poles, or complex conjugates from forming. It is the presence of pairs of poles that cause the peaking of gain. Figure 53 shows the frequency response of the schematic presented in Figure 51 with different values of C_F. As can be seen, using a small value capacitor significantly reduces or eliminates the peaking.

Figure 53. Closed Loop Frequency Response

TRANSIMPEDEANCE AMPLIFIER

In many applications the signal of interest is a very small amount of current that needs to be detected. Current that is transmitted through a photodiode is a good example. Barcode scanners, light meters, fiber optic receivers, and industrial sensors are some typical applications utilizing photodiodes for current detection. This current needs to be amplified before it can be further processed. This amplification is performed using a current-to-voltage converter configuration or transimpedance amplifier. The signal of interest is fed to the inverting input of an op amp with a feedback resistor in the current path. The voltage at the output of this amplifier will be equal to the negative of the input current times the value of the feedback resistor. Figure 54 shows a transimpedance amplifier configuration. C_D represents the photodiode parasitic capacitance and C_{CM} denotes the common-mode capacitance of the amplifier. The presence of all of these capacitances at higher frequencies might lead to less stable topologies at higher frequencies. Care must be taken when designing a transimpedance amplifier to prevent the circuit from oscillating.

With a wide gain bandwidth product, low input bias current and low input voltage and current noise, the LMP7715/LMP7716/LMP7716Q are ideal for wideband transimpedance applications.
A feedback capacitance C_F is usually added in parallel with R_F to maintain circuit stability and to control the frequency response. To achieve a maximally flat, 2nd order response, R_F and C_F should be chosen by using Equation 3

$$C_F = \sqrt{\frac{C_{IN}}{GBWP \times 2 \pi R_F}}$$

Calculating C_F from Equation 3 can sometimes result in capacitor values which are less than 2 pF. This is especially the case for high speed applications. In these instances, it is often more practical to use the circuit shown in Figure 55 in order to allow more sensible choices for C_F. The new feedback capacitor, C_F', is $(1 + \frac{R_B}{R_A}) C_F$. This relationship holds as long as $R_A << R_F$.

SENSOR INTERFACE

The LMP7715/LMP7716/LMP7716Q have low input bias current and low input referred noise, which make them ideal choices for sensor interfaces such as thermopiles, Infra Red (IR) thermometry, thermocouple amplifiers, and pH electrode buffers.

Thermopiles generate voltage in response to receiving radiation. These voltages are often only a few microvolts. As a result, the operational amplifier used for this application needs to have low offset voltage, low input voltage noise, and low input bias current. Figure 56 shows a thermopile application where the sensor detects radiation from a distance and generates a voltage that is proportional to the intensity of the radiation. The two resistors, R_A and R_B, are selected to provide high gain to amplify this signal, while C_F removes the high frequency noise.
PRECISION RECTIFIER

Rectifiers are electrical circuits used for converting AC signals to DC signals. Figure 57 shows a full-wave precision rectifier. Each operational amplifier used in this circuit has a diode on its output. This means for the diodes to conduct, the output of the amplifier needs to be positive with respect to ground. If V_{IN} is in its positive half cycle then only the output of the bottom amplifier will be positive. As a result, the diode on the output of the bottom amplifier will conduct and the signal will show at the output of the circuit. If V_{IN} is in its negative half cycle then the output of the top amplifier will be positive, resulting in the diode on the output of the top amplifier conducting and delivering the signal from the amplifier's output to the circuit's output.

For $R_2 / R_1 \geq 2$, the resistor values can be found by using the equation shown in Figure 57. If $R_2 / R_1 = 1$, then R_3 should be left open, no resistor needed, and R_4 should simply be shorted.

Figure 57. Precision Rectifier
REVISION HISTORY

Changes from Revision D (March 2013) to Revision E

<table>
<thead>
<tr>
<th>Change Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changed layout of National Data Sheet to TI format</td>
<td>18</td>
</tr>
</tbody>
</table>

Copyright © 2006–2013, Texas Instruments Incorporated

Submit Documentation Feedback

Product Folder Links: LMP7715 LMP7716 LMP7716Q
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMP7715MF/NOPB</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>AV3A</td>
<td></td>
</tr>
<tr>
<td>LMP7715MFE/NOPB</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>AV3A</td>
<td></td>
</tr>
<tr>
<td>LMP7715MFX/NOPB</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>AV3A</td>
<td></td>
</tr>
<tr>
<td>LMP7716MM/NOPB</td>
<td>ACTIVE</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>1000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>AX3A</td>
<td></td>
</tr>
<tr>
<td>LMP7716MME/NOPB</td>
<td>ACTIVE</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>AX3A</td>
<td></td>
</tr>
<tr>
<td>LMP7716MMX/NOPB</td>
<td>ACTIVE</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>3500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>AX3A</td>
<td></td>
</tr>
<tr>
<td>LMP7716QMM/NOPB</td>
<td>ACTIVE</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>1000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>AR5A</td>
<td></td>
</tr>
<tr>
<td>LMP7716QMME/NOPB</td>
<td>ACTIVE</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>AR5A</td>
<td></td>
</tr>
<tr>
<td>LMP7716QMMX/NOPB</td>
<td>ACTIVE</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>3500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>AR5A</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
- **TBD**: The Pb-Free/Green conversion plan has not been defined.
- **Pb-Free (RoHS)**: TI’s terms “Lead-Free” or “Pb-Free” mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
- **Pb-Free (RoHS Exempt)**: This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
- **Green (RoHS & no Sb/Br)**: TI defines “Green” to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF LMP7716, LMP7716-Q1:

- Catalog: LMP7716
- Automotive: LMP7716-Q1

NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog product
- Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
TAPE AND REEL INFORMATION

REEL DIMENSIONS

- **Reel Diameter**
- **Reel Width (W1)**

TAPE DIMENSIONS

- **K0** Dimension designed to accommodate the component length
- **B0** Dimension designed to accommodate the component width
- **A0** Dimension designed to accommodate the component thickness
- **W** Overall width of the carrier tape
- **P1** Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

- **Screw Holes**
- **User Direction of Feed**
- **Pocket Quadrants**

All dimensions are nominal.

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin 1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMP7715MF/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LMP7715MFE/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>250</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LMP7715MFX/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LMP7716MM/NOPB</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>1000</td>
<td>178.0</td>
<td>12.4</td>
<td>5.3</td>
<td>3.4</td>
<td>1.4</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LMP7716MME/NOPB</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>250</td>
<td>178.0</td>
<td>12.4</td>
<td>5.3</td>
<td>3.4</td>
<td>1.4</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LMP7716MMX/NOPB</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>3500</td>
<td>330.0</td>
<td>12.4</td>
<td>5.3</td>
<td>3.4</td>
<td>1.4</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LMP7716QMM/NOPB</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>1000</td>
<td>178.0</td>
<td>12.4</td>
<td>5.3</td>
<td>3.4</td>
<td>1.4</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LMP7716QMMX/NOPB</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>250</td>
<td>178.0</td>
<td>12.4</td>
<td>5.3</td>
<td>3.4</td>
<td>1.4</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LMP7716QMMX/NOPB</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>3500</td>
<td>330.0</td>
<td>12.4</td>
<td>5.3</td>
<td>3.4</td>
<td>1.4</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>Device</td>
<td>Package Type</td>
<td>Package Drawing</td>
<td>Pins</td>
<td>SPQ</td>
<td>Length (mm)</td>
<td>Width (mm)</td>
<td>Height (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>------</td>
<td>------</td>
<td>-------------</td>
<td>------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMP7715MF/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMP7715MFE/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMP7715MFX/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMP7716MM/NOPB</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>1000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMP7716MME/NOPB</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMP7716MMX/NOPB</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>3500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMP7716QMM/NOPB</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>1000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMP7716QMME/NOPB</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMP7716QMMX/NOPB</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>3500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All dimensions are nominal
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

8. Board assembly site may have different recommendations for stencil design.
DGK (S-PDSO-G8) PLASTIC SMALL-OUTLINE PACKAGE

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
\[\text{Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.}\]
C. Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
D. Falls within JEDEC MO-187 variation AA, except interlead flash.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated