FEATURES
- Output Short Circuit Protection
- PSRR and CMRR Exceed 110dB
- Best in Class Linearity (135dB)

APPLICATIONS
- Low Noise Industrial Applications Including Test, Measurement, and Ultrasound
- Precision Active Filters
- PLL Filters
- 4-20mA Current Loops
- Motor Control

KEY SPECIFICATIONS
- Input Offset Voltage 0.4mV
- TC V_{OS} $2\mu V/^\circ C$ (max)
- Power Supply Voltage Range ±2.5V to ±20V
- Voltage Noise Density 2.5nV/√Hz
- Slew Rate ±20V/µs
- Gain Bandwidth Product 55MHz
- Open Loop Gain 135dB
- Input Bias Current 10nA

DESCRIPTION
The LMP8671/2/4 combines great precision, low noise and a large operating voltage range to provide a high SNR and a wide dynamic range. Its AC performance allows it to be used over a wide frequency without degradation. It is the ideal choice for applications requiring DC precision and low noise such as precision PLL filters, multi feedback and multi pole active filters, GPS receivers and precision control loop systems. The LMP8671/2/4 offers an extremely high open loop gain of 135dB, low voltage noise density (2.5nV/√Hz), and a superb linearity of 0.000009%. These characteristics drastically reduce gain error which is a challenge in accurate systems requiring higher gains such as data acquisition systems.

To ensure that the most challenging loads are driven without compromise, the LMP8671/2/4 has a high slew rate of ±20V/µs and an output current capability of ±26mA.

The LMP8671/2 family of high-voltage amplifiers are available in SOIC-8, the LMP8674 in SOIC-14.
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Voltage (V<sub>S</sub> = V<sup>+</sup> - V<sup>-</sup>)</td>
<td>46V</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to 150°C</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>(V<sup>-</sup>) - 0.7V to (V<sup>+</sup>) + 0.7V</td>
</tr>
<tr>
<td>Output Short Circuit<sup>(4)</sup></td>
<td>Continuous</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>Internally Limited</td>
</tr>
<tr>
<td>ESD Rating<sup>(5)</sup></td>
<td>2000V</td>
</tr>
<tr>
<td>Pins 1, 4, 7 and 8</td>
<td>200V</td>
</tr>
<tr>
<td>Pins 2, 3, 5 and 6</td>
<td>100V</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>150°C</td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td>θ<sub>JA</sub> (SO)</td>
</tr>
<tr>
<td></td>
<td>145°C/W</td>
</tr>
</tbody>
</table>

For soldering specifications, http://www.ti.com/lit/SNOA549

1. “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. All voltages are measured with respect to the ground pin, unless otherwise specified.

2. The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not ensured.

3. If Military/Aerospace specified devices are required, please contact the TI Sales Office/ Distributors for availability and specifications.

4. The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{JA}, θ_{JA}, and the ambient temperature, T_A. The maximum allowable power dissipation is P_{DMAX} = (T_{MAX} - T_A) / θ_{JA} or the number given in Absolute Maximum Ratings, whichever is lower.

5. Human body model, applicable std. JESD22-A114C.

Operating Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Range T<sub>MIN</sub> ≤ T<sub>A</sub> ≤ T<sub>MAX</sub></td>
<td>-40°C ≤ T<sub>A</sub> ≤ 125°C</td>
</tr>
<tr>
<td>Supply Voltage Range LMP8671/2/4</td>
<td>±2.5V ≤ V<sub>S</sub> ≤ ±22V</td>
</tr>
</tbody>
</table>
Electrical Characteristics for the LMP8671/2/4(1)

The following specifications apply for $V_S = \pm 20\text{V}$, $R_L = 2k\Omega$, $R_{\text{SOURCE}} = 10\Omega$, $f_{\text{IN}} = 1\text{kHz}$, $T_A = 25^\circ\text{C}$, unless otherwise specified. **Boldface** limits apply at the temperature extremes.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LMP8671/2/4</th>
<th>Units (Limits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OS}</td>
<td>Offset Voltage</td>
<td>$V_{CM} = 0\text{V}$</td>
<td></td>
<td>± 100</td>
</tr>
<tr>
<td>$\Delta V_{OS}/\Delta T_{\text{Temp}}$</td>
<td>Average Input Offset Voltage Drift vs Temperature</td>
<td>$-40^\circ\text{C} \leq T_A \leq 125^\circ\text{C}$</td>
<td>0.1</td>
<td>2</td>
</tr>
<tr>
<td>I_B</td>
<td>Input Bias Current</td>
<td>$V_{CM} = 0\text{V}$</td>
<td>LMP8671/4</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CM} = 0\text{V}$</td>
<td>LMP8672</td>
<td>50</td>
</tr>
<tr>
<td>I_{OS}</td>
<td>Input Offset Current</td>
<td>$V_{CM} = 0\text{V}$</td>
<td>LMP8671/4</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CM} = 0\text{V}$</td>
<td>LMP8672</td>
<td>25</td>
</tr>
<tr>
<td>$\Delta I_{OS}/\Delta T_{\text{Temp}}$</td>
<td>Input Bias Current Drift vs Temperature</td>
<td>$-40^\circ\text{C} \leq T_A \leq 125^\circ\text{C}$</td>
<td>0.2</td>
<td>nA/°C</td>
</tr>
<tr>
<td>V_{IN-CM}</td>
<td>Common-Mode Input Voltage Range</td>
<td>$V_{CM} = 0\text{V}$</td>
<td></td>
<td>$+17.1$</td>
</tr>
<tr>
<td>Z_{IN}</td>
<td>Differential Input Impedance</td>
<td>$-10\text{V} < V_{CM} < 10\text{V}$</td>
<td>30</td>
<td>kΩ</td>
</tr>
<tr>
<td>e_n</td>
<td>Equivalent Input Noise Voltage</td>
<td>$f = 1\text{kHz}$</td>
<td>0.34</td>
<td>0.65</td>
</tr>
<tr>
<td>i_n</td>
<td>Equivalent Input Noise Density</td>
<td>$f = 1\text{kHz}$</td>
<td>2.5</td>
<td>4.7</td>
</tr>
<tr>
<td>i_n</td>
<td>Current Noise Density</td>
<td>$f = 1\text{kHz}$</td>
<td>1.6</td>
<td>3.1</td>
</tr>
<tr>
<td>THD+N</td>
<td>Total Harmonic Distortion + Noise</td>
<td>$A_V = 1$, $V_{\text{OUT}} = 3V_{\text{rms}}$, $R_L = 600\Omega$</td>
<td>0.00003</td>
<td>0.00009</td>
</tr>
<tr>
<td>t_S</td>
<td>Settling time</td>
<td>$A_V = -1$, 10V step, $C_L = 100\text{pF}$</td>
<td>1.2</td>
<td>μs</td>
</tr>
<tr>
<td>GBWP</td>
<td>Gain Bandwidth Product</td>
<td></td>
<td>55</td>
<td>45</td>
</tr>
<tr>
<td>SR</td>
<td>Slew Rate</td>
<td>± 100</td>
<td>± 15</td>
<td>V/μs (min)</td>
</tr>
<tr>
<td>PSRR</td>
<td>Average Input Offset Voltage Shift vs Power Supply Voltage</td>
<td>$\text{See }^{(4)}$</td>
<td>125</td>
<td>110</td>
</tr>
<tr>
<td>CMRR</td>
<td>Common-Mode Rejection</td>
<td>$-15\text{V} < V_{CM} < 15\text{V}$</td>
<td>115</td>
<td>105</td>
</tr>
<tr>
<td>A_{VOL}</td>
<td>Open Loop Voltage Gain</td>
<td>$-15\text{V} < V_{\text{OUT}} < 15\text{V}$</td>
<td>135</td>
<td>125</td>
</tr>
<tr>
<td>V_{OUTMAX}</td>
<td>Maximum Output Voltage Swing</td>
<td>$R_L = 2k\Omega$</td>
<td>± 19.0</td>
<td>± 18.8</td>
</tr>
<tr>
<td>I_{OUT-CC}</td>
<td>Instantaneous Short Circuit Current</td>
<td></td>
<td>± 53</td>
<td>± 42</td>
</tr>
</tbody>
</table>

(1) “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the **Recommended Operating Conditions** is not implied. The **Recommended Operating Conditions** indicate conditions at which the device is functional and the device should not be operated beyond such conditions. All voltages are measured with respect to the ground pin, unless otherwise specified.

(2) Typical values represent most likely parametric norms at $T_A = +25^\circ\text{C}$, and at the **Recommended Operating Conditions** at the time of product characterization and are not ensured.

(3) Datasheet min/max specification limits are ensured by test or statistical analysis.

(4) PSRR is measured as follows: For V_S, V_{OS} is measured at two supply voltages, $\pm 5\text{V}$ and $\pm 20\text{V}$, PSRR = $|20\log(\Delta V_{OS}/\Delta V_S)|$.

Copyright © 2011–2013, Texas Instruments Incorporated

Product Folder Links: LMP8671 LMP8672 LMP8674
Electrical Characteristics for the LMP8671/2/4\(^{(1)}\) (continued)

The following specifications apply for \(V_S = \pm 20\text{V}, R_L = 2k\Omega, R_{\text{SOURCE}} = 10\Omega, f_{\text{IN}} = 1\text{kHz}, T_A = 25\text{°C},\) unless otherwise specified. **Boldface** limits apply at the temperature extremes.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LMP8671/2/4</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Typical(^{(2)})</td>
<td>Limit(^{(3)})</td>
</tr>
</tbody>
</table>
| \(R_{\text{OUT}}\) | Output Impedance | \(f_{\text{IN}} = 10\text{kHz}\)
Closed-Loop
Open-Loop | 0.01 | 13 | Ω |
| \(I_{\text{OUT}}\) | Output Current | \(R_L = 2k\Omega\) | 9.5 | 9.3 | mA (min) | |
| \(I_S\) | Total Quiescent Current | \(I_{\text{OUT}} = 0\text{mA}\) | LMP8671 | 5 | 6 | mA (max) |
| | | | LMP8672 | 12.5 | 16 | mA (max) |
| | | | LMP8674 | 20 | 22 | mA (max) |
Typical Performance Characteristics

THD+N vs Frequency

$V_{CC} = V_{EE} = 15V, V_{O} = 3V_{RMS}, R_L = 600\Omega$

THD+N vs Output Voltage

$V_{CC} = 2.5V, V_{EE} = -2.5V, R_L = 600\Omega$

PSRR+ vs Frequency

$V_{CC} = 2.5V, V_{EE} = -2.5V, R_L = 2k\Omega, V_{RIPPLE} = 200mV_{PP}$

PSRR– vs Frequency

$V_{CC} = 15V, V_{EE} = -15V, R_L = 2k\Omega, V_{RIPPLE} = 200mV_{PP}$

Copyright © 2011–2013, Texas Instruments Incorporated

Product Folder Links: LMP8671 LMP8672 LMP8674
Typical Performance Characteristics (continued)

PSRR+ vs Frequency
V\text{CC} = 15\text{V}, V\text{EE} = -15\text{V}, R\text{L} = 600\Omega, V\text{RIPPLE} = 200mV_{pp}

Figure 10.

PSRR– vs Frequency
V\text{CC} = 15\text{V}, V\text{EE} = -15\text{V}, R\text{L} = 600\Omega, V\text{RIPPLE} = 200mV_{pp}

Figure 11.

CMRR vs Frequency
V\text{CC} = 15\text{V}, V\text{EE} = -15\text{V}, R\text{L} = 600\Omega

Figure 12.

CMRR vs Frequency
V\text{CC} = 15\text{V}, V\text{EE} = -15\text{V}, R\text{L} = 2k\Omega

Figure 13.

CMRR vs Frequency
V\text{CC} = 2.5\text{V}, V\text{EE} = -2.5\text{V}, R\text{L} = 600\Omega

Figure 14.

CMRR vs Frequency
V\text{CC} = 2.5\text{V}, V\text{EE} = -2.5\text{V}, R\text{L} = 2k\Omega

Figure 15.
Typical Performance Characteristics (continued)

- **Output Voltage vs Supply Voltage**
 - THD+N = 1%, \(R_L = 2k\Omega \)
 - THD+N = 1%, \(R_L = 600\Omega \)

- **Crosstalk vs Frequency**
 - \(V_{CC} = 15V, V_{EE} = -15V, R_L = 2k\Omega \)

- **Full Power Bandwidth vs Frequency**
 - 0 dB = 1 Vpp

- **Gain Phase vs Frequency**

- **Voltage Noise Density vs Frequency**
 - \(V_S = 30V \)
 - \(V_{CM} = 15V \)
Typical Performance Characteristics (continued)

Current Noise Density vs Frequency

![Current Noise Density vs Frequency Graph]

Offset Voltage Distribution
$V_{CC} = \pm 20V$

![Offset Voltage Distribution Graph]

TcVos Distribution
$V_{CC} = \pm 20V$

![TcVos Distribution Graph]
REVISION HISTORY

<table>
<thead>
<tr>
<th>Changes from Revision A (March 2013) to Revision B</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Changed layout of National Data Sheet to TI format</td>
<td>8</td>
</tr>
</tbody>
</table>
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish (6)</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMP8672MA/NOPB</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>95</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>LMP86 72MA</td>
<td>Samples</td>
</tr>
<tr>
<td>LMP8672MAX/NOPB</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>LMP86 72MA</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE:** Product device recommended for new designs.
- **LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE:** TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
- **RoHS Exempt:** TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
- **Green:** TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

LMP8672MAX/NOPB SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMP8672MAX/NOPB</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.
 Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated