LMV7239-Q1 75-ns, Ultra Low Power, Low Voltage, Rail-to-Rail Input Comparator With Open-Drain and Push-Pull Output

1 Features
• Qualified for Automotive Applications
• AEC-Q100 Qualified With the Following Results:
 – Device Temperature Grade 1: –40°C to 125°C Ambient Operating Temperature Range
 – Device HBM ESD Classification Level 1C
 – Device CDM ESD Classification Level C5 for the DBV Package
• \(V_S = 5 \text{ V}, \ T_A = 25^\circ \text{C} \) (Typical Values Unless Otherwise Specified)
• Propagation Delay: 75 ns
• Low supply Current: 65 µA
• Rail-to-Rail Input
• Open Drain and Push-Pull Output
• Ideal for 2.7-V and 5-V, Single-Supply Applications
• Available in Space-Saving Packages:
 – 5-Pin SOT-23
 – 5-Pin SC70

2 Applications
• Portable and Battery-Powered Systems
• Set Top Boxes
• High-Speed Differential Line Receiver
• Window Comparators
• Zero-Crossing Detectors
• High-Speed Sampling Circuits

3 Description
The LMV7239-Q1 is a ultra low power, low voltage, 75-ns comparator. It is ensured to operate over the full supply voltage range of 2.7 V to 5.5 V. This device achieves a 75-ns propagation delay while consuming only 65 µA of supply current at 5 V.

The LMV7239-Q1 has a greater than rail-to-rail common-mode voltage range. The input common mode voltage range extends 200 mV below ground and 200 mV above supply, allowing both ground and supply sensing.

The LMV7239-Q1 features a push-pull output stage. This feature allows operation without the need of an external pullup resistor.

The LMV7239-Q1 is available in the 5-pin SC70 and 5-pin SOT-23 packages, which are ideal for systems where small size and low power is critical.

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGES</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMV7239-Q1</td>
<td>SOT-23 (5)</td>
<td>2.90 mm × 1.60 mm</td>
</tr>
<tr>
<td></td>
<td>SC70 (5)</td>
<td>2.00 mm × 1.25 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Supply Current vs. Supply Voltage

Propagation Delay vs. Overdrive
Table of Contents

1 Features ... 1
2 Applications .. 1
3 Description ... 1
4 Revision History .. 2
5 Pin Configuration and Functions 3
6 Specifications ... 4
 6.1 Absolute Maximum Ratings .. 4
 6.2 ESD Ratings .. 4
 6.3 Recommended Operating Conditions 4
 6.4 Thermal Information .. 4
 6.5 Electrical Characteristics, 2.7 V 5
 6.6 Electrical Characteristics, 5 V 6
 6.7 Typical Characteristics .. 7
7 Detailed Description ... 10
 7.1 Overview .. 10
 7.2 Functional Block Diagram 10
 7.3 Feature Description .. 10
7.4 Device Functional Modes ... 11
8 Application and Implementation 15
 8.1 Application Information ... 15
 8.2 Typical Applications .. 15
9 Power Supply Recommendations 18
10 Layout .. 19
 10.1 Layout Guidelines .. 19
 10.2 Layout Example ... 19
11 Device and Documentation Support 20
 11.1 Device Support .. 20
 11.2 Documentation Support ... 20
 11.3 Receiving Notification of Documentation Updates 20
 11.4 Community Resources .. 20
 11.5 Trademarks ... 20
 11.6 Electrostatic Discharge Caution 20
 11.7 Glossary .. 20
12 Mechanical, Packaging, and Orderable Information 20

Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

<table>
<thead>
<tr>
<th>DATE</th>
<th>REVISION</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 2018</td>
<td>*</td>
<td>Initial release. Moved the automotive device from the SNOS532 to a standalone data sheet and updated the input offset voltage parameter in the Electrical Characteristics, 2.7 V and Electrical Characteristics, 5 V tables</td>
</tr>
</tbody>
</table>
5 Pin Configuration and Functions

Pin Functions

<table>
<thead>
<tr>
<th>PIN NO.</th>
<th>NAME</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V\textsubscript{OUT}</td>
<td>O</td>
<td>Output</td>
</tr>
<tr>
<td>2</td>
<td>V−</td>
<td>P</td>
<td>Negative Supply</td>
</tr>
<tr>
<td>3</td>
<td>IN+</td>
<td>I</td>
<td>Noninverting Input</td>
</tr>
<tr>
<td>4</td>
<td>IN−</td>
<td>I</td>
<td>Inverting Input</td>
</tr>
<tr>
<td>5</td>
<td>V+</td>
<td>P</td>
<td>Positive Supply</td>
</tr>
</tbody>
</table>

DBV and DGK Package
5-Pin SC70 and SOT-23
Top View
6 Specifications

6.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)\(^{(1)}\)

<table>
<thead>
<tr>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Input Voltage</td>
<td>(\pm) Supply Voltage</td>
<td>V</td>
</tr>
<tr>
<td>Output Short Circuit Duration</td>
<td>See (^{(2)})</td>
<td></td>
</tr>
<tr>
<td>Supply Voltage ((V^+ - V^-))</td>
<td>6</td>
<td>V</td>
</tr>
</tbody>
</table>

SOLDERING INFORMATION

<table>
<thead>
<tr>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrared or Convection (20 sec)</td>
<td>235</td>
<td>°C</td>
</tr>
<tr>
<td>Wave Soldering (10 sec)</td>
<td>260 (lead temp)</td>
<td>°C</td>
</tr>
<tr>
<td>Voltage at Input/Output Pins</td>
<td>((V^+) +0.3, (V^-) −0.3)</td>
<td>V</td>
</tr>
<tr>
<td>Current at Input Pin (^{(3)})</td>
<td>(\pm10)</td>
<td>mA</td>
</tr>
<tr>
<td>Storage Temperature, (T_{stg})</td>
<td>–65</td>
<td>150</td>
</tr>
<tr>
<td>Junction Temperature, (T_J)</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

\(^{(2)}\) Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of ±30mA over long term may adversely affect reliability.

\(^{(3)}\) Limiting input pin current is only necessary for input voltages that exceed absolute maximum input voltage ratings.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human-body model (HBM), per AEC Q100-002(^{(1)})</td>
<td>(\pm1000)</td>
</tr>
<tr>
<td>Charged-device model (CDM), per AEC Q100-011(^{(1)})</td>
<td>DBV package only</td>
</tr>
<tr>
<td>Machine model (MM)</td>
<td></td>
</tr>
</tbody>
</table>

\(^{(1)}\) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions.

6.3 Recommended Operating Conditions

<table>
<thead>
<tr>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltages ((V^+ - V^-))</td>
<td>2.7</td>
<td>5.5</td>
</tr>
<tr>
<td>Temperature Range(^{(1)})</td>
<td>–40</td>
<td>125</td>
</tr>
</tbody>
</table>

\(^{(1)}\) The maximum power dissipation is a function of \(T_J\text{MAX} - T_A\). The maximum allowable power dissipation at any ambient temperature is \(P_D = \left(T_J\text{MAX} - T_A \right) / \theta_{JA}\). All numbers apply for packages soldered directly onto a PCB.

6.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(^{(1)})</th>
<th>LMV7239-Q1</th>
</tr>
</thead>
<tbody>
<tr>
<td>DGK (SC70)</td>
<td>DBV (SOT-23)</td>
</tr>
<tr>
<td>5 PINS</td>
<td>5 PINS</td>
</tr>
<tr>
<td>R JA</td>
<td>Junction-to-ambient thermal resistance</td>
</tr>
</tbody>
</table>

\(^{(1)}\) For more information about traditional and new thermal metrics, see the *Semiconductor and IC Package Thermal Metrics* application report.
6.5 Electrical Characteristics, 2.7 V

Unless otherwise specified, all limits ensured for \(T_A = 25^\circ C, V_{CM} = V^+/2, V^+ = 2.7 \text{ V}, V^- = 0 \text{ V}^- \).

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN(^{(1)})</th>
<th>TYP(^{(2)})</th>
<th>MAX(^{(1)})</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{OS}) Input Offset Voltage</td>
<td>At temp extremes</td>
<td>(-6)</td>
<td>(\pm 0.8)</td>
<td>(+6)</td>
<td>mV</td>
</tr>
<tr>
<td>(I_B) Input Bias Current</td>
<td>At temp extremes</td>
<td>(-8)</td>
<td></td>
<td>(+8)</td>
<td>nA</td>
</tr>
<tr>
<td>(I_{OS}) Input Offset Current</td>
<td>At temp extremes</td>
<td>(5)</td>
<td>(200)</td>
<td>(400)</td>
<td>nA</td>
</tr>
<tr>
<td>CMRR Common-Mode Rejection Ratio</td>
<td>(0 \text{ V} < V_{CM} < 2.7 \text{ V}(^{(3)}))</td>
<td>(52)</td>
<td>(62)</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>PSRR Power Supply Rejection Ratio</td>
<td>(V^+ = 2.7 \text{ V} \text{ to } 5 \text{ V})</td>
<td>(65)</td>
<td>(85)</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>(V_{CM}) Input Common-Mode Voltage Range</td>
<td>CMRR > 50 dB</td>
<td>(V^- - 0.1)</td>
<td>(-0.2 \text{ to } 2.9)</td>
<td>(V^+ + 0.1)</td>
<td>V</td>
</tr>
<tr>
<td>(V_O) Output Swing Low</td>
<td>(I_L = -4 \text{ mA, } V_{ID} = -500 \text{ mV})</td>
<td>(230)</td>
<td>(350)</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>At temp extremes</td>
<td></td>
<td>(450)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(I_L = -0.4 \text{ mA, } V_{ID} = -500 \text{ mV})</td>
<td>(15)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_S) Supply Current</td>
<td>No load</td>
<td>(52)</td>
<td>(85)</td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td></td>
<td>At temp extremes</td>
<td></td>
<td>(100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_{PD}) Propagation Delay</td>
<td>Overdrive = 20 mV (C_{LOAD} = 15 \text{ pF})</td>
<td>(96)</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>Overdrive = 50 mV (C_{LOAD} = 15 \text{ pF})</td>
<td>(87)</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>Overdrive = 100 mV (C_{LOAD} = 15 \text{ pF})</td>
<td>(85)</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_r) Output Rise Time</td>
<td>LMV7239/LMV7239Q</td>
<td>(1.7)</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_f) Output Fall Time</td>
<td>(10% \text{ to } 90%)</td>
<td></td>
<td>(1.7)</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

\(^{(1)}\) All limits are ensured by testing or statistical analysis.

\(^{(2)}\) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.

\(^{(3)}\) CMRR is not linear over the common mode range. Limits are guaranteed over the worst case from \(0\) to \(V_{CC2}\) or \(V_{CC2}\) to \(V_{CC}\).
6.6 Electrical Characteristics, 5 V

Unless otherwise specified, all limits ensured for $T_A = 25^\circ C$, $V_{CM} = V^+/2$, $V^+ = 5 V$, $V^- = 0 V$.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN$^{(1)}$</th>
<th>TYP$^{(2)}$</th>
<th>MAX$^{(1)}$</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OS} Input Offset Voltage</td>
<td></td>
<td>–6</td>
<td>±1</td>
<td>+6</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>At temp extremes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_B Input Bias Current</td>
<td></td>
<td>30</td>
<td>400</td>
<td>600</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td>At temp extremes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{OS} Input Offset Current</td>
<td></td>
<td>5</td>
<td>200</td>
<td>400</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td>At temp extremes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMRR Common-Mode Rejection Ratio</td>
<td></td>
<td>52</td>
<td>67</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>$0 \ V < V_{CM} < 5 \ V$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSRR Power Supply Rejection Ratio</td>
<td></td>
<td>65</td>
<td>85</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>$V^+ = 2.7 \ V$ to $5 \ V$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{CM} Input Common-Mode Voltage Range</td>
<td>$CMRR > 50 \ dB$</td>
<td>$V^-0.1$</td>
<td>-0.2</td>
<td>$V^+0.1$</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>At temp extremes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_O Output Swing Low</td>
<td>$I_L = -4 \ mA$, $V_{ID} = -500 \ mV$</td>
<td>230</td>
<td>350</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>At temp extremes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_L = -0.4 \ mA$, $V_{ID} = -500 \ mV$</td>
<td></td>
<td></td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>I_S Supply Current</td>
<td>No load</td>
<td>65</td>
<td>95</td>
<td>110</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>At temp extremes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{PD} Propagation Delay</td>
<td>Overdrive = 20 mV, $C_{LOAD} = 15 \ pF$</td>
<td></td>
<td></td>
<td>89</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>Overdrive = 50 mV, $C_{LOAD} = 15 \ pF$</td>
<td></td>
<td></td>
<td>82</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>Overdrive = 100 mV, $C_{LOAD} = 15 \ pF$</td>
<td></td>
<td></td>
<td>75</td>
<td>ns</td>
</tr>
<tr>
<td>t_f Output Fall Time</td>
<td>90% to 10%</td>
<td></td>
<td></td>
<td>1.2</td>
<td>ns</td>
</tr>
</tbody>
</table>

$^{(1)}$ All limits are ensured by testing or statistical analysis.

$^{(2)}$ Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.
6.7 Typical Characteristics
(Unless otherwise specified, $V_S = 5V$, $C_L = 10pF$, $T_A = 25^\circ C$).

Figure 1. Supply Current vs. Supply Voltage

Figure 2. Sourcing Current vs. Output Voltage

Figure 3. Sourcing Current vs. Output Voltage

Figure 4. Sinking Current vs. Output Voltage

Figure 5. Sinking Current vs. Output Voltage

Figure 6. Input Bias Current vs. Input Voltage
Typical Characteristics (continued)

(Unless otherwise specified, $V_S = 5V$, $C_L = 10pF$, $T_A = 25°C$).

Figure 7. Input Bias Current vs. Input Voltage

Figure 8. Propagation Delay vs. Temperature

Figure 9. Propagation Delay vs. Temperature

Figure 10. Propagation Delay vs. Capacitive Load

Figure 11. Propagation Delay vs. Capacitive Load

Figure 12. Propagation Delay vs. Input Overdrive
Typical Characteristics (continued)

(Unless otherwise specified, $V_S = 5V$, $C_L = 10pF$, $T_A = 25^\circ C$).

![Figure 13. Propagation Delay vs. Input Overdrive](image)

![Figure 14. Propagation Delay vs. Common-Mode Voltage](image)

![Figure 15. Propagation Delay vs. Common-Mode Voltage](image)
7 Detailed Description

7.1 Overview

The LMV7239-Q1 is an ultra low power, low voltage, 75-ns comparator. They are ensured to operate over the full supply voltage range of 2.7 V to 5.5 V. These devices achieve a 75-ns propagation delay while consuming only 65 µA of supply current at 5 V.

The LMV7239-Q1 has a greater than rail-to-rail common-mode voltage range. The input common-mode voltage range extends 200 mV below ground and 200 mV above supply, allowing both ground and supply sensing.

7.2 Functional Block Diagram

![Figure 16. Simplified Schematic]

7.3 Feature Description

7.3.1 Input Stage

The LMV7239-Q1 is a rail-to-rail input and output. The typical input common-mode voltage range of −0.2 V below the ground to 0.2 V above the supply. The LMV7239-Q1 uses a complimentary PNP and NPN input stage in which the PNP stage senses common-mode voltage near \(V^- \) and the NPN stage senses common-mode voltage near \(V^+ \). If either of the input signals falls below the negative common mode limit, the parasitic PN junction formed by the substrate and the base of the PNP will turn on resulting in an increase of input bias current.

If one of the inputs goes above the positive common mode limit, the output will still maintain the correct logic level as long as the other input stays within the common mode range. However, the propagation delay will increase. When both inputs are outside the common-mode voltage range, current saturation occurs in the input stage, and the output becomes unpredictable.

The propagation delay does not increase significantly with large differential input voltages. However, large differential voltages greater than the supply voltage should be avoided to prevent damage to the input stage.

7.3.2 Output Stage: LMV7239-Q1

The LMV7239-Q1 has a push-pull output. When the output switches, there is a low resistance path between \(V_{CC} \) and ground, causing high output sinking or sourcing current during the transition.
Feature Description (continued)

![LMV7239-Q1 Push-Pull Output Stage](image)

Figure 17. LMV7239-Q1 Push-Pull Output Stage

7.4 Device Functional Modes

7.4.1 Capacitive and Resistive Loads

The propagation delay is not affected by capacitive loads at the output of the LPV7239 or LMV7239-Q1. However, resistive loads slightly affect the propagation delay on the falling edge depending on the load resistance value.

7.4.2 Noise

Most comparators have rather low gain. This allows the output to spend time between high and low when the input signal changes slowly. The result is the output may oscillate between high and low when the differential input is near zero. The high gain of this comparator eliminates this problem. Less than 1 \(\mu V \) of change on the input will drive the output from one rail to the other rail. If the input signal is noisy, the output cannot ignore the noise unless some hysteresis is provided by positive feedback. (See *Hysteresis*.)

7.4.3 Hysteresis

To improve propagation delay when low overdrive is needed hysteresis can be added.

7.4.3.1 Inverting Comparator With Hysteresis

The inverting comparator with hysteresis requires a three resistor network that is referenced to the supply voltage \(V^+ \) of the comparator as shown in Figure 18. When \(V_{IN} \) at the inverting input is less than \(V_A \), the voltage at the noninverting node of the comparator \((V_{IN} < V_A) \), the output voltage is high (for simplicity assume \(V_O \) switches as high as \(V^+ \)). The three network resistors can be represented as \(R_1/R_3 \) in series with \(R_2 \).
Device Functional Modes (continued)

The lower input trip voltage V_{A1} is defined as:

$$V_{A1} = \frac{V_{CC} R_2}{(R_1 \parallel R_3) + R_2}$$ \hspace{1cm} (1)

When V_{IN} is greater than V_A, the output voltage is low or very close to ground. In this case the three network resistors can be presented as $R_2 \parallel R_3$ in series with R_1.

The upper trip voltage V_{A2} is defined as:

$$V_{A2} = \frac{V_{CC} (R_2 \parallel R_3)}{(R_1) + (R_2 \parallel R_3)}$$ \hspace{1cm} (2)

The total hysteresis provided by the network is defined as $\Delta V_{A} = V_{A1} - V_{A2}$.

$$\Delta V_{A} = \frac{V_{CC} R_2}{R_1 R_2 + R_1 R_3 + R_2 R_3}$$ \hspace{1cm} (3)

7.4.3.2 Non-Inverting Comparator With Hysteresis

A noninverting comparator with hysteresis requires a two resistor network, and a voltage reference (V_{REF}) at the inverting input. When V_{IN} is low, the output is also low. For the output to switch from low to high, V_{IN} must rise up to V_{IN1} where V_{IN1} is calculated by:

$$\Delta V_{IN1} = \frac{V_{REF} (R_1 + R_2)}{R_2}$$ \hspace{1cm} (4)

As soon as V_O switches to V_{CC}, V_A steps to a value greater than V_{REF} which is given by:

$$V_{A} = V_{IN} + \frac{(V_{CC} - V_{IN1}) R_1}{R_1 + R_2}$$ \hspace{1cm} (5)

To make the comparator switch back to its low state, V_{IN} must equal V_{REF} before V_A will again equal V_{REF}. V_{IN2} can be calculated by:
Device Functional Modes (continued)

\[V_{IN2} = \frac{V_{REF}(R_1 + R_2) - V_{CC}R_1}{R_2} \]

The hysteresis of this circuit is the difference between \(V_{IN1} \) and \(V_{IN2} \).

\[\Delta V_{IN} = \frac{V_{CC}R_1}{R_2} \]

Figure 19. Noninverting Comparator With Hysteresis

7.4.4 Zero Crossing Detector

In a zero crossing detector circuit, the inverting input is connected to ground and the noninverting input is connected to a 100 mVp-p AC signal. As the signal at the noninverting input crosses 0V, the comparator’s output changes state.

Figure 20. Noninverting Comparator Thresholds

7.4.4.1 Zero Crossing Detector With Hysteresis

To improve switching times and centering the input threshold to ground a small amount of positive feedback is added to the circuit. Voltage divider \(R_4 \) and \(R_5 \) establishes a reference voltage, \(V_1 \), at the positive input. By making the series resistance, \(R_1 \) plus \(R_2 \) equal to \(R_5 \), the switching condition, \(V_1 = V_2 \), will be satisfied when \(V_{IN} = 0 \).

The positive feedback resistor, \(R_6 \), is made very large with respect to \(R_5 || R_6 = 2000 R_5 \). The resultant hysteresis established by this network is very small (\(\Delta V_1 < 10 \text{ mV} \)) but it is sufficient to insure rapid output voltage transitions.

Diode \(D_1 \) is used to ensure that the inverting input terminal of the comparator never goes below approximately −100 mV. As the input terminal goes negative, \(D_1 \) will forward bias, clamping the node between \(R_1 \) and \(R_2 \) to approximately −700 mV. This sets up a voltage divider with \(R_2 \) and \(R_3 \) preventing \(V_2 \) from going below ground. The maximum negative input overdrive is limited by the current handling ability of \(D_1 \).
Device Functional Modes (continued)

Figure 22. Zero Crossing Detector With Hysteresis

7.4.5 Threshold Detector

Instead of tying the inverting input to 0 V, the inverting input can be tied to a reference voltage. As the input on the noninverting input passes the V_{REF} threshold, the comparator’s output changes state. It is important to use a stable reference voltage to ensure a consistent switching point.

Figure 23. Threshold Detector
8 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The LMV7239-Q1 is a single supply comparator with 75 ns of propagation delay and only 65 µA of supply current.

8.2 Typical Applications

8.2.1 Square Wave Oscillator

Figure 24. Square Wave Oscillator

8.2.1.1 Design Requirements

A typical application for a comparator is as a square wave oscillator. The circuit in Figure 24 generates a square wave whose period is set by the RC time constant of the capacitor C_1 and resistor R_4.

8.2.1.2 Detailed Design Procedure

The maximum frequency is limited by the large signal propagation delay of the comparator and by the capacitive loading at the output, which limits the output slew rate.

Consider the output of Figure 24 to be high to analyze the circuit. That implies that the inverted input (V_C) is lower than the noninverting input (V_A). This causes the C_1 to be charged through R_4, and the voltage V_C increases until it is equal to the noninverting input. The value of V_A at this point is:

$$V_{A1} = \frac{V_{CC} \cdot R_2}{R_2 + R_1 || R_3}$$

(8)

If $R_1 = R_2 = R_3$, then $V_{A1} = 2 \cdot V_{CC}/3$
Typical Applications (continued)

At this point the comparator switches pulling down the output to the negative rail. The value of \(V_A \) at this point is:

\[
V_{A2} = \frac{V_{CC}(R_2 \parallel R_3)}{R_1 + (R_2 \parallel R_3)}
\]

If \(R_1 = R_2 = R_3 \), then \(V_{A2} = V_{CC}/3 \).

The capacitor \(C_1 \) now discharges through \(R_4 \), and the voltage \(V_C \) decreases until it is equal to \(V_{A2} \), at which point the comparator switches again, bringing it back to the initial stage. The time period is equal to twice the time it takes to discharge \(C_1 \) from \(2V_{CC}/3 \) to \(V_{CC}/3 \), which is given by \(R_4C_1 \cdot \ln 2 \). Hence the formula for the frequency is:

\[
F = \frac{1}{2 \cdot R_4 \cdot C_1 \cdot \ln 2}
\]

The LMV7239 should be used for a symmetrical output. The LMV7235 will require a pullup resistor on the output to function, and will have a slightly asymmetrical output due to the reduced sourcing current.

8.2.1.3 Application Curves

Figure 26 shows the simulated results of an oscillator using the following values:

1. \(R_1 = R_2 = R_3 = R_4 = 100 \, \text{k}\Omega \)
2. \(C_1 = 100 \, \text{pF}, \quad C_L = 20 \, \text{pF} \)
3. \(V_+ = 5 \, \text{V}, \quad V_- = \text{GND} \)
4. \(C_{\text{STRAY}} \) (not shown) from \(Va \) to \(\text{GND} = 10 \, \text{pF} \)

![Figure 26. Square Wave Oscillator Output Waveform](image)

8.2.2 Crystal Oscillator

A simple crystal oscillator using the LMV7239-Q1 is shown in Figure 27. Resistors \(R_1 \) and \(R_2 \) set the bias point at the comparator’s noninverting input. Resistors, \(R_3 \) and \(R_4 \) and capacitor \(C_1 \) set the inverting input node at an appropriate DC average level based on the output. The crystal’s path provides resonant positive feedback and stable oscillation occurs. The output duty cycle for this circuit is roughly 50%, but it is affected by resistor tolerances and to a lesser extent by the comparator.
Typical Applications (continued)

![Figure 27. Crystal Oscillator](image)

8.2.3 Infrared (IR) Receiver

The LMV7239-Q1 can also be used as an infrared receiver. The infrared photo diode creates a current relative to the amount of infrared light present. The current creates a voltage across RD. When this voltage level crosses the voltage applied by the voltage divider to the inverting input, the output transitions.

![Figure 28. IR Receiver](image)

8.2.4 Window Detector

A window detector monitors the input signal to determine if it falls between two voltage levels. Both outputs are true (high) when $V_{REF1} < V_{IN} < V_{REF2}$.

![Figure 29. Window Detector](image)
Typical Applications (continued)

Figure 30. Window Detector Output Signal

The comparator outputs A and B are high only when $V_{REF1} < V_{IN} < V_{REF2}$, or “within the window”, where these are defined as:

$$V_{REF1} = \frac{R_3}{R_1+R_2+R_3} \times V^+$$

(11)

$$V_{REF2} = \frac{R_2}{R_1+R_2+R_3} \times V^+$$

(12)

To determine if the input signal falls outside of the two voltage levels, both inputs on each comparators can be reversed to invert the logic.

Other names for window detectors are: threshold detector, level detector, and amplitude trigger or detector.

9 Power Supply Recommendations

To minimize supply noise, power supplies should be decoupled by a 0.01-μF ceramic capacitor in parallel with a 10-μF capacitor.

Due to the nanosecond edges on the output transition, peak supply currents will be drawn during the time the output is transitioning. Peak current depends on the capacitive loading on the output. The output transition can cause transients on poorly bypassed power supplies. These transients can cause a poorly bypassed power supply to “ring” due to trace inductance and low self-resonance frequency of high ESR bypass capacitors.

Treat the LMV7239-Q1 as a high-speed device. Keep the ground paths short and place small (low ESR ceramic) bypass capacitors directly between the V^+ and V^- pins.

Output capacitive loading and output toggle rate will cause the average supply current to rise over the quiescent current.
10 Layout

10.1 Layout Guidelines

Proper grounding and the use of a ground plane will help to ensure the specified performance of the LMV7239-Q1. Minimizing trace lengths, reducing unwanted parasitic capacitance and using surface-mount components will also help. Comparators are very sensitive to input noise.

The LMV7239-Q1 requires a high-speed layout. Follow these layout guidelines:

1. Use printed-circuit board with a good, unbroken low-inductance ground plane.
2. Place a decoupling capacitor (0.1-µF, ceramic surface-mount capacitor) as close as possible to V_{CC} pin.
3. On the inputs and the output, keep lead lengths as short as possible to avoid unwanted parasitic feedback around the comparator. Keep inputs away from output.
4. Solder the device directly to the printed-circuit board rather than using a socket.
5. For slow moving input signals, take care to prevent parasitic feedback. A small capacitor (1000 pF or less) placed between the inputs can help eliminate oscillations in the transition region. This capacitor causes some degradation to t_{PD} when the source impedance is low.
6. The top-side ground plane runs between the output and inputs.
7. Ground trace from the ground pin runs under the device up to the bypass capacitor, shielding the inputs from the outputs.

10.2 Layout Example

![SOT-23 Board Layout Example](image)

SOT-23 Board Layout (Actual size = 1.5" x 1.5").

Figure 31. SOT-23 Board Layout Example
11 Device and Documentation Support

11.1 Device Support

11.1.1 Development Support

11.2 Documentation Support

11.2.1 Related Documentation
A Quad of Independently Func Comparators (SNOA654)

11.3 Receiving Notification of Documentation Updates
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.4 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.5 Trademarks
E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

11.6 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.7 Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMV7239QDBVRQ1</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>ZBMX</td>
<td>Samples</td>
</tr>
<tr>
<td>LMV7239QM7/NOPB</td>
<td>ACTIVE</td>
<td>SC70</td>
<td>DCK</td>
<td>5</td>
<td>1000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>C42</td>
<td>Samples</td>
</tr>
<tr>
<td>LMV7239QM7X/NOPB</td>
<td>ACTIVE</td>
<td>SC70</td>
<td>DCK</td>
<td>5</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>C42</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
- **RoHS Exempt**: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
- **Green**: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF LMV7239-Q1:

- Catalog: LMV7239

NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog product
TAPE AND REEL INFORMATION

TAPE DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMV7239QDBVRQ1</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LMV7239QM7/NOPB</td>
<td>SC70</td>
<td>DCK</td>
<td>5</td>
<td>1000</td>
<td>178.0</td>
<td>8.4</td>
<td>2.25</td>
<td>2.45</td>
<td>1.2</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LMV7239QM7X/NOPB</td>
<td>SC70</td>
<td>DCK</td>
<td>5</td>
<td>3000</td>
<td>178.0</td>
<td>8.4</td>
<td>2.25</td>
<td>2.45</td>
<td>1.2</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
</tbody>
</table>

All dimensions are nominal.
TAPE AND REEL BOX DIMENSIONS

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMV7239QDBVRQ1</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LMV7239QM7/NOPB</td>
<td>SC70</td>
<td>DCK</td>
<td>5</td>
<td>1000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LMV7239QM7X/NOPB</td>
<td>SC70</td>
<td>DCK</td>
<td>5</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
8. Board assembly site may have different recommendations for stencil design.
NOTES:

A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
D. Falls within JEDEC MO-203 variation AA.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
D. Publication IPC-7351 is recommended for alternate designs.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated