1 Features

- Complete Integrated Power Solution
 - As Few as 4 External Components
 - Minimum Solution Size < 100 mm2
- 9 mm × 7 mm × 4 mm QFN Package
 - All Pins Accessible from Package Perimeter
 - Pin Compatible with 2-A LMZM33602
- Input Voltage Range: 4 V to 36 V
- Output Voltage Range:
 - 1 V to 13.5 V at 3 A
 - 1 V to 18 V at 2 A
- Efficiencies Up To 95%
- Adjustable Switching Frequency (200 kHz to 1.2 MHz)
- Allows Synchronization to an External Clock
- Power-Good Output
- Meets EN55011 Class B Radiated EMI Standards
- Operating IC Junction Range: −40°C to +125°C
- Operating Ambient Range: −40°C to +105°C
- Create a Custom Design Using the LMZM33603 With the WEBENCH® Power Designer

2 Applications

- Factory and Building Automation
- Smart Grid and Energy
- Industrial
- Medical
- Defense
- Inverted Output Applications

3 Description

The LMZM33603 power module is an easy-to-use integrated power solution that combines a 3-A, step-down, DC/DC converter with power MOSFETs, a shielded inductor, and passives into a low-profile package. This power solution requires as few as four external components and eliminates the loop compensation and magnetics part selection from the design process.

The 9 mm × 7 mm × 4 mm 18-pin, QFN package is easy to solder onto a printed circuit board and allows a compact, low-profile, point-of-load design. The full feature set, including power good, programmable UVLO, prebias start-up, and overcurrent and over-temperature protection, make the LMZM33603 an excellent device for powering a wide range of applications.

Device Information

<table>
<thead>
<tr>
<th>DEVICE NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMZM33603</td>
<td>QFN (18)</td>
<td>9.00 mm × 7.00 mm</td>
</tr>
</tbody>
</table>

Safe Operating Area

Copyright © 2017, Texas Instruments Incorporated

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.
Table of Contents

1 Features ... 1
2 Applications .. 1
3 Description .. 1
4 Revision History .. 2
5 Pin Configuration and Functions 3
6 Specifications .. 4
 6.1 Absolute Maximum Ratings 4
 6.2 ESD Ratings .. 4
 6.3 Recommended Operating Conditions 4
 6.4 Thermal Information ... 5
 6.5 Electrical Characteristics 5
 6.6 Switching Characteristics 6
 6.7 Typical Characteristics (V_{IN} = 5 V) 7
 6.8 Typical Characteristics (V_{IN} = 12 V) 8
 6.9 Typical Characteristics (V_{IN} = 24 V) 9
7 Detailed Description .. 10
 7.1 Overview .. 10
 7.2 Functional Block Diagram 10
 7.3 Feature Description .. 11
 7.4 Device Functional Modes 21
8 Application and Implementation 22
 8.1 Application Information 22
 8.2 Typical Application ... 22
9 Power Supply Recommendations 25
10 Layout ... 26
 10.1 Layout Guidelines ... 26
 10.2 Layout Examples .. 26
 10.3 Theta JA vs PCB Area ... 27
 10.4 EMI ... 27
 10.5 Package Specifications .. 29
11 Device and Documentation Support 30
 11.1 Device Support .. 30
 11.2 Related Documentation 30
 11.3 Receiving Notification of Documentation Updates 30
 11.4 Community Resources 30
 11.5 Trademarks .. 30
 11.6 Electrostatic Discharge Caution 31
 11.7 Glossary .. 31
12 Mechanical, Packaging, and Orderable Information 31
 12.1 Tape and Reel Information 31

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision B (February 2018) to Revision C .. Page
• Added links for WEBENCH ... 1
• Changed the MAX output current to 3 A in the Recommended Operating Conditions table 4
• Added EMI sub-section ... 27

Changes from Revision A (February 2018) to Revision B .. Page
• First release of production-data data sheet .. 1

Changes from Original (September 2017) to Revision A .. Page
• Added new Application: Inverted Output Applications; minor editorial updates .. 1
• Added sentence re: inverting buck-boost topology to Application Information .. 22
5 Pin Configuration and Functions

<table>
<thead>
<tr>
<th>PIN NO.</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AGND</td>
<td>Analog ground. Zero voltage reference for internal references and logic. Do not connect this pin to PGND; the connection is made internal to the device. See the Layout section of the datasheet for a recommended layout.</td>
</tr>
</tbody>
</table>
| 2 | EN/SYNC | EN - Enable input to regulator. High = On, Low = Off. Can be connected to VIN. Do not float. This pin can be used to set the input under voltage lockout with two resistors. See the Programmable Undervoltage Lockout (UVLO) section.
SYNC - The internal oscillator can be synchronized to an external clock via AC-coupling. See the Synchronization (SYNC) section for details. |
| 3 | RT | An external timing resistor connected between this pin and AGND adjusts the switching frequency of the device. If left open, the default switching frequency is 400 kHz. |
| 4 | VIN | Input supply voltage. Connect external input capacitors between this pin and PGND. |
| 5, 14, 15, 18 | PGND | Power ground. This is the return current path for the power stage of the device. Connect pin 5 to the input source, the load, and to the bypass capacitors associated with VIN and VOUT using power ground planes on the PCB. Pins 14 and 15 are not connected to PGND internal to the device and must be connected to PGND at pad 18. Connect pad 18 to the power ground planes using multiple vias for good thermal performance. See the Layout section of the datasheet for a recommended layout. |
| 6, 7, 8 | VOUT | Output voltage. These pins are connected to the internal output inductor. Connect these pins to the output load and connect external bypass capacitors between these pins and PGND. |
| 9, 10, 11 | SW | Switch node. Connect these pins to a small copper island under the device for thermal relief. Do not place any external component on these pins or tie them to a pin of another function. |
| 12, 13 | DNC | Do not connect. Each pin must be soldered to an isolated pad. These pins connect to internal circuitry. Do not connect these pins to one another, AGND, PGND, or any other voltage. |
| 16 | FB | Feedback input. Connect the center point of the feedback resistor divider to this pin. Connect the upper resistor (R_{FB1}) of the feedback divider to V_{OUT} at the desired point of regulation. Connect the lower resistor (R_{FB2}) of the feedback divider to AGND. |
| 17 | PGOOD | Open drain output for power-good flag. Use a 10-kΩ to 100-kΩ pullup resistor to logic rail or other DC voltage no higher than 12 V. |
6 Specifications

6.1 Absolute Maximum Ratings

Over operating ambient temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage VIN</td>
<td>–0.3</td>
<td>42</td>
<td>V</td>
</tr>
<tr>
<td>EN/SYNC</td>
<td>–5.5</td>
<td>VIN + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>PGOOD</td>
<td>–0.3</td>
<td>15</td>
<td>V</td>
</tr>
<tr>
<td>FB, RT</td>
<td>–0.3</td>
<td>4.5</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage SW</td>
<td>–1</td>
<td>VIN + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>SW (< 10-ns transients)</td>
<td>–5</td>
<td>42</td>
<td>V</td>
</tr>
<tr>
<td>VOUT</td>
<td>–0.3</td>
<td>VIN</td>
<td>V</td>
</tr>
<tr>
<td>Sink current PGOOD</td>
<td>3</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Mechanical shock</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical vibration</td>
<td>20</td>
<td></td>
<td>G</td>
</tr>
<tr>
<td>Operating IC junction temperature, TJ</td>
<td>–40</td>
<td>125</td>
<td>°C</td>
</tr>
<tr>
<td>Operating ambient temperature, TA</td>
<td>–40</td>
<td>105</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature, Tstg</td>
<td>–40</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The ambient temperature is the air temperature of the surrounding environment. The junction temperature is the temperature of the internal power IC when the device is powered. Operating below the maximum ambient temperature, as shown in the safe operating area (SOA) curves in the typical characteristics sections, ensures that the maximum junction temperature of any component inside the module is never exceeded.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th>Electrostatic discharge</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001</td>
<td>±2500</td>
<td>V</td>
</tr>
<tr>
<td>Charged-device model (CDM), per JEDEC specification JESD22-C101</td>
<td>±750</td>
<td></td>
</tr>
</tbody>
</table>

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

Over operating ambient temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage, VIN</td>
<td>4(1)</td>
<td>36</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage, VOUT</td>
<td>1</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>EN/SYNC voltage</td>
<td>–5</td>
<td>VIN</td>
<td>V</td>
</tr>
<tr>
<td>PGOOD pullup voltage, VPGOOD</td>
<td>–0.3</td>
<td>12</td>
<td>V</td>
</tr>
<tr>
<td>Output current, IOUT</td>
<td>0</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>Operating ambient temperature, TA</td>
<td>–40</td>
<td>105</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) For output voltages ≤ 5 V, the recommended minimum VIN is 4 V or (VOUT + 1.5 V), whichever is greater. For output voltages > 5 V, the recommended minimum VIN is (1.3 × VOUT). See Voltage Dropout for information on voltage dropout.
6.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(^{(1)})</th>
<th>LMZM33603</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{\text{JA}}) Junction-to-ambient thermal resistance (^{(2)})</td>
<td>18.9</td>
<td>°C/W</td>
</tr>
<tr>
<td>(\psi_{\text{JT}}) Junction-to-top characterization parameter (^{(3)})</td>
<td>2.0</td>
<td>°C/W</td>
</tr>
<tr>
<td>(\psi_{\text{JB}}) Junction-to-board characterization parameter (^{(4)})</td>
<td>6.2</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

(2) The junction-to-ambient thermal resistance, \(R_{\text{JA}}\), applies to devices soldered directly to a 63 mm x 63 mm, 4-layer PCB with 2 oz. copper and natural convection cooling. Additional airflow reduces \(R_{\text{JA}}\).

(3) The junction-to-top board characterization parameter, \(\psi_{\text{JT}}\), estimates the junction temperature, \(T_J\), of a device in a real system, using a procedure described in JESD51-2A (sections 6 and 7).

\[T_J = \psi_{\text{JT}} \times P_{\text{dis}} + T_T\]

where \(P_{\text{dis}}\) is the power dissipated in the device and \(T_T\) is the temperature of the top of the device.

(4) The junction-to-board characterization parameter, \(\psi_{\text{JB}}\), estimates the junction temperature, \(T_J\), of a device in a real system, using a procedure described in JESD51-2A (sections 6 and 7).

\[T_J = \psi_{\text{JB}} \times P_{\text{dis}} + T_B\]

where \(P_{\text{dis}}\) is the power dissipated in the device and \(T_B\) is the temperature of the board 1mm from the device.

6.5 Electrical Characteristics

Over \(-40°C\) to \(+105°C\) ambient temperature, \(V_{\text{IN}} = 24\ \text{V}\), \(V_{\text{OUT}} = 5\ \text{V}\), \(I_{\text{OUT}} = I_{\text{OUT}}\) maximum, \(f_{\text{SW}} = 450\ \text{kHz}\) (unless otherwise noted); \(C_{\text{IN1}} = 2 \times 4.7\-\mu\text{F}, 50-\text{V}, 1210\) ceramic; \(C_{\text{IN2}} = 100-\mu\text{F}, 50-\text{V}, \) electrolytic; \(C_{\text{OUT}} = 4 \times 22-\mu\text{F}, 25-\text{V}, 1210\) ceramic. Minimum and maximum limits are specified through production test or by design. Typical values represent the most likely parametric norm and are provided for reference only.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
</table>

INPUT VOLTAGE (\(V_{\text{IN}}\))

- \(V_{\text{IN}}\) Input voltage
 - Over \(I_{\text{OUT}}\) range
 - Over \(I_{\text{OUT}}\) range
 - \(V_{\text{IN}}\) increasing: 4 \(^{(1)}\) 36 V
 - \(V_{\text{IN}}\) decreasing: 3.3 3.6 3.9 V
 - \(V_{\text{UVLO}}\) \(V_{\text{IN}}\) undervoltage lockout
 - \(V_{\text{IN}}\) increasing: 3 3.3 3.5 V
 - \(V_{\text{IN}}\) decreasing: 3 3.3 3.5 V

OUTPUT VOLTAGE (\(V_{\text{OUT}}\))

- \(V_{\text{OUT(ADJ)}}\) Output voltage adjust
 - Over \(I_{\text{OUT}}\) range
 - \(I_{\text{OUT}} \leq 2\ \text{A}\) 2 13.5 \(^{(2)}\) V
 - \(V_{\text{OUT(Ripple)}}\) Output voltage ripple
 - 20-MHz bandwidth 10 mV

FEEDBACK

- \(V_{\text{FB}}\) Feedback voltage \(^{(3)}\)
 - \(T_A = 25°C\), \(I_{\text{OUT}} = 0\ \text{A}\)
 - 0.985 1 1.015 V
 - Over \(V_{\text{IN}}\) range, \(-40°C \leq T_J \leq 125°C\), \(I_{\text{OUT}} = 0\ \text{A}\)
 - 0.98 1 1.02 V
 - Load regulation
 - Over \(I_{\text{OUT}}\) range, \(T_A = 25°C\)
 - 0.04%
 - \(I_{\text{FB}}\) Feedback leakage current
 - \(V_{\text{FB}} = 1\ \text{V}\)
 - 10 nA

CURRENT

- \(I_{\text{OUT}}\) Output current
 - Natural convection, \(T_A = 25°C\)
 - 0 3 A
 - Overcurrent threshold
 - 4 A

PERFORMANCE

- \(\eta\) Efficiency
 - \(V_{\text{IN}} = 24\ \text{V}\), \(I_{\text{OUT}} = 1.5\ \text{A}\)
 - \(V_{\text{OUT}} = 12\ \text{V}, f_{\text{SW}} = 900\ \text{kHz}\)
 - 94%
 - \(V_{\text{OUT}} = 5\ \text{V}, f_{\text{SW}} = 450\ \text{kHz}\)
 - 90%
 - \(V_{\text{OUT}} = 3.3\ \text{V}, f_{\text{SW}} = 300\ \text{kHz}\)
 - 87%
 - \(V_{\text{IN}} = 12\ \text{V}\), \(I_{\text{OUT}} = 1.5\ \text{A}\)
 - \(V_{\text{OUT}} = 5\ \text{V}, f_{\text{SW}} = 450\ \text{kHz}\)
 - 92%
 - \(V_{\text{OUT}} = 3.3\ \text{V}, f_{\text{SW}} = 300\ \text{kHz}\)
 - 89%
 - \(V_{\text{OUT}} = 2.5\ \text{V}, f_{\text{SW}} = 250\ \text{kHz}\)
 - 87%
 - Transient response
 - 25% to 75% load step 1 A/μs slew rate
 - Over/undershoot 130 mV
 - Recovery Time 60 μs

(1) See Voltage Dropout for information on voltage dropout.

(2) The maximum output voltage varies depending on the output current (see Output Current vs Output Voltage).

(3) The overall output voltage tolerance will be affected by the tolerance of the external \(R_{\text{FBT}}\) and \(R_{\text{FBB}}\) resistors.
Electrical Characteristics (continued)

Over –40°C to +105°C ambient temperature, \(V_{\text{IN}} = 24 \) V, \(V_{\text{OUT}} = 5 \) V, \(I_{\text{OUT}} = I_{\text{OUT}} \) maximum, \(f_{\text{sw}} = 450 \) kHz (unless otherwise noted); \(C_{\text{IN1}} = 2 \times 4.7-\mu\text{F}, 50-\) V, 1210 ceramic; \(C_{\text{IN2}} = 100-\mu\text{F}, 50-\) V, electrolytic; \(C_{\text{OUT}} = 4 \times 22-\mu\text{F}, 25-\) V, 1210 ceramic. Minimum and maximum limits are specified through production test or by design. Typical values represent the most likely parametric norm and are provided for reference only.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOFT START</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_{\text{SS}}) Internal soft start time</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>THERMAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_{\text{SHDN}}) Thermal shutdown</td>
<td>Shutdown temperature</td>
<td>170</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>Hysteresis</td>
<td>10</td>
<td>15</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>ENABLE (EN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{\text{EN-H}}) EN rising threshold</td>
<td>(V_{\text{OUT}} = 4) V to 36 V, (V_{\text{EN}} = 2) V</td>
<td>1.4</td>
<td>1.55</td>
<td>1.7</td>
<td>V</td>
</tr>
<tr>
<td>(I_{\text{EN}}) EN Input leakage current</td>
<td>(V_{\text{IN}} = 4) V to 36 V, (V_{\text{EN}} = 36) V</td>
<td>10</td>
<td>100</td>
<td></td>
<td>nA</td>
</tr>
</tbody>
</table>

\[(4) \text{ A minimum of 9.4 } \mu\text{F} (2 \times 4.7 \mu\text{F}) \text{ ceramic input capacitance is required for proper operation. An additional 47 } \mu\text{F of bulk capacitance is recommended for applications with transient load requirements. See the Input Capacitors section of the datasheet for further guidance.} \]

\[(5) \text{ The minimum amount of required output capacitance varies depending on the output voltage (see Output Capacitor Selection). A minimum amount of ceramic output capacitance is required. Locate the capacitance close to the device. Adding additional ceramic or non-ceramic capacitance close to the load improves the response of the regulator to load transients.} \]

\[(6) \text{ The maximum allowable output capacitance varies depending on the output voltage (see Output Capacitor Selection).} \]

Capacitance

- \(C_{\text{IN}} \) External input capacitance
 - Ceramic type: 9.4(4) \mu\text{F}
 - Non-ceramic type: 47(4) \mu\text{F}
- \(C_{\text{OUT}} \) External output capacitance
 - min(5) \mu\text{F}
 - max(6) \mu\text{F}

6.6 Switching Characteristics

Over operating ambient temperature range (unless otherwise noted)

Minimum and maximum limits are specified through production test or by design. Typical values represent the most likely parametric norm, and are provided for reference only.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREQUENCY (RT) and SYNCHRONIZATION (EN/SYNC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{\text{SW}}) Default switching frequency</td>
<td>RT pin = open</td>
<td>340</td>
<td>400</td>
<td>460</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td>Switching frequency range</td>
<td></td>
<td>200</td>
<td>1200</td>
<td>kHz</td>
</tr>
<tr>
<td>(V_{\text{SYNC}}) Peak-to-peak amplitude of SYNC clock AC signal (measured at SYNC pin)</td>
<td>(V_{\text{OUT}}) rising (good)</td>
<td>92%</td>
<td>94%</td>
<td>96.5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{\text{OUT}}) rising (fault)</td>
<td>104%</td>
<td>107%</td>
<td>110%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{\text{OUT}}) falling hysteresis</td>
<td>1.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minimum (V_{\text{IN}}) for valid PGOOD</td>
<td>50-\mu\text{A} pullup, (V_{\text{EN}} = 0) V, (T_{\text{A}} = 25^\circ \text{C})</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PGOOD low voltage</td>
<td>0.5-\mu\text{A} pullup, (V_{\text{EN}} = 0) V</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOFT START</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_{\text{SS}}) Internal soft start time</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>THERMAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_{\text{SHDN}}) Thermal shutdown</td>
<td>Shutdown temperature</td>
<td>170</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>Hysteresis</td>
<td>10</td>
<td>15</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>ENABLE (EN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{\text{EN-H}}) EN rising threshold</td>
<td>(V_{\text{OUT}} = 4) V to 36 V, (V_{\text{EN}} = 2) V</td>
<td>1.4</td>
<td>1.55</td>
<td>1.7</td>
<td>V</td>
</tr>
<tr>
<td>(I_{\text{EN}}) EN Input leakage current</td>
<td>(V_{\text{IN}} = 4) V to 36 V, (V_{\text{EN}} = 36) V</td>
<td>10</td>
<td>100</td>
<td></td>
<td>nA</td>
</tr>
</tbody>
</table>

\[(4) \text{ A minimum of 9.4 } \mu\text{F} (2 \times 4.7 \mu\text{F}) \text{ ceramic input capacitance is required for proper operation. An additional 47 } \mu\text{F of bulk capacitance is recommended for applications with transient load requirements. See the Input Capacitors section of the datasheet for further guidance.} \]

\[(5) \text{ The minimum amount of required output capacitance varies depending on the output voltage (see Output Capacitor Selection). A minimum amount of ceramic output capacitance is required. Locate the capacitance close to the device. Adding additional ceramic or non-ceramic capacitance close to the load improves the response of the regulator to load transients.} \]

\[(6) \text{ The maximum allowable output capacitance varies depending on the output voltage (see Output Capacitor Selection).} \]
6.7 Typical Characteristics \((V_{\text{IN}} = 5\, \text{V})\)

The typical characteristic data has been developed from actual products tested at 25°C. This data is considered typical for the device.

![Figure 1. Efficiency vs Output Current](image1.png)

![Figure 2. Power Dissipation vs Output Current](image2.png)

![Figure 3. Voltage Ripple vs Output Current](image3.png)

![Figure 4. Safe Operating Area](image4.png)

![Figure 5. Safe Operating Area](image5.png)
6.8 Typical Characteristics ($V_{\text{IN}} = 12$ V)

The typical characteristic data has been developed from actual products tested at 25°C. This data is considered typical for the device.

Figure 6. Efficiency vs Output Current

Figure 7. Power Dissipation vs Output Current

Figure 8. Voltage Ripple vs Output Current

Figure 9. Safe Operating Area

Figure 10. Safe Operating Area

Figure 11. Safe Operating Area
6.9 Typical Characteristics ($V_{IN} = 24$ V)

The typical characteristic data has been developed from actual products tested at 25°C. This data is considered typical for the device.

Figure 12. Efficiency vs Output Current

- V_{OUT}, f_{SW}
 - 12 V, 900 kHz
 - 5.0 V, 450 kHz
 - 3.3 V, 300 kHz
 - 2.5 V, 250 kHz

Figure 13. Power Dissipation vs Output Current

- V_{OUT}, f_{SW}
 - 12 V, 900 kHz
 - 5.0 V, 450 kHz
 - 3.3 V, 300 kHz
 - 2.5 V, 250 kHz

Figure 14. Voltage Ripple vs Output Current

$C_{OUT} = 4 \times 22 \mu F, 25 V, 1210$ ceramic

Figure 15. Safe Operating Area

- $V_{OUT} = 3.3$ V
 - $f_{SW} = 300$ kHz

Figure 16. Safe Operating Area

- $V_{OUT} = 5$ V
 - $f_{SW} = 450$ kHz

Figure 17. Safe Operating Area

- $V_{OUT} = 12$ V
 - $f_{SW} = 900$ kHz
7 Detailed Description

7.1 Overview
The LMZM33603 is a full-featured, 36-V input, 3-A, synchronous, step-down converter with PWM, MOSFETs, shielded inductor, and control circuitry integrated into a low-profile, overmolded package. The device integration enables small designs, while providing the ability to adjust key parameters to meet specific design requirements. The LMZM33603 provides an output voltage range of 1 V to 18 V. An external resistor divider is used to adjust the output voltage to the desired value. The switching frequency can also be adjusted, by either an external resistor or a sync signal, which allows the LMZM33603 to accommodate a variety of input and output voltage conditions as well as optimize efficiency. The device provides accurate voltage regulation over a wide load range by using a precision internal voltage reference. Input undervoltage lockout is internally set at 3.6 V (typical), but can be adjusted upward using a resistor divider on the EN/SYNC pin of the device. The EN/SYNC pin can also be pulled low to put the device into standby mode to reduce input quiescent current. A power-good signal is provided to indicate when the output is within its nominal voltage range. Thermal shutdown and current limit features protect the device during an overload condition. An 18-pin, QFN package that includes exposed bottom pads provides a thermally enhanced solution for space-constrained applications.

7.2 Functional Block Diagram
7.3 Feature Description

7.3.1 Adjusting the Output Voltage

A resistor divider connected to the FB pin (pin 16) programs the output voltage of the LMZM33603. The output voltage adjustment range is from 1 V to 18 V. (See Output Current vs Output Voltage for the maximum allowable output voltage as a function of output current.) Figure 18 shows the feedback resistor connections for setting the output voltage. The recommended value of R_{FBB} is 10 kΩ. The value for R_{FBT} can be calculated using Equation 1. Depending on the output voltage, a feed-forward capacitor, C_{FF}, may be required for optimum transient performance. Table 1 lists the standard external R_{FBT} and C_{FF} values for several output voltages between 2.5 V and 18 V. Table 2 lists the values for output voltages below 2.5 V. Additionally, Table 1 and Table 2 include the recommended switching frequency (F_{SW}), the frequency setting resistor (R_{RT}), and the minimum and maximum output capacitance for each of the output voltages listed.

For designs with R_{FBB} other than 10 kΩ, adjust C_{FF} and R_{FBT} such that $(C_{FF} \times R_{FBT})$ is unchanged and adjust R_{FBT} such that (R_{FBT} / R_{FBB}) is unchanged.

$$R_{FBT} = 10 \times (V_{OUT} - 1)(kΩ)$$ \hfill (1)

![Figure 18. Setting the Output Voltage](image-url)
Feature Description (continued)

Table 1. Required Component Values ($V_{OUT} \geq 2.5\ V$)

<table>
<thead>
<tr>
<th>V_{OUT} (V)</th>
<th>R_{FBT} (kΩ) (1)</th>
<th>C_{FF} (pF)</th>
<th>f_{SW} (kHz)</th>
<th>R_{RT} (kΩ)</th>
<th>$C_{OUT(\text{min})}$ (µF) (2)</th>
<th>$C_{OUT(\text{max})}$ (µF) (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>15.0</td>
<td>220</td>
<td>250</td>
<td>162</td>
<td>150</td>
<td>400</td>
</tr>
<tr>
<td>3.3</td>
<td>23.2</td>
<td>150</td>
<td>300</td>
<td>133</td>
<td>88</td>
<td>300</td>
</tr>
<tr>
<td>5</td>
<td>40.2</td>
<td>100</td>
<td>450</td>
<td>88.7</td>
<td>66</td>
<td>200</td>
</tr>
<tr>
<td>6</td>
<td>49.9</td>
<td>68</td>
<td>550</td>
<td>71.5</td>
<td>54</td>
<td>160</td>
</tr>
<tr>
<td>7.5</td>
<td>64.9</td>
<td>47</td>
<td>650</td>
<td>60.4</td>
<td>40</td>
<td>130</td>
</tr>
<tr>
<td>9</td>
<td>80.6</td>
<td>47</td>
<td>700</td>
<td>56.2</td>
<td>36</td>
<td>110</td>
</tr>
<tr>
<td>12</td>
<td>110</td>
<td>open</td>
<td>900</td>
<td>44.2</td>
<td>22</td>
<td>80</td>
</tr>
<tr>
<td>13.5</td>
<td>124</td>
<td>open</td>
<td>1000</td>
<td>39.2</td>
<td>22</td>
<td>75</td>
</tr>
<tr>
<td>15</td>
<td>140</td>
<td>open</td>
<td>1100</td>
<td>35.7</td>
<td>20</td>
<td>65</td>
</tr>
<tr>
<td>18</td>
<td>169</td>
<td>open</td>
<td>1200</td>
<td>33.2</td>
<td>16</td>
<td>55</td>
</tr>
</tbody>
</table>

(1) $R_{FBT} = 10.0\ kΩ$.

(2) For output voltages $\geq 2.5\ V$, the minimum required output capacitance must be comprised of ceramic type and account for DC bias and temperature derating.

(3) The maximum output capacitance must include the required ceramic $C_{OUT(\text{min})}$. Additional capacitance, may be ceramic type, low-ESR polymer type, or a combination of the two.

Table 2. Required Component Values ($V_{OUT} < 2.5\ V$)

<table>
<thead>
<tr>
<th>V_{OUT} (V)</th>
<th>R_{FBT} (kΩ) (1)</th>
<th>C_{FF} (pF)</th>
<th>f_{SW} (kHz)</th>
<th>R_{RT} (kΩ)</th>
<th>C_{OUT}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 2.5</td>
<td>see Equation 1</td>
<td>open</td>
<td>250</td>
<td>162</td>
<td>150-µF ceramic + 470-µF polymer</td>
</tr>
</tbody>
</table>

(1) $R_{FBT} = 10\ kΩ$. For $V_{OUT} = 1\ V$, $R_{FBT} =$ open and $R_{FBT} = 0\ Ω$.

7.3.2 Feed-Forward Capacitor, C_{FF}

The LMZM33603 is internally compensated to be stable over the operating frequency and output voltage range. However, depending on the output voltage, an additional feed-forward capacitor may be required. TI recommends an external feed-forward capacitor, C_{FF}, be placed in parallel with the top resistor divider, R_{FBT} for optimum transient performance. The value for C_{FF} can be calculated using Equation 2.

$$C_{FF} = \frac{1000}{4\pi \left(\frac{8.32}{V_{OUT} \times C_{OUT}} \right) \times R_{FBT}}\ (pF)$$

where

- C_{OUT} is the value after derating in µF
- R_{FBT} is in kΩ

Refer to the Table 1 for the recommended C_{FF} value for several output voltages.
7.3.3 Output Current vs Output Voltage

The rated output current of the LMZM33603 depends on the output voltage required for an application. The output current derates at output voltages above 13.5 V. The area under the curve in Figure 19 shows the operating range of the LMZM33603.

![Figure 19. Output Current vs Output Voltage](image)

7.3.4 Voltage Dropout

Voltage dropout is the difference between the input voltage and output voltage that is required to maintain output voltage regulation while providing the rated output current.

To ensure the LMZM33603 maintains output voltage regulation at the recommended switching frequency, over the operating temperature range, the following requirements apply:

- For output voltages ≤ 5 V, the minimum V_IN is 4 V or (V_OUT + 1.5 V), whichever is greater.
- For output voltages > 5 V, the minimum V_IN is (1.3 × V_OUT).

However, if fixed switching frequency operation is not required, the LMZM33603 operates in a frequency foldback mode when the dropout voltage is less than the recommendations above. Frequency foldback reduces the switching frequency to allow the output voltage to maintain regulation as input voltage decreases. Figure 20 through Figure 25 show typical dropout voltage and frequency foldback curves for 3.3 V, 5 V, and 12 V outputs at T_A = 25°C. (Note: As ambient temperature increases, dropout voltage and frequency foldback occur at higher input voltage.)

![Figure 20. Voltage Dropout](image)

![Figure 21. Frequency Foldback](image)
Figure 22. Voltage Dropout

VOUT = 5 V \(f_{SW} = 450 \text{ kHz} \)

Figure 23. Frequency Foldback

VOUT = 5 V \(f_{SW} = 450 \text{ kHz} \)

Figure 24. Voltage Dropout

VOUT = 12 V \(f_{SW} = 900 \text{ kHz} \)

Figure 25. Frequency Foldback

VOUT = 12 V \(f_{SW} = 900 \text{ kHz} \)
7.3.5 Switching Frequency (RT)

The switching frequency range of the LMZM33603 is 200 kHz to 1.2 MHz. The switching frequency can easily be set by connecting a resistor (R_{RT}) between the RT pin and AGND. Additionally, the RT pin can be left floating and the LMZM33603 will operate at 400 kHz default switching frequency. Use Equation 3 to calculate the R_{RT} value for a desired frequency or simply select from Table 3 or Table 4.

The switching frequency must be selected based on the output voltage setting of the device. See Table 3 for R_{RT} resistor values and the allowable output voltage range for a given switching frequency for three common input voltages. Additionally, if an application requires 2 A or less of output current, use Table 4 to determine the allowable output voltage range for a given switching frequency.

$$R_{RT} = \left(\frac{40200}{I_{SW} \text{ (kHz)}} \right) - 0.6 \text{(kΩ)}$$

(3)

<table>
<thead>
<tr>
<th>SWITCHING FREQUENCY (kHz)</th>
<th>R_{RT} RESISTOR (kΩ)</th>
<th>$V_{IN} = 5 \text{ V (±5%)}$</th>
<th>$V_{IN} = 12 \text{ V (±5%)}$</th>
<th>$V_{IN} = 24 \text{ V (±5%)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V_{OUT} RANGE (V)</td>
<td>V_{OUT} RANGE (V)</td>
<td>V_{OUT} RANGE (V)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIN</td>
<td>MAX</td>
<td>MIN</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>250</td>
<td>158</td>
<td>1</td>
<td>3.2</td>
<td>1</td>
</tr>
<tr>
<td>300</td>
<td>133</td>
<td>1</td>
<td>3.2</td>
<td>1</td>
</tr>
<tr>
<td>350</td>
<td>113</td>
<td>1</td>
<td>3.1</td>
<td>1</td>
</tr>
<tr>
<td>400</td>
<td>100 or (RT pin open)</td>
<td>1</td>
<td>3.1</td>
<td>1</td>
</tr>
<tr>
<td>450</td>
<td>88.7</td>
<td>1</td>
<td>3.1</td>
<td>1</td>
</tr>
<tr>
<td>500</td>
<td>78.7</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>550</td>
<td>71.5</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>600</td>
<td>66.5</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>650</td>
<td>60.4</td>
<td>1</td>
<td>2.9</td>
<td>1</td>
</tr>
<tr>
<td>700</td>
<td>56.2</td>
<td>1</td>
<td>2.9</td>
<td>1</td>
</tr>
<tr>
<td>750</td>
<td>52.3</td>
<td>1</td>
<td>2.9</td>
<td>1</td>
</tr>
<tr>
<td>800</td>
<td>49.9</td>
<td>1</td>
<td>2.8</td>
<td>1</td>
</tr>
<tr>
<td>850</td>
<td>46.4</td>
<td>1</td>
<td>2.8</td>
<td>1</td>
</tr>
<tr>
<td>900</td>
<td>44.2</td>
<td>1</td>
<td>2.8</td>
<td>1.2</td>
</tr>
<tr>
<td>950</td>
<td>41.2</td>
<td>1</td>
<td>2.7</td>
<td>1.2</td>
</tr>
<tr>
<td>1000</td>
<td>39.2</td>
<td>1</td>
<td>2.7</td>
<td>1.3</td>
</tr>
<tr>
<td>1050</td>
<td>37.4</td>
<td>1</td>
<td>2.7</td>
<td>1.4</td>
</tr>
<tr>
<td>1100</td>
<td>35.7</td>
<td>1</td>
<td>2.6</td>
<td>1.4</td>
</tr>
<tr>
<td>1150</td>
<td>34</td>
<td>1</td>
<td>2.6</td>
<td>1.5</td>
</tr>
<tr>
<td>1200</td>
<td>33.2</td>
<td>1</td>
<td>2.6</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Table 3. Switching Frequency vs Output Voltage ($I_{OUT} = 3 \text{ A}$)
Table 4. Switching Frequency vs Output Voltage (I_OUT ≤ 2A)

<table>
<thead>
<tr>
<th>SWITCHING FREQUENCY (kHz)</th>
<th>R_RT RESISTOR (kΩ)</th>
<th>V_IN = 5 V (±5%)</th>
<th>V_IN = 12 V (±5%)</th>
<th>V_IN = 24 V (±5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MIN</td>
<td>MAX</td>
<td>MIN</td>
</tr>
<tr>
<td>200</td>
<td>1</td>
<td>3.4</td>
<td>1</td>
<td>5.5</td>
</tr>
<tr>
<td>250</td>
<td>1</td>
<td>3.5</td>
<td>1</td>
<td>6.2</td>
</tr>
<tr>
<td>300</td>
<td>1</td>
<td>3.5</td>
<td>1</td>
<td>6.8</td>
</tr>
<tr>
<td>350</td>
<td>1</td>
<td>3.5</td>
<td>1</td>
<td>7.4</td>
</tr>
<tr>
<td>400</td>
<td>1</td>
<td>3.5</td>
<td>1</td>
<td>7.9</td>
</tr>
<tr>
<td>450</td>
<td>1</td>
<td>3.5</td>
<td>1</td>
<td>8.4</td>
</tr>
<tr>
<td>500</td>
<td>1</td>
<td>3.5</td>
<td>1</td>
<td>8.9</td>
</tr>
<tr>
<td>550</td>
<td>1</td>
<td>3.4</td>
<td>1</td>
<td>9.3</td>
</tr>
<tr>
<td>600</td>
<td>1</td>
<td>3.4</td>
<td>1</td>
<td>9.5</td>
</tr>
<tr>
<td>650</td>
<td>1</td>
<td>3.4</td>
<td>1</td>
<td>9.4</td>
</tr>
<tr>
<td>700</td>
<td>1</td>
<td>3.3</td>
<td>1</td>
<td>9.3</td>
</tr>
<tr>
<td>750</td>
<td>1</td>
<td>3.3</td>
<td>1</td>
<td>9.2</td>
</tr>
<tr>
<td>800</td>
<td>1</td>
<td>3.3</td>
<td>1</td>
<td>9.1</td>
</tr>
<tr>
<td>850</td>
<td>1</td>
<td>3.2</td>
<td>1.1</td>
<td>9.0</td>
</tr>
<tr>
<td>900</td>
<td>1</td>
<td>3.2</td>
<td>1.2</td>
<td>9.0</td>
</tr>
<tr>
<td>950</td>
<td>1</td>
<td>3.2</td>
<td>1.2</td>
<td>8.9</td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
<td>3.1</td>
<td>1.3</td>
<td>8.8</td>
</tr>
<tr>
<td>1050</td>
<td>1</td>
<td>3.1</td>
<td>1.4</td>
<td>8.7</td>
</tr>
<tr>
<td>1100</td>
<td>1</td>
<td>3.1</td>
<td>1.4</td>
<td>8.6</td>
</tr>
<tr>
<td>1150</td>
<td>1</td>
<td>3</td>
<td>1.5</td>
<td>8.5</td>
</tr>
<tr>
<td>1200</td>
<td>1</td>
<td>3</td>
<td>1.6</td>
<td>8.5</td>
</tr>
</tbody>
</table>
7.3.6 Synchronization (SYNC)

The LMZM33603 switching frequency can also be synchronized to an external clock from 200 kHz to 1.2 MHz. To implement the synchronization feature, couple an AC signal to the EN/SYNC pin (pin 2) with a peak-to-peak amplitude of at least 2.8 V, not to exceed 5.5 V. The minimum SYNC clock ON and OFF time must be longer than 100ns. The AC signal must be coupled through a small capacitor (1 nF) as shown in Figure 26. \(R_{\text{ENT}} \) is required for this synchronization circuit, but \(R_{\text{ENB}} \) is not required if an external UVLO adjustment is not needed.

Before the external clock is present, or when a valid clock signal is removed, the device works in RT mode and the switching frequency is set by \(R_{\text{RT}} \) resistor. Select \(R_{\text{RT}} \) so that it sets the frequency close to the external synchronization frequency. When the external clock is present, the SYNC mode overrides the RT mode.

The synchronization frequency must be selected based on the output voltages of the devices being synchronized. Table 3 and Table 4 show the allowable frequencies for a given range of output voltages. For the most efficient solution, always select the lowest allowable frequency.

![Figure 26. AC-Coupled SYNC Signal](image)

7.3.7 Input Capacitors

The LMZM33603 requires a minimum input capacitance of 9.4 \(\mu \text{F} \) (2 \(\times \) 4.7 \(\mu \text{F} \)) of ceramic type. High-quality, ceramic type X5R or X7R capacitors with sufficient voltage rating are recommended. TI recommends an additional 100 \(\mu \text{F} \) of non-ceramic capacitance for applications with transient load requirements. The voltage rating of input capacitors must be greater than the maximum input voltage.

Table 5. Recommended Input Capacitors

<table>
<thead>
<tr>
<th>VENDOR</th>
<th>SERIES</th>
<th>PART NUMBER</th>
<th>CAPACITOR CHARACTERISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>WORKING VOLTAGE (V)</td>
</tr>
<tr>
<td>Murata</td>
<td>X7R</td>
<td>GRM32ER71H475KA88L</td>
<td>50</td>
</tr>
<tr>
<td>TDK</td>
<td>X5R</td>
<td>C3225X5R1H106K250AB</td>
<td>50</td>
</tr>
<tr>
<td>Murata</td>
<td>X7R</td>
<td>GRM32ER71H106KA12</td>
<td>50</td>
</tr>
<tr>
<td>TDK</td>
<td>X7R</td>
<td>C3225X7R1H106M250AB</td>
<td>50</td>
</tr>
<tr>
<td>Panasonic</td>
<td>ZA</td>
<td>EEHZA1H101P</td>
<td>50</td>
</tr>
</tbody>
</table>

(1) Capacitor Supplier Verification, RoHS, Lead-free and Material Details
Consult capacitor suppliers regarding availability, material composition, RoHS and lead-free status, and manufacturing process requirements for any capacitors identified in Table 5.

(2) Standard capacitance values.

(3) Maximum ESR at 100 kHz, 25°C.
7.3.8 Output Capacitors

The LMZM33603 minimum and maximum output capacitance listed in Table 1 and Table 2 represents the amount of effective capacitance. The effects of DC bias and temperature variation must be considered when using ceramic capacitors. For ceramic capacitors, the package size, voltage rating, and dielectric material will contribute to differences between the standard rated value and the actual effective value of the capacitance.

When adding additional capacitance, above $C_{\text{OUT(min)}}$, the capacitance may be ceramic type, low-ESR polymer type, or a combination of the two. See Table 6 for a preferred list of output capacitors by vendor.

Table 6. Recommended Output Capacitors

<table>
<thead>
<tr>
<th>VENDOR</th>
<th>SERIES</th>
<th>PART NUMBER</th>
<th>WORKING VOLTAGE (V)</th>
<th>CAPACITANCE (µF)</th>
<th>ESR (mΩ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murata</td>
<td>X7R</td>
<td>GRM32ER71E226KE1SL</td>
<td>25</td>
<td>22</td>
<td>2</td>
</tr>
<tr>
<td>TDK</td>
<td>X5R</td>
<td>C3225X5R0J476K</td>
<td>6.3</td>
<td>47</td>
<td>2</td>
</tr>
<tr>
<td>Murata</td>
<td>X5R</td>
<td>GRM32ER61C476K</td>
<td>16</td>
<td>47</td>
<td>3</td>
</tr>
<tr>
<td>TDK</td>
<td>X5R</td>
<td>C3225X5R0J107M</td>
<td>6.3</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>Murata</td>
<td>X5R</td>
<td>GRM32ER60J107M</td>
<td>6.3</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>Murata</td>
<td>X5R</td>
<td>GRM32ER61A107M</td>
<td>10</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>Kemet</td>
<td>X5R</td>
<td>C1210C107M4PAC7800</td>
<td>16</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>Panasonic</td>
<td>POSCAP</td>
<td>6TPE100MI</td>
<td>6.3</td>
<td>100</td>
<td>18</td>
</tr>
<tr>
<td>Panasonic</td>
<td>POSCAP</td>
<td>6TPE150MF</td>
<td>6.3</td>
<td>150</td>
<td>15</td>
</tr>
<tr>
<td>Panasonic</td>
<td>POSCAP</td>
<td>10TPF150ML</td>
<td>10</td>
<td>150</td>
<td>15</td>
</tr>
<tr>
<td>Panasonic</td>
<td>POSCAP</td>
<td>6TPF220M9L</td>
<td>6.3</td>
<td>220</td>
<td>9</td>
</tr>
<tr>
<td>Panasonic</td>
<td>POSCAP</td>
<td>6TPE220ML</td>
<td>6.3</td>
<td>220</td>
<td>12</td>
</tr>
<tr>
<td>Panasonic</td>
<td>POSCAP</td>
<td>4TPF330ML</td>
<td>4</td>
<td>330</td>
<td>12</td>
</tr>
<tr>
<td>Panasonic</td>
<td>POSCAP</td>
<td>6TPF330M9L</td>
<td>6.3</td>
<td>330</td>
<td>9</td>
</tr>
<tr>
<td>Panasonic</td>
<td>POSCAP</td>
<td>6TPE470MAZU</td>
<td>6.3</td>
<td>470</td>
<td>35</td>
</tr>
</tbody>
</table>

(1) Capacitor Supplier Verification, RoHS, Lead-free and Material Details
Consult capacitor suppliers regarding availability, material composition, RoHS and lead-free status, and manufacturing process requirements for any capacitors identified in Table 5.

(2) Standard capacitance values.

(3) Maximum ESR at 100 kHz, 25°C.
7.3.9 Output On/Off Enable (EN)

The voltage on the EN/SYNC pin provides electrical ON/OFF control of the device. Once the EN pin voltage exceeds the threshold voltage, the device starts operation. If the EN pin voltage is pulled below the threshold voltage, the regulator stops switching and enters low quiescent current state.

The EN pin cannot be open circuit or floating. The simplest way to enable the operation of the LMZM33603 is to connect the EN pin to VIN directly as shown in Figure 27. This allows self-start-up of the LMZM33603 when VIN is within the operation range.

If an application requires controlling the EN pin, an external logic signal can be used to drive EN/SYNC pin as shown in Figure 28. Applications using an open drain/collector device to interface with this pin require a pullup resistor to a voltage above the enable threshold.

Figure 29 and Figure 30 show typical turn-ON and turn-OFF waveforms using the enable control.

![Figure 27. Enabling the Device](image1)

![Figure 28. Typical Enable Control](image2)

![Figure 29. Enable Turn-ON](image3)

![Figure 30. Enable Turn-OFF](image4)

7.3.10 Programmable Undervoltage Lockout (UVLO)

The LMZM33603 implements internal UVLO circuitry on the VIN pin. The device is disabled when the VIN pin voltage falls below the internal VIN UVLO threshold. The internal VIN UVLO rising threshold is 3.9 V (maximum) with a typical hysteresis of 300 mV.

If an application requires a higher UVLO threshold, a resistor divider can be placed on the EN/SYNC pin as shown in Figure 31. Table 7 lists recommended resistor values for R_{ENT} and R_{ENB} to adjust the UVLO voltage.

To insure proper start-up and reduce input current surges, the UVLO threshold must be set to at least $(V_{\text{OUT}} + 1.5 \text{ V})$ for output voltages $\leq 5 \text{ V}$ and at least $(1.3 \times V_{\text{OUT}})$ for output voltages $> 5 \text{ V}$. TI recommends to set the UVLO threshold to approximately 80% to 85% of the minimum expected input voltage.
7.3.11 Power Good (PGOOD)

The LMZM33603 has a built-in power-good signal (PGOOD) which indicates whether the output voltage is within its regulation range. The PGOOD pin is an open-drain output that requires a pullup resistor to a nominal voltage source of 12 V or less. The maximum recommended PGOOD sink current is 1 mA. A typical pullup resistor value is between 10 kΩ and 100 kΩ.

Once the output voltage rises above 94% of the set voltage, the PGOOD pin rises to the pullup voltage level. The PGOOD pin is pulled low when the output voltage drops lower than 92.5% or rises higher than 107% of the nominal set voltage. See Figure 32 for typical power-good thresholds.

![Figure 32. Power Good Flag](image-url)
7.3.12 Overcurrent Protection (OCP)

The LMZM33603 is protected from overcurrent conditions. Hiccup mode is activated if a fault condition persists to prevent overheating. In hiccup mode, the regulator is shut down and kept off for 10 ms typical before the LMZM33603 tries to start again. If overcurrent or short-circuit fault condition still exist, hiccup repeats until the fault condition is removed. Hiccup mode reduces power dissipation under severe overcurrent conditions, and prevents overheating and potential damage to the device. Once the fault is removed, the module automatically recovers and returns to normal operation as shown in Figure 34.

![Figure 33. Overcurrent Limiting](image1)

![Figure 34. Removal of Overcurrent](image2)

7.3.13 Thermal Shutdown

The internal thermal shutdown circuitry forces the device to stop switching if the junction temperature exceeds 170°C typically. The device reinitiates the power-up sequence when the junction temperature drops below 155°C typically.

7.4 Device Functional Modes

7.4.1 Active Mode

The LMZM33603 is in active mode when VIN is above the UVLO threshold and the EN/SYNC pin voltage is above the EN high threshold. The simplest way to enable the LMZM33603 is to connect the EN/SYNC pin to VIN. This allows self start-up of the LMZM33603 when the input voltage is in the operation range: 4 V to 36 V. In active mode, the LMZM33603 is in continuous conduction mode (CCM) with fixed switching frequency.

7.4.2 Shutdown Mode

The EN/SYNC pin provides electrical ON and OFF control for the LMZM33603. When the EN/SYNC pin voltage is below the EN low threshold, the device is in shutdown mode. In shutdown mode the standby current is 2 μA typical. The LMZM33603 also employs input UVLO protection. If VIN is below the UVLO level, the output of the regulator is turned off.
8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The LMZM33603 is a synchronous, step-down, DC-DC power module. It is used to convert a higher DC voltage to a lower DC voltage with a maximum output current of 3 A. The LMZM33603 can be configured in an inverting buck-boost (IBB) topology with the output voltage inverted or negative with respect to ground. For more details, see TI Application Report Inverting Application for the LMZM33603. The following design procedure can be used to select components for the LMZM33603. Alternately, the WEBENCH® software may be used to generate complete designs. When generating a design, the WEBENCH® software utilizes an iterative design procedure and accesses comprehensive databases of components. See www.ti.com for more details.

8.2 Typical Application

The LMZM33603 only requires a few external components to convert from a wide input-voltage-supply range to a wide range of output voltages. Figure 35 shows a basic LMZM33603 schematic with only the minimum required components.

![Figure 35. LMZM33603 Typical Schematic](image)

8.2.1 Design Requirements

For this design example, use the parameters listed in Table 8 as the input parameters and follow the design procedures in Detailed Design Procedure.

Table 8. Design Example Parameters

<table>
<thead>
<tr>
<th>DESIGN PARAMETER</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage V_{IN}</td>
<td>24 V typical</td>
</tr>
<tr>
<td>Output voltage V_{OUT}</td>
<td>5 V</td>
</tr>
<tr>
<td>Output current rating</td>
<td>3 A</td>
</tr>
<tr>
<td>Operating frequency</td>
<td>450 kHz</td>
</tr>
</tbody>
</table>
8.2.2 Detailed Design Procedure

8.2.2.1 Custom Design With WEBENCH® Tools

Click here to create a custom design using the LMZM33603 device with the WEBENCH® Power Designer.

1. Start by entering the input voltage (V_{IN}), output voltage (V_{OUT}), and output current (I_{OUT}) requirements.
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
3. Compare the generated design with other possible solutions from Texas Instruments.

The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability.

In most cases, these actions are available:

- Run electrical simulations to see important waveforms and circuit performance
- Run thermal simulations to understand board thermal performance
- Export customized schematic and layout into popular CAD formats
- Print PDF reports for the design, and share the design with colleagues

Get more information about WEBENCH tools at www.ti.com/WEBENCH.

8.2.2.2 Output Voltage Setpoint

The output voltage of the LMZM33603 device is externally adjustable using a resistor divider. The recommended value of R_{FBEB} is 10.0 kΩ. The value for R_{FBT} can be selected from Table 1 or calculated using Equation 4:

$$R_{FBT} = \frac{10 \times (V_{OUT} - 1)}{(k\Omega)} \quad (4)$$

For the desired output voltage of 5 V, the formula yields a value of 40 kΩ. Choose the closest available value of 40.2 kΩ for R_{FBT}.

8.2.2.3 Feed-Forward Capacitor (C_{FF})

TI recommends placing an external feed-forward capacitor, C_{FF} in parallel with the top resistor divider, R_{FBT} for optimum transient performance. The value for C_{FF} can be calculated using Equation 2 or selected from Table 1. The recommended C_{FF} value for 5-V application is 100 pF.

8.2.2.4 Setting the Switching Frequency

The recommended switching frequency for a 5-V application is 450 kHz. To set the switching frequency to 450 kHz, a 88.7-kΩ R_{RT} resistor is required.

8.2.2.5 Input Capacitors

The LMZM33603 requires a minimum input capacitance of 10 µF (or 2×4.7 µF) ceramic type. High-quality ceramic type X5R or X7R capacitors with sufficient voltage rating are recommended. An additional 100 µF of non-ceramic capacitance is recommended for applications with transient load requirements. The voltage rating of input capacitors must be greater than the maximum input voltage.

For this design, a 10-µF, 50-V, ceramic capacitor was selected.

8.2.2.6 Output Capacitor Selection

The LMZM33603 requires a minimum amount of output capacitance for proper operation. The minimum amount of required output varies depending on the output voltage. See Table 1 for the required output capacitance.

For this design example, four 22 µF, 25 V ceramic capacitors are used.
8.2.2.7 Application Curves

Figure 36. Transient Response

Figure 37. Enable Turnon
9 Power Supply Recommendations

The LMZM33603 is designed to operate from an input voltage supply range between 4 V and 36 V. This input supply must be well regulated and able to withstand maximum input current and maintain a stable voltage. The resistance of the input supply rail must be low enough that an input current transient does not cause a high enough drop at the LMZM33603 supply voltage that can cause a false UVLO fault triggering and system reset.

If the input supply is located more than a few inches from the LMZM33603 additional bulk capacitance may be required in addition to the ceramic bypass capacitors. The typical amount of bulk capacitance is a 100-µF electrolytic capacitor.
10 Layout

The performance of any switching power supply depends as much upon the layout of the PCB as the component selection. The following guidelines will help users design a PCB with the best power conversion performance, optimal thermal performance, and minimized generation of unwanted EMI.

10.1 Layout Guidelines

To achieve optimal electrical and thermal performance, an optimized PCB layout is required. Figure 38 thru Figure 41, shows a typical PCB layout. Some considerations for an optimized layout are:

- Use large copper areas for power planes (VIN, VOUT, and PGND) to minimize conduction loss and thermal stress.
- Connect PGND pins 14 and 15 directly to pin 18 using thick copper traces.
- Connect the SW pins together using a small copper island under the device for thermal relief.
- Place ceramic input and output capacitors close to the device pins to minimize high frequency noise.
- Locate additional output capacitors between the ceramic capacitor and the load.
- Keep AGND and PGND separate from one another.
- Place R_{FBT}, R_{FBB}, R_{RT}, and C_{FF} as close as possible to their respective pins.
- Use multiple vias to connect the power planes to internal layers.

10.2 Layout Examples

![Figure 38. Typical Top-Layer Layout](image1)

![Figure 39. Typical Layer-2 Layout](image2)

![Figure 40. Typical Layer 3 Layout](image3)

![Figure 41. Typical Bottom-Layer Layout](image4)
10.3 Theta JA vs PCB Area

The amount of PCB copper affects the thermal performance of the device. Figure 42 shows the effects of copper area on the junction-to-ambient thermal resistance ($R_{th,JA}$) of the LMZM33603. The junction-to-ambient thermal resistance is plotted for a 2-layer PCB and a 4-layer PCB with PCB area from 16 cm^2 to 49 cm^2.

To determine the required copper area for an application:

1. Determine the maximum power dissipation of the device in the application by referencing the power dissipation graphs in the Typical Characteristics section.
2. Calculate the maximum θ_{JA} using Equation 5 and the maximum ambient temperature of the application.
 \[
 \theta_{JA} = \frac{(125^\circ C - T_{A(max)})}{P_{D(max)}} \quad (^\circ C/W)
 \] (5)
3. Reference Figure 42 to determine the minimum required PCB area for the application conditions.

![Figure 42. θ_{JA} vs PCB Area](image)

10.4 EMI

The LMZM33603 is compliant with EN55011 Class B radiated emissions. Figure 43, Figure 44, and Figure 45 show typical examples of radiated emissions plots for the LMZM33603. The graphs include the plots of the antenna in the horizontal and vertical positions.

10.4.1 EMI Plots

EMI plots were measured using the standard LMZM33603EVM with no input filter.
EMI (continued)

Figure 43. Radiated Emissions 24-V Input, 5-V Output, 3-A Load (EN55011 Class B)

Figure 44. Radiated Emissions 24-V Input, 12-V Output, 3-A Load (EN55011 Class B)
EMI (continued)

Figure 45. Radiated Emissions 12-V Input, 5-V Output, 3-A Load (EN55011 Class B)

10.5 Package Specifications

Table 9. Package Specifications Table

<table>
<thead>
<tr>
<th></th>
<th>LMZM33603</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td></td>
<td>0.74</td>
<td>grams</td>
</tr>
<tr>
<td>Flammability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meets UL 94 V-O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTBF Calculated Reliability</td>
<td>Per Bellcore TR-332, 50% stress, T_A = 40°C, ground benign</td>
<td>98.0</td>
<td>MHrs</td>
</tr>
</tbody>
</table>
11 Device and Documentation Support

11.1 Device Support

11.1.1 Third-Party Products Disclaimer

TI’S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

11.1.2 Custom Design With WEBENCH® Tools

Click here to create a custom design using the LMZM33603 device with the WEBENCH® Power Designer.

1. Start by entering the input voltage (V_{IN}), output voltage (V_{OUT}), and output current (I_{OUT}) requirements.
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
3. Compare the generated design with other possible solutions from Texas Instruments.

The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability.

In most cases, these actions are available:

- Run electrical simulations to see important waveforms and circuit performance
- Run thermal simulations to understand board thermal performance
- Export customized schematic and layout into popular CAD formats
- Print PDF reports for the design, and share the design with colleagues

Get more information about WEBENCH tools at www.ti.com/WEBENCH.

11.2 Related Documentation

For related documentation see the following:
- TI application report Inverting Application for the LMZM33602/03

11.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community Ti's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support Ti's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.5 Trademarks

E2E is a trademark of Texas Instruments.
WEBENCH is a registered trademark of Texas Instruments.
All other trademarks are the property of their respective owners.
11.6 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

12.1 Tape and Reel Information

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin 1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMZM33603RLRR</td>
<td>B2QFN</td>
<td>RLR</td>
<td>18</td>
<td>500</td>
<td>330.0</td>
<td>24.4</td>
<td>7.35</td>
<td>9.35</td>
<td>4.35</td>
<td>12.0</td>
<td>24.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMZM33603RLRR</td>
<td>B2QFN</td>
<td>RLR</td>
<td>18</td>
<td>500</td>
<td>383.0</td>
<td>353.0</td>
<td>58.0</td>
</tr>
</tbody>
</table>
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>PIns</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMZM33603RLRR</td>
<td>ACTIVE</td>
<td>B2QFN</td>
<td>RLR</td>
<td>18</td>
<td>500</td>
<td>RoHS & Green</td>
<td>CU NIPDAU</td>
<td>Level-3-250C-168 HR</td>
<td>-40 to 105</td>
<td>LMZM33603</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE:** Product device recommended for new designs.
- **LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE:** TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of ≤1000ppm threshold. Antimony trioxide based flame retardants must also meet the ≤1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) **Lead/Ball Finish** - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pads must be soldered to the printed circuit board for thermal and mechanical performance.
NOTES: (continued)

4. This package designed to be soldered to a thermal pads on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
EXAMPLE STENCIL DESIGN

RLR0018A
B3QFN - 4.1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated