LP2983 Micropower 150-mA Voltage Regulator in SOT-23 Package
for Output Voltages ≤ 1.2 V

Designed for Use With Very Low-ESR Output Capacitors

1 Features

• Operating Input Supply Voltage: 2.2 V to 16 V
• Output Current: 150 mA
• Low Z_{OUT}: 0.3 Ω Typical (10 Hz to 1 MHz)
• Stable with Low-ESR Output Capacitor
• Low Ground Pin Current at All Loads
• Output Voltage Accuracy 1% (A Grade)
• High Peak Current Capability
• Wide Supply Voltage Range (16 V Maximum)
• Overtemperature and Overcurrent Protection
• −40°C to +125°C Junction Temperature Range
• Requires Minimum External Components

2 Applications

• Cellular Phones
• Palmtop/Laptop Computers
• Personal Digital Assistants (PDA)
• Camcorders, Personal Stereos, Cameras

3 Description

The LP2983 is a 150-mA, fixed-output voltage regulator designed to provide tight voltage regulation in applications with output voltages ≤ 1.2 V.

Using an optimized vertically integrated PNP (VIP) process, the LP2983 delivers unequaled performance in all critical specifications:

• Ground pin current: Typically 825 µA at a 150-mA load, and 75 µA at a 1-mA load.
• Enhanced stability: The LP2983 is stable with output capacitor ESR down to zero, which allows the use of ceramic capacitors on the output.
• Precision output: 1% tolerance output voltages available (A grade).
• Smallest possible size: SOT-23 package uses absolute minimum board space.

Device Information(1)

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP2983</td>
<td>SOT-23 (5)</td>
<td>2.90 mm × 1.60 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Copyright © 2016, Texas Instruments Incorporated
Table of Contents

1 Features ... 1
2 Applications .. 1
3 Description ... 1
4 Revision History ... 2
5 Pin Configuration and Functions 3
6 Specifications .. 4
 6.1 Absolute Maximum Ratings 4
 6.2 ESD Ratings ... 4
 6.3 Recommended Operating Conditions 4
 6.4 Thermal Information .. 4
 6.5 Electrical Characteristics 5
 6.6 Typical Characteristics .. 6
7 Detailed Description .. 10
 7.1 Overview .. 10
 7.2 Functional Block Diagram 10
 7.3 Feature Description ... 10
4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision C (April 2013) to Revision D Page

- Added Pin Configuration and Functions section, ESD Ratings table and Thermal Information table with update thermal values, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section; change pin names V_{OUT} and V_{IN} to OUT and IN 1
- Changed footnote 3 to Abs Max to replace out-of-date θ_{JA} temperature with general information 4
- Added Thermal Information table ... 4

Changes from Revision B (April 2013) to Revision C Page

- Changed layout of National Data Sheet to TI format .. 11
5 Pin Configuration and Functions

![DBV Package 5-Pin SOT-23 Top View](image)

<table>
<thead>
<tr>
<th>PIN</th>
<th>NUMBER</th>
<th>TYPE</th>
<th>NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IN</td>
<td>Input</td>
<td>IN</td>
<td>Input voltage</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>—</td>
<td>GND</td>
<td>Common ground (device substrate)</td>
</tr>
<tr>
<td>3</td>
<td>ON/OFF</td>
<td>Input</td>
<td>ON/OFF</td>
<td>Logic high enable input</td>
</tr>
<tr>
<td>4</td>
<td>ESR</td>
<td>—</td>
<td>ESR</td>
<td>Low side connection for low-ESR output capacitors</td>
</tr>
<tr>
<td>5</td>
<td>OUT</td>
<td>Output</td>
<td>OUT</td>
<td>Regulated output voltage</td>
</tr>
</tbody>
</table>
6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)\(^{(1)}\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input supply voltage (survival)</td>
<td>−0.3</td>
<td>16</td>
<td>V</td>
</tr>
<tr>
<td>Input supply voltage (operating)</td>
<td>2.3</td>
<td>16</td>
<td>V</td>
</tr>
<tr>
<td>Shutdown input voltage (survival)</td>
<td>−0.3</td>
<td>16</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage (survival)(^{(2)})</td>
<td>−0.3</td>
<td>9</td>
<td>V</td>
</tr>
<tr>
<td>(I_{\text{OUT}}) (survival)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input-output voltage (survival)(^{(3)})</td>
<td>−0.3</td>
<td>16</td>
<td>V</td>
</tr>
<tr>
<td>Operating junction temperature</td>
<td>−40</td>
<td>125</td>
<td>°C</td>
</tr>
<tr>
<td>Power dissipation(^{(4)})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>−65</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

\(^{(2)}\) If used in a dual-supply system where the regulator load is returned to a negative supply, the LP2983 output must be diode-clamped to ground.

\(^{(3)}\) The output PNP structure contains a diode between the IN and OUT pins that is normally reverse-biased. Reversing the polarity from \(V_{\text{IN}}\) to \(V_{\text{OUT}}\) turn on this diode (See Reverse Input-Output Voltage).

\(^{(4)}\) The maximum allowable power dissipation is a function of the maximum junction temperature, \(T_{J(\text{MAX})}\), the junction-to-ambient thermal resistance, \(R_{\theta JA}\), and the ambient temperature, \(T_A\). The maximum allowable power dissipation at any ambient temperature is calculated using \(P_{\text{MAX}} = (T_{J(\text{MAX})} - T_A) / R_{\theta JA}\). The value of \(R_{\theta JA}\) for the SOT-23 package varies depending on the application board — the value given in Thermal Information can be considered as the worstcase scenario. Exceeding the maximum allowable power dissipation causes excessive die temperature, and the regulator will go into thermal shutdown.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{(ESD)}}) Electrostatic discharge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (all pins except pin 3)(^{(1)})</td>
<td>±2000</td>
<td>V</td>
</tr>
<tr>
<td>Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (pin 3)(^{(1)})</td>
<td>±1000</td>
<td>V</td>
</tr>
</tbody>
</table>

\(^{(1)}\) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating junction temperature</td>
<td>−40</td>
<td>125</td>
<td>°C</td>
</tr>
<tr>
<td>Input supply voltage (operating)</td>
<td>2.2</td>
<td>16</td>
<td>V</td>
</tr>
</tbody>
</table>

6.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(^{(1)})</th>
<th>LP2983</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction-to-ambient thermal resistance, High-K(^{(2)})</td>
<td>169.0</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction-to-case (top) thermal resistance</td>
<td>121.8</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction-to-board thermal resistance</td>
<td>29.5</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction-to-top characterization parameter</td>
<td>16.1</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction-to-board characterization parameter</td>
<td>29.0</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

\(^{(1)}\) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPR5985.

\(^{(2)}\) Thermal resistance value \(R_{\theta JA}\) is based on the EIA/JEDEC High-K printed circuit board defined by: JESD51-7 · High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages.
6.5 Electrical Characteristics

Unless otherwise specified: $T_J = 25°C$, $V_{IN} = V_{O(NOM)} + 1 V$, $I_L = 1 mA$, $C_{OUT} = 1 \mu F$, $V_{ON/OFF} = 2 V$.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔV_O</td>
<td>Output voltage tolerance</td>
<td>$1 mA < I_L < 50 mA$</td>
<td>$-1%$</td>
<td>$1%$</td>
<td>$1.5%$</td>
<td>$1.5%$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1 mA < I_L < 50 mA$</td>
<td>$-2%$</td>
<td>$2%$</td>
<td>$-2.5%$</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1 mA < I_L < 150 mA$</td>
<td>$-2.5%$</td>
<td>$2.5%$</td>
<td>$-3%$</td>
<td>$3%$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1 mA < I_L < 150 mA$</td>
<td>$-3.5%$</td>
<td>$3.5%$</td>
<td>$-4%$</td>
<td>$4%$</td>
<td></td>
</tr>
<tr>
<td>$\Delta V_O / \Delta V_{IN}$</td>
<td>Output voltage line regulation</td>
<td>$V_{O(NOM)} + 1 V \leq V_{IN} \leq 16 V$</td>
<td>0.01</td>
<td>0.016</td>
<td>0.01</td>
<td>0.016</td>
<td>$% / V$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{O(NOM)} + 1 V \leq V_{IN} \leq 16 V$</td>
<td>0.032</td>
<td>0.032</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{GND}</td>
<td>Ground pin current</td>
<td>$I_L = 0 mA$</td>
<td>65</td>
<td>95</td>
<td>65</td>
<td>95</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_L = 0 mA$, $-40°C \leq T_J \leq 125°C$</td>
<td>125</td>
<td>125</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_L = 1 mA$</td>
<td>75</td>
<td>110</td>
<td>75</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_L = 1 mA$, $-40°C \leq T_J \leq 125°C$</td>
<td>170</td>
<td>170</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_L = 10 mA$</td>
<td>120</td>
<td>220</td>
<td>120</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_L = 10 mA$, $-40°C \leq T_J \leq 125°C$</td>
<td>400</td>
<td>400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_L = 50 mA$</td>
<td>300</td>
<td>500</td>
<td>300</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_L = 50 mA$, $-40°C \leq T_J \leq 125°C$</td>
<td>900</td>
<td>900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_L = 150 mA$</td>
<td>825</td>
<td>1200</td>
<td>825</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_L = 150 mA$, $-40°C \leq T_J \leq 125°C$</td>
<td>2000</td>
<td>2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{ON/OFF} < 0.15 V$</td>
<td></td>
<td>6</td>
<td>12</td>
<td>6</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{ON/OFF} < 0.05 V$</td>
<td></td>
<td>0.2</td>
<td>2</td>
<td>0.2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{IN} (min)</td>
<td>Minimum V_{IN} required to maintain output regulation</td>
<td>$-40°C \leq T_J \leq 125°C$</td>
<td>2.05</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$-40°C \leq T_J \leq 125°C$</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{ON/OFF}$</td>
<td>ON/OFF input voltage</td>
<td>High = O/P ON</td>
<td>1.4</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>High = O/P ON, $-40°C \leq T_J \leq 125°C$</td>
<td>1.6</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low = O/P OFF</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low = O/P OFF, $-40°C \leq T_J \leq 125°C$</td>
<td>0.05</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{ON/OFF}$</td>
<td>ON/OFF input current</td>
<td>$V_{ON/OFF} = 0 V$</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{ON/OFF} = 0 V$, $-40°C \leq T_J \leq 125°C$</td>
<td>-2</td>
<td>-2</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{ON/OFF} = 5 V$</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{ON/OFF} = 5 V$, $-40°C \leq T_J \leq 125°C$</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate Average Outgoing Quality Level (AOQL).

(2) The ON/OFF inputs must be properly driven to prevent misoperation. For details, see Operation With ON/OFF Control.
Electrical Characteristics (continued)

Unless otherwise specified: $T_J = 25^\circ C$, $V_{IN} = V_{ON(NOM)} + 1$ V, $I_L = 1$ mA, $C_{OUT} = 1 \mu F$, $V_{ON/OFF} = 2$ V.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>LP2981AI-XX(1)</th>
<th>LP2981I-XX(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_n (RMS)</td>
<td>BW = 300 Hz to 50 kHz $V_{OUT} = 1.2$ V, $C_{OUT} = 10$ µF</td>
<td>MIN</td>
<td>TYP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>$\Delta V_O/\Delta V_{IN}$ Ripple rejection</td>
<td>$f = 1$ kHz, $C_{OUT} = 2.2$ µF</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>$I_{O(MAX)}$ Short-circuit current</td>
<td>$R_L = 0$ Ω (steady state)(3)</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>$I_{O(PK)}$ Peak output current</td>
<td>$V_{OUT} \geq V_{ON(NOM)} - 5%$</td>
<td>250</td>
<td>250</td>
</tr>
</tbody>
</table>

(3) The LP2983 has foldback current limiting which allows a high peak current when $V_{OUT} > 0.5$ V, and then reduces the maximum output current as V_{OUT} is forced down to ground. See related curve(s) in Typical Characteristics section.

6.6 Typical Characteristics

Unless otherwise specified: $C_{IN} = 1$ µF, $C_{OUT} = 2.2$ µF, $V_{IN} = V_{OUT(NOM)} + 1$, $T_A = 25^\circ C$, ON/OFF pin is tied to V_{IN}.

![Figure 1. LP2983 Tempco](image1)
![Figure 2. Minimum Input Voltage vs Temperature](image2)
![Figure 3. Input Current vs V_{IN}](image3)
![Figure 4. Input Current vs V_{IN}](image4)
Typical Characteristics (continued)

Unless otherwise specified: $C_{IN} = 1 \mu F$, $C_{OUT} = 2.2 \mu F$, $V_{IN} = V_{OUT}(\text{NOM}) + 1$, $T_A = 25^\circ C$, ON/OFF pin is tied to V_{IN}.

Load = 50 mA and 150 mA

Figure 5. Input Current vs V_{IN}

Figure 6. GND Pin vs Load Current

Figure 7. GND Pin vs Temperature and Load

Figure 8. Line Transient Response

Figure 9. Line Transient Response

Figure 10. Line Transient Response
Typical Characteristics (continued)

Unless otherwise specified: \(C_{\text{IN}} = 1 \, \mu\text{F} \), \(C_{\text{OUT}} = 2.2 \, \mu\text{F} \), \(V_{\text{IN}} = V_{\text{OUT}}(\text{NOM}) + 1 \), \(T_A = 25^\circ\text{C} \), ON/OFF pin is tied to \(V_{\text{IN}} \).

Load = 150 mA \(\Delta V_{\text{IN}} = 13.8 \, \text{V} \)

![Figure 11. Line Transient Response](image1)

![Figure 12. Noise Density](image2)

\(C_{\text{OUT}} = 2.2 \, \mu\text{F} \)

![Figure 13. Ripple Rejection](image3)

![Figure 14. Turnon Time](image4)

![Figure 15. Short-Circuit Current vs Temperature](image5)

![Figure 16. Short-Circuit Current](image6)
Typical Characteristics (continued)

Unless otherwise specified: $C_{IN} = 1 \, \mu F$, $C_{OUT} = 2.2 \, \mu F$, $V_{IN} = V_{OUT} \text{(NOM)} + 1$, $T_A = 25^\circ C$, ON/OFF pin is tied to V_{IN}.

Figure 17. Short-Circuit Current

- $V_{IN} = 2.8 \, V$
- $V_{IN} = 6 \, V$

Figure 18. Short-Circuit Current

- $C_{OUT} = 4.7 \, \mu F$
- $C_{OUT} = 2.2 \, \mu F$

Figure 19. Load Transient Response

- $C_{OUT} = 4.7 \, \mu F$
- $C_{OUT} = 2.2 \, \mu F$

Figure 20. Load Transient Response
7 Detailed Description

7.1 Overview

The LP2983 is a voltage regulator with optimized vertically integrated PNP designed for use with very low ESR output capacitors, excellent for low noise applications that require a clean voltage supply. The LP2983 has a wide input voltage range (16 V maximum), high accuracy (A grade 1%), and a fixed output voltage supply capable of delivering 150 mA. In addition the LP2983 device provides the following features:

- High accuracy output voltage
- Low ground current, typically 825 µA at 150-mA load and 75 µA at 1-mA load
- A sleep mode feature is available, allowing the regulator to consume only 1 µA (typical) when the ON/OFF pin is pulled low.
- Overtemperature protection and overcurrent protection circuitry designed to safeguard the device during unexpected conditions.
- Thermal protection

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 High-Accuracy Output Voltage

With special careful design to minimize all contributions to the output voltage error, the LP2983 distinguishes itself as a very high-accuracy output voltage micropower LDO. This includes a tight initial tolerance (typically 1.5% at 50 mA, 25°C junction temperature; also available in A grade with an accuracy of 1% under the same conditions), extremely good line regulation (0.01%/V typical), and a very low output-voltage temperature coefficient, making the part an ideal low-power voltage reference.

7.3.2 Low Ground Current

The LP2983 device uses a vertical PNP process which allows for quiescent currents that are considerably lower than those associated with traditional lateral PNP regulators, typically 825 µA at 150-mA load and 75 µA at 1-mA load.
Feature Description (continued)

7.3.3 Reverse Input-Output Voltage

The internal PNP power transistor used as the pass element in the LP2983 has an inherent diode connected between the regulator output and input. During normal operation (where the input voltage is higher than the output) this diode is reverse biased (See Figure 21).

However, if the input voltage is more than a V_{BE} below the output voltage, this diode turns ON and current flows into the regulator output. In such cases, a parasitic SCR can latch which allows a high current to flow into the V_{IN} pin and out the ground pin, which can damage the part.

The internal diode can also be turned on if the input voltage is abruptly stepped down to a voltage which is a V_{BE} below the output voltage.

In any application where the output voltage may be higher than the input voltage, an external Schottky diode must be connected from V_{IN} to V_{OUT} (cathode on V_{IN}, anode on V_{OUT} — see Figure 22), to limit the reverse voltage across the LP2983 to 0.3 V (see Absolute Maximum Ratings).

Copyright © 2016, Texas Instruments Incorporated

Figure 21. LP2983 Reverse Current Path

Figure 22. Adding External Schottky Diode Protection
Feature Description (continued)

7.3.4 ON/OFF Input Operation

The LP2983 is shut off by driving the ON/OFF input low, and turned on by pulling it high. If this feature is not to be used, the ON/OFF input must be tied to \(V_{IN} \) to keep the regulator output on at all times.

To assure proper operation, the signal source used to drive the ON/OFF input must be able to swing above and below the specified turnon or turnoff voltage thresholds listed in Typical Characteristics under \(V_{ON/OFF} \). To prevent mis-operation, the turnon (and turnoff) voltage signals applied to the ON/OFF input must have a slew rate which is \(\geq 40 \text{ mV/µs} \).

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>The regulator output voltage can not be ensured if a slow-moving AC (or DC) signal is applied that is in the range between the specified turn-on and turn-off voltages listed under the electrical specification (V_{ON/OFF}) (see Electrical Characteristics).</td>
</tr>
</tbody>
</table>

7.3.5 Thermal Protection

The LP2983 contains a thermal shutdown protection circuit to turn off the output current when excessive heat is dissipated in the LDO. The thermal time-constant of the semiconductor die is fairly short, and thus the output cycles on and off at a high rate when thermal shutdown is reached until the power dissipation is reduced. The internal protection circuitry of the LM2983 is designed to protect against thermal overload conditions. The circuitry is not intended to replace proper heat sinking. Continuously running the device into thermal shutdown degrades its reliability.

7.4 Device Functional Modes

7.4.1 Operation With \(V_{O(NOM)} + 1 \text{ V} \leq V_{IN} < 16 \text{ V} \)

The device operates if the input voltage is equal to, or exceeds, \(V_{OUT(TARGET)} + 1 \text{ V} \). If the previous condition is not met, the device will not operate correctly, and the output voltage may not reach target value.

7.4.2 Operation With ON/OFF Control

If the voltage on the ON/OFF pin is less than 0.1 V at room temperature and less than 0.05 V over the full operating temperature range, the device output is disabled, and the shutdown current (\(I_{GND} \)) will not exceed 12 \(\mu \text{A} \). Raising ON/OFF above 1.4 V at room temperature and above 1.6 V over the full operating temperature range initiates the start-up sequence of the device.
8 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information
The LP2983 is a linear voltage regulator operating from 2.2 V to 16 V on the input and regulates voltages between ≤ 1.2 V with high accuracy and a 150-mA maximum output current. To achieve high efficiency, the dropout voltage (\(V_{IN} - V_{OUT}\)) must be as small as possible. Successfully implementing an LDO in an application depends on the application requirements. If the requirements are simply input voltage and output voltage, compliance specifications (such as internal power dissipation or stability) must be verified to ensure performance.

8.2 Typical Application

![LP2983 Typical Application Diagram](diagram.png)

*ON/OFF input must be actively terminated. Tie to \(V_{IN}\) if this function is not to be used.
**Minimum capacitance is shown to ensure stability (may be increased without limit). A ceramic capacitor is required for output (see External Capacitors).

Figure 23. LP2983 Typical Application

8.2.1 Design Requirements
For typical voltage regulator applications, use the parameters listed in Table 1:

Table 1. Design Parameters

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>DESIGN REQUIREMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>2.2 V to 16 V</td>
</tr>
<tr>
<td>Output voltage</td>
<td>1V or 1.2 V</td>
</tr>
<tr>
<td>Output current</td>
<td>0 mA to 150 mA</td>
</tr>
<tr>
<td>Output tolerance (1 mA ≤ (I_L) ≤ 50 mA at 25°C)</td>
<td>±1.5% (±1% with A-grade version)</td>
</tr>
</tbody>
</table>
8.2.2 Detailed Design Procedure

8.2.2.1 External Capacitors

Like any low-dropout regulator, the LP2983 requires external capacitors for regulator stability. These capacitors must be correctly selected for good performance.

8.2.2.1.1 Input Capacitor

An input capacitor whose capacitance is ≥ 1 µF is required between the LP2983 input and ground (the amount of capacitance may be increased without limit).

This capacitor must be located a distance of not more than 1 cm from the input pin and returned to a clean analog ground. Any good-quality ceramic, tantalum, or film capacitor may be used at the input.

NOTE

Tantalum capacitors can suffer catastrophic failure due to surge current when connected to a low-impedance source of power (like a battery or very large capacitor). If a tantalum capacitor is used at the input, it must be ensured by the manufacturer to have a surge current rating sufficient for the application.

There are no requirements for ESR on the input capacitor, but tolerance and temperature coefficient must be considered when selecting the capacitor to ensure the capacitance is ≥ 1 µF over the entire operating temperature range.

8.2.2.1.2 Output Capacitors

The LP2983 is designed specifically to work with ceramic output capacitors, utilizing circuitry which allows the regulator to be stable across the entire range of output current with an output capacitor whose ESR is as low as 0 Ω.

The ceramic output capacitor must be connected between the OUT pin (device pin 5) and the ESR pin (device pin 4) (see Figure 24).

![Figure 24. Ceramic to ESR Pin (C_{OUT} = 2.2 µF)](image)

The LP2983 requires a minimum of 2.2 µF on the output (output capacitor size can be increased without limit).

It is important to remember that capacitor tolerance and variation with temperature must be taken into consideration when selecting an output capacitor so that the minimum required amount of output capacitance is provided over the full operating temperature range. Note that ceramic capacitors can exhibit large changes in capacitance with temperature (see Capacitor Characteristics).

The output capacitor must be located not more than 1 cm from the output pin and returned to a clean analog ground via the ESR pin.
8.2.2.2 Capacitor Characteristics

The LP2983 was designed to work with ceramic capacitors on the output to take advantage of the benefits they offer: for capacitance values in the 2.2-µF to 4.7-µF range, ceramics are the least expensive and also have the lowest ESR values (which makes them best for eliminating high-frequency noise).

One disadvantage of ceramic capacitors is that their capacitance can vary with temperature. Most large value ceramic capacitors (≥ 2.2 µF) are manufactured with the Z5U or Y5V temperature characteristic, which results in the capacitance dropping by more than 50% as the temperature goes from 25°C to 85°C.

This could cause problems if a 2.2-µF capacitor were used on the output since it will drop down to approximately 1 µF at high ambient temperatures (which could cause the LP2983 to oscillate). If Z5U or Y5V capacitors are used on the output, a minimum capacitance value of 4.7 µF must be observed.

A better choice for temperature coefficient in ceramic capacitors is X7R, which holds the capacitance within ±15%. Unfortunately, the larger values of capacitance are not offered by all manufacturers in the X7R dielectric.

8.2.2.3 Power Dissipation

Knowing the device power dissipation and proper sizing of the thermal plane connected to the tab or pad is critical to ensuring reliable operation. Device power dissipation depends on input voltage, output voltage, and load conditions and can be calculated with Equation 1.

\[P_{D(MAX)} = (V_{IN(MAX)} - V_{OUT}) \times I_{OUT} \]

(1)

Power dissipation can be minimized, and greater efficiency can be achieved, by using the lowest available voltage drop option that would still be greater than the dropout voltage (V_{DO}). However, keep in mind that higher voltage drops result in better dynamic (that is, PSRR and transient) performance.

On the SOT-23 (DBV) package, the primary conduction path for heat is through the pins to the PCB. The maximum allowable junction temperature (T_{J(MAX)}) determines maximum power dissipation allowed (P_{D(MAX)}) for the device package.

Power dissipation and junction temperature are most often related by the junction-to-ambient thermal resistance (R_{JUA}) of the combined PCB and device package and the temperature of the ambient air (T_{A}), according to Equation 2 or Equation 3:

\[T_{J(MAX)} = T_{A(MAX)} + (R_{JUA} \times P_{D(MAX)}) \]
\[P_{D} = T_{J(MAX)} - T_{A(MAX)} / R_{JUA} \]

(2)
(3)

Unfortunately, this R_{JUA} is highly dependent on the heat-spreading capability of the particular PCB design, and therefore varies according to the total copper area, copper weight, and location of the planes. The R_{JUA} recorded in Thermal Information is determined by the specific EIA/JEDEC JESD51-7 standard for PCB and copper-spreading area, and is to be used only as a relative measure of package thermal performance. For a well-designed thermal layout, R_{JUA} is actually the sum of the package junction-to-case (bottom) thermal resistance (R_{JUCbot}) plus the thermal resistance contribution by the PCB copper area acting as a heat sink.
8.2.2.4 Estimating Junction Temperature

The EIA/JEDEC standard recommends the use of psi (Ψ) thermal characteristics to estimate the junction temperatures of surface mount devices on a typical PCB board application. These characteristics are not true thermal resistance values, but rather package specific thermal characteristics that offer practical and relative means of estimating junction temperatures. These psi metrics are determined to be significantly independent of copper-spreading area. The key thermal characteristics (ΨJT and ΨJB) are given in Thermal Information and are used in accordance with Equation 4 or Equation 5.

\[T_{J(MAX)} = T_{TOP} + (\Psi_{JT} \times P_{D(MAX)}) \]

where
- \(P_{D(MAX)} \) is explained in Equation 3
- \(T_{TOP} \) is the temperature measured at the center-top of the device package.

\[T_{J(MAX)} = T_{BOARD} + (\Psi_{JB} \times P_{D(MAX)}) \]

where
- \(P_{D(MAX)} \) is explained in Equation 3.
- \(T_{BOARD} \) is the PCB surface temperature measured 1-mm from the device package and centered on the package edge.

For more information about the thermal characteristics ΨJT and ΨJB, see Semiconductor and IC Package Thermal Metrics (SPRA953); for more information about measuring \(T_{TOP} \) and \(T_{BOARD} \), see Using New Thermal Metrics (SBVA025); and for more information about the EIA/JEDEC JESD51 PCB used for validating \(R_{\theta JA} \), see Thermal Characteristics of Linear and Logic Packages Using JEDEC PCB Designs (SZZA017). These application notes are available at www.ti.com.

8.2.3 Application Curves

Unless otherwise specified, \(C_{IN} = 1 \mu F \), \(C_{OUT} = 2.2 \mu F \), \(V_{IN} = V_{OUT(NOM)} + 1 \), \(T_{A} = 25°C \), ON/OFF pin is tied to VIN.

9 Power Supply Recommendations

The LP2983 is designed to operate from an input voltage supply range between 2.2 V and 16 V. The input voltage range provides adequate headroom for the device to have a regulated output. This input supply must be well regulated. If the input supply is noisy, additional input capacitors with low ESR can help improve the output noise and transient performance.

Figure 25. Line Transient Response

Figure 26. Load Transient Response
10 Layout

10.1 Layout Guidelines

For best overall performance, place all circuit components on the same side of the circuit board and as near as practical to the respective LDO pin connections. Place ground return connections to the input and output capacitors, and to the LDO ground pin as close to each other as possible, connected by a wide, component-side, copper surface. The use of vias and long traces to create LDO circuit connections is strongly discouraged and negatively affects system performance. This grounding and layout scheme minimizes inductive parasitics, and thereby reduces load-current transients, minimizes noise, and increases circuit stability. TI also recommends a ground reference plane, either embedded in the PCB itself or located on the bottom side of the PCB opposite the components. This reference plane serves to assure accuracy of the output voltage, shield noise, and behaves similar to a thermal plane to spread (or sink) heat from the LDO device. In most applications, this ground plane is necessary to meet thermal requirements.

10.2 Layout Example

Figure 27. LP2983 Layout Example
11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation

For additional information, see the following:

- *Semiconductor and IC Package Thermal Metrics* (SPRA953)
- *Using New Thermal Metrics* (SBVA025)
- *Thermal Characteristics of Linear and Logic Packages Using JEDEC PCB Designs* (SZZA017)

11.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

- **TI E2E™ Online Community** *TI's Engineer-to-Engineer (E2E) Community*. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

- **Design Support** *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.3 Trademarks

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

11.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.5 Glossary

SLYZ022 — *TI Glossary.*

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP2983AIM5-1.0/NOPB</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>LENA</td>
<td></td>
</tr>
<tr>
<td>LP2983AIM5-1.2/NOPB</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>LEFA</td>
<td></td>
</tr>
<tr>
<td>LP2983AIM5X-1.0/NOPB</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>LENA</td>
<td></td>
</tr>
<tr>
<td>LP2983AIM5X-1.2/NOPB</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>LEFA</td>
<td></td>
</tr>
<tr>
<td>LP2983IM5-1.0/NOPB</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>LENB</td>
<td></td>
</tr>
<tr>
<td>LP2983IM5-1.2/NOPB</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>LEBB</td>
<td></td>
</tr>
<tr>
<td>LP2983IM5X-1.0/NOPB</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>LEBB</td>
<td></td>
</tr>
<tr>
<td>LP2983IM5X-1.2/NOPB</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>LEBB</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) **Eco Plan** - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP2983AIM5-1.0/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LP2983AIM5-1.2/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LP2983AIM5X-1.0/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LP2983AIM5X-1.2/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LP2983IM5-1.0/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LP2983IM5-1.2/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LP2983IM5X-1.0/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LP2983IM5X-1.2/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
</tbody>
</table>

All dimensions are nominal.

TAPE DIMENSIONS

- **A0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component length
- **K0**: Dimension designed to accommodate the component thickness
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

- **Q1**: Quadrant 1
- **Q2**: Quadrant 2
- **Q3**: Quadrant 3
- **Q4**: Quadrant 4

[Diagram: TAPE AND REEL INFORMATION with dimensions and quadrant assignments]
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP2983AIM5-1.0/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LP2983AIM5-1.2/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LP2983AIM5X-1.0/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LP2983AIM5X-1.2/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LP2983IM5-1.0/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LP2983IM5-1.2/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LP2983IM5X-1.0/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LP2983IM5X-1.2/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
D. Falls within JEDEC MO-178 Variation AA.
NOTES:

A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
D. Publication IPC-7351 is recommended for alternate designs.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI’s published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties. TI shall not be responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers’ applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designers agree that, with respect to their applications, Designers have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designers agree that prior to using or distributing any applications that include TI products, Designers will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY TECHNOLOGY, PATENT, COPYRIGHT, REVENUE SHARING AGREEMENT OR ANY OTHER PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPISTEMIC FAILURE WARRANTY OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements. Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designers may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S. TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated