1 Features

- Inverts or Doubles Input Supply Voltage
- Narrow SO-8 Package
- 6.5-Ω Typical Output Resistance
- 88% Typical Conversion Efficiency at 100 mA
- Selectable Oscillator Frequency: 10 kHz/80 kHz

2 Applications

- Laptop Computers
- Cellular Phones
- Medical Instruments
- Operational Amplifier Power Supplies
- Interface Power Supplies
- Handheld Instruments

3 Description

The MAX660 CMOS charge-pump voltage converter is a versatile unregulated switched-capacitor inverter or doubler. Operating from a wide 1.5-V to 5.5-V supply voltage, the MAX660 uses two low-cost capacitors to provide 100 mA of output current without the cost, size and EMI related to inductor-based converters. With an operating current of only 120 µA and operating efficiency greater than 90% at most loads, the MAX660 provides ideal performance for battery-powered systems. MAX660 devices can be operated directly in parallel to lower output impedance, thus providing more current at a given voltage.

The FC (frequency control) pin selects between a nominal 10-kHz or 80-kHz oscillator frequency. The oscillator frequency can be lowered by adding an external capacitor to the OSC pin. Also, the OSC pin may be used to drive the MAX660 with an external clock up to 150 kHz. Through these methods, output ripple frequency and harmonics may be controlled.

Additionally, the MAX660 may be configured to divide a positive input voltage precisely in half. In this mode, input voltages as high as 11 V may be used.

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX660</td>
<td>SOIC (8)</td>
<td>4.90 mm × 3.91 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Copyright © 2016, Texas Instruments Incorporated
Table of Contents

1 Features ... 1
2 Applications ... 1
3 Description ... 1
4 Revision History ... 2
5 Device Comparison Tables ... 3
6 Pin Configuration and Functions 4
7 Specifications .. 5
 7.1 Absolute Maximum Ratings 5
 7.2 ESD Ratings .. 5
 7.3 Recommended Operating Conditions 5
 7.4 Thermal Information ... 5
 7.5 Electrical Characteristics 6
 7.6 Typical Characteristics .. 7
8 Parameter Measurement Information 9
 8.1 MAX660 Test Circuit .. 9
9 Detailed Description .. 10
 9.1 Overview ... 10
 9.2 Functional Block Diagram 10
10 Application and Implementation 12
 10.1 Application Information .. 12
 10.2 Typical Applications ... 12
 10.3 Split V+ in Half .. 18
11 Power Supply Recommendations 18
12 Layout ... 19
 12.1 Layout Guidelines ... 19
 12.2 Layout Example .. 19
13 Device and Documentation Support 20
 13.1 Device Support .. 20
 13.2 Receiving Notification of Documentation Updates 20
 13.3 Community Resources .. 20
 13.4 Trademarks ... 20
 13.5 Electrostatic Discharge Caution 20
 13.6 Glossary .. 20
14 Mechanical, Packaging, and Orderable Information 20

4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision A (October 2016) to Revision B

• Changed Figure 5 caption from "Efficiency vs Oscillator Frequency" to "Efficiency vs Load Current" ... 7

Changes from Original (SNOS405) to Revision A

• Added additional info to DescriptionDevice Information and Pin Configuration and Functions sections, ESD Ratings and Thermal Information tables, Feature Description, Device Functional Modes, Application and Implementation, Power Supply Recommendations, Layout, Device and Documentation Support, and Mechanical, Packaging, and Orderable Information sections .. 1
• Deleted obsolete device number information from Device Comparison table .. 3
• Deleted lead temperature spec from Abs Max as it is in POA .. 5
• Added additional thermal values; changed RθJA from "170°C/W" to "114.4°C/W" .. 5
• Changed "PL" to "PM" and "PF" to PJ - manufacturers changed their part number prefix .. 14
• Changed "Sprague" to "Vishay Sprague" per website .. 14
Device Comparison Tables

<table>
<thead>
<tr>
<th></th>
<th>LM2664</th>
<th>LM2665</th>
<th>MAX660</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>SOT-23 (6)</td>
<td>SOT-23 (6)</td>
<td>SOIC</td>
</tr>
<tr>
<td>Supply current (typical) (mA)</td>
<td>0.22</td>
<td>0.22</td>
<td>0.12 at 10 kHz, 1 at 80 kHz</td>
</tr>
<tr>
<td>Output (typical) (Ω)</td>
<td>12</td>
<td>12</td>
<td>6.5</td>
</tr>
<tr>
<td>Oscillator (kHz)</td>
<td>80</td>
<td>80</td>
<td>10, 80</td>
</tr>
<tr>
<td>Input (V)</td>
<td>1.8 to 5.5</td>
<td>1.8 to 5.5</td>
<td>1.8 to 5.5</td>
</tr>
<tr>
<td>Output mode(s)</td>
<td>Invert</td>
<td>Double</td>
<td>Invert, Double</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>MAX660</th>
<th>LM2662</th>
<th>LM2663</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>SOIC, VSSOP (8)</td>
<td>SOIC (8)</td>
<td>SOIC (8)</td>
</tr>
<tr>
<td>Supply current (typical) (mA)</td>
<td>0.12 at 10 kHz, 1 at 80 kHz</td>
<td>0.3 at 10 kHz, 1.3 at 70 kHz</td>
<td>1.3</td>
</tr>
<tr>
<td>Output (typical) (Ω)</td>
<td>6.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Oscillator (kHz)</td>
<td>10, 80</td>
<td>10, 70</td>
<td>70</td>
</tr>
<tr>
<td>Input (V)</td>
<td>1.8 to 5.5</td>
<td>1.8 to 5.5</td>
<td>1.8 to 5.5</td>
</tr>
<tr>
<td>Output mode(s)</td>
<td>Invert, Double</td>
<td>Invert, Double</td>
<td>Invert, Double</td>
</tr>
</tbody>
</table>
6 Pin Configuration and Functions

D Package
8-Pin SOIC Top View

<table>
<thead>
<tr>
<th>PIN</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAP+</td>
<td>2</td>
<td>Power</td>
</tr>
<tr>
<td>CAP−</td>
<td>4</td>
<td>Power</td>
</tr>
<tr>
<td>FC</td>
<td>1</td>
<td>Input</td>
</tr>
<tr>
<td>GND</td>
<td>3</td>
<td>Ground</td>
</tr>
<tr>
<td>LV</td>
<td>6</td>
<td>Input</td>
</tr>
<tr>
<td>OSC</td>
<td>7</td>
<td>Input</td>
</tr>
<tr>
<td>OUT</td>
<td>5</td>
<td>Power</td>
</tr>
<tr>
<td>V+</td>
<td>8</td>
<td>Power</td>
</tr>
</tbody>
</table>

VOLTAGE INVERTER

VOLTAGE DOUBLER
7 Specifications

7.1 Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage (V+ to GND, or GND to OUT)</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>LV</td>
<td>(OUT − 0.3 V)</td>
<td>GND + 3 V</td>
</tr>
<tr>
<td>FC, OSC</td>
<td>The least negative of (OUT − 0.3 V)/(V+ − 6 V) to (V+ 0.3 V)</td>
<td></td>
</tr>
<tr>
<td>V+ and OUT continuous output current</td>
<td>120</td>
<td>mA</td>
</tr>
<tr>
<td>Output short-circuit duration to GND</td>
<td>1</td>
<td>sec</td>
</tr>
<tr>
<td>Power dissipation, T_A = 25°C</td>
<td>735</td>
<td>mW</td>
</tr>
<tr>
<td>T_J, maximum</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Operating junction temperature</td>
<td>−40</td>
<td>85</td>
</tr>
<tr>
<td>Storage temperature, T_stg</td>
<td>−65</td>
<td>150</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

(3) OUT may be shorted to GND for one second without damage. However, shorting OUT to V+ may damage the device and must be avoided. Also, for temperatures above 85°C, OUT must not be shorted to GND or V+, or device may be damaged.

(4) The maximum allowable power dissipation is calculated by using P_D_MAX = (T_J_MAX − T_A) / R_θ_JA, where T_J_MAX is the maximum junction temperature, T_A is the ambient temperature, and R_θ_JA is the junction-to-ambient thermal resistance of the specified package.

7.2 ESD Ratings

<table>
<thead>
<tr>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>±2000</td>
<td>V</td>
</tr>
</tbody>
</table>

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

<table>
<thead>
<tr>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V+ (supply voltage)</td>
<td>Inverter, LV = open</td>
<td>3.5</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>Inverter, LV = GND</td>
<td>1.5</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>Doubler, LV = out</td>
<td>2.5</td>
<td>5.5</td>
</tr>
<tr>
<td>Junction temperature (T_J)</td>
<td>−40</td>
<td>85</td>
<td>°C</td>
</tr>
</tbody>
</table>

7.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(1)</th>
<th>MAX660</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_θ_JA</td>
<td>Junction-to-ambient thermal resistance</td>
<td>114.4</td>
</tr>
<tr>
<td>R_θ_JC(top)</td>
<td>Junction-to-case (top) thermal resistance</td>
<td>61.4</td>
</tr>
<tr>
<td>R_θ_JB</td>
<td>Junction-to-board thermal resistance</td>
<td>55.5</td>
</tr>
<tr>
<td>ψ_JT</td>
<td>Junction-to-top characterization parameter</td>
<td>9.8</td>
</tr>
<tr>
<td>ψ_JB</td>
<td>Junction-to-board characterization parameter</td>
<td>54.9</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.
7.5 Electrical Characteristics

Unless otherwise specified: Limits apply for $T_J = 25^\circ C$, $V_+ = 5$ V, $FC = open$, $C1 = C2 = 150 \mu F$.\(^{(1)}\)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_+(2)</td>
<td>$R_L = 1 , k\Omega$</td>
<td>Inverter LV = open(^{(3)}), $T_j = -40^\circ C$ to $85^\circ C$</td>
<td>3.5</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inverter, LV = GND, $T_j = -40^\circ C$ to $85^\circ C$</td>
<td>1.5</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Doubler, LV = OUT, $T_j = -40^\circ C$ to $85^\circ C$</td>
<td>2.5</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>I_Q</td>
<td>No load, LV = open</td>
<td>$FC = open$, $T_j = -40^\circ C$ to $85^\circ C$</td>
<td>0.12</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$FC = V+$</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$FC = V_+$, $T_j = -40^\circ C$ to $85^\circ C$</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_L</td>
<td>$T_A \leq 85^\circ C$, $OUT \leq -4$ V</td>
<td>100</td>
<td></td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$T_A > 85^\circ C$, $OUT \leq -3.8$ V</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{OUT}</td>
<td>$I_L = 100$ mA</td>
<td>$T_A \leq 85^\circ C$</td>
<td>6.5</td>
<td>10</td>
<td>(\Omega)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_A = -40^\circ C$ to $85^\circ C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_A > 85^\circ C$, $T_j = -40^\circ C$ to $85^\circ C$</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>f_{OSC}</td>
<td>OSC = open</td>
<td>$FC = open$, $T_j = -40^\circ C$ to $85^\circ C$</td>
<td>10</td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$FC = V+$</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$FC = V_+$, $T_j = -40^\circ C$ to $85^\circ C$</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{OSC}</td>
<td>$FC = open$</td>
<td></td>
<td></td>
<td>(\pm 2)</td>
<td>(\mu A)</td>
</tr>
<tr>
<td></td>
<td>$FC = V+$</td>
<td></td>
<td></td>
<td>(\pm 16)</td>
<td></td>
</tr>
<tr>
<td>P_{EFF}</td>
<td>$R_L ,(1 , k\Omega)$ between $V+$ and OUT</td>
<td></td>
<td></td>
<td>98%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$R_L ,(1 , k\Omega)$ between $V+$ and OUT</td>
<td>$T_j = -40^\circ C$ to $85^\circ C$</td>
<td></td>
<td></td>
<td>96%</td>
</tr>
<tr>
<td></td>
<td>$R_L ,(500 , \Omega)$ between GND and OUT</td>
<td></td>
<td></td>
<td></td>
<td>96%</td>
</tr>
<tr>
<td></td>
<td>$R_L ,(500 , \Omega)$ between GND and OUT</td>
<td>$T_j = -40^\circ C$ to $85^\circ C$</td>
<td></td>
<td></td>
<td>92%</td>
</tr>
<tr>
<td></td>
<td>$I_L = 100$ mA to GND</td>
<td></td>
<td></td>
<td></td>
<td>88%</td>
</tr>
<tr>
<td>V_{DEFF}</td>
<td>No load</td>
<td></td>
<td></td>
<td>99.96%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No load, $T_j = -40^\circ C$ to $85^\circ C$</td>
<td></td>
<td></td>
<td></td>
<td>99%</td>
</tr>
</tbody>
</table>

(1) In the test circuit, capacitors $C1$ and $C2$ are 0.2-\(\Omega\) maximum ESR capacitors. Capacitors with higher ESR increase output resistance, reduce output voltage, and efficiency.

(2) Specified output resistance includes internal switch resistance and capacitor ESR.

(3) The minimum limit for this parameter is different from the limit of 3 V for the industry-standard 660 product. For inverter operation with supply voltage below 3.5 V, connect the LV pin to GND.
7.6 Typical Characteristics

Circuit of Voltage Inverter and Positive Voltage Doubler.

![Figure 1. Supply Current vs Supply Voltage](image1)

![Figure 2. Supply Current vs Oscillator Frequency](image2)

![Figure 3. Output Source Resistance vs Supply Voltage](image3)

![Figure 4. Output Source Resistance vs Temperature](image4)

![Figure 5. Efficiency vs Load Current](image5)

![Figure 6. Output Voltage Drop vs Load Current](image6)
Typical Characteristics (continued)

Circuit of Voltage Inverter and Positive Voltage Doubler.

- Figure 7. Efficiency vs Oscillator Frequency
- Figure 8. Output Voltage vs Oscillator Frequency
- Figure 9. Oscillator Frequency Supply Voltage
- Figure 10. Oscillator Frequency vs Supply Voltage
- Figure 11. Oscillator Frequency vs Temperature
- Figure 12. Oscillator Frequency vs Temperature
8 Parameter Measurement Information

8.1 MAX660 Test Circuit
9 Detailed Description

9.1 Overview
The MAX660 contains four large CMOS switches which are switched in a sequence to invert the input supply voltage. Energy transfer and storage are provided by external capacitors. Figure 13 shows the voltage conversion scheme. When S1 and S3 are closed, C1 charges to the supply voltage V+. During this time interval switches S2 and S4 are open. In the second time interval, S1 and S3 are open and S2 and S4 are closed, C1 is charging C2. After a number of cycles, the voltage across C2 is pumped to V+. Because the anode of C2 is connected to ground, the output at the cathode of C2 equals \(-(V^+)\) assuming no load on C2, no loss in the switches, and no ESR in the capacitors. In reality, the charge transfer efficiency depends on the switching frequency, the on-resistance of the switches, and the ESR of the capacitors.

![Figure 13. Voltage Inverting Principle](image)

9.2 Functional Block Diagram

![Functional Block Diagram](image)
9.3 Feature Description

The internal oscillator frequency can be selected using the frequency control (FC) pin. When FC is open, the oscillator frequency is 10 kHz; when FC is connected to V+, the frequency increases to 80 kHz. A higher oscillator frequency allows use of smaller capacitors for equivalent output resistance and ripple, but increases the typical supply current from 0.12 mA to 1 mA. The oscillator frequency can be lowered by adding an external capacitor between OSC and GND. (See Typical Characteristics.) Also, in the inverter mode, an external clock that swings within 100 mV of V+ and GND can be used to drive OSC. Any CMOS logic gate is suitable for driving OSC. LV must be grounded when driving OSC. The maximum external clock frequency is limited to 150 kHz.

The switching frequency of the converter (also called the charge-pump frequency) is half of the oscillator frequency.

NOTE
OSC cannot be driven by an external clock in the voltage-doubling mode.

<table>
<thead>
<tr>
<th>FC</th>
<th>OSC</th>
<th>OSCILLATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>Open</td>
<td>10 kHz</td>
</tr>
<tr>
<td>V+</td>
<td>Open</td>
<td>80 kHz</td>
</tr>
<tr>
<td>Open or V+</td>
<td>External capacitor</td>
<td>See Typical Characteristics</td>
</tr>
<tr>
<td>N/A</td>
<td>External clock (inverter mode only)</td>
<td>External clock frequency</td>
</tr>
</tbody>
</table>

9.4 Device Functional Modes

When V+ is applied to the MAX660, the device becomes enabled and operates in whichever configuration the device is placed (inverter, doubler, etc.).
10 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information
The MAX660 CMOS charge-pump voltage converter is a versatile, unregulated switched-capacitor inverter or doubler. Operating from a wide 1.5-V to 5.5-V supply voltage, the MAX660 uses two low-cost capacitors to provide 100 mA of output current without the cost, size, and EMI related to inductor-based converters. With an operating current of only 120 µA and operating efficiency greater than 90% at most loads, the MAX660 provides ideal performance for battery-powered systems. MAX660 devices can be operated directly in parallel to lower output impedance, thus providing more current at a given voltage.

10.2 Typical Applications

10.2.1 Voltage Inverter

![Figure 14. MAX660 Voltage Inverter](image)

10.2.1.1 Design Requirements
For typical switched capacitor applications, use the parameters in Table 2:

<table>
<thead>
<tr>
<th>DESIGN PARAMETER</th>
<th>EXAMPLE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>5.5 V (maximum)</td>
</tr>
<tr>
<td>Negative output voltage</td>
<td>−1.5 V to −5.5 V</td>
</tr>
<tr>
<td>Output current</td>
<td>100 mA</td>
</tr>
</tbody>
</table>

Copyright © 2016, Texas Instruments Incorporated

10.2.1.2 Detailed Design Procedure
The main application of MAX660 is to generate a negative supply voltage. The voltage inverter circuit uses only two external capacitors as shown in the Figure 14. The range of the input supply voltage is 1.5 V to 5.5 V. For a supply voltage less than 3.5 V, the LV pin must be connected to ground to bypass the internal regulator circuitry. This gives the best performance in low-voltage applications. If the supply voltage is greater than 3.5 V, LV may be connected to ground or left open. The choice of leaving LV open simplifies the direct substitution of the MAX660 for the LMC7660 switched capacitor voltage converter.

The output characteristics of this circuit can be approximated by an ideal voltage source in series with a resistor. The voltage source equals −(V+). The output resistance R_{out} is a function of the ON resistance of the internal MOS switches, the oscillator frequency, and the capacitance and ESR of C_1 and C_2. A good approximation is:
High-value, low-ESR capacitors reduce the output resistance. Instead of increasing the capacitance, the oscillator frequency can be increased to reduce the \(2/(f_{\text{OSC}} \times C_1)\) term. Once this term is trivial compared with \(R_{\text{SW}}\) and ESRs, further increase to oscillator frequency and capacitance become ineffective. The peak-to-peak output voltage ripple is determined by the oscillator frequency, and the capacitance and ESR of the output capacitor \(C_2\):

\[
V_{\text{ripple}} = \frac{1}{f_{\text{osc}} \times C_2} + 2 \times I_L \times ESR_{C2}
\]

(2)

Again, using a low-ESR capacitor results in lower ripple.

10.2.1.2.1 Capacitor Selection

The output resistance and ripple voltage are dependent on the capacitance and ESR values of the external capacitors. The output voltage drop is the load current times the output resistance, and the power efficiency is shown in Equation 3:

\[
\eta = \frac{P_{\text{out}}}{P_{\text{in}}} = \frac{I_L^2 R_L}{I_Q(V+) + I_L^2 R_{C1} + I_L^2 R_{C2} + I_Q(V+) + I_Q(V+) + I_Q(V+) + I_Q(V+) + I_Q(V+) + I_Q(V+)}
\]

(3)

Because the switching current charging and discharging \(C_1\) is approximately twice that of the output current, the effect of the ESR of the pumping capacitor \(C_1\) is multiplied by four in the output resistance. The output capacitor \(C_2\) is charging and discharging at a current approximately equal to the output current; therefore, its ESR only counts once in the output resistance. However, the ESR of \(C_2\) directly affects the output voltage ripple. Therefore, TI recommends low-ESR capacitors (Table 3) for both capacitors to maximize efficiency, reduce the output voltage drop and voltage ripple. For convenience, \(C_1\) and \(C_2\) are usually chosen to be the same. The output resistance varies with the oscillator frequency and the capacitors. In Figure 15, the output resistance vs oscillator frequency curves are drawn for three different tantalum capacitors. At very low frequency range, capacitance plays the most important role in determining the output resistance. Once the frequency is increased to some point (such as 20 kHz for the 150-\(\mu\)F capacitors), the output resistance is dominated by the ON resistance of the internal switches and the ESRs of the external capacitors. A low-value, smaller size capacitor usually has a higher ESR compared with a larger size capacitor of the same type. For lower ESR, use ceramic capacitors.

![Figure 15. Output Source Resistance vs Oscillator Frequency](image-url)
Table 3. Low-ESR Capacitor Manufacturers

<table>
<thead>
<tr>
<th>MANUFACTURER</th>
<th>CAPACITOR TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nichicon Corp.</td>
<td>PM, PJ series, through-hole aluminum electrolytic</td>
</tr>
<tr>
<td>AVX Corp.</td>
<td>TPS series, surface-mount tantalum</td>
</tr>
<tr>
<td>Vishay Sprague</td>
<td>593D, 594D, 595D series, surface-mount tantalum</td>
</tr>
<tr>
<td>Sanyo</td>
<td>OS-CON series, through-hole aluminum electrolytic</td>
</tr>
</tbody>
</table>

10.2.1.2.2 Paralleling Devices

Any number of MAX660 devices can be paralleled to reduce the output resistance. Each device must have its own pumping capacitor C_1, while only one output capacitor C_{OUT} is required as shown in Figure 16. The composite output resistance is:

$$R_{OUT} = \frac{R_{OUT}}{\text{Number of Devices}}$$ \hspace{1cm} (4)

![Figure 16. Lowering Output Resistance by Paralleling Devices](image)

10.2.1.2.3 Cascading Devices

Cascading the MAX660s is an easy way to produce a greater negative voltage (as shown in Figure 17). If n is the integer representing the number of devices cascaded, the unloaded output voltage V_{out} is $(-nV_{in})$. The effective output resistance is equal to the weighted sum of each individual device:

$$R_{out} = nR_{out, 1} + \frac{n}{2}R_{out, 2} + \ldots + R_{out, n}$$ \hspace{1cm} (5)

A three-stage cascade circuit shown in Figure 18 generates $-3V_{in}$ from V_{in}.

Cascading is also possible when devices are operating in doubling mode. In Figure 19, two devices are cascaded to generate $3V_{IN}$.

An example of using the circuit in Figure 18 or Figure 19 is generating $+15$ V or -15 V from a $+5$-V input.

NOTE

The number of n is practically limited because the increasing of n significantly reduces the efficiency and increases the output resistance and output voltage ripple.
Figure 17. Increasing Output Voltage by Cascading Devices

Figure 18. Generating $-3V_{IN}$ From $+V_{IN}$

Figure 19. Generating $+3V_{IN}$ From $+V_{IN}$
10.2.1.2.4 Regulating Output Voltage

Output of the MAX660 can be regulated by use of a low-dropout regulator (such as LP2951). The whole converter is depicted in Figure 20. This converter can give a regulated output from $\pm 1.5 \text{ V}$ to $\pm 5.5 \text{ V}$ by choosing the proper resistor ratio:

$$V_{\text{out}} = V_{\text{ref}} \left(1 + \frac{R_1}{R_2}\right)$$

(6)

The error flag on pin 5 of the LP2951 goes low when the regulated output at pin 4 drops by about 5%. The LP2951 can be shut down by taking pin 3 high.

Figure 20. Combining MAX660 With LP2951 to Make a Negative Regulator

As shown in Figure 21 by operating MAX660 in voltage doubling mode and adding a linear regulator (such as LP2981) at the output, the user can get +5-V output from an input as low as +3 V.

Figure 21. Generating +5 V From +3-V Input Voltage
10.2.1.3 Application Curves

![Efficiency vs Load Current](image1)

![Efficiency vs Oscillator Frequency](image2)

10.2.2 Positive Voltage Doubler

10.2.2.1 Design Requirements

The MAX660 can operate as a positive voltage doubler (as shown in the Figure 24). The doubling function is achieved by reversing some of the connections to the device. The input voltage is applied to the GND pin with an allowable voltage from 2.5 V to 5.5 V. The V+ pin is used as the output. The LV pin and OUT pin must be connected to ground. The OSC pin cannot be driven by an external clock in this operation mode. The unloaded output voltage is twice of the input voltage and is not reduced by the forward drop of the diode (D1).

10.2.2.2 Detailed Design Procedure

The Schottky diode D1 is only needed for start-up. The internal oscillator circuit uses the V+ pin and the LV pin (connected to ground in the voltage doubler circuit) as its power rails. Voltage across V+ and LV must be larger than 1.5 V to ensure the operation of the oscillator. During start-up, D1 is used to charge up the voltage at V+ pin to start the oscillator; also, it protects the device from turning on its own parasitic diode and potentially latching up. Therefore, the Schottky diode D1 must have enough current carrying capability to charge the output capacitor at start-up, as well as a low forward voltage to prevent the internal parasitic diode from turning on. A Schottky diode like 1N5817 can be used for most applications. If the input voltage ramp is less than 10V/ms, a smaller Schottky diode like MBR0520LT1 can be used to reduce the circuit size.
10.3 Split V+ in Half

Another interesting application shown in Figure 25 is to use the MAX660 as a precision voltage divider. Because the off-voltage across each switch equals VIN/2, the input voltage can be raised to 11 V.

![Figure 25. Splitting VIN in Half](image)

11 Power Supply Recommendations

The MAX660 is designed to operate from as an inverter over an input voltage supply range between 1.5 V and 5.5 V when the LV pin is grounded. This input supply must be well regulated and capable to supply the required input current. If the input supply is located far from the MAX660 additional bulk capacitance may be required in addition to the ceramic bypass capacitors.
12 Layout

12.1 Layout Guidelines
The high switching frequency and large switching currents of the MAX660 make the choice of layout important. The following steps should be used as a reference to ensure the device is stable and maintains proper LED current regulation across its intended operating voltage and current range:

- Place C_{IN} on the top layer (same layer as the MAX60) and as close as possible to the device. Connecting the input capacitor through short, wide traces to both the V+ and GND pins reduces the inductive voltage spikes that occur during switching which can corrupt the V+ line.
- Place C_{OUT} on the top layer (same layer as the MAX660) and as close as possible to the OUT and GND pin. The returns for both C_{IN} and C_{OUT} must come together at one point, as close as possible to the GND pin. Connecting C_{OUT} through short, wide traces reduce the series inductance on the OUT and GND pins that can corrupt the V_{OUT} and GND lines and cause excessive noise in the device and surrounding circuitry.
- Place C_1 on the top layer (same layer as the MAX660) and as close as possible to the device. Connect the flying capacitor through short, wide traces to both the CAP+ and CAP– pins.

12.2 Layout Example

Figure 26. MAX660 Layout Example
13 Device and Documentation Support

13.1 Device Support

13.1.1 Third-Party Products Disclaimer
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

13.2 Receiving Notification of Documentation Updates
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper
right corner, click on Alert me to register and receive a weekly digest of any product information that has
changed. For change details, review the revision history included in any revised document.

13.3 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of
Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help
solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and
contact information for technical support.

13.4 Trademarks
E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

13.5 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

13.6 Glossary
SLYZ022 — Ti Glossary.
This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish (6)</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX660M</td>
<td>NRND</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>95</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td></td>
<td>MAX 660M</td>
<td></td>
</tr>
<tr>
<td>MAX660M/NOPB</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>95</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>MAX 660M</td>
<td>Samples</td>
</tr>
<tr>
<td>MAX660MX/NOPB</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>MAX 660M</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
- **RoHS Exempt**: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
- **Green**: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) **Lead/Ball Finish** - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

TAPE DIMENSIONS

- **A0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component length
- **K0**: Dimension designed to accommodate the component thickness
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX660MX/NOPB</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.5</td>
<td>5.4</td>
<td>2.0</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

All dimensions are nominal.
TAPE AND REEL BOX DIMENSIONS

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX660MX/NOPB</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
⚠️ Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0.15) each side.
⚠️ Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0.43) each side.
E. Reference JEDEC MS-012 variation AA.
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and/or implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers’ applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY TECHNOLOGY, INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.