OPAx191 36-V, Low-Power, Precision, CMOS, Rail-to-Rail Input/Output, Low Offset Voltage, Low Input Bias Current Op Amp

1 Features
- Low offset voltage: ±5 µV
- Low offset voltage drift: ±0.1 µV/°C
- Low noise: 15 nV/√Hz at 1 kHz
- High common-mode rejection: 140 dB
- Low bias current: ±5 pA
- Rail-to-rail input and output
- Wide bandwidth: 2.5-MHz GBW
- High slew rate: 5 V/µs
- Low quiescent current: 140 µA per amplifier
- Wide supply: ±2.25 V to ±18 V, 4.5 V to 36 V
- EMI/RFI filtered inputs
- Differential input voltage range to supply rail
- High capacitive load drive capability: 1 nF
- Industry standard packages:
 - Single in SOIC-8, SOT-5, and VSSOP-8
 - Dual in SOIC-8 and VSSOP-8
 - Quad in SOIC-14, TSSOP-14, and WQFN-16

2 Applications
- Analog input module
- Mixed module (AI, AO, DI, DO)
- Data acquisition (DAQ)
- Source measurement unit (SMU)
- Pressure transmitter
- Train control and management systems
- Lab and field instrumentation

3 Description
The OPAx191 family (OPA191, OPA2191, and OPA4191) is a new generation of 36-V, e-trim™ operational amplifiers.

These devices offer outstanding dc precision and ac performance, including rail-to-rail input/output, low offset voltage (±5 µV, typ), low offset drift (±0.2 µV/°C, typ), and 2-MHz bandwidth.

Unique features, such as differential input-voltage range to the supply rail, high output current (±65 mA), high capacitive load drive of up to 1 nF, and high slew rate (5 V/µs), make the OPAx191 a robust, high-performance operational amplifier for high-voltage industrial applications.

The OPAx191 family of op amps is available in standard packages and is specified from −40°C to +125°C.

Device Information(1)

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA191</td>
<td>SOIC (8)</td>
<td>4.90 mm × 3.90 mm</td>
</tr>
<tr>
<td></td>
<td>SOT (5)</td>
<td>2.90 mm × 1.60 mm</td>
</tr>
<tr>
<td></td>
<td>VSSOP (8)</td>
<td>3.00 mm × 3.00 mm</td>
</tr>
<tr>
<td>OPA2191</td>
<td>SOIC (8)</td>
<td>4.90 mm × 3.90 mm</td>
</tr>
<tr>
<td></td>
<td>VSSOP (8)</td>
<td>3.00 mm × 3.00 mm</td>
</tr>
<tr>
<td>OPA4191</td>
<td>SOIC (14)</td>
<td>8.65 mm × 3.90 mm</td>
</tr>
<tr>
<td></td>
<td>TSSOP (14)</td>
<td>5.00 mm × 4.40 mm</td>
</tr>
<tr>
<td></td>
<td>WQFN (16)</td>
<td>4.00 mm × 4.00 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the package option addendum at the end of the data sheet.

OPA191 in a High-Voltage, Multiplexed, Data-Acquisition System
Table of Contents

1. **Features** ... 1
2. **Applications** .. 1
3. **Description** .. 1
4. **Revision History** .. 2
5. **Pin Configuration and Functions** 3
6. **Specifications** .. 5
 6.1 Absolute Maximum Ratings 5
 6.2 ESD Ratings .. 5
 6.3 Recommended Operating Conditions 5
 6.4 Thermal Information: OPA191 6
 6.5 Thermal Information: OPA2191 6
 6.6 Thermal Information: OPA4191 6
 6.7 Electrical Characteristics: $V_S = \pm 4\,\text{V}$ to $\pm 18\,\text{V}$ ($V_S = 8\,\text{V}$ to 36 V) 7
 6.8 Electrical Characteristics: $V_S = \pm 2.25\,\text{V}$ to $\pm 4\,\text{V}$ ($V_S = 4.5\,\text{V}$ to 8 V) 9
 6.9 Typical Characteristics .. 11
7. **Parameter Measurement Information** 20
 7.1 Input Offset Voltage Drift ... 20
8. **Detailed Description** .. 22
 8.1 Overview ... 22
 8.2 Functional Block Diagram .. 22
 8.3 Feature Description .. 23
 8.4 Device Functional Modes .. 30
9. **Application and Implementation** 31
 9.1 Application Information ... 31
 9.2 Typical Applications .. 31
10. **Power Supply Recommendations** 35
11. **Layout** ... 35
 11.1 Layout Guidelines .. 35
 11.2 Layout Example .. 36
12. **Device and Documentation Support** 37
 12.1 Device Support ... 37
 12.2 Documentation Support .. 37
 12.3 Related Links ... 37
 12.4 Support Resources .. 37
 12.5 Trademarks .. 38
 12.6 Electrostatic Discharge Caution 38
 12.7 Glossary ... 38
13. **Mechanical, Packaging, and Orderable Information** 38

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision B (July 2019) to Revision C

<table>
<thead>
<tr>
<th>Change</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changed OPA4191 RUM package from preview to production data (active)</td>
<td>1</td>
</tr>
</tbody>
</table>

Changes from Revision A (April 2016) to Revision B

<table>
<thead>
<tr>
<th>Change</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Added advanced information (preview) 16-pin RUM (WQFN) package and associated content to data sheet</td>
<td>1</td>
</tr>
<tr>
<td>Changed Figure 32 condition from $G = -1$ to $G = 1$</td>
<td>17</td>
</tr>
<tr>
<td>Changed Figure 33 condition from $G = 1$ to $G = -1$</td>
<td>17</td>
</tr>
</tbody>
</table>

Changes from Original (December 2015) to Revision A

<table>
<thead>
<tr>
<th>Change</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changed DBV and DGK packages from product preview to production data</td>
<td>1</td>
</tr>
<tr>
<td>Added input offset voltage drift values for DBV and DGK packages to both electrical characteristics tables</td>
<td>5</td>
</tr>
<tr>
<td>Added crosstalk values to both electrical characteristics tables</td>
<td>5</td>
</tr>
<tr>
<td>Changed Figure 23, 0.1-Hz to 10-Hz Noise</td>
<td>15</td>
</tr>
<tr>
<td>Added text regarding capacitive load drive to the Capacitive Load and Stability section</td>
<td>26</td>
</tr>
<tr>
<td>Added Figure 56</td>
<td>26</td>
</tr>
</tbody>
</table>
5 Pin Configuration and Functions

OPA191 DBV Package
5-Pin SOT
Top View

OPA191 D and DGK Packages
8-Pin SOIC and VSSOP
Top View

OPA2191 D and DGK Packages
8-Pin SOIC and VSSOP
Top View

OPA4191 D and PW Packages
14-Pin SOIC and TSSOP
Top View

OPA4191 RUM Package
16-Pin WQFN With Exposed Thermal Pad
Top View
Pin Functions: OPA191

<table>
<thead>
<tr>
<th>PIN NAME</th>
<th>OPA191</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>+IN</td>
<td>3</td>
<td>3</td>
<td>I</td>
</tr>
<tr>
<td>–IN</td>
<td>2</td>
<td>4</td>
<td>I</td>
</tr>
<tr>
<td>NC</td>
<td>1, 5, 8</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>OUT</td>
<td>6</td>
<td>1</td>
<td>O</td>
</tr>
<tr>
<td>V+</td>
<td>7</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>V–</td>
<td>4</td>
<td>2</td>
<td>—</td>
</tr>
</tbody>
</table>

Pin Functions: OPA2191 and OPA4191

<table>
<thead>
<tr>
<th>PIN NAME</th>
<th>OPA2191</th>
<th>OPA4191</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>+IN A</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>I</td>
</tr>
<tr>
<td>+IN B</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>I</td>
</tr>
<tr>
<td>+IN C</td>
<td>—</td>
<td>10</td>
<td>9</td>
<td>I</td>
</tr>
<tr>
<td>+IN D</td>
<td>—</td>
<td>12</td>
<td>11</td>
<td>I</td>
</tr>
<tr>
<td>–IN A</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>I</td>
</tr>
<tr>
<td>–IN B</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>I</td>
</tr>
<tr>
<td>–IN C</td>
<td>—</td>
<td>9</td>
<td>8</td>
<td>I</td>
</tr>
<tr>
<td>–IN D</td>
<td>—</td>
<td>13</td>
<td>12</td>
<td>I</td>
</tr>
<tr>
<td>OUT A</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td>O</td>
</tr>
<tr>
<td>OUT B</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>O</td>
</tr>
<tr>
<td>OUT C</td>
<td>—</td>
<td>8</td>
<td>7</td>
<td>O</td>
</tr>
<tr>
<td>OUT D</td>
<td>—</td>
<td>14</td>
<td>14</td>
<td>O</td>
</tr>
<tr>
<td>V+</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>V–</td>
<td>4</td>
<td>11</td>
<td>10</td>
<td>—</td>
</tr>
</tbody>
</table>
6 Specifications

6.1 Absolute Maximum Ratings

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage, (V_S = (V_+ - (V_-)))</td>
<td>±20</td>
<td>(+40, single supply)</td>
<td>V</td>
</tr>
<tr>
<td>Voltage</td>
<td>Common-mode</td>
<td>((V_-) - 0.5)</td>
<td>((V_-) + 0.5)</td>
</tr>
<tr>
<td>Differential</td>
<td>((V_+) - (V_-) + 0.2)</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>±10</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Output short circuit</td>
<td>Continuous</td>
<td>Continuous</td>
<td>Continuous</td>
</tr>
<tr>
<td>Temperature</td>
<td>Operating</td>
<td>−40</td>
<td>150</td>
</tr>
<tr>
<td>Storage, (T_{stg})</td>
<td>−65</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Short-circuit to ground, one amplifier per package.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th>(V_{(ESD)})</th>
<th>Electrostatic discharge</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrostatic discharge</td>
<td>Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)</td>
<td>±3000</td>
<td>V</td>
</tr>
<tr>
<td>Electrostatic discharge</td>
<td>Charged-device model (CDM), per JEDEC specification JESD22-C101(2)</td>
<td>±1000</td>
<td>V</td>
</tr>
</tbody>
</table>

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage, (V_S = (V_+ - (V_-)))</td>
<td>4.5 (±2.25)</td>
<td>36 (±18)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Specified temperature</td>
<td>−40</td>
<td>125</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>
6.4 Thermal Information: OPA191

<table>
<thead>
<tr>
<th>THERMAL METRIC(1)</th>
<th>OPA191</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D (SOIC)</td>
<td>DGK (VSSOP)</td>
</tr>
<tr>
<td>8 PINS</td>
<td>5 PINS</td>
<td></td>
</tr>
<tr>
<td>R_{thJA}</td>
<td>Junction-to-ambient thermal resistance</td>
<td>115.8</td>
</tr>
<tr>
<td>$R_{thJC(top)}$</td>
<td>Junction-to-case(top) thermal resistance</td>
<td>60.1</td>
</tr>
<tr>
<td>R_{thJB}</td>
<td>Junction-to-board thermal resistance</td>
<td>56.4</td>
</tr>
<tr>
<td>ψ_{JT}</td>
<td>Junction-to-top characterization parameter</td>
<td>12.8</td>
</tr>
<tr>
<td>ψ_{JB}</td>
<td>Junction-to-board characterization parameter</td>
<td>55.9</td>
</tr>
<tr>
<td>$R_{thJC(bot)}$</td>
<td>Junction-to-case(bottom) thermal resistance</td>
<td>N/A</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Thermal Information: OPA2191

<table>
<thead>
<tr>
<th>THERMAL METRIC(1)</th>
<th>OPA2191</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D (SOIC)</td>
<td>DGK (VSSOP)</td>
</tr>
<tr>
<td>8 PINS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{thJA}</td>
<td>Junction-to-ambient thermal resistance</td>
<td>107.9</td>
</tr>
<tr>
<td>$R_{thJC(top)}$</td>
<td>Junction-to-case(top) thermal resistance</td>
<td>53.9</td>
</tr>
<tr>
<td>R_{thJB}</td>
<td>Junction-to-board thermal resistance</td>
<td>48.9</td>
</tr>
<tr>
<td>ψ_{JT}</td>
<td>Junction-to-top characterization parameter</td>
<td>6.6</td>
</tr>
<tr>
<td>ψ_{JB}</td>
<td>Junction-to-board characterization parameter</td>
<td>48.3</td>
</tr>
<tr>
<td>$R_{thJC(bot)}$</td>
<td>Junction-to-case(bottom) thermal resistance</td>
<td>N/A</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.6 Thermal Information: OPA4191

<table>
<thead>
<tr>
<th>THERMAL METRIC(1)</th>
<th>OPA4191</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D (SOIC)</td>
<td>PW (TSSOP)</td>
</tr>
<tr>
<td>14 PINS</td>
<td>16 PINS</td>
<td></td>
</tr>
<tr>
<td>R_{thJA}</td>
<td>Junction-to-ambient thermal resistance</td>
<td>86.4</td>
</tr>
<tr>
<td>$R_{thJC(top)}$</td>
<td>Junction-to-case(top) thermal resistance</td>
<td>46.3</td>
</tr>
<tr>
<td>R_{thJB}</td>
<td>Junction-to-board thermal resistance</td>
<td>41.0</td>
</tr>
<tr>
<td>ψ_{JT}</td>
<td>Junction-to-top characterization parameter</td>
<td>11.3</td>
</tr>
<tr>
<td>ψ_{JB}</td>
<td>Junction-to-board characterization parameter</td>
<td>40.7</td>
</tr>
<tr>
<td>$R_{thJC(bot)}$</td>
<td>Junction-to-case(bottom) thermal resistance</td>
<td>N/A</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.
6.7 Electrical Characteristics: $V_S = \pm 4\, \text{V to } \pm 18\, \text{V} (V_S = 8\, \text{V to } 36\, \text{V})$

at $T_A = +25°C$, $V_{CM} = V_{OUT} = V_S / 2$, and $R_L = 10\, \text{kΩ}$ connected to $V_S / 2$ (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFFSET VOLTAGE</td>
<td>$V_S = \pm 18, \text{V}$</td>
<td>±5</td>
<td>±25</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$T_A = 0°C$ to $85°C$</td>
<td>±8</td>
<td>±75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$T_A = -40°C$ to $+125°C$</td>
<td>±10</td>
<td>±125</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$(V+) - 3.0, \text{V} < V_{CM} < (V+) - 1.5, \text{V}$</td>
<td>See Common-Mode Voltage Range section</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 18, \text{V}$, $V_{CM} = (V+) - 1.5, \text{V}$</td>
<td>±10</td>
<td>±50</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$T_A = 0°C$ to $85°C$</td>
<td>±25</td>
<td>±150</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$T_A = -40°C$ to $+125°C$</td>
<td>±50</td>
<td>±250</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OPA4191RUM, $V_S = \pm 18, \text{V}$</td>
<td>±5</td>
<td>±50</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_{CM} = (V+) - 1.5, \text{V}$</td>
<td>$T_A = 0°C$ to $85°C$</td>
<td>±10</td>
<td>±475</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$T_A = -40°C$ to $+125°C$</td>
<td>±20</td>
<td>±740</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dVOS/dT</td>
<td>$V_S = \pm 18, \text{V}$, D package only</td>
<td>$T_A = 0°C$ to $85°C$</td>
<td>±0.1</td>
<td>±0.8</td>
<td>µV/°C</td>
</tr>
<tr>
<td></td>
<td>$T_A = -40°C$ to $+125°C$</td>
<td>±0.15</td>
<td>±1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 18, \text{V}$, RUM, DGK and DBV packages only</td>
<td>$T_A = 0°C$ to $85°C$</td>
<td>±0.1</td>
<td>±0.9</td>
<td>µV/°C</td>
</tr>
<tr>
<td></td>
<td>$T_A = -40°C$ to $+125°C$</td>
<td>±0.15</td>
<td>±1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 18, \text{V}$, $V_{CM} = (V+) - 1.5, \text{V}$</td>
<td>$T_A = -40°C$ to $+125°C$</td>
<td>±0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSRR</td>
<td>Power-supply rejection ratio $T_A = -40°C$ to $+125°C$</td>
<td>±0.3</td>
<td>±1.0</td>
<td>µV/V</td>
<td></td>
</tr>
<tr>
<td>INPUT BIAS CURRENT</td>
<td>I_B Input bias current</td>
<td>±5</td>
<td>±20</td>
<td></td>
<td>pA</td>
</tr>
<tr>
<td></td>
<td>$T_A = -40°C$ to $+125°C$</td>
<td>±9</td>
<td>nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I_{OS} Input offset current</td>
<td>±2</td>
<td>±20</td>
<td></td>
<td>pA</td>
</tr>
<tr>
<td></td>
<td>$T_A = -40°C$ to $+125°C$</td>
<td>±2</td>
<td>nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOISE</td>
<td>E_n Input voltage noise</td>
<td>(V+) - 0.1 V < $V_{CM} < (V+)$ - 3 V</td>
<td>1.4</td>
<td>µVpp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f = 0.1 Hz to 10 Hz</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V+) - 1.5 V < $V_{CM} < (V+) + 0.1 V</td>
<td>f = 0.1 Hz to 10 Hz</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e_n Input voltage noise density</td>
<td>(V+) - 0.1 V < $V_{CM} < (V+)$ - 3 V</td>
<td>f = 100 Hz</td>
<td>15</td>
<td>nV/√Hz</td>
</tr>
<tr>
<td></td>
<td>f = 1 kHz</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V+) - 1.5 V < $V_{CM} < (V+) + 0.1 V</td>
<td>f = 1 kHz</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I_n Input current noise density</td>
<td>f = 1 kHz</td>
<td>1.5</td>
<td></td>
<td>fA/√Hz</td>
</tr>
<tr>
<td>INPUT VOLTAGE</td>
<td>V_{CM} Common-mode voltage range</td>
<td>(V+) - 0.1 V < $V_{CM} < (V+)$ - 3 V</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 18, \text{V}$</td>
<td>(V+) = 0.1 V < $V_{CM} < (V+) + 0.1 V</td>
<td>140</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_A = -40°C$ to $+125°C$</td>
<td>114</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_A = -40°C$ to $+125°C$</td>
<td>96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 18, \text{V}$, (V+) - 1.5 V < $V_{CM} < (V+)$</td>
<td>$T_A = -40°C$ to $+125°C$</td>
<td>86</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V+) - 3 V < $V_{CM} < (V+)$ - 1.5 V</td>
<td>See Typical Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INPUT IMPEDANCE</td>
<td>Z_D Differential</td>
<td>100</td>
<td>1.6</td>
<td></td>
<td>f2</td>
</tr>
<tr>
<td></td>
<td>Z_C Common-mode</td>
<td>1</td>
<td>6.4</td>
<td></td>
<td>10^12</td>
</tr>
</tbody>
</table>

Copyright © 2015–2019, Texas Instruments Incorporated

Submit Documentation Feedback

Product Folder Links: OPA191 OPA2191 OPA4191
Electrical Characteristics: $V_S = \pm 4\,V$ to $\pm 18\,V$ ($V_S = 8\,V$ to $36\,V$) (continued)

at $T_A = +25^\circ\,C$, $V_{CM} = V_{OUT} = V_S / 2$, and $R_L = 10\,k\Omega$ connected to $V_S / 2$ (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPEN-LOOP GAIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_{OL}</td>
<td>Open-loop voltage gain</td>
<td>$V_S = \pm 18,V$, $(V-) + 0.6,V < V_O < (V+) - 0.6,V$, $R_L = 2,k\Omega$</td>
<td>124</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 18,V$, $(V-) + 0.8,V < V_O < (V+) - 0.8,V$, $R_L = 2,k\Omega$, RUM package</td>
<td>124</td>
<td>134</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 18,V$, $(V-) + 0.6,V < V_O < (V+) - 0.6,V$, $T_A = -40^\circ,C$ to $+125^\circ,C$</td>
<td>114</td>
<td>126</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 18,V$, $(V-) + 0.8,V < V_O < (V+) - 0.8,V$, $R_L = 2,k\Omega$, RUM package</td>
<td>114</td>
<td>126</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 18,V$, $(V-) + 0.3,V < V_O < (V+) - 0.3,V$, $T_A = -40^\circ,C$ to $+125^\circ,C$</td>
<td>126</td>
<td>140</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 18,V$, $(V-) + 0.3,V < V_O < (V+) - 0.3,V$, $R_L = 10,k\Omega$</td>
<td>120</td>
<td>134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FREQUENCY RESPONSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBW</td>
<td>Unity gain bandwidth</td>
<td>$V_S = \pm 18,V$, $G = 1$, 10-V step</td>
<td>Failing</td>
<td>2.5</td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rising</td>
<td></td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>Slew rate</td>
<td>$V_S = \pm 18,V$, $G = 1$, 1-V step</td>
<td>Failing</td>
<td>5.5</td>
<td>V/µs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rising</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_S</td>
<td>Settling time</td>
<td>To 0.01%, $C_L = 20$ pF</td>
<td>$V_S = \pm 18,V$, $G = 1$, 5-V step</td>
<td>0.7</td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>To 0.001%, $C_L = 20$ pF</td>
<td>$V_S = \pm 18,V$, $G = 1$, 1-V step</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>To 0.001%, $C_L = 20$ pF</td>
<td>$V_S = \pm 18,V$, $G = 1$, 5-V step</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>To 0.001%, $C_L = 20$ pF</td>
<td>$V_S = \pm 18,V$, $G = 1$, 5-V step</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>t_{OR}</td>
<td>Overload recovery time</td>
<td>$V_{IN} \times G = V_S$</td>
<td>From overload to negative rail</td>
<td>0.4</td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>From overload to positive rail</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THD+N</td>
<td>Total harmonic distortion + noise</td>
<td>$G = 1$, $f = 1,kHz$, $V_O = 3.5,V_{RMS}$</td>
<td></td>
<td>0.0012%</td>
<td></td>
</tr>
<tr>
<td>Crosstalk</td>
<td>OPA2191 and OPA4191, at dc</td>
<td>OPA2191 and OPA4191, $f = 100,kHz$</td>
<td>150</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_O</td>
<td>Voltage output swing from rail</td>
<td>Positive rail</td>
<td>No load</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Negative rail</td>
<td>No load</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$R_L = 10,k\Omega$</td>
<td>50</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$R_L = 2,k\Omega$</td>
<td>200</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$R_L = 10,k\Omega$</td>
<td>50</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$R_L = 2,k\Omega$</td>
<td>200</td>
<td>500</td>
</tr>
<tr>
<td>I_{SC}</td>
<td>Short-circuit current</td>
<td>$V_S = \pm 18,V$</td>
<td></td>
<td>±65</td>
<td>mA</td>
</tr>
<tr>
<td>C_L</td>
<td>Capacitive load drive</td>
<td>See Typical Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z_O</td>
<td>Open-loop output impedance</td>
<td>$f = 1,MHz$, $I_O = 0,A$, See Figure 31</td>
<td></td>
<td>700</td>
<td>Ω</td>
</tr>
<tr>
<td>POWER SUPPLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_Q</td>
<td>Quiescent current per amplifier</td>
<td>$I_O = 0,A$</td>
<td></td>
<td>140</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T_A = -40°C to +125°C</td>
<td></td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermal protection</td>
<td></td>
<td></td>
<td>180</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>Thermal hysteresis</td>
<td></td>
<td></td>
<td>30</td>
<td>°C</td>
</tr>
</tbody>
</table>
6.8 Electrical Characteristics: $V_S = \pm 2.25\, V$ to $\pm 4\, V$ ($V_S = 4.5\, V$ to $8\, V$)

at $T_A = +25°C$, $V_{CM} = V_{OUT} = V_S / 2$, and $R_L = 10\, k\Omega$ connected to $V_S / 2$ (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFFSET VOLTAGE</td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 3, V$</td>
<td>±5</td>
<td>±25</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 3, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±10</td>
<td>±50</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 3, V$, D package only</td>
<td>±0.1</td>
<td>±0.8</td>
<td></td>
<td>µV/V</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 3, V$, RUM, DGK and DBV packages only</td>
<td>±0.15</td>
<td>±1.2</td>
<td></td>
<td>µV/V</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±10</td>
<td>±50</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±5</td>
<td>±25</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±10</td>
<td>±50</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±90</td>
<td>±475</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±150</td>
<td>±740</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±10</td>
<td>±50</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±90</td>
<td>±475</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±150</td>
<td>±740</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±10</td>
<td>±50</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±90</td>
<td>±475</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±150</td>
<td>±740</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±10</td>
<td>±50</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±90</td>
<td>±475</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±150</td>
<td>±740</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±10</td>
<td>±50</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±90</td>
<td>±475</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±150</td>
<td>±740</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±10</td>
<td>±50</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±90</td>
<td>±475</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±150</td>
<td>±740</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±10</td>
<td>±50</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±90</td>
<td>±475</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±150</td>
<td>±740</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±10</td>
<td>±50</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±90</td>
<td>±475</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±150</td>
<td>±740</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±10</td>
<td>±50</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±90</td>
<td>±475</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±150</td>
<td>±740</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±10</td>
<td>±50</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±90</td>
<td>±475</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±150</td>
<td>±740</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±10</td>
<td>±50</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±90</td>
<td>±475</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 2.25, V$, $V_{CM} = (V+) – 1.5, V$</td>
<td>±150</td>
<td>±740</td>
<td></td>
<td>µV</td>
</tr>
</tbody>
</table>
Electrical Characteristics: $V_S = \pm 2.25$ V to ± 4 V ($V_S = 4.5$ V to 8 V) (continued)

at $T_A = +25^\circ$C, $V_{CM} = V_{OUT} = V_S / 2$, and $R_L = 10$ kΩ connected to $V_S / 2$ (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREQUENCY RESPONSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBW</td>
<td>Unity gain bandwidth</td>
<td>2.2</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>Slew rate</td>
<td>$V_S = \pm 2.25$ V, $G = 1$, 1-V step</td>
<td>6.5</td>
<td>V/µs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Falling</td>
<td>Rising</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>IOR</td>
<td>Overload recovery time</td>
<td>$V_{IN} \times G = V_S$</td>
<td>From overload to negative rail</td>
<td>0.4</td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>From overload to positive rail</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crosstalk</td>
<td>OPA2191 and OPA4191, at dc</td>
<td>150</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OPA2191 and OPA4191, f = 100 kHz</td>
<td>130</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>OUTPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_O</td>
<td>Voltage output swing from rail</td>
<td>Positive rail</td>
<td>No load</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Negative rail</td>
<td>No load</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_L = 10$ kΩ</td>
<td></td>
<td>15</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_L = 2$ kΩ</td>
<td></td>
<td>60</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_L = 10$ kΩ</td>
<td></td>
<td>15</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_L = 2$ kΩ</td>
<td></td>
<td>60</td>
<td>500</td>
</tr>
<tr>
<td>ISC</td>
<td>Short-circuit current</td>
<td>$V_S = \pm 2.25$ V</td>
<td>± 30</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>C_L</td>
<td>Capacitive load drive</td>
<td>See Typical Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z0</td>
<td>Open-loop output impedance</td>
<td>$f = 1$ MHz, $I_O = 0$ A, see Figure 31</td>
<td>700</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>POWER SUPPLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I0</td>
<td>Quiescent current per amplifier</td>
<td>$I_O = 0$ A</td>
<td>140</td>
<td>200</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_A = -40^\circ$C to $+125^\circ$C</td>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal protection</td>
<td></td>
<td>180</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal hysteresis</td>
<td></td>
<td>30</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.9 Typical Characteristics

Table 1. Table of Graphs

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>FIGURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset Voltage Production Distribution</td>
<td>Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, Figure 6</td>
</tr>
<tr>
<td>Offset Voltage Drift Distribution</td>
<td>Figure 7, Figure 8, Figure 9, Figure 10</td>
</tr>
<tr>
<td>Offset Voltage vs Temperature</td>
<td>Figure 11, Figure 12</td>
</tr>
<tr>
<td>Offset Voltage vs Power Supply</td>
<td>Figure 13</td>
</tr>
<tr>
<td>Open-Loop Gain and Phase vs Frequency</td>
<td>Figure 14</td>
</tr>
<tr>
<td>Closed-Loop Gain and Phase vs Frequency</td>
<td>Figure 15</td>
</tr>
<tr>
<td>Input Bias Current vs Common-Mode Voltage</td>
<td>Figure 16</td>
</tr>
<tr>
<td>Input Bias Current vs Temperature</td>
<td>Figure 17</td>
</tr>
<tr>
<td>Output Voltage Swing vs Output Current (maximum supply)</td>
<td>Figure 18, Figure 19</td>
</tr>
<tr>
<td>CMRR and PSRR vs Frequency</td>
<td>Figure 20</td>
</tr>
<tr>
<td>CMRR vs Temperature</td>
<td>Figure 21</td>
</tr>
<tr>
<td>PSRR vs Temperature</td>
<td>Figure 22</td>
</tr>
<tr>
<td>0.1-Hz to 10-Hz Noise</td>
<td>Figure 23</td>
</tr>
<tr>
<td>Input Voltage Noise Spectral Density vs Frequency</td>
<td>Figure 24</td>
</tr>
<tr>
<td>THD+N Ratio vs Frequency</td>
<td>Figure 25</td>
</tr>
<tr>
<td>THD+N vs Output Amplitude</td>
<td>Figure 26</td>
</tr>
<tr>
<td>Quiescent Current vs Supply Voltage</td>
<td>Figure 27</td>
</tr>
<tr>
<td>Quiescent Current vs Temperature</td>
<td>Figure 28</td>
</tr>
<tr>
<td>Open Loop Gain vs Temperature</td>
<td>Figure 29, Figure 30</td>
</tr>
<tr>
<td>Open Loop Output Impedance vs Frequency</td>
<td>Figure 31</td>
</tr>
<tr>
<td>Small Signal Overshoot vs Capacitive Load (100-mV output step)</td>
<td>Figure 32, Figure 33</td>
</tr>
<tr>
<td>No Phase Reversal</td>
<td>Figure 34</td>
</tr>
<tr>
<td>Overload Recovery</td>
<td>Figure 35</td>
</tr>
<tr>
<td>Small-Signal Step Response (100 mV)</td>
<td>Figure 36, Figure 37</td>
</tr>
<tr>
<td>Large-Signal Step Response</td>
<td>Figure 38, Figure 39</td>
</tr>
<tr>
<td>Settling Time</td>
<td>Figure 40, Figure 41, Figure 42, Figure 43</td>
</tr>
<tr>
<td>Short-Circuit Current vs Temperature</td>
<td>Figure 44</td>
</tr>
<tr>
<td>Maximum Output Voltage vs Frequency</td>
<td>Figure 45</td>
</tr>
<tr>
<td>Propagation Delay Rising Edge</td>
<td>Figure 46</td>
</tr>
<tr>
<td>Propagation Delay Falling Edge</td>
<td>Figure 47</td>
</tr>
</tbody>
</table>
at $T_A = 25^\circ C$, $V_S = \pm 18$ V, $V_{CM} = V_S / 2$, $R_L = 10$ k\(\Omega\) connected to $V_S / 2$, and $C_L = 100$ pF (unless otherwise noted)
at $T_A = 25°C$, $V_S = ±18 V$, $V_{CM} = V_S / 2$, $R_L = 10 kΩ$ connected to $V_S / 2$, and $C_L = 100 pF$ (unless otherwise noted)
at $T_A = 25^\circ\mathrm{C}$, $V_S = \pm 18\,\mathrm{V}$, $V_{CM} = V_S / 2$, $R_L = 10\,\mathrm{k}\Omega$ connected to $V_S / 2$, and $C_L = 100\,\mathrm{pF}$ (unless otherwise noted)
at $T_A = 25^\circ C$, $V_S = \pm 18\; V$, $V_{CM} = V_S / 2$, $R_L = 10\; k\Omega$ connected to $V_S / 2$, and $C_L = 100\; pF$ (unless otherwise noted)
at $T_A = 25^\circ C$, $V_S = \pm 18$ V, $V_{CM} = V_S / 2$, $R_L = 10$ kΩ connected to $V_S / 2$, and $C_L = 100$ pF (unless otherwise noted)
at $T_A = 25^\circ C$, $V_S = \pm 18$ V, $V_{CM} = V_S / 2$, $R_L = 10$ k\(\Omega\) connected to $V_S / 2$, and $C_L = 100$ pF (unless otherwise noted)

Figure 31. Open-Loop Output Impedance vs Frequency

Figure 32. Small-Signal Overshoot vs Capacitive Load (100-mV Output Step)

Figure 33. Small-Signal Overshoot vs Capacitive Load

Figure 34. No Phase Reversal

Figure 35. Overload Recovery

Figure 36. Small-Signal Step Response
at $T_A = 25^\circ C$, $V_S = \pm 18 \text{ V}$, $V_{CM} = V_S / 2$, $R_L = 10 \text{ k}\Omega$ connected to $V_S / 2$, and $C_L = 100 \text{ pF}$ (unless otherwise noted)

Figure 37. Small-Signal Step Response

Figure 38. Large-Signal Step Response

Figure 39. Large-Signal Step Response

Figure 40. 0.01% Settling Time

Figure 41. 0.01% Settling Time

Figure 42. 0.01% Settling Time
at \(T_A = 25^\circ C \), \(V_S = \pm 18 \) V, \(V_{CM} = V_S / 2 \), \(R_L = 10 \) k\(\Omega \) connected to \(V_S / 2 \), and \(C_L = 100 \) pF (unless otherwise noted)

Figure 43. 0.01% Settling Time

Figure 44. Short-Circuit Current vs Temperature

Figure 45. Maximum Output Voltage vs Frequency

Figure 46. Propagation Delay Rising Edge

Figure 47. Propagation Delay Falling Edge
7 Parameter Measurement Information

7.1 Input Offset Voltage Drift

The OPAx191 family of operational amplifiers is manufactured using TI's e-trim operation amplifier technology. This e-trim operational amplifier technology is a TI proprietary method of trimming internal device parameters during either wafer probing or final testing. Each amplifier input offset voltage and input offset voltage drift is trimmed in production, thereby minimizing errors associated with input offset voltage and input offset voltage drift. When trimming input offset voltage drift, the systematic or linear drift error on each device is trimmed to zero. Figure 48 illustrates this concept.

Figure 48. Input Offset Before and After Drift Trim

A common method of specifying input offset voltage drift is the box method. The box method estimates a maximum input offset drift by bounding an offset voltage versus temperature curve with a box and using the corners of this bounding box to determine the drift. The slope of the line connecting the diagonal corners of the box corresponds to the input offset voltage drift. Figure 49 illustrates the box method concept. The box method works particularly well when the input offset drift is dominated by the linear component of drift, but because the OPA191 family uses TI's e-trim operational amplifier technology to remove the linear component input offset voltage drift, the box method is not a particularly useful method of accurately performing an error analysis. Shown in Figure 49 are 30 typical units of OPAx191 with the box method superimposed for illustrative purposes. The boundaries of the box are determined by the specified temperature range along the x-axis and the maximum specified input offset voltage across that same temperature range along the y-axis. Using the box method predicts an input offset voltage drift of 0.9 µV/°C. As shown in Figure 49, the slopes of the actual input offset voltage versus temperature are much less than that predicted by the box method. The box method predicts a pessimistic value for the maximum input offset voltage drift and is not recommended when performing an error analysis.

Figure 49. The Box Method
Input Offset Voltage Drift (continued)

Instead of the box method, a convenient way to illustrate input offset drift is to compute the slopes of the input offset voltage versus temperature curve. This is the same as computing the input offset drift at each point along the input offset voltage versus temperature curve. The results for the OPAx191 family are illustrated in Figure 50.

![Input Offset Voltage Drift vs Temperature (SOIC Package)](image)

As illustrated in Figure 50, the input offset drift is typically less than ±0.3 µV/°C over the range from –40°C to +125°C. When performing an error analysis over the full specified temperature range, use the typical and maximum values for input offset voltage drift as described in the Electrical Characteristics tables. If a reduced temperature range is applicable, use the information illustrated in Figure 50 when performing an error analysis.

To determine the change in input offset voltage, use Equation 1:

\[\Delta V_{OS} = \Delta T \times \frac{dV_{OS}}{dT} \]

where

- \(\Delta V_{OS} \) = Change in input offset voltage
- \(\Delta T \) = Change in temperature
- \(\frac{dV_{OS}}{dT} \) = Input offset voltage drift

For example, determine the amount of OPA191ID input offset voltage change over the temperature range of 25°C to 75°C for 1 \(\sigma \) (68%) of the units. As shown in Figure 50, the input offset drift is typically 0.25 µV/°C. This input offset drift results in a typical input offset voltage change of (75°C – 25°C) × 0.25 µV/°C = 12.5 µV.

For 3 \(\sigma \) (99.7%) of the units, Figure 50 shows a typical input offset drift of approximately 0.75 µV/°C. This input offset drift results in a typical input offset voltage change of (75°C – 25°C) × 0.75 µV/°C = 37.5 µV.
8 Detailed Description

8.1 Overview

The OPAx191 family of e-trim operational amplifiers use a method of package-level trim for offset and offset temperature drift implemented during the final steps of manufacturing after the plastic molding process. This method minimizes the influence of inherent input transistor mismatch, as well as errors induced during package molding. The trim communication occurs on the output pin of the standard pinout, and after the trim points are set, further communication to the trim structure is permanently disabled. The Functional Block Diagram section shows the simplified diagram of the OPAx191.

Unlike previous e-trim operational amplifiers, the OPAx191 uses a patented two-temperature trim architecture to achieve a very low offset voltage and low voltage offset drift over the full specified temperature range. This level of precision performance at wide supply voltages makes these amplifiers useful for high-impedance industrial sensors, filters, and high-voltage data acquisition.

8.2 Functional Block Diagram
8.3 Feature Description

8.3.1 Input Protection Circuitry

The OPAx191 uses a unique input architecture to eliminate the need for input protection diodes but still provides robust input protection under transient conditions. Conventional input diode protection schemes shown in Figure 51 can be activated by fast transient step responses and can introduce signal distortion and settling time delays because of alternate current paths, as shown in Figure 52. For low-gain circuits, these fast-ramping input signals forward-bias back-to-back diodes that cause an increase in input current, resulting in extended settling time.

![Figure 51. OPA191 Input Protection Does Not Limit Differential Input Capability](image1)

![Figure 52. Back-to-Back Diodes Create Settling Issues](image2)

The OPAx191 family of operational amplifiers provides a true high-impedance differential input capability for high-voltage applications. This patented input protection architecture does not introduce additional signal distortion or delayed settling time, making the device an optimal op amp for multichannel, high-switched, input applications. The OPAx191 tolerates a maximum differential swing (voltage between inverting and noninverting pins of the op amp) of up to 36 V, making the device an excellent choice for use as a comparator or in applications with fast-ramping input signals such as multiplexed data-acquisition systems (see Figure 64).
Feature Description (continued)

8.3.2 EMI Rejection

The OPAx191 uses integrated electromagnetic interference (EMI) filtering to reduce the effects of EMI from sources such as wireless communications and densely-populated boards with a mix of analog signal chain and digital components. EMI immunity can be improved with circuit design techniques; the OPAx191 benefits from these design improvements. Texas Instruments has developed the ability to accurately measure and quantify the immunity of an operational amplifier over a broad frequency spectrum extending from 10 MHz to 6 GHz. Figure 53 shows the results of this testing on the OPAx191. Table 2 shows the EMIRR IN+ values for the OPAx191 at particular frequencies commonly encountered in real-world applications. Applications listed in Table 2 may be centered on or operated near the particular frequency shown. Detailed information can also be found in the EMI Rejection Ratio of Operational Amplifiers application report, available for download from www.ti.com.

![Figure 53. EMIRR Testing](image)

Table 2. OPA191 EMIRR IN+ For Frequencies of Interest

<table>
<thead>
<tr>
<th>FREQUENCY</th>
<th>APPLICATION OR ALLOCATION</th>
<th>EMIRR IN+</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 MHz</td>
<td>Mobile radio, mobile satellite, space operation, weather, radar, ultra-high frequency (UHF) applications</td>
<td>36 dB</td>
</tr>
<tr>
<td>900 MHz</td>
<td>Global system for mobile communications (GSM) applications, radio communication, navigation, GPS (to 1.6 GHz), GSM, aeronautical mobile, UHF applications</td>
<td>45 dB</td>
</tr>
<tr>
<td>1.8 GHz</td>
<td>GSM applications, mobile personal communications, broadband, satellite, L-band (1 GHz to 2 GHz)</td>
<td>57 dB</td>
</tr>
<tr>
<td>2.4 GHz</td>
<td>802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications, industrial, scientific and medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz)</td>
<td>62 dB</td>
</tr>
<tr>
<td>3.6 GHz</td>
<td>Radiolocation, aero communication and navigation, satellite, mobile, S-band</td>
<td>76 dB</td>
</tr>
<tr>
<td>5.0 GHz</td>
<td>802.11a, 802.11n, aero communication and navigation, mobile communication, space and satellite operation, C-band (4 GHz to 8 GHz)</td>
<td>86 dB</td>
</tr>
</tbody>
</table>

\[
P_{RF} = -10 \text{ dBm}, V_S = \pm 15 \text{ V}, V_{CM} = 0 \text{ V}
\]

Figure 53. EMIRR Testing
8.3.3 Phase Reversal Protection

The OPAx191 family has internal phase-reversal protection. Many op amps exhibit phase reversal when the input is driven beyond the linear common-mode range. This condition is most often encountered in noninverting circuits when the input is driven beyond the specified common-mode voltage range, causing the output to reverse into the opposite rail. The OPAx191 is a rail-to-rail input op amp, and therefore the common-mode range can extend up to the rails. Input signals beyond the rails do not cause phase reversal; instead, the output limits into the appropriate rail. This performance is shown in Figure 54.

![Figure 54. No Phase Reversal](image)

8.3.4 Thermal Protection

The internal power dissipation of any amplifier causes the internal (junction) temperature to rise. This phenomenon is called self heating. The OPAx191 has a thermal protection feature that prevents damage from self heating.

This thermal protection works by monitoring the temperature of the output stage and turning off the op amp output drive for temperatures above approximately 180°C. Thermal protection forces the output to a high-impedance state. The OPAx191 is also designed with approximately 30°C of thermal hysteresis. Thermal hysteresis prevents the output stage from cycling in and out of the high-impedance state. The OPAx191 returns to normal operation when the output stage temperature falls below approximately 150°C.

The absolute maximum junction temperature of the OPAx191 is 150°C. Exceeding the limits shown in the Absolute Maximum Ratings table may cause damage to the device. Thermal protection triggers at 180°C because of unit-to-unit variance, but does not interfere with device operation up to the absolute maximum ratings. This thermal protection is not designed to prevent this device from exceeding absolute maximum ratings, but rather from excessive thermal overload.
8.3.5 Capacitive Load and Stability

The OPAx191 features a patented output stage capable of driving large capacitive loads, and in a unity-gain configuration, directly drives up to 1 nF of pure capacitive load. Increasing the gain enhances the ability of the amplifier to drive greater capacitive loads; see Figure 55. The particular op amp circuit configuration, layout, gain, and output loading are some of the factors to consider when establishing whether an amplifier will be stable in operation.

Like many low-power amplifiers, some ringing can occur even with capacitive loads less than 100 pF. In unity-gain configurations with no or very light dc loads, place an RC snubber circuit at the OPAx191 output to reduce any possibility of ringing in lightly-loaded applications. Figure 56 illustrates the recommended RC snubber circuit.

![Figure 55. Transient Response with a Purely Capacitive Load of 1 nF](image)

![Figure 56. RC Snubber Circuit for Lightly-Loaded Applications in Unity Gain](image)
For additional drive capability in unity-gain configurations, improve capacitive load drive by inserting a small, 10-Ω to 20-Ω resistor (R_ISO) in series with the output, as shown in Figure 57. This resistor significantly reduces ringing while maintaining dc performance for purely capacitive loads. However, if there is a resistive load in parallel with the capacitive load, a voltage divider is created, introducing a gain error at the output and slightly reducing the output swing. The error introduced is proportional to the ratio R_ISO / R_L, and is generally negligible at low output levels. A high capacitive load drive makes the OPA191 a great choice for applications such as reference buffers, MOSFET gate drives, and cable-shield drives. The circuit shown in Figure 57 uses R_ISO to stabilize the output of an op amp. R_ISO modifies the open-loop gain of the system for increased phase margin. Results using the OPA191 are summarized in Table 3. For additional information on techniques to optimize and design using this circuit, TI Precision Design TIPD128, Capacitive Load Drive Verified Reference Design Using an Isolation Resistor, details complete design goals, simulation, and test results.

![Figure 57. Extending Capacitive Load Drive With the OPA191](image)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitive Load</td>
<td>100 pF</td>
</tr>
<tr>
<td></td>
<td>1000 pF</td>
</tr>
<tr>
<td></td>
<td>0.01 µF</td>
</tr>
<tr>
<td></td>
<td>0.1 µF</td>
</tr>
<tr>
<td></td>
<td>1 µF</td>
</tr>
<tr>
<td>Phase Margin</td>
<td>45°</td>
</tr>
<tr>
<td></td>
<td>60°</td>
</tr>
<tr>
<td></td>
<td>45°</td>
</tr>
<tr>
<td></td>
<td>60°</td>
</tr>
<tr>
<td></td>
<td>45°</td>
</tr>
<tr>
<td></td>
<td>60°</td>
</tr>
<tr>
<td></td>
<td>45°</td>
</tr>
<tr>
<td></td>
<td>60°</td>
</tr>
<tr>
<td>R_ISO (Ω)</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>432</td>
</tr>
<tr>
<td></td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>17.8</td>
</tr>
<tr>
<td></td>
<td>53.6</td>
</tr>
<tr>
<td></td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Measured Overshoot (%)</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

Table 3. OPA191 Capacitive Load Drive Solution Using Isolation Resistor Comparison of Calculated and Measured Results
8.3.6 Common-Mode Voltage Range

The OPAx191 is a 36-V, true rail-to-rail input operational amplifier with an input common-mode range that extends 100 mV beyond either supply rail. This wide range is achieved with paralleled complementary N-channel and P-channel differential input pairs, as shown in Figure 58. The N-channel pair is active for input voltages close to the positive rail, typically (V+) – 3 V to 100 mV above the positive supply. The P-channel pair is active for inputs from 100 mV below the negative supply to approximately (V+) – 1.5 V. There is a small transition region, typically (V+) –3 V to (V+) – 1.5 V in which both input pairs are active. This transition region varies modestly with process variation. Within this region PSRR, CMRR, offset voltage, offset drift, noise, and THD performance are degraded compared to operation outside this region.

To achieve the best performance for two-stage rail-to-rail input amplifiers, avoid the transition region when possible. The OPAx191 uses a precision trim for both the N-channel and P-channel regions. This technique enables significantly lower levels of offset than previous-generation devices, causing variance in the transition region of the input stages to appear exaggerated relative to offset over the full common-mode range, as shown in Figure 59.
8.3.7 Electrical Overstress

Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress (EOS). These questions tend to focus on the device inputs, but may involve the supply voltage pins or even the output pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin. Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from accidental ESD events both before and during product assembly.

Having a good understanding of this basic ESD circuitry and its relevance to an electrical overstress event is helpful. See Figure 60 for an illustration of the ESD circuits contained in the OPAx191 (indicated by the dashed line area). The ESD protection circuitry involves several current-steering diodes connected from the input and output pins and routed back to the internal power-supply lines, where the diodes meet at an absorption device or the power-supply ESD cell, internal to the operational amplifier. This protection circuitry is intended to remain inactive during normal circuit operation.

Figure 60. Equivalent Internal ESD Circuitry Relative to a Typical Circuit Application
An ESD event is very high voltage for a very short duration (for example, 1 kV for 100 ns); whereas, an EOS event is lower voltage for a longer duration (for example, 50 V for 100 ms). The ESD diodes are designed for out-of-circuit ESD protection (that is, during assembly, test, and storage of the device before being soldered to the PCB). During an ESD event, the ESD signal is passed through the ESD steering diodes to an absorption circuit labeled ESD power-supply circuit. The ESD absorption circuit clamps the supplies to a safe level.

Although this behavior is necessary for out-of-circuit protection, excessive current and damage is caused if activated in-circuit. A transient voltage suppressor (TVS) can be used to prevent against damage caused by turning on the ESD absorption circuit during an in-circuit ESD event. Using the appropriate current limiting resistors and TVS diodes allows for the use of device ESD diodes to protect against EOS events.

8.3.8 Overload Recovery

Overload recovery is defined as the time required for the op amp output to recover from a saturated state to a linear state. The output devices of the op amp enter a saturation region when the output voltage exceeds the rated operating voltage, either due to the high input voltage or the high gain. After the device enters the saturation region, the charge carriers in the output devices require time to return back to the linear state. After the charge carriers return back to the linear state, the device begins to slew at the specified slew rate. Thus, the propagation delay in case of an overload condition is the sum of the overload recovery time and the slew time.

8.4 Device Functional Modes

The OPAx191 has a single functional mode and is operational when the power-supply voltage is greater than 4.5 V (±2.25 V). The maximum power supply voltage for the OPAx191 is 36 V (±18 V).
9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The OPAx191 family offers outstanding dc precision and ac performance. These devices operate up to 36-V supply rails and offer true rail-to-rail input/output, ultralow offset voltage and offset voltage drift, as well as 2-MHz bandwidth and high capacitive load drive. These features make the OPAx191 a robust, high-performance operational amplifier for high-voltage industrial applications.

9.2 Typical Applications

9.2.1 Low-side Current Measurement

Figure 61 shows the OPA191 configured in a low-side current sensing application. For a full analysis of the circuit shown in Figure 61 including theory, calculations, simulations, and measured data, see TI Precision Design TIPD129, 0-A to 1-A Single-Supply Low-Side Current-Sensing Solution.

![Figure 61. OPA191 in a Low-Side, Current-Sensing Application](image)

9.2.1.1 Design Requirements

The design requirements for this design are:

- Load current: 0 A to 1 A
- Output voltage: 4.9 V
- Maximum shunt voltage: 100 mV
Typical Applications (continued)

9.2.1.2 Detailed Design Procedure

The transfer function of the circuit in Figure 61 is given in Equation 2.

\[V_{OUT} = I_{LOAD} \times R_{SHUNT} \times \text{Gain} \]

The load current (\(I_{LOAD}\)) produces a voltage drop across the shunt resistor (\(R_{SHUNT}\)). The load current is set from 0 A to 1 A. To keep the shunt voltage below 100 mV at maximum load current, the largest shunt resistor is defined using Equation 3.

\[R_{SHUNT} = \frac{V_{SHUNT_MAX}}{I_{LOAD_MAX}} = \frac{100\text{mV}}{1\text{A}} = 100\text{mΩ} \]

Using Equation 3, \(R_{SHUNT}\) is calculated to be 100 mΩ. The voltage drop produced by \(I_{LOAD}\) and \(R_{SHUNT}\) is amplified by the OPA191 to produce an output voltage of 0 V to 4.9 V. The gain needed by the OPA191 to produce the necessary output voltage is calculated using Equation 4:

\[\text{Gain} = \frac{V_{OUT_MAX} - V_{OUT_MIN}}{V_{IN_MAX} - V_{IN_MIN}} \]

Using Equation 4, the required gain is calculated to be 49 V/V, which is set with resistors \(R_F\) and \(R_G\). Equation 5 is used to size the resistors, \(R_F\) and \(R_G\), to set the gain of the OPA191 to 49 V/V.

\[\text{Gain} = 1 + \left(\frac{R_F}{R_G} \right) \]

Choosing \(R_F\) as 360 kΩ, \(R_G\) is calculated to be 7.5 kΩ. \(R_F\) and \(R_G\) were chosen as 360 kΩ and 7.5 kΩ because they are standard value resistors that create a 49:1 ratio. Other resistors that create a 49:1 ratio can also be used. Figure 2 shows the measured transfer function of the circuit shown in Figure 61.

9.2.1.3 Application Curves

![Figure 62. Low-Side, Current-Sense, Transfer Function](image1.png)

![Figure 63. Low-Side, Current-Sense, Full-Scale Error](image2.png)
Typical Applications (continued)

9.2.2 16-Bit Precision Multiplexed Data-Acquisition System

Figure 64 shows a 16-bit, differential, 4-channel, multiplexed, data-acquisition system. This example is typical in industrial applications that require low distortion and a high-voltage differential input. The circuit uses the ADS8864, a 16-bit, 400-kSPS successive-approximation-resistor (SAR), analog-to-digital converter (ADC), along with a precision, high-voltage, signal-conditioning front-end, and a 4-channel differential multiplexer (mux). This application example shows the process for optimizing the precision, high-voltage, front-end drive circuit using the OPA191 and OPA140 to achieve excellent dynamic performance and linearity with the ADS8864. The full design can be found in TI Precision Design TIPD151, 16-Bit, 400-kSPS, Four-Channel MUX Data Acquisition System for High-Voltage Inputs.

Figure 64. OPA191 in 16-Bit, 400-kSPS, 4-Channel, Multiplexed Data Acquisition System for High-Voltage Inputs With Lowest Distortion

9.2.2.1 Design Requirements

The primary objective is to design a ±20-V, differential, 4-channel, multiplexed, data acquisition system with lowest distortion using the 16-bit ADS8864 at a throughput of 400 kSPS for a 10-kHz, full-scale, pure sine-wave input. The design requirements for this block design are:

- System supply voltage: ±15 V
- ADC supply voltage: 3.3 V
- ADC sampling rate: 400 kSPS
- ADC reference voltage (REFP): 4.096 V
- System input signal: A high-voltage differential input signal with a peak amplitude of 10 V and frequency (f_{IN}) of 10 kHz are applied to each differential input of the mux.
9.2.2.2 Detailed Design Procedure

The purpose of this application example is to design an optimal, high-voltage, multiplexed, data-acquisition system for highest system linearity and fast settling. The overall system block diagram is shown in Figure 64. The circuit is a multichannel, data-acquisition, signal chain consisting of an input low-pass filter, multiplexer (mux), mux output buffer, attenuating SAR ADC driver, digital counter for the mux, and the reference driver. The architecture allows fast sampling of multiple channels using a single ADC, providing a low-cost solution. The two primary design considerations to maximize the performance of a precision, multiplexed, data-acquisition system are the mux input analog front-end and the high-voltage, level translation, SAR ADC driver design. However, carefully design each analog circuit block based on the ADC performance specifications in order to achieve the fastest settling at 16-bit resolution and lowest distortion system. Figure 64 includes the most important specifications for each individual analog block.

This design systematically approaches each analog circuit block to achieve a 16-bit settling for a full-scale input stage voltage and linearity for a 10-kHz sinusoidal input signal at each input channel. The first step in the design is to understand the requirement for an extremely-low-impedance input-filter design for the mux. This understanding helps in the decision of an appropriate input filter and selection of a mux to meet the system settling requirements. The next important step is the design of the attenuating analog front-end (AFE) used to level translate the high-voltage input signal to a low-voltage ADC input while maintaining the amplifier stability. Then, the next step is to design a digital interface to switch the mux input channels with minimum delay. The final design challenge is to design a high-precision, reference-driver circuit that provides the required REFP reference voltage with low offset, drift, and noise contributions.

9.2.3 Slew Rate Limit for Input Protection

In control systems for valves or motors, abrupt changes in voltages or currents can cause mechanical damages. By controlling the slew rate of the command voltages into the drive circuits, the load voltages ramps up and down at a safe rate. For symmetrical slew-rate applications (positive slew rate equals negative slew rate), one additional op amp provides slew-rate control for a given analog gain stage. The unique input protection and high output current and slew rate of the OPAx191 make the device an optimal amplifier to achieve slew rate control for both dual-supply and single-supply systems. Figure 65 shows the OPA191 in a slew-rate limit design. For step-by-step design procedure, circuit schematics, bill of materials, PCB files, simulation results, and test results, refer to TI Precision Design TIPD140, Single Op-Amp Slew Rate Limiter.
10 Power Supply Recommendations

The OPAx191 is specified for operation from 4.5 V to 36 V (±2.25 V to ±18 V); many specifications apply from –40°C to +125°C. Parameters that can exhibit significant variance with regard to operating voltage or temperature are presented in the Typical Characteristics.

CAUTION
Supply voltages larger than 40 V can permanently damage the device; see the Absolute Maximum Ratings.

Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-impedance power supplies. For more detailed information on bypass capacitor placement, see the following Layout section.

11 Layout

11.1 Layout Guidelines

For best operational performance of the device, use good PCB layout practices, including:

- Connect low-ESR, 0.1-μF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-supply applications.
 - Noise can propagate into analog circuitry through the power pins of the circuit as a whole and op amp itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources local to the analog circuitry.

- Make sure to physically separate digital and analog grounds paying attention to the flow of the ground current. Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. For more detailed information, refer to Circuit Board Layout Techniques.

- In order to reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better as opposed to in parallel with the noisy trace.

- Place the external components as close to the device as possible. As shown in Figure 67, keeping RF and RG close to the inverting input minimizes parasitic capacitance.

- Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit.

- Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials.

- Clean the PCB following board assembly for best performance.

- Any precision integrated circuit may experience performance shifts due to moisture ingress into the plastic package. After any aqueous PCB cleaning process, bake the PCB assembly to remove moisture introduced into the device packaging during the cleaning process. A low-temperature, post-cleaning bake at 85°C for 30 minutes is sufficient for most circumstances.
11.2 Layout Example

Run the input traces as far away from the supply lines as possible.

Place components close to device and to each other to reduce parasitic errors.

Use low-ESR, ceramic bypass capacitor.

Ground (GND) plane on another layer.

Figure 66. Schematic Representation

Figure 67. Operational Amplifier Board Layout for Noninverting Configuration
12 Device and Documentation Support

12.1 Device Support

12.1.1 Development Support

12.1.1.1 TINA-TI™ (Free Software Download)

TINA™ is a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI is a free, fully-functional version of the TINA software, preloaded with a library of macro models in addition to a range of both passive and active models. TINA-TI provides all the conventional dc, transient, and frequency domain analysis of SPICE, as well as additional design capabilities.

Available as a free download from the Analog eLab Design Center, TINA-TI offers extensive post-processing capability that allows users to format results in a variety of ways. Virtual instruments offer the ability to select input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic quick-start tool.

NOTE

These files require that either the TINA software (from DesignSoft™) or TINA-TI software be installed. Download the free TINA-TI software from the TINA-TI folder at http://www.ti.com/tool/tina-ti.

12.1.1.2 TI Precision Designs

TI Precision Designs, available online at http://www.ti.com/ww/en/analog/precision-designs/, are analog solutions created by TI's precision analog applications experts and offer the theory of operation, component selection, simulation, complete PCB schematic and layout, bill of materials, and measured performance of many useful circuits.

12.2 Documentation Support

12.2.1 Related Documentation

• Texas Instruments, Circuit Board Layout Techniques
• Texas Instruments, Op Amps for Everyone design reference

12.3 Related Links

Table 4 lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

<table>
<thead>
<tr>
<th>PARTS</th>
<th>PRODUCT FOLDER</th>
<th>SAMPLE & BUY</th>
<th>TECHNICAL DOCUMENTS</th>
<th>TOOLS & SOFTWARE</th>
<th>SUPPORT & COMMUNITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA191</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
</tr>
<tr>
<td>OPA2191</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
</tr>
<tr>
<td>OPA4191</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
</tr>
</tbody>
</table>

12.4 Support Resources

TI E2E™ support forums are an engineer’s go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.
12.5 Trademarks

e-trim, E2E are trademarks of Texas Instruments.
TINA-TI is a trademark of Texas Instruments, Inc and DesignSoft, Inc.
Bluetooth is a registered trademark of Bluetooth SIG, Inc.
TINA, DesignSoft are trademarks of DesignSoft, Inc.
All other trademarks are the property of their respective owners.

12.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.7 Glossary

SLYZ022 — Ti Glossary.
This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA191ID</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>OPA191</td>
<td>Samples</td>
</tr>
<tr>
<td>OPA191IDBVR</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>ZAMV</td>
<td>Samples</td>
</tr>
<tr>
<td>OPA191IDBVT</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>ZAMV</td>
<td>Samples</td>
</tr>
<tr>
<td>OPA191IDGKR</td>
<td>ACTIVE</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>ZANV</td>
<td>Samples</td>
</tr>
<tr>
<td>OPA191IDGKT</td>
<td>ACTIVE</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>ZANV</td>
<td>Samples</td>
</tr>
<tr>
<td>OPA191IDR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>OPA191</td>
<td>Samples</td>
</tr>
<tr>
<td>OPA2191ID</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>2191</td>
<td>Samples</td>
</tr>
<tr>
<td>OPA2191IDGKR</td>
<td>ACTIVE</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>2191</td>
<td>Samples</td>
</tr>
<tr>
<td>OPA2191IDGKT</td>
<td>ACTIVE</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>2191</td>
<td>Samples</td>
</tr>
<tr>
<td>OPA2191IDR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>2191</td>
<td>Samples</td>
</tr>
<tr>
<td>OPA4191ID</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-3-260C-168 HR</td>
<td>-40 to 125</td>
<td>OPA4191</td>
<td>Samples</td>
</tr>
<tr>
<td>OPA4191IDR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-3-260C-168 HR</td>
<td>-40 to 125</td>
<td>OPA4191</td>
<td>Samples</td>
</tr>
<tr>
<td>OPA4191RUMR</td>
<td>ACTIVE</td>
<td>WQFN</td>
<td>RUM</td>
<td>16</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>OPA4191</td>
<td>Samples</td>
</tr>
<tr>
<td>OPA4191RUMT</td>
<td>ACTIVE</td>
<td>WQFN</td>
<td>RUM</td>
<td>16</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>OPA4191</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) **Lead/Ball Finish** - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:
The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

REEL DIMENSIONS

![Reel Dimensions Diagram]

TAPE DIMENSIONS

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>Dimension designed to accommodate the component width</td>
</tr>
<tr>
<td>B0</td>
<td>Dimension designed to accommodate the component length</td>
</tr>
<tr>
<td>K0</td>
<td>Dimension designed to accommodate the component thickness</td>
</tr>
<tr>
<td>W</td>
<td>Overall width of the carrier tape</td>
</tr>
<tr>
<td>P1</td>
<td>Pitch between successive cavity centers</td>
</tr>
</tbody>
</table>

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

![Quadrant Diagram]

All dimensions are nominal.

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA191IDBVR</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>180.0</td>
<td>8.4</td>
<td>3.23</td>
<td>1.37</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
<td></td>
</tr>
<tr>
<td>OPA191IDBVT</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>250</td>
<td>180.0</td>
<td>8.4</td>
<td>3.23</td>
<td>1.37</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
<td></td>
</tr>
<tr>
<td>OPA191IDGKR</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>5.3</td>
<td>3.4</td>
<td>1.4</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>OPA191IDGKT</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>250</td>
<td>177.8</td>
<td>12.4</td>
<td>5.3</td>
<td>3.4</td>
<td>1.4</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>OPA191IDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>OPA2191IDGKR</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>5.3</td>
<td>3.4</td>
<td>1.4</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>OPA2191IDGKT</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>250</td>
<td>180.0</td>
<td>12.4</td>
<td>5.3</td>
<td>3.4</td>
<td>1.4</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>OPA2191IDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>OPA4191IDR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.0</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>OPA4191IRUMR</td>
<td>WQFN</td>
<td>RUM</td>
<td>16</td>
<td>3000</td>
<td>330.0</td>
<td>12.4</td>
<td>4.25</td>
<td>4.25</td>
<td>1.15</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
</tr>
<tr>
<td>OPA4191IRUMT</td>
<td>WQFN</td>
<td>RUM</td>
<td>16</td>
<td>250</td>
<td>180.0</td>
<td>12.4</td>
<td>4.25</td>
<td>4.25</td>
<td>1.15</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA191IDBVR</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>213.0</td>
<td>191.0</td>
<td>35.0</td>
</tr>
<tr>
<td>OPA191IDBVT</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>250</td>
<td>223.0</td>
<td>270.0</td>
<td>35.0</td>
</tr>
<tr>
<td>OPA191IDGKR</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>2500</td>
<td>346.0</td>
<td>346.0</td>
<td>29.0</td>
</tr>
<tr>
<td>OPA191IDGKT</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>250</td>
<td>213.0</td>
<td>191.0</td>
<td>35.0</td>
</tr>
<tr>
<td>OPA191IDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>OPA2191IDGKR</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>OPA2191IDGKT</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>OPA2191IDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>OPA2191IDR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
</tr>
<tr>
<td>OPA4191IRUMR</td>
<td>WQFN</td>
<td>RUM</td>
<td>16</td>
<td>3000</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>OPA4191RUMT</td>
<td>WQFN</td>
<td>RUM</td>
<td>16</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
8. Board assembly site may have different recommendations for stencil design.
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

⚠️ Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0.15) each side.

⚠️ Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0.43) each side.
E. Reference JEDEC MS-012 variation AB.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
NOTES:

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M–1994.

B. This drawing is subject to change without notice.

C. QFN (Quad Flatpack No-Lead) package configuration.

⚠️ The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions.

E. Package complies to JEDEC MO-220 variation WGGC-3.
THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

![Exposed Thermal Pad Dimensions](image)

NOTES: All linear dimensions are in millimeters
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http://www.ti.com>.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
F. Customers should contact their board fabrication site for solder mask tolerances.
NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.
EXAMPLE BOARD LAYOUT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
D. Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
E. Falls within JEDEC MO-187 variation AA, except interlead flash.
NOTES:

A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated