Ultra-Low Noise, Precision OPERATIONAL AMPLIFIERS

FEATURES

- **LOW NOISE**: 4.5nV/√Hz max at 1kHz
- **LOW OFFSET**: 100µV max
- **LOW DRIFT**: 0.4µV/°C
- **HIGH OPEN-LOOP GAIN**: 117dB min
- **HIGH COMMON-MODE REJECTION**: 100dB min
- **HIGH POWER-SUPPLY REJECTION**: 94dB min
- **FITS OP-07, OP-05, AD510, AND AD517 SOCKETS**

APPLICATIONS

- **PRECISION INSTRUMENTATION**
- **DATA ACQUISITION**
- **TEST EQUIPMENT**
- **PROFESSIONAL AUDIO EQUIPMENT**
- **TRANSDUCER AMPLIFIERS**
- **RADIATION HARD EQUIPMENT**

DESCRIPTION

The OPA27 and OPA37 are ultra-low noise, high-precision monolithic operational amplifiers.

Laser-trimmed thin-film resistors provide excellent long-term voltage offset stability and allow superior voltage offset compared to common zener-zap techniques.

A unique bias current cancellation circuit allows bias and offset current specifications to be met over the full –40°C to +85°C temperature range.

The OPA27 is internally compensated for unity-gain stability. The decompensated OPA37 requires a closed-loop gain ≥ 5.

The Texas Instruments’ OPA27 and OPA37 are improved replacements for the industry-standard OP-27 and OP-37.
ABSOLUTE MAXIMUM RATINGS(1)

Supply Voltage ... ±22V
Internal Power Dissipation (2) .. 500mW
Input Voltage ... ±VCC
Output Short-Circuit Duration (3) Indefinite
Differential Input Voltage (4) .. ±0.7V
Differential Input Current (4) .. ±25mA
Storage Temperature Range .. -55°C to +125°C
Operating Temperature Range .. -40°C to +85°C
Lead Temperature:
P (soldering, 10s) ... +300°C
U (soldering, 3s) ... +260°C

NOTES: (1) Stresses above these ratings may cause permanent damage.
Exposure to absolute maximum conditions for extended periods may degrade
device reliability. (2) Maximum package power dissipation versus ambient
temperature. (2) To common with ±VCC = 15V. (4) The inputs are protected by
back-to-back diodes. Current limiting resistors are not used in order to achieve
low noise. If differential input voltage exceeds ±0.7V, the input current should
be limited to 25mA.

PACKAGE/ORDERING INFORMATION(1)

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>PACKAGE-LEAD</th>
<th>θJA</th>
<th>PACKAGE DRAWING</th>
<th>PACKAGE MARKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA27</td>
<td>DIP-8</td>
<td>100°C/W</td>
<td>P</td>
<td>OPA27GP</td>
</tr>
<tr>
<td>OPA27</td>
<td>SO-8</td>
<td>160°C/W</td>
<td>D</td>
<td>OPA27U</td>
</tr>
<tr>
<td>OPA37</td>
<td>DIP-8</td>
<td>100°C/W</td>
<td>P</td>
<td>OPA37GP</td>
</tr>
<tr>
<td>OPA37</td>
<td>SO-8</td>
<td>160°C/W</td>
<td>D</td>
<td>OPA37U</td>
</tr>
</tbody>
</table>

NOTE: (1) For the most current package and ordering information, see the
Package Option Addendum located at the end of this document, or see the TI

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling
and installation procedures can cause damage.

ESD damage can range from subtle performance degradation
to complete device failure. Precision integrated circuits may be
more susceptible to damage because very small parametric
changes could cause the device not to meet its published
specifications.

PIN CONFIGURATION

Top View

-Offset Trim
+In
-In
-VCC

+VCC

Output

NC = No Connection
ELECTRICAL CHARACTERISTICS

At \(V_{CC} = \pm 15V \) and \(T_A = +25^\circ C \), unless otherwise noted.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>OPA27</th>
<th>OPA37</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT NOISE (^{(6)})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage, (f_o = 10Hz)</td>
<td></td>
<td></td>
<td></td>
<td>3.8</td>
<td>8.0</td>
<td></td>
<td>nV/\sqrt{Hz}</td>
</tr>
<tr>
<td>(f_o = 30Hz)</td>
<td></td>
<td></td>
<td>3.3</td>
<td>5.6</td>
<td></td>
<td></td>
<td>nV/\sqrt{Hz}</td>
</tr>
<tr>
<td>(f_o = 1kHz)</td>
<td></td>
<td></td>
<td>3.2</td>
<td>4.5</td>
<td></td>
<td></td>
<td>nV/\sqrt{Hz}</td>
</tr>
<tr>
<td>(f_o = 0.1Hz) to 10Hz</td>
<td></td>
<td></td>
<td>0.09</td>
<td>0.25</td>
<td></td>
<td></td>
<td>\mu V/Hz</td>
</tr>
<tr>
<td>Current, (^{(1)}) (f_o = 10Hz)</td>
<td></td>
<td></td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td>\mu A/\sqrt{Hz}</td>
</tr>
<tr>
<td>(f_o = 30Hz)</td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td>\mu A/\sqrt{Hz}</td>
</tr>
<tr>
<td>(f_o = 1kHz)</td>
<td></td>
<td>0.4</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td>\mu A/\sqrt{Hz}</td>
</tr>
</tbody>
</table>

OFFSET VOLTAGE \(^{(2)}\)

- Input Offset Voltage
- Average Drift \(^{(3)}\)
- Long Term Stability \(^{(4)}\)
- Supply Rejection

| SUPPLY REJECTION | \(\pm V_{CC} = 4 \) to 18V | 94 | 120 | ±1 | ±20 | \mu V/V |

BIAS CURRENT

- Input Bias Current

| BIAS CURRENT | \(\pm 15 \) | \(\pm 80 \) | nA |

OFFSET CURRENT

- Input Offset Current

| OFFSET CURRENT | 10 | 75 | nA |

IMPEEDANCE

- Common-Mode

| IMPEDANCE | 2 || 2.5 | \Omega || \mu F |

VOLTAGE RANGE

- Common-Mode Input Range
- Common-Mode Rejection

| VOLTAGE RANGE | \(\pm 11 \) | \pm 12.3 | V |

OPEN-LOOP VOLTAGE GAIN, DC

- \(R_L \geq 2k \Omega \)
- \(R_L \geq 1k \Omega \)

| OPEN-LOOP VOLTAGE GAIN, DC | 117 | 124 | dB |

FREQUENCY RESPONSE

- Gain-Bandwidth Product \(^{(5)}\)
- Slew Rate \(^{(5)}\)

<table>
<thead>
<tr>
<th>FREQUENCY RESPONSE</th>
<th>OPA27</th>
<th>OPA37</th>
<th>5 (^{(6)})</th>
<th>45 (^{(6)})</th>
<th>MHz</th>
</tr>
</thead>
</table>

Slew Rate	\(V_o = \pm 10V, R_L = 2k \Omega \)	\(OPA27, G = +1 \)	1.7 \(^{(6)}\)	1.9	V/\mu s
	\(OPA37, G = +5 \)	11 \(^{(6)}\)	11.9	V/\mu s	
Settling Time, 0.01%	\(OPA27, G = +1 \)	25		\mu s	
	\(OPA37, G = +5 \)	25		\mu s	

RATED OUTPUT

- Voltage Output
- Output Resistance
- Short Circuit Current

| RATED OUTPUT | \(R_L \geq 2k \Omega \) | \(R_L \geq 600 \Omega \) | 12 | 12.8 | V |

| RATED OUTPUT | \(R_L \geq 2k \Omega \) | \(R_L \geq 600 \Omega \) | 10 | 12.8 | V |

| OUTPUT RESISTANCE | DC, Open Loop | 70 | \Omega |
| Short Circuit Current | \(R_L = 0 \Omega \) | 25 | 50 \(^{(6)}\) | mA |

POWER SUPPLY

- Rated Voltage
- Voltage Range
- Rated Current, Quiescent
- Rated Current, Operating

| POWER SUPPLY | \(\pm 4 \) | \pm 22 | VDC |

| POWER SUPPLY | \(\pm 15 \) | +85 | \mu A |
| | \(\pm 40 \) | +85 | \mu A |

| TEMPERATURE RANGE | Specified | 3.3 | 5.7 | mA |
| Operating | \(\pm 40 \) | +85 | \mu A |

| TEMPERATURE RANGE | Operating | 3.3 | 5.7 | \mu A |

NOTES:
- (1) Measured with industry-standard noise test circuit (Figures 1 and 2). Due to errors introduced by this method, these current noise specifications should be used for comparison purposes only.
- (2) Offsetting and offset voltage specifications are measured with automatic test equipment after approximately 0.5 seconds from power turn-on.
- (3) Unnulled or nulled with 8k\(\Omega \) to 20k\(\Omega \) potentiometer.
- (4) Long-term voltage offset vs time trend line does not include warm-up drift.
- (5) Typical specification only on plastic package units. Slew rate varies on all units due to differing test methods. Minimum specification applies to open-loop test.
- (6) This parameter specified by design.
Electrical Characteristics (Cont.)

At $V_{CC} = \pm 15\,\text{V}$ and $-40^\circ C \leq T_A \leq +85^\circ C$, unless otherwise noted.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>OPA27</th>
<th>OPA37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage<sup>(1)</sup></td>
<td>$T_{A_{MIN}} \rightarrow T_{A_{MAX}}$</td>
<td>± 48</td>
<td>± 220<sup>(3)</sup></td>
</tr>
<tr>
<td>Input Offset Voltage</td>
<td>$\pm V_{CC} = 4.5$ to 18V</td>
<td>± 0.4</td>
<td>± 1.8<sup>(3)</sup></td>
</tr>
<tr>
<td>Average Drift<sup>(2)</sup></td>
<td>$\pm V_{CC} = 4.5$ to 18V</td>
<td>90<sup>(3)</sup></td>
<td>122</td>
</tr>
<tr>
<td>Supply Rejection</td>
<td>$\pm V_{CC} = 4.5$ to 18V</td>
<td>± 0.4</td>
<td>± 1.8<sup>(3)</sup></td>
</tr>
<tr>
<td>Bias Current</td>
<td></td>
<td>±21</td>
<td>±150<sup>(3)</sup></td>
</tr>
<tr>
<td>Input Bias Current</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset Current</td>
<td></td>
<td>20</td>
<td>135<sup>(3)</sup></td>
</tr>
<tr>
<td>Input Offset Current</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage Range</td>
<td></td>
<td>±10.5<sup>(3)</sup></td>
<td>±11.8</td>
</tr>
<tr>
<td>Common-Mode Input Range</td>
<td>$V_N = \pm 11,\text{VDC}$</td>
<td>96<sup>(3)</sup></td>
<td>122</td>
</tr>
<tr>
<td>Common-Mode Rejection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open-Loop Gain, DC</td>
<td></td>
<td>113<sup>(3)</sup></td>
<td>120</td>
</tr>
<tr>
<td>Open-Loop Voltage Gain</td>
<td>$R_L \geq 2,\text{k}\Omega$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated Output</td>
<td></td>
<td>±11.0<sup>(3)</sup></td>
<td>±13.4</td>
</tr>
<tr>
<td>Voltage Output</td>
<td>$R_L = 2,\text{k}\Omega$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short Circuit Current</td>
<td>$V_O = 0,\text{VDC}$</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Temperature Range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specification</td>
<td></td>
<td>−40</td>
<td>+85</td>
</tr>
</tbody>
</table>

Notes:
1. Offset voltage specification are measured with automatic test equipment after approximately 0.5s from power turn-on.
2. Unnulled or nulled with 8kΩ to 20kΩ potentiometer.
3. This parameter specified by design.
TYPICAL CHARACTERISTICS

At $T_A = +25^\circ C$, $\pm V_{CC} = \pm 15VDC$, unless otherwise noted.

- **Input Offset Voltage Warm-Up Drift**
- **Total Input Voltage Noise Spectral Density vs Source Resistance**
- **Voltage Noise Spectral Density vs Supply Voltage**
- **Voltage Noise Spectral Density vs Temperature**
- **Input Voltage Noise vs Noise Bandwidth (0.1Hz to Indicated Frequency)**
- **Input Current Noise Spectral Density**

Warning: This industry-standard equation is inaccurate and these figures should be used for comparison purposes only!

Current Noise Test Circuit

- $I_n = \sqrt{\left(e_{n0}\right)^2 - (130nV)^2}$

- $1M\Omega \times 100$

- $500k\Omega$

- $500k\Omega$

- $100k\Omega$

- 100Ω

- 1Ω

References

- OPA27, OPA37
- SBOS138C
- www.ti.com
TYPICAL CHARACTERISTICS (Cont.)

At $T_A = +25^\circ$C, $\pm V_{CC} = \pm 15$VDC, unless otherwise noted.

INPUT VOLTAGE NOISE SPECTRAL DENSITY

OPEN-LOOP FREQUENCY RESPONSE

BIAS AND OFFSET CURRENT vs TEMPERATURE

OPA27 CLOSED-LOOP VOLTAGE GAIN AND PHASE SHIFT vs FREQUENCY (G = 100)

OPA37 CLOSED-LOOP VOLTAGE GAIN AND PHASE SHIFT vs FREQUENCY (G = 100)

COMMON-MODE REJECTION vs FREQUENCY
TYPICAL CHARACTERISTICS (Cont.)

At $T_a = +25^\circ C$, $\pm V_{CC} = \pm 15V_{DC}$, unless otherwise noted.

POWER SUPPLY REJECTION vs FREQUENCY

OPEN-LOOP VOLTAGE GAIN vs SUPPLY VOLTAGE

OPEN-LOOP VOLTAGE GAIN vs TEMPERATURE

SUPPLY CURRENT vs SUPPLY VOLTAGE

COMMON-MODE INPUT VOLTAGE RANGE

OPA27 SMALL SIGNAL TRANSIENT RESPONSE

OPA27, OPA37

SB0135C

www.ti.com
TYPICAL PERFORMANCE CURVES (Cont.)

At $T_A = +25^\circ C$, $\pm V_{CC} = \pm 15VDC$, unless otherwise noted.

OPA37 SMALL SIGNAL TRANSIENT RESPONSE

<table>
<thead>
<tr>
<th>Time (μs)</th>
<th>Output Voltage (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.2</td>
<td>+60</td>
</tr>
<tr>
<td>0.4</td>
<td>+40</td>
</tr>
<tr>
<td>0.6</td>
<td>+20</td>
</tr>
<tr>
<td>0.8</td>
<td>0</td>
</tr>
<tr>
<td>1.0</td>
<td>–20</td>
</tr>
<tr>
<td>1.2</td>
<td>–40</td>
</tr>
</tbody>
</table>

$AV = +5$

$CL = 25pF$

OPA27 LARGE SIGNAL TRANSIENT RESPONSE

<table>
<thead>
<tr>
<th>Time (μs)</th>
<th>Output Voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.2</td>
<td>+6</td>
</tr>
<tr>
<td>0.4</td>
<td>+4</td>
</tr>
<tr>
<td>0.6</td>
<td>+2</td>
</tr>
<tr>
<td>0.8</td>
<td>0</td>
</tr>
<tr>
<td>1.0</td>
<td>–2</td>
</tr>
<tr>
<td>1.2</td>
<td>–4</td>
</tr>
</tbody>
</table>

$AV_{CL} = +1$

OPA37 LARGE SIGNAL TRANSIENT RESPONSE

<table>
<thead>
<tr>
<th>Time (μs)</th>
<th>Output Voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>+15</td>
</tr>
<tr>
<td>2</td>
<td>+10</td>
</tr>
<tr>
<td>3</td>
<td>+5</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>–5</td>
</tr>
<tr>
<td>6</td>
<td>–10</td>
</tr>
</tbody>
</table>

$AV = +5$
APPLICATIONS INFORMATION

OFFSET VOLTAGE ADJUSTMENT
The OPA27 and OPA37 offset voltages are laser-trimmed and require no further trim for most applications. Offset voltage drift will not be degraded when the input offset is nulled with a 10kΩ trim potentiometer. Other potentiometer values from 1kΩ to 1MΩ can be used, but V_{OS} drift will be degraded by an additional 0.1µV/°C to 0.2µV/°C. Nulling large system offsets by use of the offset trim adjust will degrade drift performance by approximately 3.3µV/°C per millivolt of offset. Large system offsets can be nulled without drift degradation by input summing.

The conventional offset voltage trim circuit is shown in Figure 3. For trimming very small offsets, the higher resolution circuit shown in Figure 4 is recommended.

The OPA27 and OPA37 can replace 741-type operational amplifiers by removing or modifying the trim circuit.

THERMOELECTRIC POTENTIALS
The OPA27 and OPA37 are laser-trimmed to microvolt-level input offset voltages, and for very-low input offset voltage drift.

Careful layout and circuit design techniques are necessary to prevent offset and drift errors from external thermoelectric potentials. Dissimilar metal junctions can generate small EMFs if care is not taken to eliminate either their sources (lead-to-PC, wiring, etc.) or their temperature difference (see Figure 11).

Short, direct mounting of the OPA27 and OPA37 with close spacing of the input pins is highly recommended. Poor layout can result in circuit drifts and offsets which are an order of magnitude greater than the operational amplifier alone.

FIGURE 1. 0.1Hz to 10Hz Noise Test Circuit.

FIGURE 2. Low Frequency Noise.

NOTE: All capacitor values are for nonpolarized capacitors only.
NOISE: BIPOLAR VERSUS FET

Low-noise circuit design requires careful analysis of all noise sources. External noise sources can dominate in many cases, so consider the effect of source resistance on overall operational amplifier noise performance. At low source impedances, the lower voltage noise of a bipolar operational amplifier is superior, but at higher impedances the high current noise of a bipolar amplifier becomes a serious liability. Above about 15kΩ, the OPA111 low-noise FET operational amplifier is recommended for lower total noise than the OPA27, as shown in Figure 5.

COMPENSATION

Although internally compensated for unity-gain stability, the OPA27 may require a small capacitor in parallel with a feedback resistor (R_F) which is greater than 2kΩ. This capacitor will compensate the pole generated by R_F and C_{IN} and eliminate peaking or oscillation.

INPUT PROTECTION

Back-to-back diodes are used for input protection on the OPA27 and OPA37. Exceeding a few hundred millivolts differential input signal will cause current to flow, and without external current limiting resistors, the input will be destroyed. Accidental static discharge, as well as high current, can damage the amplifier’s input circuit. Although the unit may still be functional, important parameters such as input offset voltage, drift, and noise may be permanently damaged, as will any precision operational amplifier subjected to this abuse.

Transient conditions can cause feedthrough due to the amplifier’s finite slew rate. When using the OPA27 as a unity-gain buffer (follower) a feedback resistor of 1kΩ is recommended, as shown in Figure 6.

FIGURE 3. Offset Voltage Trim.

FIGURE 4. High Resolution Offset Voltage Trim.

FIGURE 5. Voltage Noise Spectral Density Versus Source Resistance.

$$E_O = \sqrt{e_n^2 + (i_n R_s)^2 + 4kT R_s} \quad F_O = 1kHz$$

FIGURE 6. Pulsed Operation.

FIGURE 7. Low-Noise RIAA Preamplifier.

FIGURE 8. Unity-Gain Inverting Amplifier.
FIGURE 9. High Slew Rate Unity-Gain Inverting Amplifier.

FIGURE 10. NAB Tape Head Preamplifier.

FIGURE 11. Low Frequency Noise Comparison.

A. 741 noise with circuit well-shielded from air currents and RFI. (Note scale change.)

B. OP-07AH with circuit well-shielded from air currents and RFI.

C. OPA27AJ with circuit well-shielded from air currents and RFI. (Represents ultimate OPA27 performance potential.)

D. OPA27 with circuit unshielded and exposed to normal lab bench-top air currents. (External thermoelectric potentials far exceed OPA27 noise.)

E. OPA27 with heat sink and shield which protects input leads from air currents. Conditions same as (D).
FIGURE 12. Low Noise Instrumentation Amplifier.

FIGURE 13. Hydrophone Preamplifier.

FIGURE 15. High Performance Synchronous Demodulator.
Gain = –1010V/V
V_{OS} = 2mV
Drift = 0.07µV/°C

\(e_n = 1nV/\sqrt{Hz} \) at 10Hz
0.9nV/\sqrt{Hz} at 100Hz
0.87nV/\sqrt{Hz} at 1kHz

Full Power Bandwidth = 180kHz
Gain Bandwidth = 500MHz
Equivalent Noise Resistance = 50Ω

\[\text{Signal-to-Noise Ratio} = \sqrt{N} \]

since amplifier noise is uncorrelated.

FIGURE 17. Unity-Gain Buffer.

FIGURE 18. High Slew Rate Unity-Gain Buffer.

FIGURE 19. RF Detector and Video Amplifier.

\[f_{\text{OUT}} = \text{RPM} \times N \]
Where \(N \) = Number of Gear Teeth
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA27GP</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>P</td>
<td>8</td>
<td>50</td>
<td>Green (RoHS & no Sb/Bi)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>-40 to 85</td>
<td>OPA27GP</td>
<td>Samples</td>
</tr>
<tr>
<td>OPA27GU</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Bi)</td>
<td>CU NIPDAU-DCC</td>
<td>Level-3-260C-168 HR</td>
<td>-40 to 85</td>
<td>OPA27U</td>
<td>Samples</td>
</tr>
<tr>
<td>OPA27GU/2K5</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Bi)</td>
<td>CU NIPDAU-DCC</td>
<td>Level-3-260C-168 HR</td>
<td>-40 to 85</td>
<td>OPA27U</td>
<td>Samples</td>
</tr>
<tr>
<td>OPA27GU/2K5E4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Bi)</td>
<td>CU NIPDAU-DCC</td>
<td>Level-3-260C-168 HR</td>
<td>-40 to 85</td>
<td>OPA27U</td>
<td>Samples</td>
</tr>
<tr>
<td>OPA27GUE4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Bi)</td>
<td>CU NIPDAU-DCC</td>
<td>Level-3-260C-168 HR</td>
<td>-40 to 85</td>
<td>OPA27U</td>
<td>Samples</td>
</tr>
<tr>
<td>OPA27GUG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Bi)</td>
<td>CU NIPDAU-DCC</td>
<td>Level-3-260C-168 HR</td>
<td>-40 to 85</td>
<td>OPA27U</td>
<td>Samples</td>
</tr>
<tr>
<td>OPA37GP</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>P</td>
<td>8</td>
<td>50</td>
<td>Green (RoHS & no Sb/Bi)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>-40 to 85</td>
<td>OPA37GP</td>
<td>Samples</td>
</tr>
<tr>
<td>OPA37GPG4</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>P</td>
<td>8</td>
<td>50</td>
<td>Green (RoHS & no Sb/Bi)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>-40 to 85</td>
<td>OPA37GPG2</td>
<td>Samples</td>
</tr>
<tr>
<td>OPA37GU</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Bi)</td>
<td>CU NIPDAU-DCC</td>
<td>Level-3-260C-168 HR</td>
<td>-40 to 85</td>
<td>OPA37GU2</td>
<td>Samples</td>
</tr>
<tr>
<td>OPA37GU/2K5</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Bi)</td>
<td>CU NIPDAU-DCC</td>
<td>Level-3-260C-168 HR</td>
<td>-40 to 85</td>
<td>OPA37GU2</td>
<td>Samples</td>
</tr>
<tr>
<td>OPA37GUE4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Bi)</td>
<td>CU NIPDAU-DCC</td>
<td>Level-3-260C-168 HR</td>
<td>-40 to 85</td>
<td>OPA37GU2</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

*All dimensions are nominal.

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA27GU/2K5</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>OPA37GU/2K5</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA27GU/2K5</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>OPA37GU/2K5</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
⚠️ Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0.15) each side.
⚠️ Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0.43) each side.
E. Reference JEDEC MS-012 variation AA.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
MECHANICAL DATA

P (R-PDIP-T8) PLASTIC DUAL-IN-LINE PACKAGE

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001 variation BA.

4040082/E 04/2010

TEXAS INSTRUMENTS
www.ti.com
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI’s published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and/or implied warranties of the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers’ applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY TECHNOLOGY, INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY PATENT RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RelATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.