Dual, Wideband, Low-Noise Operational Amplifier

FEATURES
- **LOW INPUT NOISE VOLTAGE:** 2.0nV/√Hz
- **HIGH UNITY GAIN BANDWIDTH:** 500MHz
- **HIGH GAIN BANDWIDTH PRODUCT:** 240MHz
- **HIGH OUTPUT CURRENT:** 90mA
- **SINGLE +5V TO +12V OPERATION**
- **LOW SUPPLY CURRENT:** 4.8mA/ch

APPLICATIONS
- xDSL DIFFERENTIAL LINE RECEIVERS
- HIGH DYNAMIC RANGE ADC DRIVERS
- LOW NOISE PLL INTEGRATORS
- TRANSMISSION AMPERES AMPLIFIERS
- PRECISION BASEBAND I/Q AMPLIFIERS
- ACTIVE FILTERS

DESCRIPTION
The OPA2822 offers very low 2.0nV/√Hz input noise in a wideband, unity-gain stable, voltage-feedback architecture. Intended for xDSL receiver applications, the OPA2822 also supports this low input noise with exceptionally low harmonic distortion, particularly in differential configurations. Adequate output current is provided to drive the potentially heavy load of a passive filter between this amplifier and the codec. Harmonic distortion for a 2Vpp differential output operating from +5V to +12V supplies is ≤−100dBc through 1MHz input frequencies. Operating on a low 4.8mA/ch supply current, the OPA2822 can satisfy all xDSL receiver requirements over a wide range of possible supply voltages—from a single +5V condition, to ±5V, up to a single +12V design.

General-purpose applications on a single +5V supply will benefit from the high input and output voltage swing available on this reduced supply voltage. Low-cost precision integrators for PLLs will also benefit from the low voltage noise and offset voltage. Baseband I/Q receiver channels can achieve almost perfect channel match with noise and distortion to support signals through 5MHz with > 14-bit dynamic range.

OPA2822 RELATED PRODUCTS

<table>
<thead>
<tr>
<th>FEATURES</th>
<th>SINGLES</th>
<th>DUALS</th>
<th>TRIPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Slew Rate</td>
<td>OPA690</td>
<td>OPA2690</td>
<td>OPA3690</td>
</tr>
<tr>
<td>R/R Input/Output</td>
<td>OPA353</td>
<td>OPA2353</td>
<td></td>
</tr>
<tr>
<td>1.3nV Input Noise</td>
<td>OPA946</td>
<td>OPA2686</td>
<td></td>
</tr>
<tr>
<td>1.5nV Input Noise</td>
<td></td>
<td>THS6062</td>
<td></td>
</tr>
</tbody>
</table>

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
ABSOLUTE MAXIMUM RATINGS(1)

Supply Voltage .. - ±6.5V
Internal Power Dissipation See Thermal Characteristics
Differential Input Voltage ±1.2V
Input Voltage Range ±V S
Storage Temperature Range –65°C to +125°C
Lead Temperature (SO-8) ~-55°C to +125°C
Junction Temperature (T J) +260°C
ESD Rating (Human Body Model) 2000V
(Machine Model) 200V

NOTE: (1) Stresses above these ratings may cause permanent damage.
Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

ELECTROSTATIC DISCHARGE SENSITIVITY

Electrostatic discharge can cause damage ranging from performance degradation to complete device failure. Texas Instruments recommends that all integrated circuits be handled and stored using appropriate ESD protection methods.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

PIN CONFIGURATION/MSOP PACKING MARKING

Top View SO

<table>
<thead>
<tr>
<th>OPA2822</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out A</td>
<td>+V S</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>–In A</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+In A</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>–V S</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MSOP PACKAGE MARKING

D22

1 2 3 4
ELECTRICAL CHARACTERISTICS: $V_S = \pm 6V$

Boldface limits are tested at $+25^\circ C$.

$R_F = 402\Omega$, $R_L = 100\Omega$, and $G = +2$. (see Figure 1 for AC performance only), unless otherwise noted.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>TYP</th>
<th>MIN/MAX OVER TEMPERATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>+25$^\circ C$</td>
<td>0$^\circ C$ to 70$^\circ C$</td>
</tr>
</tbody>
</table>

AC PERFORMANCE (see Figure 1)

- **Small-Signal Bandwidth**
 - $G = +1$, $V_O = 0.1V_{pp}$, $R_C = 0\Omega$
 - $G = +2$, $V_O = 0.1V_{pp}$
 - $G = +10$, $V_O = 0.1V_{pp}$

- **Gain-Bandwidth Product**
 - $G \geq 20$

- **Bandwidth for 0.1dB Gain Flatness**
 - $V_O < 0.1V_{pp}$

- **Peaking at a Gain of 1**
 - $V_O < 0.1V_{pp}$

- **Large-Signal Bandwidth**
 - $G = +2$, $V_O = 2V_{pp}$

- **Settling Time to 0.02%**
 - $G = +2$, $V_O = 2V_{pp}$

- **Differential Phase**
 - $V_O = 1.4V_{pp}$, $R_L = 150\Omega$

- **Input Current Noise**
 - $f > 10kHz$

- **Input Voltage Noise**
 - $f > 10kHz$

- **Harmonic Distortion**
 - $G = +2$, $f = 1MHz$, $V_O = 2V_{pp}$

- **2nd-Harmonic**
 - $R_L = 200\Omega$

- **3rd-Harmonic**
 - $R_L = 500\Omega$

- **Input Voltage Noise**
 - $f > 10kHz$

- **Input Current Noise**
 - $f > 10kHz$

- **Differential Gain**
 - $G = +2$, PAL, $V_O = 1.4V_{pp}$, $R_L = 150\Omega$

- **Differential Phase**
 - $G = +2$, PAL, $V_O = 1.4V_{pp}$, $R_L = 150\Omega$

- **Channel-to-Channel Crosstalk**
 - $f = 1MHz$, Input Referred

DC PERFORMANCE(1)

- **Open-Loop Voltage Gain (A_{OL})**
 - $V_O = 0V$, $R_C = 100\Omega$
 - $V_O = 0V$
 - $V_O = 0V$

- **Bias Current**
 - $V_O = 0V$
 - $V_O = 0V$
 - $V_O = 0V$

- **Input Offset Voltage**
 - $V_C = 0V$

- **Input Voltage Drift**
 - $V_C = 0V$

- **Input Bias Current Drift (magnitude)**
 - $V_C = 0V$

- **Input Offset Current Drift**
 - $V_C = 0V$

- **Average Bias Current Drift (magnitude)**
 - $V_C = 0V$

- **Average Offset Current Drift**
 - $V_C = 0V$

INPUT

- **Common-Mode Input Range (CMIR)**
 - $V_{CM} = \pm 1V$

- **Common-Mode Rejection Ratio (CMRR)**
 - $V_{CM} = \pm 1V$

OUTPUT

- **Voltage Output Swing**
 - No Load
 - 100Ω Load

- **Current Output, Sourcing**
 - $V_O = 0$, Linear Operation

- **Current Output, Sinking**
 - $V_O = 0$, Linear Operation

- **Short-Circuit Current**
 - Output Shorted to Ground

- **Closed-Loop Output Impedance**
 - $G = +2$, $f = 100kHz$

POWER SUPPLY

- **Specified Operating Voltage**
 - $V_S = \pm 6V$

- **Maximum Operating Voltage Range**
 - $V_S = \pm 6V$, both channels

- **Max Quiescent Current**
 - $V_S = \pm 6V$, both channels

- **Min Quiescent Current**
 - $V_S = \pm 6V$, both channels

- **Power-Supply Rejection Ratio (PSRR)**
 - Input Referred

THERMAL CHARACTERISTICS

- **Specified Operating Range**
 - U: SO-8
 - E: MSOP

- **Thermal Resistance, θ_{JA}**
 - Junction-to-Ambient

- **Thermal Resistance, θ_{JC}**
 - -40 to $+85^\circ C$

- **Thermal Resistance, θ_{JC}**
 - $125^\circ C/W$
 - $150^\circ C/W$

NOTES:

1. Junction temperature = ambient for $+25^\circ C$ tested specifications.
2. Junction temperature = ambient at low temperature limit; junction temperature = ambient $+23^\circ C$ at high temperature limit for over temperature tested specifications.
3. Test Levels: (A) 100% tested at $+25^\circ C$. Over temperature limits by characterization and simulation. (B) Limits set by characterization and simulation. (C) Typical value only for information.
4. Current is considered positive-out-of node. V_{CM} is the input common-mode voltage.
5. Tested < 3dB below minimum CMRR specification at $\pm CMIR$ limits.
ELECTRICAL CHARACTERISTICS: \(V_S = +5 \) V

Boldface limits are tested at +25°C.

\(R_F = 402\Omega, \ R_L = 100\Omega \) to \(V_S/2 \), and \(G = +2 \). (see Figure 3 for AC performance only), unless otherwise noted.

AC PERFORMANCE (see Figure 3)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>+25°C</th>
<th>+25°C(1)</th>
<th>0°C to 70°C(2)</th>
<th>-40°C to +85°C(2)</th>
<th>Units</th>
<th>Min/Max</th>
<th>Test Level(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small-Signal Bandwidth</td>
<td>(G = +1, V_O = 0.1V_{pp}, R_F = 0 \Omega)</td>
<td>350</td>
<td></td>
<td></td>
<td>MHz</td>
<td>ty</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(G = +2, V_O = 0.1V_{pp})</td>
<td>180</td>
<td>105</td>
<td>102</td>
<td>100</td>
<td>MHz</td>
<td>min</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>(G = +10, V_O = 0.1V_{pp})</td>
<td>20</td>
<td>13</td>
<td>11</td>
<td>10</td>
<td>MHz</td>
<td>min</td>
<td>B</td>
</tr>
<tr>
<td>Gain-Bandwidth Product</td>
<td>(G > 20)</td>
<td>200</td>
<td>130</td>
<td>110</td>
<td>105</td>
<td>MHz</td>
<td>min</td>
<td>B</td>
</tr>
<tr>
<td>Peaking at a Gain of +1</td>
<td>(V_O < 0.1V_{pp})</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
<td>typ</td>
<td>C</td>
</tr>
<tr>
<td>Large-Signal Bandwidth</td>
<td>(G = +2, V_O = 2V_{pp})</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(G = +2, V_O = 2V_{pp})</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slew Rate</td>
<td>(V_O < 0.1V_{pp})</td>
<td>200</td>
<td>130</td>
<td>110</td>
<td>105</td>
<td>MHz</td>
<td>min</td>
<td>B</td>
</tr>
<tr>
<td>Rise-and-Fall Time</td>
<td>(V_O = 0.2V)</td>
<td>2.0</td>
<td>2.7</td>
<td>3.2</td>
<td>3.3</td>
<td>ns</td>
<td>max</td>
<td>B</td>
</tr>
<tr>
<td>Settling Time to 0.02%</td>
<td>(V_O = 2V_{pp})</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_O = 0.1V_{pp})</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harmonic Distortion</td>
<td>(G = +2, f = 1MHz, V_O = 2V_{pp})</td>
<td>85</td>
<td>82</td>
<td>81</td>
<td>80</td>
<td>dBc</td>
<td>max</td>
<td>B</td>
</tr>
<tr>
<td>2nd-Harmonic</td>
<td>(R_L = 200\Omega) to (V_S/2)</td>
<td>85</td>
<td>82</td>
<td>81</td>
<td>80</td>
<td>dBc</td>
<td>max</td>
<td>B</td>
</tr>
<tr>
<td>3rd-Harmonic</td>
<td>(R_L = 500\Omega) to (V_S/2)</td>
<td>87</td>
<td>83</td>
<td>82</td>
<td>81</td>
<td>dBc</td>
<td>max</td>
<td>B</td>
</tr>
<tr>
<td>Input Voltage Noise</td>
<td>(f = 1MHz)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_O = 2V_{pp})</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_O = 0.1V_{pp})</td>
<td>2</td>
<td>2.3</td>
<td>2.4</td>
<td>2.6</td>
<td>nV/√Hz</td>
<td>max</td>
<td>B</td>
</tr>
<tr>
<td>DC PERFORMANCE(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open-Loop Voltage Gain</td>
<td>(V_O = 0V, R_L = 200\Omega) to 2.5V</td>
<td>90</td>
<td>81</td>
<td>78</td>
<td>76</td>
<td>dB</td>
<td>min</td>
<td>A</td>
</tr>
<tr>
<td>Input Offset Voltage</td>
<td>(V_{CM} = 2.5V)</td>
<td>±0.3</td>
<td>±1</td>
<td>±1.5</td>
<td>±1.6</td>
<td>mV</td>
<td>max</td>
<td>A</td>
</tr>
<tr>
<td>Average Offset Voltage Drift</td>
<td>(V_{CM} = 2.5V)</td>
<td></td>
<td></td>
<td>5.5</td>
<td>5.5</td>
<td>μV/C</td>
<td>max</td>
<td>B</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>(V_{CM} = 2.5V)</td>
<td>–8</td>
<td>–16</td>
<td>–19</td>
<td>–20</td>
<td></td>
<td>max</td>
<td>A</td>
</tr>
<tr>
<td>Average Bias Current Drift</td>
<td>(V_{CM} = 2.5V)</td>
<td></td>
<td></td>
<td>50</td>
<td>50</td>
<td>nA/C</td>
<td>max</td>
<td>B</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>(V_{CM} = 2.5V)</td>
<td>±100</td>
<td>±400</td>
<td>±600</td>
<td>±700</td>
<td>nA</td>
<td>max</td>
<td>A</td>
</tr>
<tr>
<td>Average Offset Current Drift</td>
<td>(V_{CM} = 2.5V)</td>
<td></td>
<td></td>
<td>5</td>
<td>5</td>
<td>nA/C</td>
<td>max</td>
<td>B</td>
</tr>
</tbody>
</table>

INPUT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>+25°C</th>
<th>+25°C(1)</th>
<th>0°C to 70°C(2)</th>
<th>-40°C to +85°C(2)</th>
<th>Units</th>
<th>Min/Max</th>
<th>Test Level(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Least Positive Input Voltage</td>
<td></td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Most Positive Input Voltage</td>
<td></td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common-Mode Rejection Ratio (CMRR)</td>
<td>(V_{CM} = +2.5V)</td>
<td>110</td>
<td>85</td>
<td>82</td>
<td>80</td>
<td>dB</td>
<td>min</td>
<td>A</td>
</tr>
<tr>
<td>Input Impedance</td>
<td>(V_{CM} = +2.5V)</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential-Mode</td>
<td>(V_{CM} = +2.5V)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OUTPUT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>+25°C</th>
<th>+25°C(1)</th>
<th>0°C to 70°C(2)</th>
<th>-40°C to +85°C(2)</th>
<th>Units</th>
<th>Min/Max</th>
<th>Test Level(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most Positive Output Voltage</td>
<td></td>
<td>3.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Least Positive Output Voltage</td>
<td></td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Output, Sourcing</td>
<td>(R_L = 100\Omega) to 2.5V</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Output, Sinking</td>
<td>(R_L = 100\Omega) to 2.5V</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-Circuit Current</td>
<td>(R_L = 100\Omega) to 2.5V</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closed-Loop Output Impedance</td>
<td>(G = +1, f = 100kHz)</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

POWER SUPPLY

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>+25°C</th>
<th>+25°C(1)</th>
<th>0°C to 70°C(2)</th>
<th>-40°C to +85°C(2)</th>
<th>Units</th>
<th>Min/Max</th>
<th>Test Level(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specified Single-Supply Operating Voltage</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Single-Supply Operating Voltage</td>
<td></td>
<td>12.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min Quiescent Current</td>
<td>(V_S = +5V, both channels)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Quiescent Current</td>
<td>(V_S = +5V, both channels)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power-Supply Rejection Ratio</td>
<td>(V_{CM} = +2.5V)</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>+25°C</th>
<th>+25°C(1)</th>
<th>0°C to 70°C(2)</th>
<th>-40°C to +85°C(2)</th>
<th>Units</th>
<th>Min/Max</th>
<th>Test Level(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specified Operating Range U, E Package</td>
<td></td>
<td>–40 to +85°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, (\theta_{JA})</td>
<td>Junction-to-Ambient</td>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

2. Junction temperature = ambient at low temperature limit: junction temperature = ambient +23°C at high temperature limit for over temperature tested specifications.
3. Test Levels: (A) 100% tested at +25°C. Over temperature limits by characterization and simulation. (B) Limits set by characterization and simulation. (C) Typical value only for information.
4. Current is considered positive-out-of node. \(V_{CM} \) is the input common-mode voltage.
TYPICAL CHARACTERISTICS: $V_S = \pm 6V$

$T_A = +25^\circ C$, $G = +2$, $R_F = 402\Omega$, and $R_L = 100\Omega$, unless otherwise noted.
TYPICAL CHARACTERISTICS: $V_S = \pm 6V$ (Cont.)

$T_A = +25^\circ C$, $G = +2$, $R_F = 402\Omega$, and $R_L = 100\Omega$, unless otherwise noted.

- **HARMONIC DISTORTION vs LOAD RESISTANCE**
 - $V_O = 2V_{pp}$
 - $f = 1MHz$
 - See Figure 1

- **1MHz HARMONIC DISTORTION vs SUPPLY VOLTAGE**
 - $V_O = 2V_{pp}$
 - $R_L = 200\Omega$
 - See Figure 1

- **HARMONIC DISTORTION vs FREQUENCY**
 - $V_O = 2V_{pp}$
 - $R_L = 200\Omega$
 - See Figure 1

- **HARMONIC DISTORTION vs OUTPUT VOLTAGE**
 - $R_L = 200\Omega$
 - $f = 1MHz$
 - See Figure 1

- **HARMONIC DISTORTION vs NONINVERTING GAIN**
 - $V_O = 2V_{pp}$
 - $R_L = 200\Omega$
 - See Figure 1

- **HARMONIC DISTORTION vs INVERTING GAIN**
 - $V_O = 2V_{pp}$
 - $R_L = 200\Omega$
 - $R_F = 604\Omega$
 - See Figure 2
TYPICAL CHARACTERISTICS: $V_S = \pm 6V$ (Cont.)

$T_A = +25^\circ C$, $G = +2$, $R_F = 402\Omega$, and $R_L = 100\Omega$, unless otherwise noted.
TYPICAL CHARACTERISTICS: $V_S = \pm 6V$ (Cont.)

$T_A = +25^\circ C$, $G = +2$, $R_F = 402\, \Omega$, and $R_L = 100\, \Omega$, unless otherwise noted.

CMRR AND PSRR vs FREQUENCY

OPEN-LOOP GAIN AND PHASE

OUTPUT VOLTAGE AND CURRENT LIMITATIONS

CLOSED-LOOP OUTPUT IMPEDANCE vs FREQUENCY

NONINVERTING OVERDRIVE RECOVERY

INVERTING OVERDRIVE RECOVERY
TYPICAL CHARACTERISTICS: $V_S = \pm 6V$ (Cont.)

$T_A = +25^\circ C$, $G = +2$, $R_F = 402\, \Omega$, and $R_L = 100\, \Omega$, unless otherwise noted.

SETTLING TIME

- $R_L = 100\, \Omega$
- $V_o = 2V$ step
- $G = +2$

See Figure 1

VIDEO DIFFERENTIAL GAIN/DIFFERENTIAL PHASE

TYPICAL DC DRIFT OVER TEMPERATURE

SUPPLY AND OUTPUT CURRENT vs TEMPERATURE

COMMON-MODE INPUT RANGE AND OUTPUT SWING vs SUPPLY VOLTAGE

COMMON-MODE AND DIFFERENTIAL INPUT IMPEDANCE
TYPICAL CHARACTERISTICS: $V_S = \pm6V$

$T_A = +25^\circ C$, Differential Gain = 2, $R_F = 604\Omega$, and $R_L = 400\Omega$, unless otherwise noted.
TYPICAL CHARACTERISTICS: $V_S = +5V$

$T_A = +25^\circ C$, $G = +2$, $R_S = 402\, \Omega$, and $R_L = 100\, \Omega$, unless otherwise noted.

Noninverting Small-Signal Frequency Response

![Noninverting Small-Signal Frequency Response](image1)

Inverting Small-Signal Frequency Response

![Inverting Small-Signal Frequency Response](image2)

Noninverting Pulse Response

![Noninverting Pulse Response](image3)

Inverting Pulse Response

![Inverting Pulse Response](image4)

Recommended R_S vs Capacitive Load

![Recommended R_S vs Capacitive Load](image5)

Frequency Response vs Capacitive Load

![Frequency Response vs Capacitive Load](image6)
TYPICAL CHARACTERISTICS: $V_S = +5\text{V}$ (Cont.)

$T_A = +25\degree\text{C}$, $G = +2$, $R_F = 402\Omega$, and $R_L = 100\Omega$, unless otherwise noted.

![Harmonic Distortion vs Load Resistance](image)

$V_O = 2V_{pp}$

2nd-Harmonic

3rd-Harmonic

See Figure 3

![Harmonic Distortion vs Frequency](image)

$V_O = 2V_{pp}$

2nd-Harmonic

3rd-Harmonic

See Figure 3

![Harmonic Distortion vs Output Voltage](image)

$R_L = 200\Omega$

2nd-Harmonic

3rd-Harmonic

See Figure 3

![2-Tone, 3rd-Order Intermodulation Intercept](image)

Frequency (MHz)

Intercept Point (+dBm)

![Typical DC Drift Over Temperature](image)

Input Offset Voltage

10x Input Offset Current

Input Bias Current

Ambient Temperature (°C)

![Supply and Output Current vs Temperature](image)

Sourcing Output Current

Supply Current (both channels)

Sinking Output Current

Current Limited Output

Ambient Temperature (°C)
TYPICAL CHARACTERISTICS: $V_S = +5V$

$T_A = +25^\circ C$, Differential Gain = +2, $R_C = 604\Omega$, and $R_L = 400\Omega$, unless otherwise noted.

DIFFERENTIAL PERFORMANCE TEST CIRCUIT

DIFFERENTIAL SMALL-SIGNAL FREQUENCY RESPONSE

DIFFERENTIAL LARGE-SIGNAL FREQUENCY RESPONSE

DIFFERENTIAL DISTORTION vs LOAD RESISTANCE

DIFFERENTIAL DISTORTION vs FREQUENCY

DIFFERENTIAL DISTORTION vs OUTPUT VOLTAGE
WIDEBAND NONINVERTING OPERATION

The OPA2822 provides a unique combination of features in a wideband dual, unity-gain stable, voltage-feedback amplifier to support the extremely high dynamic range requirements of emerging communications technologies. Combining low 2nV/\sqrt{Hz} input voltage noise with harmonic distortion performance that can exceed 100dBc SFDR through 2MHz, the OPA2822 provides the highest dynamic range input interface for emerging high speed 14-bit (and higher) converters. To achieve this level of performance, careful attention to circuit design and board layout is required.

Figure 1 shows the gain of +2 configuration used as the basis for the Electrical Characteristics table and most of the Typical Characteristics at ±6V operation. While the characteristics are given using split ±6V supplies, most of the electrical and typical characteristics also apply to a single-supply +12V design where the input and output operating voltages are centered at the midpoint of the +12V supply. Operation at the input and output operating voltages are centered at the +5V operation. While the characteristics are given using split ±6V supplies, most of the electrical and typical characteristics also apply to a single-supply +12V design where the input and output operating voltages are centered at the midpoint of the +12V supply. Operation at ±6V will very nearly match that shown for the ±6V operating point. Most of the reference curves were characterized using signal sources with 50Ω driving impedance, and with measurement equipment presenting a 50Ω load impedance. In Figure 1, the 50Ω shunt resistor at the V_i terminal matches the source impedance of the test signal generator, while the 50Ω series resistor at the V_o terminal provides a matching resistor for the measurement equipment load. Generally, data sheet voltage swing specifications are at the output pin (V_o in Figure 1), while output power (dBm) specifications are at the matched 50Ω load. The total 100Ω load at the output, combined with the total 804Ω total feedback network load for the noninverting configuration of Figure 1, presents the OPA2822 with an effective output load of 89Ω. While this is a good load value for frequency response measurements, distortion will improve rapidly with lighter output loads. Keeping the same feedback network and increasing the load to 200Ω will result in a total load of 160Ω for the distortion performance reported in the Electrical Characteristics table.

For higher gains, the feedback resistor (R_F) was held at 402Ω and the gain resistor (R_G) adjusted to develop the Typical Characteristics.

Voltage-feedback op amps, unlike current-feedback designs, can use a wide range of resistor values to set their gains. A low-noise part like the OPA2822 will deliver low total output noise only if the resistor values are kept relatively low. For the circuit of Figure 1, the resistors contribute an input-referred voltage noise component of 1.8nV/\sqrt{Hz}, which is approaching the value of the amplifier’s intrinsic 2nV/\sqrt{Hz}. For a more complete description of the feedback network’s impact on noise, see the Setting Resistor Values to Minimize Noise section later in this data sheet. In general, the parallel combination of R_F and R_G should be < 300Ω to retain the low-noise performance of the OPA2822. However, setting these values too low can impair distortion performance due to output loading, as shown in the distortion versus load data in the Typical Characteristics.

WIDEBAND INVERTING OPERATION

Operating the OPA2822 as an inverting amplifier has several benefits and is particularly appropriate as part of the hybrid design in an xDSL receiver application. Figure 2 shows the inverting gain of –1 circuit used as the basis of the inverting mode Typical Characteristics.

In the inverting case, only the R_F element of the feedback network appears as part of the total output load in parallel with the actual load. For the 100Ω load used in the Typical Characteristics, this gives an effective load of 86Ω in this inverting configuration. Gain resistor R_G is set to achieve the desired inverting gain (in this case 604Ω for a gain of –1), while an additional input matching resistor (R_M) can be used to set the total input impedance equal to the source if desired. In this case, R_M = 54.9Ω in parallel with the 604Ω gain setting resistor yields a matched input impedance of 50Ω. R_M is needed only when the input must be matched to a source impedance, as in the characterization testing done using the circuit of Figure 2.
To take full advantage of the OPA2822’s excellent DC input accuracy, the total DC impedance seen at each of the input terminals must be matched to get bias current cancellation. For the circuit of Figure 2, this requires the grounded 309Ω resistor on the noninverting input. The calculation for this resistor value assumes a DC-coupled 50Ω source impedance along with \(R_B \) and \(R_M \). While this resistor will provide cancellation for the input bias current, it must be well decoupled (0.1µF in Figure 2) to filter the noise contribution of the resistor itself and of the amplifier’s input current noise.

As the required \(R_G \) resistor approaches 50Ω at higher gains, the bandwidth in the circuit in Figure 2 will far exceed the bandwidth at the same gain magnitude for the noninverting circuit of Figure 1. This occurs due to the lower noise gain for the circuit of Figure 2 when the 50Ω source impedance is included in the analysis. For example, at a signal gain of −12 (\(R_G = 50Ω \), \(R_M = \text{open} \), \(R_F = 604Ω \)) the noise gain for the circuit of Figure 2 will be \(1 + \frac{604Ω}{(50Ω + 50Ω)} = 7 \), due to the addition of the 50Ω source in the noise gain equation. This will give considerably higher bandwidth than the noninverting gain of +12.

SINGLE-SUPPLY NONINVERTING OPERATION

The OPA2822 can also support single +5V operation with its exceptional input and output voltage swing capability. While not a rail-to-rail input/output design, both inputs and outputs can swing to within 1.2V of either supply rail. For a single amplifier channel, this gives a very clean 2Vpp output capability on a single +5V supply, or 4Vpp output for a differential configuration using both channels together. Figure 3 shows the AC-coupled noninverting gain of +2 used as the basis of the Electrical Characteristics table and most of the Typical Characteristics for single +5V supply operation.

As with the circuit of Figure 2, the feedback resistor (\(R_F \)) has been increased to 604Ω to reduce the loading effect it has in parallel with the 100Ω actual load. The noninverting input is biased at \(V_S/2 \) (2.5V in this case) using the two 1.21kΩ resistors for \(R_B \). The parallel combination of these two resistors (605Ω) provides input bias current cancellation by matching the DC impedance looking out of the inverting input node. The noninverting input bias is also well decoupled using the 0.1µF capacitor to both reduce both power-supply noise and the resistor and bias current noise at this input.

The key requirement of broadband single-supply operation is to maintain input and output signal swings within the usable voltage range at both input and output. The circuit of Figure 3 establishes an input midpoint bias using a simple resistive divider from the +5V supply (two 804Ω resistors). These two resistors are selected to provide DC bias current cancellation because their parallel combination matches the DC impedance looking out of the inverting node, which equals \(R_F \). The gain setting resistor is not part of the DC impedance looking out of the inverting node, due to the blocking capacitor in series with it. The input signal is then AC-coupled into the midpoint voltage bias. The input impedance matching resistor (57.6Ω) is selected for testing to give a 50Ω input match (at high frequencies) when the parallel combination of the biasing divider network is included. The gain resistor (\(R_G \)) is AC-coupled, giving a DC gain of +1. This centers the output also at the input midpoint bias voltage (\(V_S/2 \)). While this circuit is shown using a +5V supply, this same circuit may be applied for single-supply operation as high as +12V.

SINGLE-SUPPLY INVERTING OPERATION

For those single +5V Typical Characteristics that require inverting gain of –1 operation, the test circuit in Figure 4 was used.

As with the circuit of Figure 2, the feedback resistor (\(R_F \)) has been increased to 604Ω to reduce the loading effect it has in parallel with the 100Ω actual load. The noninverting input is biased at \(V_S/2 \) (2.5V in this case) using the two 1.21kΩ resistors for \(R_B \). The parallel combination of these two resistors (605Ω) provides input bias current cancellation by matching the DC impedance looking out of the inverting input node. The noninverting input bias is also well decoupled using the 0.1µF capacitor to both reduce both power-supply noise and the resistor and bias current noise at this input.
The gain resistor (R_0) is set to equal the feedback resistor (R_F) at 604Ω to achieve the desired gain of −1 from V_I to V_O. A DC blocking capacitor is included in series with R_0 to reduce the DC gain for the noninverting input bias and offset voltages to +1. This places the $V_S/2$ bias voltage at the output pin and reduces the output DC offset error terms. The signal input impedance is matched to the 50Ω source using the additional R_2 resistor set to 54.9Ω. At higher frequencies, the parallel combination of R_M and R_2 provides the input impedance match at 50Ω. This is principally used for test and characterization purposes—system applications do not necessarily require this input impedance match, particularly if the source device is physically near the OPA2822 and/or does not require a 50Ω input impedance match. At higher gains, the signal source impedance will start to materially impact the apparent noise gain (and hence, bandwidth) of the OPA2822.

ADSL RECEIVE AMPLIFIER

One of the principal applications for the OPA2822 is as a low-power, low-noise receive amplifier in ADSL modem designs. Applications ranging from single +5V, ±5V, and up to single +12V supplies can be well supported by the OPA2822. For higher supplies, consider the dual, low-noise THS6062 ADSL receive amplifier that can support up to ±15V supplies. Figure 5 shows a typical ADSL receiver design where the OPA2822 is used as an inverting summing amplifier to provide both driver output signal cancellation and receive channel gain. In the circuit of Figure 5, the driver differential output voltage is shown as V_D, while the receiver channel output is shown as V_R.

The two sets of resistors, R_1 and R_2, are set to provide the desired gain from the transformer windings for the signal arriving on the line side of the transformer, and also to provide nominal cancellation for the driver output signal (V_D) to the receiver output. Typically, the two R_S resistors are set to provide impedance matching through the transformer. This is accomplished by setting $R_S = 0.5 \cdot (R_L/N^2)$, where N is the turns ratio used for the line driver design. If R_S is set in this fashion, and the actual twisted pair line shows the expected R_L impedance value, the voltage swing produced at V_D will be cut in half at the transformer input. In this case, setting $R_1 = 2 \cdot R_2$ will achieve cancellation of the driver output signal at the output of the receiver. Essentially, the driver output voltage produces a current in R_1 that is exactly matched by the current pulled out of R_2 due to the attenuated and inverted version of the output signal at the transformer input. In actual practice, R_1 and R_2 are usually RC networks to achieve cancellation over the frequency varying line impedance.

As the transformer turns ratio changes to support different line driver and supply voltage combinations, the impact of receiver amplifier noise changes. Typically, DSL systems incur a line referred noise contribution for the receiver that can be computed for the circuit of Figure 5. For example, targeting an overall gain of 1 from the line to the receiver output, and picking the input resistor R_2, the remaining resistors will be set by the driver cancellation and gain requirements. With the resistor values set, a line referred noise contribution due to the OPA2822 can be computed. R_1 will be set to 2x the value of R_2, and the feedback resistor will be set to recover the gain loss through the transformer. Table I shows the total line referred noise floor (in dBm/Hz) using three different values for R_2 over a range of transformer turns ratio (where the amplifier gain is adjusted at each turns ratio).

TABLE I. Line Referred Noise dBm/Hz, Due to Receiver Op Amp.

<table>
<thead>
<tr>
<th>N</th>
<th>$R_2 = 200$</th>
<th>$R_2 = 500$</th>
<th>$R_2 = 1000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>−151.5</td>
<td>−150.2</td>
<td>−148.5</td>
</tr>
<tr>
<td>1.5</td>
<td>−149.1</td>
<td>−147.6</td>
<td>−145.8</td>
</tr>
<tr>
<td>2</td>
<td>−147.2</td>
<td>−145.6</td>
<td>−143.7</td>
</tr>
<tr>
<td>2.5</td>
<td>−145.6</td>
<td>−144.0</td>
<td>−142.1</td>
</tr>
<tr>
<td>3</td>
<td>−144.3</td>
<td>−142.7</td>
<td>−140.7</td>
</tr>
<tr>
<td>3.5</td>
<td>−143.2</td>
<td>−141.5</td>
<td>−139.5</td>
</tr>
<tr>
<td>4</td>
<td>−142.2</td>
<td>−140.5</td>
<td>−138.4</td>
</tr>
<tr>
<td>4.5</td>
<td>−141.3</td>
<td>−139.5</td>
<td>−137.5</td>
</tr>
<tr>
<td>5</td>
<td>−140.4</td>
<td>−138.7</td>
<td>−136.6</td>
</tr>
</tbody>
</table>

Table I shows that a lower transformer turns ratio results in reduced line referred noise, and that the resistor noise will start to degrade the noise at higher values—particularly in going from 500Ω to 1kΩ. In general, line referred noise floor due to the receiver channel will not be the limit to ADSL modem performance, if it is lower than −145dBm.
ACTIVE FILTER APPLICATIONS

As a low-noise, low-distortion, unity-gain stable, voltage-feedback amplifier, the OPA2822 provides an ideal building block for high-performance active filters. With two channels available, it can be used either as a cascaded 2-stage active filter or as a differential filter. Figure 6 shows a 6th-order bandpass filter cascaded with two 2nd-order Sallen-Key sections, with transmission zeroes along with a passive post filter made up of a high-pass and a low-pass section. The first amplifier provides a 2nd-order high-pass stage while the second amplifier provides the 2nd-order low-pass stage. Figure 7 shows the frequency response for this example filter.

A differential active filter is shown in Figure 8. This circuit shows a single-supply, 2nd-order high-pass filter with the corner frequencies set to provide the required high-pass function for an ADSL CPE modem application. To use this circuit, the hybrid would be implemented as a passive summing circuit at the input to this filter. For +5V only ADSL designs, it is preferable to implement a portion of the filtering prior to the amplifier, thus limiting the amplitude of the uncancelled line driver signals. This type of receiver stage would typically then drive a low-pass filter prior to the codec setting the high-frequency cutoff of the ADC (Analog-to-Digital Converter) input signal. Figure 9 shows the frequency response for the high-pass circuit of Figure 8.
HIGH DYNAMIC RANGE ADC DRIVER

Numerous circuit approaches exist to provide the last stage of amplification before the ADC in high-performance applications. For very high dynamic range applications where the signal channel can be AC-coupled, the circuit shown in Figure 10 provides exceptional performance. Most very high performance ADCs > 12-bit performance require differential inputs to achieve the dynamic range. The circuit of Figure 10 converts a single-ended source to differential via a 1:2 turns ratio transformer, which then drives the inverting gain setting resistors (R_G). These resistors are fixed at 100Ω to provide input matching to a 50Ω source on the transformer primary side. The gain can then be adjusted by setting the feedback resistor values. For best performance, this circuit operates with a ground centered output on ±5V supplies, although a +12V supply can also provide excellent results. Since most high-performance converters operate on a single +5V supply, the output is level shifted through an AC blocking capacitor to the common-mode input voltage (V_{CM}) for the converter input, and then low-pass filtered prior to the input of the converter. This circuit is intended for inputs from 10kHz to 10MHz, so the output high-pass corner is set to 1.6kHz, while the low-pass cutoff is set to 20MHz. These are example cutoff frequencies; the actual filtering requirements would be set by the specific application.

The 1:2 turns ratio transformer also provides an improvement in input referred noise figure. Equation 1 shows the Noise Figure (NF) calculation for this circuit, where R_G has been constrained to provide an input match to R_S (through the transformer) and then R_F is set to get the desired overall gain. With these constraints (and 0Ω on the noninverting inputs), the noise figure equation simplifies considerably.

$$NF = 10 \log \left[2 + \frac{4}{\alpha} + \frac{2(e_n \left(\frac{1}{2} + \frac{1}{\alpha} \right) / n)^2 + \frac{1}{2}(lnR_S)^2}{kTR_S} \right]$$

where $R_G = 1/2 n^2 R_S$

$n = $ Transformer Turns Ratio

$\alpha = R_F/R_G$

$e_n = $ Op Amp Input Voltage Noise

$l_n = $ Inverting Input Current Noise

$kT = 4E – 21J[T = 290°K]$

Gain (dB) = $20 \log [nX]$

| Table II: Noise Figure versus Gain with n = 2 Transformer. |
|-------------------|-----------------|------------------|----------------|
| TOTAL GAIN (V/V) | LOG GAIN (dB) | REQUIRED | NOISE FIGURE |
| | | AMPLIFIER GAIN | (dB) |
| | | (α) | |
| 4 | 12.0 | 2 | 11.2 |
| 5 | 14.0 | 2.5 | 10.4 |
| 6 | 15.6 | 3 | 9.9 |
| 7 | 16.9 | 3.5 | 9.5 |
| 8 | 18.1 | 4 | 9.1 |
| 9 | 19.1 | 4.5 | 8.9 |
| 10 | 20.0 | 5 | 8.6 |

FIGURE 10. Single-Ended to Differential High Dynamic Range ADC Driver.
DESIGN-IN TOOLS
DEMONSTRATION BOARDS

Two printed circuit boards (PCBs) are available to assist in the initial evaluation of circuit performance using the OPA2822 in its two package options. Both of these are offered free of charge as unpopulated PCBs, delivered with a user’s guide. The summary information for these fixtures is shown in Table III.

The demonstration fixtures can be requested at the Texas Instruments web site (www.ti.com) through the OPA2822 product folder.

TABLE III. Demonstration Fixtures by Package.

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>PACKAGE</th>
<th>ORDERING NUMBER</th>
<th>LITERATURE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA2822U</td>
<td>SO-8</td>
<td>DEM-OPA-SO-2A</td>
<td>SBOU003</td>
</tr>
<tr>
<td>OPA2822E</td>
<td>MSOP-8</td>
<td>DEM-OPA-MSOP-2A</td>
<td>SBOU004</td>
</tr>
</tbody>
</table>

MACROMODELS AND APPLICATIONS SUPPORT

Computer simulation of circuit performance using SPICE is often a quick way to analyze the performance of the OPA2822 in its intended application. This is particularly true for video and RF amplifier circuits where parasitic capacitance and inductance can play a major role in circuit performance. A SPICE model for the OPA2822 is available through the TI web site (www.ti.com). These models do a good job of predicting small-signal AC and transient performance under a wide variety of operating conditions. They do not do as well in predicting the harmonic distortion characteristics. These models do not attempt to distinguish between the package types in their small-signal AC performance.

OPERATING SUGGESTIONS

SETTING RESISTOR VALUES TO MINIMIZE NOISE

Getting the full advantage of the OPA2822’s low input noise requires careful attention to the external gain setting and DC biasing networks. The feedback resistor is part of the overall output load (which can begin to degrade distortion if set too low). With this in mind, a good starting point for design is to select the feedback resistor as low as possible (consistent with loading distortion concerns), then continue with the design, and set the other resistors as needed. To retain full performance, setting the feedback resistor in the range of 200Ω to 750Ω can provide a good start to the design. Figure 11 shows the full output noise analysis model for any op amp.

The total output spot noise voltage can be computed as the square root of the sum of all squared output noise voltage terms. Equation 2 shows the general form of this output noise voltage expression using the terms shown in Figure 11.

\[
E_O = \sqrt{E_{NI}^2 + (I_{BN}R_S)^2 + 4kTR_S[RNG] + I_{BF}^2} + \frac{4kTR_F}{NG} \quad (2)
\]

ORDERING LITERATURE

PRODUCT PACKAGE NUMBER NUMBER

OPA2822U SO-8 DEM-OPA-SO-2A SBOU003
OPA2822E MSOP-8 DEM-OPA-MSOP-2A SBOU004

FREQUENCY RESPONSE CONTROL

Voltage-feedback op amps such as the OPA2822 exhibit decreasing closed-loop bandwidth as the signal gain is increased. In theory, this relationship is described by the Gain Bandwidth Product (GBP) shown in the Electrical Characteristics. Ideally, dividing GBP by the noninverting signal gain (also called the Noise Gain, NG) will predict the closed-loop bandwidth. In practice, this principle holds true only when the phase margin approaches 90°, as it does in higher gain configurations. At low gains, most high-speed amplifiers will show a more complex response with lower phase margin and higher bandwidth than predicted by the GBP. The OPA2822 is compensated to give a slightly peaked frequency response at a gain of +2 (see the circuit in Figure 1). The 200MHz typical bandwidth at a gain of +2 far exceeds that predicted by dividing the GBP of 240MHz by a gain of 2. The bandwidth predicted by the GBP is more closely correct as the gain increases. As shown in the Typical Characteristics, at a gain of +10, the –3dB bandwidth of 24MHz matches that predicted by dividing the GBP by 10.
Inverting operation offers some interesting opportunities to increase the available signal bandwidth. When the source impedance is matched by the gain resistor (Figure 10 for example), the signal gain is \((1 + R_F/R_G)\) while the noise gain is \((1 + R_F/2R_G)\). This reduces the noise gain almost by half, extending the signal bandwidth and increasing the loop gain. For instance, setting \(R_F = 500\ \Omega\) in Figure 10 will give a signal gain for the amplifier of 5V/V. However, including the 50Ω source impedance reflected through the 1:2 transformer will give an additional 100Ω source impedance for the noise gain analysis for each of the amplifiers. This reduces the noise gain to \(1 + 500\ \Omega/200\ \Omega = 3.5\)V/V and results in an amplifier bandwidth of at least \(240\)MHz/3.5 = 68MHz.

DRIVING CAPACITIVE LOADS

One of the most demanding and yet very common load conditions for an op amp is capacitive loading. Often, the capacitive load is the input of an ADC, including additional external capacitance which may be recommended to improve ADC linearity. A high-speed, high open-loop gain amplifier like the OPA2822 can be very susceptible to decreased stability and closed-loop frequency response peaking when a capacitive load is placed directly on the output pin. When the amplifier's open-loop output resistance is considered, this capacitive load introduces an additional pole in the signal path that can decrease the phase margin. Several external solutions to this problem have been suggested. When the primary considerations are frequency response flatness with low noise and distortion, the simplest and most effective solution is to isolate the capacitive load from the feedback loop by inserting a series isolation resistor between the amplifier output and the capacitive load. This does not eliminate the pole from the loop response, but instead shifts it and adds a zero at a higher frequency. The additional zero acts to cancel the phase lag from the capacitive load pole, thus increasing the phase margin and improving stability.

The Typical Characteristics show the recommended \(R_S\) versus capacitive load and the resulting frequency response at the load. For the OPA2822 operating at a gain of +2, the frequency response at the output pin is already slightly peaked without the capacitive load, requiring relatively high values of \(R_S\) to flatten the response at the load. One way to reduce the required \(R_S\) value is to use the noise gain adjustment circuit of Figure 12.

The resistor across the two inputs, \(R_{NG}\), can be used to increase the noise gain while retaining the desired signal gain. This can be used either to improve flatness at low gains or to reduce the required value of \(R_S\) in capacitive load driving applications. This circuit was used with \(R_{NG}\) adjusted to produce the gain flatness curve in the Typical Characteristics. As shown in that curve, an \(R_{NG}\) of 452Ω will give an NG of 3 giving exceptional frequency response flatness at a signal gain of +2. Equation 4 shows the calculation for \(R_{NG}\) given a target noise gain (NG) and signal gain (G):

\[
R_{NG} = \frac{R_F + R_S\cdot G}{NG - G}
\]

where \(R_S = \) Total Source Impedance on the Noninverting Input [25Ω in Figure 12]

\(G = \) Signal Gain \([1 + (R_F/R_G)]\)

\(NG = \) Noise Gain Target

Using this technique to get initial frequency response flatness will significantly reduce the required series resistor value to get a flat response at the capacitive load. Using the best-case noise gain of 3 with a signal gain of 2 allows the required \(R_S\) to be reduced, as shown in Figure 13. Here, the required \(R_S\) versus Capacitive Load is replotted along with data from the Typical Characteristics. This demonstrates that the use of \(R_{NG} = 452\)Ω across the inputs results in much lower required \(R_S\) values to achieve a flat response.

DISTORTION PERFORMANCE

The OPA2822 is capable of delivering exceptionally low distortion through approximately 5MHz signal frequency. While principally intended to provide very low noise and distortion through the maximum ADSL frequency of 1.1MHz, the OPA2822 in a differential configuration can deliver lower than –85dBc distortions for a 4Vpp swing through 5MHz. For applications requiring extremely low distortion through higher frequencies, consider higher slew rate amplifiers such as the OPA687 or OPA2681.
As the Typical Characteristics show, until the fundamental signal reaches very high frequencies or power levels, the limit to SFDR will be 2nd-harmonic distortion rather than the negligible 3rd-harmonic component. Focusing then on the second harmonic, increasing the load impedance improves distortion directly. However, operating differentially offers the most significant improvement in even-order distortion terms. For example, the Electrical Characteristics show that a single channel of the OPA2822, delivering 2Vpp at 1MHz into a 200Ω load, will typically show a 2nd-harmonic product at −92dBc versus the 3rd-harmonic at −102dBc. Changing the configuration to a differential driver where each output still drives 2Vpp results in a 4Vpp total differential output into a 400Ω differential load, giving the same single-ended load of 200Ω for each amplifier. This configuration drops the 2nd-harmonic to −103dBc and the 3rd-harmonic to approximately −105dBc—an overall dynamic range improvement of more than 10dB.

For general distortion analysis, remember that the total loading on the amplifier includes the feedback network; in the noninverting configuration, this is the sum of RF + RG, while in the inverting configuration this additional loading is simply RF. Increasing the output voltage swing increases the harmonic distortion directly. A 6dB increase in the output swing will generally increase the 2nd-harmonic 12dB and the 3rd-harmonic 18dB. Increasing the signal gain will also generally increase both the 2nd- and 3rd-harmonics because the loop gain decreases at higher gains. Again, a 6dB increase in voltage gain will increase the 2nd-harmonic distortion by approximately 6dB. The distortion characteristic curves for the OPA2822 show little change in the 3rd-harmonic distortion versus gain. Finally, the overall distortion generally increases as the fundamental frequency increases due to the rolloff in the loop gain with frequency. Conversely, the distortion will improve going to lower frequencies, down to the dominant open-loop pole at approximately 50kHz. This will give essentially unmeasurable levels of harmonic distortion in the audio band.

The OPA2822 exhibits an extremely low 3rd-order harmonic distortion. This also gives exceptionally good 2-tone 3rd-order intermodulation intercept as shown in the Typical Characteristics. This intercept curve is defined at the 50Ω load when driven through a 50Ω matching resistor to allow direct comparisons to RF MMIC devices. This network attenuates the voltage swing from the output pin to the load by 6dB. If the OPA2822 drives directly into the input of a high-impedance device, such as an ADC, this 6dB attenuation does not occur. Under these conditions, the intercept will improve by at least 6dBm. The intercept is used to predict the intermodulation spurs for two closely spaced frequencies. If the two test frequencies, f1 and f2, are specified in terms of average and delta frequency, fO = (f1 + f2)/2 and ∆f = |f2 − f1|, the two, 3rd-order, close-in spurious tones will appear at f2 ± 3•Δf. The difference between two equal test-tone power levels and the spurious intermodulation power levels is given by ∆dBc = 2 • (IM3 − PD), where IM3 is the intercept taken from the Typical Specification and PD is the power level in dBm at the 50Ω load for either one of the two closely spaced test frequencies. For example, at 1MHz in a gain of +2 configuration, the OPA2822 exhibits an intercept of 57dBm at a matched 50Ω load. If the full envelope of the two frequencies needs to be 2Vpp, each tone will be set to 40dBm. The 3rd-order intermodulation spurious tones will then be 2 • (57 − 4) = 106dBc below the test-tone power level (~102dBm). If this same 2Vpp 2-tone envelope were delivered directly into the input of an ADC without the matching loss or loading of the 50Ω network, the intercept would increase to at least 63dBm. With the same signal and gain conditions but now driving directly into a light load, the spurious tones would then be at least 2 • (63 − 4) = 118dBc below the test-tone power levels.

DC ACCURACY AND OFFSET CONTROL

The OPA2822 can provide excellent DC signal accuracy due to its high open-loop gain, high common-mode rejection, high power-supply rejection, and low input offset voltage and bias current offset errors. To take full advantage of the low input offset voltage (+1.2mV maximum at 25°C), careful attention to input bias current cancellation is also required. The high-speed input stage for the OPA2822 has relatively high input bias current (8µA typical into the pins) but with a very close match between the two input currents, typically 100mA input offset current. The total output offset voltage may be reduced considerably by matching the source impedances looking out of the two inputs. For example, one way to add bias current cancellation to the circuit of Figure 1 would be to insert a 175Ω series resistor into the noninverting input from the 50Ω terminating resistor. If the 50Ω source resistor is DC coupled, this will increase the source impedance for the noninverting input bias current to 200Ω. Since this is now equal to the impedance looking out of the inverting input (RF || RG), the circuit will cancel the bias current effects, leaving only the offset current times the feedback resistor as a residual DC error term at the output. Using a 40Ω feedback resistor, the output DC error due to the input bias currents will now be less than 0.7µA • 40Ω = 0.28mV over the full temperature range. This is significantly lower than the contribution due to the input offset voltage. At a gain of +2, the maximum input offset voltage is 1.5mV, giving a total maximum output offset of (+3mV ± 0.28mV) = ±3.3mV over the −40°C to +85°C temperature range (for the circuit of Figure 1, including the additional 175Ω resistor at the noninverting input).

THERMAL ANALYSIS

The OPA2822 will not require heatsinking or airflow under most operating conditions. Maximum desired junction temperature will limit the maximum allowed internal power dissipation as described below. In no case should the maximum junction temperature be allowed to exceed +150°C.

Operating junction temperature (TJ) is given by TJ = P0θja. The total internal power dissipation (P0) is the sum of the quiescent power (P0Q) and additional power dissipated in the output stage (P0DL) to deliver load power. Quiescent power is simply the specified no-load supply current times the total supply voltage across the part. P0DL will depend on the required
output signal and load but would, for a grounded resistive load, be at a maximum when the output is fixed at a voltage equal to half of either supply voltage (assuming equal bipolar supplies). Under this condition \(P_{DL} = \frac{V_S^2}{4 \cdot R_L} \) where \(R_L \) includes feedback network loading.

Note that it is the power dissipated in the output stage and not in the load that determines internal power dissipation. As a worst-case example, compute the maximum \(T_J \) for the OPA2822E with both channels operating at \(A_v = +2, R_L = 100\Omega, R_F = 400\Omega, \pm V_S = \pm 5V \), and at the specified maximum \(T_A = 85^\circ C \).

\[
P_D = 10V \cdot 11.4mA + 2 \cdot \left(\frac{5^2}{4 \cdot (100 \parallel 804)}\right) = 255mW
\]

Maximum \(T_J = 85^\circ C + 0.255W \cdot 150^\circ C/W = 123^\circ C \)

This calculation represents a worst-case combination of conditions to reach a maximum possible operating junction temperature. Under most operating conditions, the junction temperature will be far lower than the 123°C calculated here.

The output current is limited in the OPA2822 to protect against damage under short-circuit conditions. This current-limited output of approximately 220mA exceeds the rated typical output current of 150mA. The typical and minimum output current limits are set for linear operation while the maximum output shown in the Typical Characteristics is nonlinear limited performance.

BOARD LAYOUT

Achieving optimum performance with a high-frequency amplifier like the OPA2822 requires careful attention to board layout parasitics and external component types. Recommendations that will optimize performance include:

a) **Minimize parasitic capacitance** to any AC ground for all of the signal I/O pins. Parasitic capacitance on the output and inverting input pins can cause instability: on the noninverting input, it can react with the source impedance to cause unintentional bandlimiting. To reduce unwanted capacitance, a window around the signal I/O pins should be opened in all of the ground and power planes around those pins. Otherwise, ground and power planes should be unbroken everywhere on the board.

b) **Minimize the distance** (< 0.25") from the power-supply pins to high-frequency 0.1μF decoupling capacitors. At the device pins, the ground and power plane layout should not be in close proximity to the signal I/O pins. Avoid narrow power and ground traces to minimize inductance between the device pins and the decoupling capacitors. The primary power-supply connections (on pins 4 and 8) should always be decoupled with these capacitors. Larger (2.2μF to 6.8μF) decoupling capacitors, effective at lower frequencies, should also be used on the main supply pins. These may be placed somewhat farther from the device and may be shared among several devices in the same area of the PCB.

c) **Careful selection and placement of external components will preserve the high-frequency performance of the OPA2822.** Resistors should be a very low reactance type. Surface-mount resistors work best and allow a tighter overall layout. Metal film and carbon composition axial leaded resistors can also provide good high-frequency performance. Again, keep their leads and PCB trace length as short as possible. Never use wire-wound type resistors in a high-frequency application. Since the output pin and inverting input pin are the most sensitive to parasitic capacitance, always position the feedback and series output resistor, if any, as close as possible to the output pin. Other network components, such as noninverting input termination resistors, should also be placed close to the package. Even with a low parasitic capacitance shunting the external resistors, excessively high resistor values can create significant time constants that can degrade performance. Good axial metal film or surface-mount resistors have approximately 0.2pF in shunt with the resistor. For resistor values > 1.5kΩ, this parasitic capacitance can add a pole and/or zero below 500MHz that can effect circuit operation. Keep resistor values as low as possible consistent with parasitic load, distortion, and noise considerations. The 40Ω feedback used in the Typical Characteristics is a good starting point for design.

d) **Connections to other wideband devices** on the board may be made with short direct traces or through onboard transmission lines. For short connections, consider the trace and the input to the next device as a lumped capacitive load. Relatively wide traces (50mils to 100mils) should be used, preferably with ground and power planes opened up around them. Estimate the total capacitive load and set \(R_S \) from the plot of recommended \(R_S \) versus capacitive load. If a long trace is required, and the 6dB signal loss intrinsic to a doubly-terminated transmission line is acceptable, implement a matched impedance transmission line using microstrip or stripline techniques (consult an ECL design handbook for microstrip and stripline layout techniques). A 50Ω environment is normally not necessary onboard, and in fact a higher impedance environment will improve distortion as shown in the distortion versus load plots. With a characteristic board trace impedance defined based on board material and trace dimensions, a matching series resistor into the trace from the output of the OPA2822 is used as well as a terminating shunt resistor at the input of the destination device. Remember also that the terminating impedance will be the parallel combination of the shunt resistor and the input impedance of the destination device; this total effective impedance should be set to match the trace impedance. Multiple destination devices are best handled as separate transmission lines, each with their own series and shunt terminations. If the 6dB attenuation of a doubly-terminated transmission line is unacceptable, a long trace can be series-terminated at the source end only. Treat the trace as a capacitive load in this case and set the series resistor value as shown in the plot of \(R_S \) vs Capacitive Load. This will not preserve signal integrity as

Texas Instruments

www.ti.com

OPA2822

SBOS188E
well as a doubly-terminated line. If the input impedance of the destination device is low, there will be some signal attenuation due to the voltage divider formed by the series output into the terminating impedance.

e) Socketing a high-speed part like the OPA2822 is not recommended. The additional lead length and pin-to-pin capacitance introduced by the socket can create an extremely troublesome parasitic network, which can make it almost impossible to achieve a smooth, stable frequency response. Best results are obtained by soldering the OPA2822 onto the board.

INPUT AND ESD PROTECTION

The OPA2822 is built using a very high-speed complementary bipolar process. The internal junction breakdown voltages are relatively low due to these very small geometry devices. These breakdowns are reflected in the Absolute Maximum Rating table. All device pins are protected with internal ESD protection diodes to the power supplies, as shown in Figure 14.

These diodes provide moderate protection to input overdrive voltages above the supplies as well. The protection diodes can typically support 30mA continuous current. Where higher currents are possible (for example, in systems with ±15V supply parts driving into the OPA2822), current-limiting series resistors should be added into the two inputs. Keep these resistor values as low as possible since high values degrade both noise performance and frequency response.
Revision History

<table>
<thead>
<tr>
<th>DATE</th>
<th>REVISION</th>
<th>PAGE</th>
<th>SECTION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/08</td>
<td>E</td>
<td>2</td>
<td>Abs Max Ratings</td>
<td>Changed Storage Temperature Range from −40°C to +125°C to −65°C to +125°C.</td>
</tr>
<tr>
<td>5/06</td>
<td>D</td>
<td>8</td>
<td>Typical Characteristics</td>
<td>Axis text change on, Closed-Loop Output Impedance vs Frequency.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>Design-In Tools</td>
<td>Demonstration fixture numbers changed.</td>
</tr>
</tbody>
</table>

Note: Page numbers for previous revisions may differ from page numbers in the current version.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA2822E/250</td>
<td>ACTIVE</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAUAG</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>D22</td>
<td>Samples</td>
</tr>
<tr>
<td>OPA2822E/2K5</td>
<td>ACTIVE</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAUAG</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>D22</td>
<td>Samples</td>
</tr>
<tr>
<td>OPA2822U</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>OPA 2822U</td>
<td>Samples</td>
</tr>
<tr>
<td>OPA2822U/2K5</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>OPA 2822U</td>
<td>Samples</td>
</tr>
<tr>
<td>OPA2822UG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>OPA 2822U</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) **Lead/Ball Finish** - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA2822E/250</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>250</td>
<td>180.0</td>
<td>12.4</td>
<td>5.3</td>
<td>3.4</td>
<td>1.4</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>OPA2822E/2K5</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>5.3</td>
<td>3.4</td>
<td>1.4</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>OPA2822U/2K5</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

*All dimensions are nominal.

A0 Dimension designed to accommodate the component width
B0 Dimension designed to accommodate the component length
K0 Dimension designed to accommodate the component thickness
W Overall width of the carrier tape
P1 Pitch between successive cavity centers
<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA2822E/250</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>OPA2822E/2K5</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>OPA2822U/2K5</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
D. Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
E. Falls within JEDEC MO-187 variation AA, except interlead flash.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC–7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC–7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated