OPA355-Q1 200-MHz CMOS Operational Amplifier With Shutdown

1 Features

- Qualified for Automotive Applications
- AEC-Q100 Qualified With the Following Results
 - Device Temperature Grade 1: –40°C to +125°C Ambient Operating Temperature
 - Device HBM ESD Classification Level 2
 - Device CDM ESD Classification Level C4B
- Unity-Gain Bandwidth: 450 MHz
- Wide Bandwidth: 200 MHz GBW
- High Slew Rate: 360 V/μs
- Low Noise: 5.8 nV/√Hz
- Excellent Video Performance:
 - Differential Gain: 0.02%
 - Differential Phase: 0.05° (0.1 dB)
 - Gain Flatness: 75 MHz
- Input Range Includes Ground
- Rail-to-Rail Output (Within 100 mV)
- Low Input Bias Current: 3 pA
- Low Shutdown Current: 3.4 μA
- Enable and Disable Time: 100 ns and 30 ns
- Thermal Shutdown
- Single-Supply Operating Range: 2.5 V to 5.5 V
- MicroSIZE Packages

2 Applications

- Automotive
- Active Filters
- High-Speed Integrators
- Analog-to-Digital Converter (ADC) Input Buffers
- Digital-to-Analog Converter (DAC) Output Amplifiers

3 Description

The OPA355-Q1 device is a high-speed, voltage-feedback CMOS operational amplifier designed for applications requiring wide bandwidth. The OPA355-Q1 device is unity-gain stable and can drive large output currents. In addition, the OPA355-Q1 device has a digital shutdown (enable) function. This feature provides power saving during idle periods and places the output in a high-impedance state to support output multiplexing. The differential gain is 0.02% and the differential phase is 0.05°. The quiescent current is 8.3 mA per channel.

The OPA355-Q1 device is optimized for operation on single supply or dual supplies as low as 2.5 V (±1.25 V) and up to 5.5 V (±2.75 V). The common-mode input range for the OPA355-Q1 device extends 100 mV below ground and up to 1.5 V from V+. The output swing is within 100 mV of the rails, supporting wide dynamic range.

The OPA355-Q1 device is available in a single SOT-23-6 package and is specified over the extended –40°C to +125°C temperature range.

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA355-Q1</td>
<td>SOT-23 (6)</td>
<td>2.90 mm × 1.60 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.
4 Revision History

Changes from Revision B (June 2014) to Revision C

- Deleted “C55” marking on pinout drawing in Pin Configuration and Functions section ... 3
- Added Pin Functions table to Pin Configuration and Functions section ... 3
- Deleted storage temperature range from ESD Ratings table and moved to Absolute Maximum Ratings table 4
- Changed title of Handling Ratings table to ESD Ratings table .. 4
- Added Recommended Operating Conditions table ... 4
- Added Functional Block Diagram ... 12
- Deleted “Independent enable pins are available for each channel, which provide maximum design flexibility” from Enable Function section ... 12
- Deleted Input and ESD Protection subsection in Feature Description section ... 13
- Added Device Functional Modes section ... 13
- Added Typical Applications section to Application and Implementation section .. 14
- Added Design Requirements subsection to Typical Applications section .. 14
- Added Detailed Design Procedure subsection to Typical Application section .. 14
- Added application curves to the Typical Application section .. 16
- Added High-Impedance Sensor Interface, Driving ADCs, and Active Filter subsections to Typical Application section... 16
- Added Power Supply Recommendations section ... 19
- Added layout example image to Layout section .. 19

Changes from Revision A (December 2013) to Revision B

- Changed device status from Product Preview to Production Data .. 1
5 Device Comparison Table

5.1 Device Comparison Table

<table>
<thead>
<tr>
<th>OPA355-Q1 RELATED PRODUCTS</th>
<th>FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA356</td>
<td>200-MHz, Rail-to-Rail Output, CMOS, No Shutdown</td>
</tr>
<tr>
<td>OPAx350</td>
<td>38-MHz, Rail-to-Rail Input and Output, CMOS</td>
</tr>
<tr>
<td>OPAx631</td>
<td>75-MHz, Rail-to-Rail Output</td>
</tr>
<tr>
<td>OPAx634</td>
<td>150-MHz, Rail-to-Rail Output</td>
</tr>
<tr>
<td>THS412x</td>
<td>Differential Input and Output, 3.3-V Supply</td>
</tr>
</tbody>
</table>

6 Pin Configuration and Functions

DBV Package
6-Pin SOT-23
Top View

Pin 1 of the SOT-23-6 is determined by orienting the package marking as indicated in the diagram.

Pin Functions

<table>
<thead>
<tr>
<th>PIN</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>NO.</td>
<td></td>
</tr>
<tr>
<td>ENABLE</td>
<td>5</td>
<td>— Amplifier power down. Low = disabled, high = normal operation (pin must be driven) .</td>
</tr>
<tr>
<td>IN+</td>
<td>3</td>
<td>I Noninverting input pin</td>
</tr>
<tr>
<td>IN−</td>
<td>4</td>
<td>I Inverting input pin</td>
</tr>
<tr>
<td>OUT</td>
<td>1</td>
<td>O Output pin</td>
</tr>
<tr>
<td>V+</td>
<td>6</td>
<td>— Positive power supply</td>
</tr>
<tr>
<td>V−</td>
<td>2</td>
<td>— Negative power supply</td>
</tr>
</tbody>
</table>
7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)\(^{(1)}\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V+ to V–</td>
<td>7.5</td>
<td>V</td>
</tr>
<tr>
<td>Signal input terminals</td>
<td>Voltage</td>
<td>(V–) – 0.5</td>
<td>(V+) + 0.5</td>
</tr>
<tr>
<td></td>
<td>Current</td>
<td>10</td>
<td>mA</td>
</tr>
<tr>
<td>Output short circuit(^{(2)})</td>
<td>Continuous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating temperature</td>
<td>–55</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>160</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Lead temperature (soldering, 10 seconds)</td>
<td>300</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature range, (T_{stg})</td>
<td>–65</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Stresses above Absolute Maximum Ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

\(^{(2)}\) Short-circuit to ground, one amplifier per package.

7.2 ESD Ratings

<table>
<thead>
<tr>
<th>ESD Rating</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human body model (HBM), per AEC Q100-002(^{(1)})</td>
<td>2000</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Charged device model (CDM), per AEC Q100-011</td>
<td>Corner pins (1, 3, 4, and 6)</td>
<td>750</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other pins</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

\(^{(1)}\) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_S) Total supply voltage</td>
<td>2.7</td>
<td>5.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(T_A) Ambient temperature</td>
<td>–40</td>
<td>25</td>
<td>125</td>
<td>°C</td>
</tr>
</tbody>
</table>

7.4 Thermal Information

<table>
<thead>
<tr>
<th>Thermal Metric(^{(1)})</th>
<th>OPA355-Q1</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{JA}) Junction-to-ambient thermal resistance</td>
<td>187.3</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{JUC(top)}) Junction-to-case (top) thermal resistance</td>
<td>126.5</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{JUB}) Junction-to-board thermal resistance</td>
<td>32.6</td>
<td>°C/W</td>
</tr>
<tr>
<td>(\psi_JT) Junction-to-top characterization parameter</td>
<td>24.1</td>
<td>°C/W</td>
</tr>
<tr>
<td>(\psi_JB) Junction-to-board characterization parameter</td>
<td>32.1</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{JUC(bot)}) Junction-to-case (bottom) thermal resistance</td>
<td>N/A</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

\(^{(1)}\) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
7.5 Electrical Characteristics

\(V_S = 2.7\) V to 5.5 V (single-supply). At \(T_A = 25^\circ\)C, \(R_F = 604\ \Omega\), \(R_L = 150\ \Omega\), and connected to \(V_S / 2\), (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFFSET VOLTAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OS})</td>
<td>Input offset voltage</td>
<td>(V_S = 5) V, (T_A = 25^\circ)C, (R_F = 604\ \Omega, R_L = 150\ \Omega), and connected to (V_S / 2), (unless otherwise noted)</td>
<td>(\pm 2)</td>
<td>(\pm 9)</td>
<td>mV</td>
</tr>
<tr>
<td>(DV_{OS}/dT)</td>
<td>Input offset voltage vs temperature</td>
<td>(T_A = 25^\circ)C, (R_F = 604\ \Omega), and connected to (V_S / 2), (V_{CM} = V_S / 2 - 0.15) V</td>
<td>(\pm 7)</td>
<td></td>
<td>µV/°C</td>
</tr>
<tr>
<td>PSRR</td>
<td>Input offset voltage vs power supply</td>
<td>(V_S = 2.7) to 5.5 V, (V_{CM} = V_S / 2 - 0.15) V, (T_A = 25^\circ)C, (R_F = 604\ \Omega), and connected to (V_S / 2), (unless otherwise noted)</td>
<td>(\pm 80)</td>
<td>(\pm 350)</td>
<td>µV/V</td>
</tr>
<tr>
<td>INPUT BIAS CURRENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_B)</td>
<td>Input bias current</td>
<td>(T_A = 25^\circ)C, (R_F = 604\ \Omega), and connected to (V_S / 2), (unless otherwise noted)</td>
<td>(3)</td>
<td>(\pm 50)</td>
<td>pA</td>
</tr>
<tr>
<td>(I_{OS})</td>
<td>Input offset current</td>
<td>(T_A = 25^\circ)C, (R_F = 604\ \Omega), and connected to (V_S / 2), (unless otherwise noted)</td>
<td>(\pm 1)</td>
<td></td>
<td>pA</td>
</tr>
<tr>
<td>NOISE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e_n)</td>
<td>Input noise voltage density</td>
<td>(f = 1) MHz, (T_A = 25^\circ)C, (R_F = 604\ \Omega), and connected to (V_S / 2), (unless otherwise noted)</td>
<td>(5.8)</td>
<td></td>
<td>nV/√Hz</td>
</tr>
<tr>
<td>(i_n)</td>
<td>Current noise density</td>
<td>(f = 1) MHz, (T_A = 25^\circ)C, (R_F = 604\ \Omega), and connected to (V_S / 2), (unless otherwise noted)</td>
<td>(50)</td>
<td></td>
<td>fA/√Hz</td>
</tr>
<tr>
<td>INPUT VOLTAGE RANGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{CM})</td>
<td>Common-mode voltage range</td>
<td>(T_A = 25^\circ)C, (R_F = 604\ \Omega), and connected to (V_S / 2), (unless otherwise noted)</td>
<td>((V_–) – 0.1)</td>
<td>((V_+) – 1.5)</td>
<td>V</td>
</tr>
<tr>
<td>CMRR</td>
<td>Common-mode rejection ratio</td>
<td>(V_S = 5.5) V, (-0.1) V (< V_{CM} < 4) V, (T_A = 25^\circ)C, (R_F = 604\ \Omega), and connected to (V_S / 2), (unless otherwise noted)</td>
<td>(66)</td>
<td>(80)</td>
<td>dB</td>
</tr>
<tr>
<td>INPUT IMPEDANCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential</td>
<td></td>
<td>(T_A = 25^\circ)C, (R_F = 604\ \Omega), and connected to (V_S / 2), (unless otherwise noted)</td>
<td>(10^{13})</td>
<td>(1.5)</td>
<td>Ω</td>
</tr>
<tr>
<td>Common-mode</td>
<td></td>
<td>(T_A = 25^\circ)C, (R_F = 604\ \Omega), and connected to (V_S / 2), (unless otherwise noted)</td>
<td>(10^{13})</td>
<td>(1.5)</td>
<td>Ω</td>
</tr>
<tr>
<td>OPEN-LOOP GAIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open-loop gain</td>
<td>(V_S = 5) V, (0.3) V (< V_O < 4.7) V, (T_A = 25^\circ)C, (R_F = 604\ \Omega), and connected to (V_S / 2), (unless otherwise noted)</td>
<td>(84)</td>
<td>(92)</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>FREQUENCY RESPONSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{0.1\text{dB}})</td>
<td>Small-signal bandwidth</td>
<td>(G = 1, V_O = 100) mVp-p, (R_F = 0\ \Omega), (T_A = 25^\circ)C, (R_F = 604\ \Omega), and connected to (V_S / 2), (unless otherwise noted)</td>
<td>(450)</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>(f_{0.1\text{dB}})</td>
<td>Bandwidth for 0.1-dB gain flatness</td>
<td>(G = 2, V_O = 100) mVp-p, (R_F = 604\ \Omega), (T_A = 25^\circ)C, (R_F = 604\ \Omega), and connected to (V_S / 2), (unless otherwise noted)</td>
<td>(75)</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>SR</td>
<td>Slew rate</td>
<td>(V_S = 5) V, (G = 2, 4)-V output step, (T_A = 25^\circ)C, (R_F = 604\ \Omega), and connected to (V_S / 2), (unless otherwise noted)</td>
<td>(300)</td>
<td>(\sim 360)</td>
<td>V/µs</td>
</tr>
<tr>
<td>Rise and fall time</td>
<td>(G = 1, V_O = 200) mVp-p, (10)% to 90%, (T_A = 25^\circ)C, (R_F = 604\ \Omega), and connected to (V_S / 2), (unless otherwise noted)</td>
<td>(2.4)</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Settling time</td>
<td>(G = 2, V_O = 2) Vp-p, (0.1)% to 90%, (T_A = 25^\circ)C, (R_F = 604\ \Omega), and connected to (V_S / 2), (unless otherwise noted)</td>
<td>(8)</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Overload recovery time</td>
<td>(V_I \times G = V_S, T_A = 25^\circ)C, (R_F = 604\ \Omega), and connected to (V_S / 2), (unless otherwise noted)</td>
<td>(30)</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2013–2018, Texas Instruments Incorporated

Product Folder Links: [OPA355-Q1](https://www.ti.com)
Electrical Characteristics (continued)

\(V_S = 2.7 \text{ V to } 5.5 \text{ V (single-supply). At } T_A = 25^\circ \text{C}, R_F = 604 \, \Omega, R_L = 150 \, \Omega, \text{ and connected to } \frac{V_S}{2}, \) (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harmonic distortion</td>
<td>G = 2, f = 1 MHz, (V_O = 2 \text{ Vp-p}, R_L = 200 , \Omega) (T_A = 25^\circ \text{C}) (second harmonic)</td>
<td>–81</td>
<td>dBc</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G = 2, f = 1 MHz, (V_O = 2 \text{ Vp-p}, R_L = 200 , \Omega) (T_A = 25^\circ \text{C}) (third harmonic)</td>
<td>–93</td>
<td>dBc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential gain error</td>
<td>NTSC, (R_L = 150 , \Omega, T_A = 25^\circ \text{C})</td>
<td>0.02%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential phase error</td>
<td>NTSC, (R_L = 150 , \Omega, T_A = 25^\circ \text{C})</td>
<td>0.05</td>
<td>°</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OUTPUT

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage output swing from rail</td>
<td>(V_S = 5 \text{ V}, R_L = 150 , \Omega, A_{OL} > 84 \text{ dB})</td>
<td>0.2</td>
<td>0.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_S = 5 \text{ V}, R_L = 1 , k\Omega)</td>
<td>0.1</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Output current (continuous) (1)</td>
<td></td>
<td>±60</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output current (peak) (1)</td>
<td>(V_S = 5 \text{ V}, T_A = 25^\circ \text{C})</td>
<td>±100</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_S = 3 \text{ V}, T_A = 25^\circ \text{C})</td>
<td>±80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closed-loop output impedance</td>
<td>(f < 100 \text{ kHz})</td>
<td>0.02</td>
<td>°</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

POWER SUPPLY

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specified voltage range</td>
<td>(T_A = 25^\circ \text{C})</td>
<td>2.7</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Operating voltage range</td>
<td>(T_A = 25^\circ \text{C})</td>
<td>2.5 to 5.5</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quiescent current (per amplifier)</td>
<td>(V_S = 5 \text{ V}, T_A = 25^\circ \text{C})</td>
<td>8.3</td>
<td>11</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(T_A = -40^\circ \text{C} \text{ to } +125^\circ \text{C})</td>
<td>14</td>
<td></td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

SHUTDOWN

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic-LOW threshold(2) (disabled)</td>
<td>(T_A = 25^\circ \text{C})</td>
<td>0.8</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logic-HIGH threshold(2) (enabled)</td>
<td>(T_A = 25^\circ \text{C})</td>
<td>2</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enable time</td>
<td>(T_A = 25^\circ \text{C})</td>
<td>100</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disable time</td>
<td>(T_A = 25^\circ \text{C})</td>
<td>30</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shutdown current (per amplifier)</td>
<td>(V_S = 5 \text{ V}, \text{ disabled}, T_A = 25^\circ \text{C})</td>
<td>3.4</td>
<td>µA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THERMAL SHUTDOWN

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction temperature</td>
<td>Shutdown, (T_A = 25^\circ \text{C})</td>
<td>160</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reset from shutdown, (T_A = 25^\circ \text{C})</td>
<td>140</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specified range</td>
<td>(T_A = 25^\circ \text{C})</td>
<td>–40</td>
<td>125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Operating range</td>
<td>(T_A = 25^\circ \text{C})</td>
<td>–55</td>
<td>150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage range</td>
<td>(T_A = 25^\circ \text{C})</td>
<td>–65</td>
<td>150</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

(1) See the Output Voltage Swing vs Output Current (Figure 21 and Figure 23) in the Typical Characteristics section.

(2) Logic LOW and HIGH levels are CMOS logic compatible. They are referenced to \(V– \).
7.6 Typical Characteristics

$T_A = 25^\circ C, V_S = 5 \text{ V}, G = 2, R_F = 604 \Omega,$ and $R_L = 150 \Omega$ connected to $V_S / 2$, (unless otherwise noted)

Figure 1. Noninverting Small-Signal Frequency Response

Figure 2. Inverting Small-Signal Frequency Response

Figure 3. Noninverting Small-Signal Step Response

Figure 4. Noninverting Large-Signal Step Response

Figure 5. Large-Signal Disable and Enable Response

Figure 6. 0.1-dB Gain Flatness for Various R_F Values?
Typical Characteristics (continued)

$T_A = 25^\circ C$, $V_S = 5\, V$, $G = 2$, $R_F = 604\, \Omega$, and $R_L = 150\, \Omega$ connected to $V_S / 2$, (unless otherwise noted)

- **Figure 7.** Harmonic Distortion vs Output Voltage
 - $R_L = 200\, \Omega$
 - $f = 1\, MHz$
 - $V_O = 2\, V_{P-P}$

- **Figure 8.** Harmonic Distortion vs Noninverting Gain
 - $R_L = 200\, \Omega$
 - $V_O = 2\, V_{P-P}$
 - $f = 1\, MHz$

- **Figure 9.** Harmonic Distortion vs Inverting Gain
 - $R_L = 200\, \Omega$
 - $V_O = 2\, V_{P-P}$
 - $f = 1\, MHz$

- **Figure 10.** Harmonic Distortion vs Frequency
 - $R_L = 200\, \Omega$
 - $V_O = 2\, V_{P-P}$
 - $f = 1\, MHz$

- **Figure 11.** Harmonic Distortion vs Load Resistance
 - $f = 1\, MHz$
 - $V_O = 2\, V_{P-P}$

- **Figure 12.** Input Voltage and Current Noise Spectral Density vs Frequency
Typical Characteristics (continued)

\[T_A = 25^\circ C, \ V_S = 5 \ V, \ G = 2, \ R_C = 604 \ \Omega, \ \text{and} \ R_L = 150 \ \Omega \ \text{connected to} \ V_S / 2, \ (\text{unless otherwise noted}) \]

![Figure 13. Frequency Response for Various R_L Values](image1)

![Figure 14. Frequency Response for Various C_L Values](image2)

![Figure 15. Recommended R_S Values vs Capacitive Load](image3)

![Figure 16. Frequency Response vs Capacitive Load](image4)

![Figure 17. Common-Mode Rejection Ratio and Power-Supply Rejection Ratio vs Frequency](image5)

![Figure 18. Open-Loop Gain and Phase](image6)
Typical Characteristics (continued)

\[T_A = 25^\circ C, \quad V_S = 5 \text{ V}, \quad G = 2, \quad R_F = 604 \Omega, \quad \text{and} \quad R_L = 150 \Omega \text{ connected to } V_S/2, \text{ (unless otherwise noted)} \]

![Figure 19. Composite Video Differential Gain and Phase](image1)

![Figure 20. Input Bias Current vs Temperature](image2)

Continuous currents above 60 mA are not recommended
\[V_S = 3 \text{ V} \]

![Figure 21. Output Voltage Swing vs Output Current](image3)

Continuous currents above 60 mA are not recommended
\[V_S = 5 \text{ V} \]

![Figure 22. Supply Current vs Temperature](image4)

![Figure 23. Output Voltage Swing vs Output Current](image5)

![Figure 24. Shutdown Current vs Temperature](image6)
Typical Characteristics (continued)

\[T_A = 25°C, \ V_S = 5 \text{ V}, \ G = 2, \ R_C = 604 \ \Omega, \text{ and } R_L = 150 \ \Omega \text{ connected to } V_S/2, \text{ (unless otherwise noted) } \]

![Graph](image)

Figure 25. Closed-Loop Output Impedance vs Frequency

Maximum output voltage without slew-rate induced distortion

![Graph](image)

Figure 26. Maximum Output Voltage vs Frequency

Figure 27. Output Settling Time to 0.1%

![Graph](image)

Figure 28. Open-Loop Gain vs Temperature

![Graph](image)

Figure 29. Offset Voltage Production Distribution

![Graph](image)

Figure 30. Common-Mode Rejection Ratio and Power-Supply Rejection Ratio vs Temperature
8 Detailed Description

8.1 Overview

The OPA355-Q1 operational amplifier is a high-speed, 300-V/μs, amplifier, making the device a great option for transimpedance applications. The device is unity-gain stable and can operate on a single-supply voltage (2.7 V to 5.5 V), or a split-supply voltage (±1.35 V to ±2.75 V), making the device highly versatile and simple to use. The OPA355-Q1 amplifier is specified from 2.7 V to 5.5 V and over the automotive temperature range of –40°C to +125°C.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Operating Voltage

The OPA355-Q1 device is specified over a power-supply range of 2.7 V to 5.5 V (±1.35 to ±2.75 V). However, the supply voltage ranges from 2.5 to 5.5 V (±1.25 to ±2.75 V). Supply voltages higher than 7.5 V (absolute maximum) can permanently damage the amplifier.

Parameters that vary significantly over supply voltage or temperature are shown in the Typical Characteristics section of this data sheet.

8.3.2 Enable Function

The OPA355-Q1 device is enabled by applying a TTL high-voltage level to the enable pin. Conversely, a TTL low-voltage level disables the amplifier, which reduces the supply current from 8.3 mA to 3.4 μA per amplifier. This pin voltage is referenced to a single-supply ground. When using a split-supply, such as ±2.5 V, the enable and disable voltage levels are referenced to V–. For portable battery-operated applications, this feature is used to greatly reduce the average current and as a result, extend battery life.

The enable input is modeled as a CMOS input gate with a 100-kΩ pullup resistor to V+. The enable pin assumes a logic high and the amplifier turns on if the enable pin is left open.

The enable time is 100 ns and the disable time is 30 ns, which allows the OPA355-Q1 device to operate as a gated amplifier, or to have the output multiplexed onto a common output bus. When disabled, the output assumes a high-impedance state.
Feature Description (continued)

8.3.3 Output Drive

The output stage supplies a high short-circuit current (typically over 200 mA). Therefore, an on-chip thermal shutdown circuit is provided to protect the OPA355-Q1 device from dangerously-high junction temperatures. At 160°C, the protection circuit shuts down the amplifier. Normal operation resumes when the junction temperature cools to below 140°C.

NOTE
Running a continuous DC current in excess of ±60 mA is not recommended. See the Output Voltage Swing vs Output Current graphs (Figure 21 and Figure 22) in the Typical Characteristics section.

8.4 Device Functional Modes

The OPA355-Q1 device is powered on when the supply is connected. The device can operate as a single supply operational amplifier or dual supply amplifier depending on the application. The device can also be used with asymmetrical supplies as long as the differential voltage (V– to V+) is at least 1.8 V and no greater than 5.5 V (example: V– set to –3.5 V and V+ set to 1.5 V).
9 Application and Implementation

9.1 Application Information

The OPA355-Q1 device is a CMOS, high-speed, voltage-feedback, operational amplifier (op-amp) designed for general-purpose applications.

The amplifier features a 200-MHz gain bandwidth and 300-V/μs slew rate, but the device is unity-gain stable and operates as a 1-V/V voltage follower.

The input common-mode voltage range of the device includes ground, which allows the OPA355-Q1 to be used in virtually any single-supply application up to a supply voltage of 5.5 V.

9.2 Typical Applications

9.2.1 Transimpedance Amplifier

Wide gain bandwidth, low input bias current, low input voltage, and current noise make the OPA355-Q1 device a preferred wideband photodiode transimpedance amplifier. Low-voltage noise is important because photodiode capacitance causes the effective noise gain of the circuit to increase at high frequency.

The key elements to a transimpedance design, as shown in Figure 31, are the expected diode capacitance \(C_{(D)} \), which must include the parasitic input common-mode and differential-mode input capacitance (4 pF + 5 pF), the desired transimpedance gain \(R_{(FB)} \), and the gain-bandwidth (GBW) for the OPA355-Q1 device (20 MHz). With these three variables set, the feedback capacitor value \(C_{(FB)} \) is set to control the frequency response. \(C_{(FB)} \) includes the stray capacitance of \(R_{(FB)} \), which is 0.2 pF for a typical surface-mount resistor.

\[
\begin{align*}
C_{(F)} &< 1 \text{ pF} \\
R_{(FB)} &10 \text{ MQ} \\
V_{(V+)} & V_{(V-)} \\
OPA355-Q1 & \\
V_{(V+)} & \text{V}_{(V-)} \\
(1) & C_{(FB)} \text{ is optional to prevent gain peaking. } C_{(FB)} \text{ includes the stray capacitance of } R_{(FB)}. \\
\end{align*}
\]

Figure 31. Dual-Supply Transimpedance Amplifier

9.2.1.1 Design Requirements

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage (V_{(V+)})</td>
<td>2.5 V</td>
</tr>
<tr>
<td>Supply voltage (V_{(V-)})</td>
<td>–2.5 V</td>
</tr>
</tbody>
</table>

9.2.1.2 Detailed Design Procedure

To achieve a maximally-flat, second-order Butterworth frequency response, the feedback pole must be set to:

\[
\frac{1}{2 \times \pi \times R_{(FB)} \times C_{(FB)}} = \sqrt{\frac{\text{GBW}}{4 \times \pi \times R_{(FB)} \times C_{(D)}}} \\
(1)
\]

Use Equation 2 to calculate the bandwidth.

\[
f_{(-3 \text{ dB})} = \sqrt{\frac{\text{GBW}}{2 \times \pi \times R_{(FB)} \times C_{(D)}}} \\
(2)
\]
For other transimpedance bandwidths, consider the high-speed CMOS OPA380 (90-MHz GBW), OPA354 (100-MHz GBW), OPA300 (180-MHz GBW), OPA355 (200-MHz GBW), or OPA656 and OPA657 (400-MHz GBW).

For single-supply applications, the +INx input can be biased with a positive DC voltage to allow the output to reach true zero when the photodiode is not exposed to any light, and respond without the added delay that results from coming out of the negative rail; this configuration is shown in Figure 32. This bias voltage appears across the photodiode, providing a reverse bias for faster operation.

![Figure 32. Single-Supply Transimpedance Amplifier](image)

For additional information, see the Compensate Transimpedance Amplifiers Intuitively application bulletin.

9.2.1.2.1 Optimizing The Transimpedance Circuit

To achieve the best performance, select components according to the following guidelines:

1. For lowest noise, select R\(_{\text{FB}}\) to create the total required gain. Using a lower value for R\(_{\text{FB}}\) and adding gain after the transimpedance amplifier generally produces poorer noise performance. The noise produced by R\(_{\text{FB}}\) increases with the square-root of R\(_{\text{FB}}\), whereas the signal increases linearly. Therefore, signal-to-noise ratio improves when all the required gain is placed in the transimpedance stage.

2. Minimize photodiode capacitance and stray capacitance at the summing junction (inverting input). This capacitance causes the voltage noise of the op amp to amplify (increasing amplification at high frequency). Using a low-noise voltage source to reverse-bias a photodiode can significantly reduce the capacitance. Smaller photodiodes have lower capacitance. Use optics to concentrate light on a small photodiode.

3. Noise increases with increased bandwidth. Limit the circuit bandwidth to only that required. Use a capacitor across the R\(_{\text{FB}}\) to limit bandwidth, even if not required for stability.

4. Circuit board leakage can degrade the performance of an otherwise well-designed amplifier. Clean the circuit board carefully. A circuit board guard trace that encircles the summing junction and is driven at the same voltage can help control leakage.

For additional information, see the Noise Analysis of FET Transimpedance Amplifiers and Noise Analysis for High-Speed Op Amps application bulletins).
9.2.1.3 Application Curve

![Application Curve Graph]

–3 dB bandwidth is 4.56 MHz

Figure 33. AC Transfer Function

9.2.2 High-Impedance Sensor Interface

Many sensors have high source impedances that may range up to 10 MΩ, or even higher. The output signal of sensors often must be amplified or otherwise conditioned by means of an amplifier. The input bias current of this amplifier can load the sensor output and cause a voltage drop across the source resistance, as shown in Figure 34, where \(V_{(+INx)} = V_S - I_{(BIAS)} \times R_{(S)} \). The last term, \(I_{(BIAS)} \times R_{(S)} \), shows the voltage drop across \(R_{(S)} \). To prevent errors introduced to the system as a result of this voltage, an op amp with very low input bias current must be used with high impedance sensors. This low current keeps the error contribution by \(I_{(BIAS)} \times R_{(S)} \) less than the input voltage noise of the amplifier, so that it does not become the dominant noise factor. The OPA355-Q1 op amp features very low input bias current (typically 200 fA), and is therefore a preferred choice for such applications.

![Noise as a Result of I_{(BIAS)} Diagram]

Figure 34. Noise as a Result of \(I_{(BIAS)} \)
9.2.3 Driving ADCs

The OPA355-Q1 op amps are designed for driving sampling analog-to-digital converters (ADCs) with sampling speeds up to 1 MSPS. The zero-crossover distortion input stage topology allows the OPA355-Q1 device to drive ADCs without degradation of differential linearity and THD.

The OPA355-Q1 device can be used to buffer the ADC switched input capacitance and resulting charge injection while providing signal gain. Figure 35 shows the OPA355-Q1 device configured to drive the ADS8326.

![Circuit Diagram](image)

(1) Suggested value; may require adjustment based on specific application.

(2) Single-supply applications lose a small number of ADC codes near ground as a result of op amp output swing limitation. If a negative power supply is available, this simple circuit creates a −0.3-V supply to allow output swing to true ground potential.

Figure 35. Driving the ADS8326

9.2.4 Active Filter

The OPA355-Q1 device is designed for active filter applications that require a wide bandwidth, fast slew rate, low-noise, single-supply operational amplifier. Figure 36 shows a 500 kHz, second-order, low-pass filter using the multiple-feedback (MFB) topology. The components are selected to provide a maximally-flat Butterworth response. Beyond the cutoff frequency, roll-off is −40 dB/dec. The Butterworth response is preferred for applications requiring predictable gain characteristics, such as the anti-aliasing filter used in front of an ADC.

One point to observe when considering the MFB filter is that the output is inverted, relative to the input. If this inversion is not required, or not desired, a noninverting output can be achieved through one of the following options:

1. Adding an inverting amplifier
2. Adding an additional second-order MFB stage
3. Using a noninverting filter topology, such as the Sallen-Key (see Figure 37).

MFB and Sallen-Key, low-pass and high-pass filter synthesis is quickly accomplished using TI’s FilterPro™ program. This software is available as a free download at www.ti.com.
Figure 36. Second-Order Butterworth 500-kHz Low-Pass Filter

Figure 37. OPA355-Q1 Configured as a Three-Pole, 20-kHz, Sallen-Key Filter
10 Power Supply Recommendations

The OPA355-Q1 device is specified for operation from 2.7 to 5.5 V (±1.35 to ±2.75 V); many specifications apply from −40°C to +125°C. Parameters that can exhibit significant variance with regard to operating voltage or temperature are shown in the Typical Characteristics section.

Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-impedance power supplies. For more detailed information on bypass capacitor placement, see the Layout Guidelines section.

Power dissipation depends on power-supply voltage, signal and load conditions. With DC signals, power dissipation is equal to the product of output current times the voltage across the conducting output transistor, VS – VO. Minimize power dissipation by using the lowest possible power-supply voltage required to ensure the required output voltage swing.

For resistive loads, the maximum power dissipation occurs at a DC output voltage of one-half the power-supply voltage. Dissipation with AC signals is lower. Application bulletin AB-039, Power Amplifier Stress and Power Handling Limitations explains how to calculate or measure power dissipation with unusual signals and loads, and is available on www.ti.com.

Any tendency to activate the thermal protection circuit indicates excessive power dissipation or an inadequate heat sink. For reliable operation, limit junction temperature to 150°C maximum. To estimate the margin of safety in a complete design, increase the ambient temperature to trigger the thermal protection at 160°C. The thermal protection must trigger more than 35°C above the maximum expected ambient condition of the application.

11 Layout

11.1 Layout Guidelines

Good high-frequency printed-circuit board (PCB) layout techniques must be used for the OPA355-Q1. Generous use of ground planes, short direct-signal traces, and a preferred bypass capacitor located at the V+ pin ensures clean and stable operation. Large areas of copper help dissipate heat generated within the amplifier in normal operation.

Sockets are not recommended for use with any high-speed amplifier.

A 10-nF ceramic bypass capacitor is the minimum recommended value; adding a 1-μF or larger tantalum capacitor in parallel is beneficial when driving a low-resistance load. Providing adequate bypass capacitance is essential to achieving very low harmonic and intermodulation distortion.

11.2 Layout Example

![Figure 38. Layout Example](image-url)
12 Device and Documentation Support

12.1 Trademarks
FilterPro is a trademark of Texas Instruments Incorporated. All other trademarks are the property of their respective owners.

12.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.3 Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish (6)</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA355QDBVRQ1</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>6</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>SLN</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF OPA355-Q1 :
Catalog: OPA355

NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
D. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
\(\n\) Falls within JEDEC MO-178 Variation AB, except minimum lead width.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
D. Publication IPC-7351 is recommended for alternate designs.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and/or implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers’ applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY TECHNOLOGY, PATENT RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY Defendant or indemNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.