Programmable Output Pulse Width
With $R_{int} \ldots 35$ ns Typ
With $R_{ext}/C_{ext} \ldots 40$ ns to 28 Seconds

Internal Compensation for Virtual Temperature Independence

Jitter-Free Operation up to 90% Duty Cycle

Inhibit Capability

FUNCTION TABLE

<table>
<thead>
<tr>
<th>INPUTS</th>
<th>OUTPUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>A2</td>
</tr>
<tr>
<td>L</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>L</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>H</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>L</td>
<td>I</td>
</tr>
<tr>
<td>L</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>L</td>
</tr>
</tbody>
</table>

logic symbol

```
\begin{circuitdiagram}{1.5}
   \node[ground](g) at (0,0){};
   \node[or gate, above=of g](o) {A1 \quad \text{or} \quad A2};
   \node[not gate, right=of o](n) {\overline{B}};
   \node[and gate, below=of o](a) {Q};
   \node[and gate, below=of n](b) {\overline{Q}};
   \draw (o) -- (a);
   \draw (n) -- (b);
   \draw (a) -- (b);
\end{circuitdiagram}
```

For explanation of function table symbols, see page

† These lines of the function table assume that the indicated steady-state conditions at the A and B inputs have been upset long enough to complete any pulse before the setup.

description

These multivibrators feature dual negative-transition-triggered inputs and a single positive-transition-triggered input which can be used as an inhibit input. Complementary output pulses are provided.

Pulse triggering occurs at a particular voltage level and is not directly related to the transition time of the input pulse. Schmitt-trigger input circuitry (TTL hysteresis) for the B input allows jitter-free triggering from inputs with transition rates as slow as 1 volt/second, providing the circuit with an excellent noise immunity of typically 1.2 volts. A high immunity to VCC noise of typically 1.5 volts is also provided by internal latching circuitry.

Once fired, the outputs are independent of further transitions of the inputs and are a function only of the timing components. Input pulses may be of any duration relative to the output pulse. Output pulse length may be varied from 40 nanoseconds to 28 seconds by choosing appropriate timing components. With no external timing components (i.e., R_{int} connected to VCC, C_{ext} and R_{ext}/C_{ext} open), an output pulse of typically 30 or 35 nanoseconds is achieved which may be used as a d-c triggered reset signal. Output rise and fall times are TTL compatible and independent of pulse length.

Pulse width stability is achieved through internal compensation and is virtually independent of VCC and temperature. In most applications, pulse stability will only be limited by the accuracy of external timing components.

Jitter-free operation is maintained over the full temperature and VCC ranges for more than six decades of timing capacitance (10 pF to 10 μF) and more than one decade of timing resistance (2 kΩ to 30 kΩ) for the SN54121 and 2 kΩ to 40 kΩ for the SN74121). Throughout these ranges, pulse width is defined by the relationship $t_{width} = C_{ext}R_{t1}$ = 0.7 $C_{ext}R_{t}$. In circuits where pulse cutoff is not critical, timing capacitance up to 1000 μF and timing resistance as low as 1.4 kΩ may be used. Also, the range of jitter-free output pulse widths is extended if VCC is held to 5 volts and free-air temperature is 25°C. Duty cycles as high as 90% are achieved when using maximum recommended R_{t}. Higher duty cycles are available if a certain amount of pulse-width jitter is allowed.
SN54121, SN74121
MONOSTABLE MULTIVIBRATORS
WITH SCHMITT-TRIGGER INPUTS

logic diagram (positive logic)

Pin numbers shown on logic notation are for J or N packages.

NOTES:
1. An external capacitor may be connected between C\text{ext} (positive) and R\text{ext}/C\text{ext}.
2. To use the internal timing resistor, connect R\text{int} to V\text{CC}. For improved output width
 accuracy and repeatability, connect an external resistor between R\text{ext}/C\text{ext} and V\text{CC}
 with R\text{int} open-circuited.

schematics of inputs and outputs

EQUIVALENT OF EACH INPUT

TYPICAL OF BOTH OUTPUTS

Texas Instruments
Post Office Box 655012 - Dallas, Texas 75265
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

- Supply voltage, \(V_{CC} \) (see Note 3): \(7 \) V
- Input voltage: \(5.5 \) V
- Operating free-air temperature range:
 - SN54121: \(-55^\circ C \) to \(125^\circ C\)
 - SN74121: \(0^\circ C \) to \(70^\circ C\)
- Storage temperature range: \(-65^\circ C \) to \(150^\circ C\)

NOTE 3: Voltage values are with respect to network ground terminal.

recommended operating conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CC}) Supply voltage</td>
<td>4.5</td>
<td>5.5</td>
<td>5.6</td>
<td>V</td>
</tr>
<tr>
<td>(I_{OH}) High-level output current</td>
<td>4.75</td>
<td>5</td>
<td>5.25</td>
<td>mA</td>
</tr>
<tr>
<td>(I_{OL}) Low-level output current</td>
<td>-0.4</td>
<td>mA</td>
<td>-0.4</td>
<td>mA</td>
</tr>
<tr>
<td>(dv/dt) Rate of rise or fall of input pulse</td>
<td>1</td>
<td>V/μs</td>
<td>1</td>
<td>V/μs</td>
</tr>
<tr>
<td>(t_{pw(min)}) Input pulse width</td>
<td>50</td>
<td>ns</td>
<td>50</td>
<td>ns</td>
</tr>
<tr>
<td>(R_{EXT}) External timing capacitance</td>
<td>1.4</td>
<td>30</td>
<td>kΩ</td>
<td></td>
</tr>
<tr>
<td>(C_{EXT}) External timing capacitance</td>
<td>1.4</td>
<td>40</td>
<td>kΩ</td>
<td></td>
</tr>
<tr>
<td>Duty cycle</td>
<td>0</td>
<td>1000</td>
<td>μF</td>
<td></td>
</tr>
<tr>
<td>(T_A) Operating free-air temperature</td>
<td>-68</td>
<td>125</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

Texas Instruments

POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
SN54121, SN74121
MONOSTABLE MULTIVIBRATORS
WITH SCHMITT-TRIGGER INPUTS

Electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IH} High-level input voltage at A input</td>
<td>$V_{CC} = \text{MIN}$</td>
<td>2</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{IL} Low-level input voltage at A input</td>
<td>$V_{CC} = \text{MIN}$</td>
<td>0.8</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{TH}^+ Positive-going threshold voltage at R input</td>
<td>$V_{CC} = \text{MIN}$</td>
<td>1.55</td>
<td></td>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td>V_{TH}^- Negative-going threshold voltage at B input</td>
<td>$V_{CC} = \text{MIN}$</td>
<td>0.8</td>
<td></td>
<td>1.35</td>
<td>V</td>
</tr>
<tr>
<td>I_R Input leakage current</td>
<td>$V_{CC} = \text{MIN}$</td>
<td>$I_L = -12 \text{ mA}$</td>
<td>-1.6</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>I_{OH} High-level output voltage</td>
<td>$V_{CC} = \text{MIN}$</td>
<td>$I_{OL} = \text{MAX}$</td>
<td>2.4</td>
<td>3.4</td>
<td>V</td>
</tr>
<tr>
<td>I_{OL} Low-level output voltage</td>
<td>$V_{CC} = \text{MIN}$</td>
<td>$I_{OL} = \text{MAX}$</td>
<td>0.2</td>
<td>0.4</td>
<td>mA</td>
</tr>
<tr>
<td>I_I Input current at maximum input voltage</td>
<td>$V_{CC} = \text{MAX}$</td>
<td>$V_{IL} = 5.5 \text{ V}$</td>
<td>1</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>I_{IH} High-level input current</td>
<td>$V_{CC} = \text{MAX}$</td>
<td>$A_1 \text{ or } A_2$</td>
<td>40</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>I_{IL} Low-level input current</td>
<td>$V_{CC} = \text{MAX}$</td>
<td>$B_1 \text{ or } B_2$</td>
<td>50</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>I_{OS} Short-circuit output current 6</td>
<td>$V_{CC} = \text{MAX}$</td>
<td>54 Family</td>
<td>-20</td>
<td>-55</td>
<td>mA</td>
</tr>
<tr>
<td>I_{CC} Supply current</td>
<td>$V_{CC} = \text{MAX}$</td>
<td>Quiescent</td>
<td>13</td>
<td>25</td>
<td>mA</td>
</tr>
</tbody>
</table>

1 For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

2 All typical values are at $V_{CC} = 5 \text{ V}, T_A = 25 \text{°C}$.

3 Not more than one output should be shorted at a time.

Switching characteristics, $V_{CC} = 5 \text{ V}, T_A = 25 \text{°C}$

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{PLH} Propagation delay time, low-to-high- level Q output from either A input</td>
<td>$C_L = 15 \text{ pF}, R_{PL} = 400 \Omega$, See Note 4</td>
<td>45</td>
<td>70</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{PHL} Propagation delay time, high-to-low level Q output from either A input</td>
<td>$C_L = 80 \text{ pF}, R_{int to VCC}$</td>
<td>35</td>
<td>80</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{PLH} Propagation delay time, high-to-low level Q output from B input</td>
<td>$R_{int to VCC}, C_{ext} = 100 \text{ pF}$</td>
<td>50</td>
<td>80</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{PW} Pulse width obtained using internal timing resistor</td>
<td>$C_{ext} = 80 \text{ pF}, R_{int to VCC}$</td>
<td>70</td>
<td>110</td>
<td>150</td>
<td>ns</td>
</tr>
<tr>
<td>t_{PW} Pulse width obtained with zero timing capacitance</td>
<td>$C_{ext} = 0, R_{int to VCC}$</td>
<td>30</td>
<td>50</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{PW} Pulse width obtained using external timing resistor</td>
<td>$C_{ext} = 1 \text{ µF}, R_{T} = 10 \text{ kΩ}$</td>
<td>600</td>
<td>700</td>
<td>800</td>
<td>ns</td>
</tr>
</tbody>
</table>

NOTE 4: Load circuits and voltage waveforms are shown in Section 1.
TYPICAL CHARACTERISTICS†

DISTRIBUTION OF UNITS for OUTPUT PULSE WIDTH

Variation in Internal Timing Resistor Value vs Free-Air Temperature

FIGURE 1

VARIATION IN OUTPUT PULSE WIDTH vs SUPPLY VOLTAGE

FIGURE 2

VCC = 5 V
TA = 26°C
Cext = 101 pF
Rt = 10 kΩ (External)

99% of Units
Median ±0.5%
 Median ±0.25%
 Median ±0.1%

Δtumption — Variation in Internal Timing Resistor Value

TA—Free-Air Temperature—°C

FIGURE 3

Δt(OUT)—Variation in Output Pulse Width

Δt(OUT) = 420 ns @ VCC = 5 V

FIGURE 4

Vcc = 5 V

Positive-Going Threshold VT+
Negative-Going Threshold VT−

Hysteresis = VT+ − VT−

TA—Free-Air Temperature—°C

8 Data for temperatures below 0°C and above 70°C are applicable for SN74121.
SN54121, SN74121
MONOSTABLE MULTIVIBRATORS
WITH SCHMITT-TRIGGER INPUTS

TYPICAL CHARACTERISTICS\(^\d\) (continued)

VARIATION IN OUTPUT PULSE WIDTH
vs FREE-AIR TEMPERATURE

\[V_{CC} = 5 \, V \]
\[C_T = 60 \, \text{pF} \]
\[R_T = 10 \, \text{k}\Omega \]

\[t_{\text{out}} = 420 \, \text{ms} \]
\[T_A = 25^\circ \text{C} \]

FIGURE 5

OUTPUT PULSE WIDTH
vs TIMING RESISTOR VALUE

\[V_{CC} = 5 \, V \]
\[T_A = 25^\circ \text{C} \]
See Note 3

FIGURE 6

OUTPUT PULSE WIDTH
vs EXTERNAL CAPACITANCE

\[V_{CC} = 5 \, V \]
\[T_A = 25^\circ \text{C} \]

FIGURE 7

NOTE 5: These values of resistance exceed the maximum recommended use over the full temperature range of the SN54121.
\(^\d\)Data for temperatures below 0\(^\circ\text{C}\) and above 70\(^\circ\text{C}\) are applicable for SN54121.
IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5962-9755301QCA</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>Call TI</td>
<td>Level-NC-NC-NC</td>
</tr>
<tr>
<td>5962-9755301QDA</td>
<td>ACTIVE</td>
<td>CFP</td>
<td>W</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>Call TI</td>
<td>Level-NC-NC-NC</td>
</tr>
<tr>
<td>5962-9755301QDA</td>
<td>ACTIVE</td>
<td>CFP</td>
<td>W</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>Call TI</td>
<td>Level-NC-NC-NC</td>
</tr>
<tr>
<td>SN54121J</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>Call TI</td>
<td>Level-NC-NC-NC</td>
</tr>
<tr>
<td>SN54121J</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>Call TI</td>
<td>Level-NC-NC-NC</td>
</tr>
<tr>
<td>SN74121D</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR/Level-1-235C-UNLIM</td>
</tr>
<tr>
<td>SN74121D</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR/Level-1-235C-UNLIM</td>
</tr>
<tr>
<td>SN74121DR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR/Level-1-235C-UNLIM</td>
</tr>
<tr>
<td>SN74121DR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR/Level-1-235C-UNLIM</td>
</tr>
<tr>
<td>SN74121N</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>Level-NC-NC-NC</td>
</tr>
<tr>
<td>SN74121N</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>Level-NC-NC-NC</td>
</tr>
<tr>
<td>SN74121N3</td>
<td>OBSOLETE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>TBD</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
</tr>
<tr>
<td>SN74121N3</td>
<td>OBSOLETE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>TBD</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
</tr>
<tr>
<td>SN74121NSR</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR/Level-1-235C-UNLIM</td>
</tr>
<tr>
<td>SN74121NSR</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR/Level-1-235C-UNLIM</td>
</tr>
<tr>
<td>SNJ54121J</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>Call TI</td>
<td>Level-NC-NC-NC</td>
</tr>
<tr>
<td>SNJ54121J</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>Call TI</td>
<td>Level-NC-NC-NC</td>
</tr>
<tr>
<td>SNJ54121W</td>
<td>ACTIVE</td>
<td>CFP</td>
<td>W</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>Call TI</td>
<td>Level-NC-NC-NC</td>
</tr>
<tr>
<td>SNJ54121W</td>
<td>ACTIVE</td>
<td>CFP</td>
<td>W</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>Call TI</td>
<td>Level-NC-NC-NC</td>
</tr>
<tr>
<td>SNJ54121WA</td>
<td>ACTIVE</td>
<td>CFP</td>
<td>WA</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>Call TI</td>
<td>Level-NC-NC-NC</td>
</tr>
<tr>
<td>SNJ54121WA</td>
<td>ACTIVE</td>
<td>CFP</td>
<td>WA</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>Call TI</td>
<td>Level-NC-NC-NC</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms “Lead-Free” or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines “Green” to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous materials)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
CERAMIC DUAL IN-LINE PACKAGE

14 LEADS SHOWN

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only.
E. Falls within MIL STD 1835 GDFP1–F14 and JEDEC MO–924AB
N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

<table>
<thead>
<tr>
<th>PINS **</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A MAX</td>
<td>0.775 (19.69)</td>
<td>0.775 (19.69)</td>
<td>0.920 (23.37)</td>
<td>1.060 (26.92)</td>
</tr>
<tr>
<td>A MIN</td>
<td>0.745 (18.92)</td>
<td>0.745 (18.92)</td>
<td>0.850 (21.59)</td>
<td>0.940 (23.88)</td>
</tr>
<tr>
<td>MS-001</td>
<td>AA</td>
<td>BB</td>
<td>AC</td>
<td>AD</td>
</tr>
<tr>
<td>VARIATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
D. The 20 pin end lead shoulder width is a vendor option, either half or full width.

4040049/E 12/2002
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0.15).
D. Falls within JEDEC MS-012 variation AB.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish (6)</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>5962-9755301QCA</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>A42</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td>5962-9755301QC A</td>
<td>Samples</td>
</tr>
<tr>
<td>5962-9755301QDA</td>
<td>ACTIVE</td>
<td>CFP</td>
<td>W</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>A42</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td>5962-9755301QD A</td>
<td>Samples</td>
</tr>
<tr>
<td>SN54121J</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>A42</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td>SNJ54121J</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74121D</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>74121</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74121DE4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>74121</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74121N</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>0 to 70</td>
<td>SN74121N</td>
<td>Samples</td>
</tr>
<tr>
<td>SNJ54121J</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>A42</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td>5962-9755301QC A</td>
<td>Samples</td>
</tr>
<tr>
<td>SNJ54121W</td>
<td>ACTIVE</td>
<td>CFP</td>
<td>W</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>A42</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td>5962-9755301QD A</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54121, SN74121:

- Catalog: SN74121
- Military: SN54121

NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog product
- Military - QML certified for Military and Defense Applications
Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.
NOTES:
1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This package is hermitically sealed with a ceramic lid using glass frit.
4. Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.
EXAMPLE BOARD LAYOUT

CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE

LAND PATTERN EXAMPLE
NON-SOLDER MASK DEFINED
SCALE: 5X

DETAIL A
SCALE: 15X

DETAIL B
13X, SCALE: 15X

4214771/A 05/2017
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
⚠️ Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0.15) each side.
⚠️ Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0.43) each side.
E. Reference JEDEC MS-012 variation AB.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
N (R−PDIP−TT**)

PLASTIC DUAL−IN−LINE PACKAGE

16 PINS SHOWN

<table>
<thead>
<tr>
<th>PINS **</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>A MAX</td>
<td>0.775 (19.69)</td>
<td>0.775 (19.69)</td>
<td>0.920 (23.37)</td>
<td>1.060 (26.92)</td>
</tr>
<tr>
<td>A MIN</td>
<td>0.745 (18.92)</td>
<td>0.745 (18.92)</td>
<td>0.850 (21.59)</td>
<td>0.940 (23.88)</td>
</tr>
<tr>
<td>MS−001</td>
<td>AA</td>
<td>BB</td>
<td>AC</td>
<td>AD</td>
</tr>
</tbody>
</table>

VARIATION

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS−001, except 18 and 20 pin minimum body length (Dim A).
D. The 20 pin end lead shoulder width is a vendor option, either half or full width.

4040049/E 12/2002
W (R–GDFP–F14) CERAMIC DUAL FLATPACK

Base and Seating Plane

0.045 (1.14) 0.026 (0.66)
0.080 (2.03) 0.045 (1.14)

0.260 (6.60) 0.235 (5.97)

0.008 (0.20) 0.004 (0.10)

0.280 (7.11) MAX

0.390 (9.91) 0.335 (8.51)

1 14

0.019 (0.48) 0.015 (0.38)

0.050 (1.27)

0.005 (0.13) MIN
4 Places

0.360 (9.14) 0.250 (6.35)

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only.
E. Falls within MIL STD 1835 GDFP1–F14

4040180–2/F 04/14
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated