State-of-the-Art EPIC-II™ BiCMOS Design Significantly Reduces Power Dissipation

ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)

Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17

Typical \(V_{OLP} \) (Output Ground Bounce) < 1 V at \(V_{CC} = 5 \text{ V} \), \(T_A = 25^\circ \text{C} \)

High-Drive Outputs (\(-32\text{-mA} I_{OH}, 64\text{-mA} I_{OL}\))

Parity Error Flag With Parity Generator/Checker

Register for Storage of the Parity Error Flag

Package Options Include Plastic Small-Outline (DW) Packages, Ceramic Chip Carriers (FK), and Plastic (NT) and Ceramic (JT) DIPs

description

The 'ABT833 8-bit to 9-bit parity transceivers are designed for communication between data buses. When data is transmitted from the A bus to the B bus, a parity bit is generated. When data is transmitted from the B bus to the A bus with its corresponding parity bit, the open-collector parity-error (ERR) output indicates whether or not an error in the B data has occurred. The output-enable (OEA and OEB) inputs can be used to disable the device so that the buses are effectively isolated. The 'ABT833 provide true data at their outputs.

A 9-bit parity generator/checker generates a parity-odd (PARITY) output and monitors the parity of the I/O ports with the ERR flag. ERR is clocked into the register on the rising edge of the clock (CLK) input. The error flag register is cleared with a low pulse on the clear (CLR) input. When both OEA and OEB are low, data is transferred from the A bus to the B bus and inverted parity is generated. Inverted parity is a forced error condition that gives the designer more system diagnostic capability.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC-II™ is a trademark of Texas Instruments Incorporated.

Copyright © 1997, Texas Instruments Incorporated
To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54ABT833 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ABT833 is characterized for operation from –40°C to 85°C.

FUNCTION TABLE

<table>
<thead>
<tr>
<th>INPUTS</th>
<th>OUTPUT AND I/O</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OEB</td>
<td>OEA</td>
<td>CLR</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>X</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>L</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>No↑</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>Odd</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>Even</td>
</tr>
</tbody>
</table>

NA = not applicable, NC = no change, X = don’t care

† Summation of high-level inputs includes PARITY along with Bi inputs.

‡ Output states shown assume ERR was previously high.

§ In this mode, ERR (when clocked) shows inverted parity of the A bus.

logic symbol¶

¶ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the DW, JT, and NT packages.
logic diagram (positive logic)

Pin numbers shown are for the DW, JT, and NT packages.

ERROR-FLAG FUNCTION TABLE

<table>
<thead>
<tr>
<th>INPUTS</th>
<th>INTERNAL TO DEVICE</th>
<th>OUTPUT PRE-STATE</th>
<th>OUTPUT ERR</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLR</td>
<td>CLK</td>
<td>POINT P</td>
<td>ERR_{n-1}†</td>
<td>ERR</td>
</tr>
<tr>
<td>H</td>
<td>↑</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>↑</td>
<td>X</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>H</td>
<td>↑</td>
<td>L</td>
<td>X</td>
<td>L</td>
</tr>
<tr>
<td>L</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>H</td>
</tr>
</tbody>
</table>

† The state of ERR before any changes at CLR, CLK, or point P
error-flag waveforms

![Waveform diagram]

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, \(V_{CC} \)
Input voltage range, \(V_I \) (except I/O ports) (see Note 1)
Voltage range applied to any output in the high or power-off state, \(V_O \)
Current into any output in the low state, \(I_O \): SN54ABT833
SN74ABT833
Input clamp current, \(I_{IK} \) (\(V_I < 0 \))
Output clamp current, \(I_{OK} \) (\(V_O < 0 \))
Package thermal impedance, \(\theta_{JA} \) (see Note 2): DW package
NT package
Storage temperature range, \(T_{stg} \)

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES:
1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51, except for through-hole packages, which use a trace length of zero.
recommended operating conditions (see Note 3)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SN54ABT833</th>
<th>SN74ABT833</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CC}) Supply voltage</td>
<td>4.5</td>
<td>5.5</td>
<td>4.5</td>
</tr>
<tr>
<td>(V_{IH}) High-level input voltage</td>
<td>2</td>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td>(V_{IL}) Low-level input voltage</td>
<td>0.8</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>(V_I) Input voltage</td>
<td>0</td>
<td>(V_{CC})</td>
<td>0</td>
</tr>
<tr>
<td>(V_{OH}) High-level output voltage</td>
<td>ERR</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>(I_{OH}) High-level output current</td>
<td>Except ERR</td>
<td>–24</td>
<td>–32</td>
</tr>
<tr>
<td>(I_{OL}) Low-level output current</td>
<td>48</td>
<td>64</td>
<td>mA</td>
</tr>
<tr>
<td>(\Delta t/\Delta v) Input transition rise or fall rate</td>
<td>Outputs enabled</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>(T_A) Operating free-air temperature</td>
<td>–55</td>
<td>125</td>
<td>–40</td>
</tr>
</tbody>
</table>

NOTE 3: Unused pins (input or I/O) must be held high or low to prevent them from floating.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>(T_A = 25^\circ C)</th>
<th>SN54ABT833</th>
<th>SN74ABT833</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IK})</td>
<td>(V_{CC} = 4.5 \text{ V}, \ II = -18 \text{ mA})</td>
<td>MIN</td>
<td>TYP†</td>
<td>MAX</td>
<td>MIN</td>
</tr>
<tr>
<td>(V_{I})</td>
<td>(V_{CC} = 4.5 \text{ V}, \ IOH = -3 \text{ mA})</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>V</td>
</tr>
<tr>
<td>(V_{CC} = 5 \text{ V}, \ IOH = -3 \text{ mA})</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{CC} = 4.5 \text{ V}, \ IOH = -24 \text{ mA})</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{CC} = 4.5 \text{ V}, \ IOH = -32 \text{ mA})</td>
<td>2*</td>
<td>2*</td>
<td>2*</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>(V_{CC} = 4.5 \text{ V}, \ IOH = 24 \text{ mA})</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>(V_{CC} = 6.5 \text{ V}, \ IOH = 64 \text{ mA})</td>
<td>0.55*</td>
<td>0.55*</td>
<td>0.55*</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{hys}})</td>
<td></td>
<td>100</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(IOH)</td>
<td>(V_{CC} = 4.5 \text{ V}, \ IOH = 5.5 \text{ V})</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(I_I)</td>
<td>Control inputs</td>
<td>(V_{CC} = 5.5 \text{ V}, \ V_I = V_{CC} \text{ or GND})</td>
<td>±1</td>
<td>±1</td>
<td>±1</td>
</tr>
<tr>
<td>(I_I)</td>
<td>A or B ports</td>
<td>(V_{CC} = 0), (V_I = \text{GND})</td>
<td>±100</td>
<td>±100</td>
<td>±100</td>
</tr>
<tr>
<td>(I_{OZH})</td>
<td>(V_{CC} = 5.5 \text{ V}, \ VO = 2.7 \text{ V})</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(I_{OZL})</td>
<td>(V_{CC} = 5.5 \text{ V}, \ VO = 0.5 \text{ V})</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(I_{\text{off}})</td>
<td>(V_{CC} = 0), (V_I \text{ or } VO \leq 4.5 \text{ V})</td>
<td>±100</td>
<td>±100</td>
<td>±100</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(I_{\text{CEX}})</td>
<td>(V_{CC} = 5.5 \text{ V}, \ VO = 5.5 \text{ V})</td>
<td>Outputs high</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>(I_{\text{Q}})</td>
<td>(V_{CC} = 5.5 \text{ V}, \ VO = 2.5 \text{ V})</td>
<td>Outputs high</td>
<td>1</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>(I_{\text{Q}})</td>
<td>Outputs low</td>
<td>24</td>
<td>38†</td>
<td>38†</td>
<td>38†</td>
</tr>
<tr>
<td>(I_{\text{Q}})</td>
<td>Outputs disabled</td>
<td>0.5</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>(I_{CC})</td>
<td>A or B ports</td>
<td>(V_{CC} = 5.5 \text{ V}, \ VO = 5.5 \text{ V})</td>
<td>Outputs enabled</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>(I_{CC})</td>
<td>Other inputs at (V_{CC} \text{ or GND})</td>
<td>Outputs enabled</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>(I_{CL})</td>
<td>Control inputs</td>
<td>(V_I = 2.5 \text{ V or } 0.5 \text{ V})</td>
<td>10.5</td>
<td>pF</td>
<td></td>
</tr>
</tbody>
</table>

* On products compliant to MIL-PRF-38535, this parameter does not apply.
† All typical values are at \(V_{CC} = 5 \text{ V} \).
‡ The parameters \(I_{OZH} \) and \(I_{OZL} \) include the input leakage current.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
¶ These limits may vary among suppliers.
This is the increase in supply current for each input that is at the specified TTL voltage level rather than \(V_{CC} \) or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>UNIT</th>
<th>V CC = 5 V, T A = 25°C</th>
<th>SN54ABT833</th>
<th>SN74ABT833</th>
</tr>
</thead>
<tbody>
<tr>
<td>t w</td>
<td>ns</td>
<td>3 3 3</td>
<td>SN54ABT833</td>
<td>SN74ABT833</td>
</tr>
<tr>
<td>t w SETUP</td>
<td>ns</td>
<td>3 3 3</td>
<td>SN54ABT833</td>
<td>SN74ABT833</td>
</tr>
<tr>
<td>t h</td>
<td>ns</td>
<td>0 0 0</td>
<td>SN54ABT833</td>
<td>SN74ABT833</td>
</tr>
</tbody>
</table>

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>FROM (INPUT)</th>
<th>TO (OUTPUT)</th>
<th>V CC = 5 V, T A = 25°C</th>
<th>SN54ABT833</th>
<th>SN74ABT833</th>
</tr>
</thead>
<tbody>
<tr>
<td>t PHL</td>
<td>A or B</td>
<td>B or A</td>
<td>1.2 2.8 4.8</td>
<td>1.2 5.4</td>
<td>1.2 5.3</td>
</tr>
<tr>
<td>t PHL</td>
<td>A</td>
<td>PARITY</td>
<td>2.1 5.5 9.5</td>
<td>2.1 11.3</td>
<td>2.1 11.2</td>
</tr>
<tr>
<td>t PLH</td>
<td>OE</td>
<td>PARITY</td>
<td>2.6 5.8 8.6</td>
<td>2.6 10.1</td>
<td>2.6 10.5</td>
</tr>
<tr>
<td>t PZH</td>
<td>OE</td>
<td>CLR</td>
<td>1.2 2.8 4.8</td>
<td>1.2 5.3</td>
<td>1.2 5.2</td>
</tr>
<tr>
<td>t PHL</td>
<td>A</td>
<td>ERR</td>
<td>1.2 2.8 5.7</td>
<td>1.2 6.3</td>
<td>1.2 6.2</td>
</tr>
<tr>
<td>t PZL</td>
<td>OE</td>
<td>A, B or PARITY</td>
<td>1.3 3.6 5.8</td>
<td>1.3 6.6</td>
<td>1.3 6.5</td>
</tr>
<tr>
<td>t PHZ</td>
<td>OE</td>
<td>A, B or PARITY</td>
<td>1.9 4.4 7.3</td>
<td>1.9 8</td>
<td>1.9 7.9</td>
</tr>
<tr>
<td>t PLZ</td>
<td>OE</td>
<td>A, B or PARITY</td>
<td>2.2 4.4 7.7</td>
<td>2.2 8</td>
<td>2.2 8.1</td>
</tr>
</tbody>
</table>

† All typical values are at V CC = 5 V.
‡ These limits may vary among suppliers.
PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

- From Output Under Test
- $C_L = 50 \text{ pF}$ (see Note A)

Table:

<table>
<thead>
<tr>
<th>TEST</th>
<th>S1</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{PLH}/t_{PHL}</td>
<td>Open</td>
</tr>
<tr>
<td>t_{PLZ}/t_{PZL}</td>
<td>7 V</td>
</tr>
<tr>
<td>t_{PHZ}/t_{PZH}</td>
<td>Open</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ERR</th>
<th>S1</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{PHL}</td>
<td>7 V</td>
</tr>
<tr>
<td>t_{PLH}</td>
<td>7 V</td>
</tr>
</tbody>
</table>

Figure 1. Load Circuit and Voltage Waveforms

NOTES:

A. C_L includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: $PRR \leq 10 \text{ MHz}, Z_O = 50 \Omega, t_r \leq 2.5 \text{ ns}, t_f \leq 2.5 \text{ ns}$

D. The outputs are measured one at a time with one transition per measurement.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish (6)</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN74ABT833DW</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>DW</td>
<td>24</td>
<td>25</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>ABT833</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE:** Product device recommended for new designs.
- **LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
NOTES:
A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M—1994.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0.15).
D. Falls within JEDEC MS–013 variation AD.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Refer to IPC7351 for alternate board design.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC–7525
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers’ applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY TECHNOLOGY, PATENT RIGHT OR ANY OTHER INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated