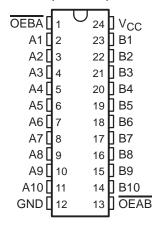
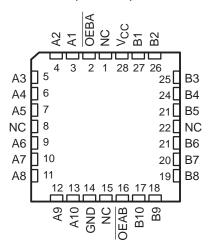
SCBS199C - FEBRUARY 1991 - REVISED MAY 1997

- State-of-the-Art EPIC-IIB™ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- High-Impedance State During Power Up and Power Down
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- High-Drive Outputs (-32-mA I_{OH}, 64-mA I_{OL})
- Package Options Include Plastic Small-Outline (DW) Package, Ceramic Chip Carriers (FK), and Plastic (NT) and Ceramic (JT) DIPs

description


The 'ABT861 are 10-bit transceivers designed for asynchronous communication between data buses. The control-function implementation allows for maximum flexibility in timing.

These devices allow noninverted data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic levels at the output-enable (OEAB and OEBA) inputs.


When V_{CC} is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

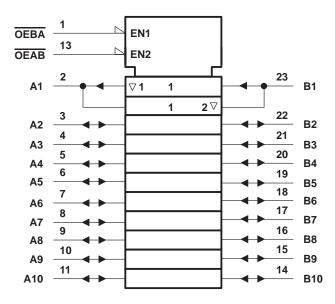
The SN54ABT861 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ABT861 is characterized for operation from –40°C to 85°C.

SN54ABT861 . . . JT PACKAGE SN74ABT861 . . . DW OR NT PACKAGE (TOP VIEW)

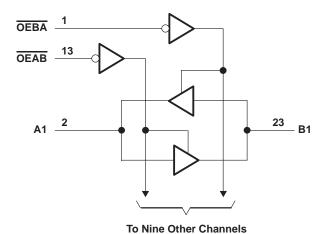
SN54ABT861 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


EPIC-IIB is a trademark of Texas Instruments Incorporated.

FUNCTION TABLE


INP	UTS	ODED ATION
OEAB	OEBA	OPERATION
L	Н	A data to B bus
Н	L	B data to A bus
Н	Н	Isolation
L	L	Latch A and B (A = B)

logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the DW, JT, and NT packages.

logic diagram (positive logic)

Pin numbers shown are for the DW, JT, and NT packages.

SCBS199C - FEBRUARY 1991 - REVISED MAY 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC} –0.5	V to 7 V
Input voltage range, V _I (except I/O ports) (see Note 1)	V to 7 V
Voltage range applied to any output in the high or power-off state, V _O	to 5.5 V
Current into any output in the low state, IO: SN54ABT861	. 96 mA
SN74ABT861	128 mA
Input clamp current, I _{IK} (V _I < 0)	-18 mA
Output clamp current, I _{OK} (V _O < 0)	-50 mA
Package thermal impedance, θ _{JA} (see Note 2): DW package	81°C/W
NT package	67°C/W
Storage temperature range, T _{stq} –65°C	to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 - 2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51, except for through-hole packages, which use a trace length of zero.

recommended operating conditions (see Note 3)

			SN54AI	3T861	SN74AI	BT861	UNIT
			MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage		4.5	5.5	4.5	5.5	V
VIH	High-level input voltage		2	EM	2		V
VIL	Low-level input voltage			0.8		0.8	V
VI	Input voltage		0 4	Vcc	0	VCC	V
IOH	High-level output current		Ç,	-24		-32	mA
loL	Low-level output current		200	48		64	mA
Δt/Δν	Input transition rise or fall rate	Outputs enabled	77	5		5	ns/V
TA	Operating free-air temperature	·	– 55	125	-40	85	°C

NOTE 3: Unused pins (input or I/O) must be held high or low to prevent them from floating.

SN54ABT861, SN74ABT861 10-BIT TRANSCEIVERS WITH 3-STATE OUTPUTS

SCBS199C - FEBRUARY 1991 - REVISED MAY 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DAD	AMETED	TEST COL	Т	A = 25°C	;	SN54A	BT861	SN74A	BT861	UNIT		
PARA	AMETER	TEST COM	ADITIONS	MIN	TYP [†]	MAX	MIN	MAX	MIN	MAX	UNII	
VIK		$V_{CC} = 4.5 \text{ V},$	I _I = -18 mA			-1.2		-1.2		-1.2	V	
		$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -3 \text{ mA}$	2.5			2.5		2.5			
l –		$V_{CC} = 5 V$,	$I_{OH} = -3 \text{ mA}$	3			3		3		V	
VOH		V _{CC} = 4.5 V	I _{OH} = -24 mA	2			2				V	
		VCC = 4.5 V	$I_{OH} = -32 \text{ mA}$	2*					2			
VOL		V _{CC} = 4.5 V	I _{OL} = 48 mA			0.55		0.55			V	
VOL		VCC = 4.5 V	I _{OL} = 64 mA			0.55*				0.55	V	
V _{hys}					100						mV	
1,	Control inputs	V _{CC} = 5.5 V,	V _I = V _{CC} or GND			±1		±1		±1	μA	
" /	A or B ports	VCC = 3.5 V,	Δ1 = ΔCC 01 QMD			±100		±100		±100	μΛ	
I _{OZPU} ‡		$\frac{\text{V}_{C}\text{C}}{\text{OE}} = 0 \text{ to } 2.1 \text{ V, V}_{C}$	y = 0.5 V to 2.7 V,			±50		±50		±50	μА	
lozpd‡		$\frac{\text{V}_{\text{C}}\text{C}}{\text{OE}} = 2.1 \text{ V to } 0, \text{ V}_{\text{C}}$	O = 0.5 V to 2.7 V,			±50		±50		±50	μА	
I _{OZH} §		$V_{CC} = 5.5 \text{ V},$	V _O = 2.7 V			50	S	50		50	μΑ	
IOZL§		$V_{CC} = 5.5 V$,	V _O = 0.5 V			-50	Q _C	- 50		- 50	μΑ	
l _{off}		V _{CC} = 0,	V_I or $V_O \le 4.5 \text{ V}$			±100	d _d			±100	μΑ	
ICEX		V _{CC} = 5.5 V, V _O = 5.5 V	Outputs high			50		50		50	μΑ	
IOI		$V_{CC} = 5.5 \text{ V},$	V _O = 2.5 V	-50	-100	-225 [#]	-50	-225 [#]	-50	-225#	mA	
		V _{CC} = 5.5 V,	Outputs high		1	250		250		250	μΑ	
Icc /	A or B ports	$I_{O} = 0$,	Outputs low		24	38		38		38	mA	
		$V_I = V_{CC}$ or GND	Outputs disabled		0.5	250		250		250	μΑ	
<u> </u>	Data inputs	V _{CC} = 5.5 V, One input at 3.4 V,	Outputs enabled			1.5		1.5		1.5		
ΔICC		Other inputs at V _{CC} or GND	Outputs disabled			1.5#		1.5#		1.5#	mA	
	Control inputs	$V_{CC} = 5.5 \text{ V}$, One in Other inputs at V_{CC}				1.5		1.5		1.5		
C _i (Control inputs	V _I = 2.5 V or 0.5 V			4.5						pF	
C _{io}	A or B ports	V _O = 2.5 V or 0.5 V			10.5						pF	

^{*} On products compliant to MIL-PRF-38535, this parameter does not apply.

[†] All typical values are at $V_{CC} = 5 \text{ V}$.

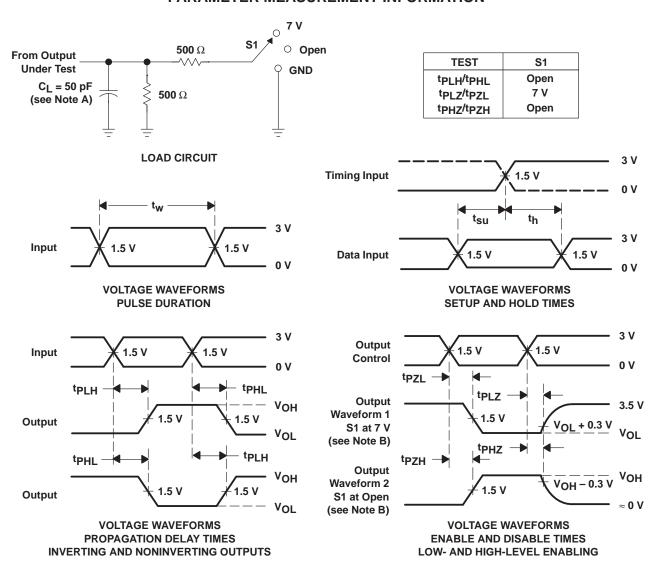
[‡] This parameter is characterized, but not production tested.

[§] The parameters I_{OZH} and I_{OZL} include the input leakage current.

[¶] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

[#]This limit may vary among suppliers.

This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.


SCBS199C - FEBRUARY 1991 - REVISED MAY 1997

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, T _A = 25°C			SN54ABT861		SN74ABT861		UNIT
	(INFOT)	(001F01)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	A or B	B or A	1	3.4	4.9	1	5.3	1	5.2	ns
tPHL	AOIB		1	3.2	4.4	1	5	1	4.9†	115
^t PZH	OEAB or OEBA	B or A	1	3.5	5	1,	6	1	5.9	ns
tPZL	OEAB OF OEBA		1	4.6	6	37)	7	1	6.9	110
^t PHZ	OF AD an OFDA	B or A	2.1	5.3	6.5	2.1	7.6	2.1	7.5	ns
t _{PLZ}	OEAB or OEBA	B or A	1.5	5.3	6.6	1.5	7.2	1.5	7.1	115

[†] This limit may vary among suppliers.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \,\Omega$, $t_f \leq$ 2.5 ns. $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
SN74ABT861DW	ACTIVE	SOIC	DW	24	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABT861	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

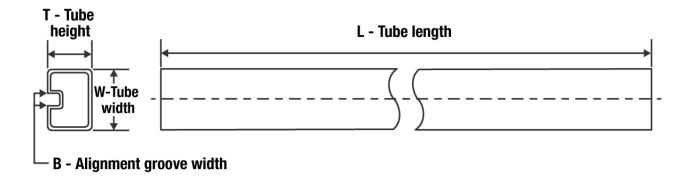
OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

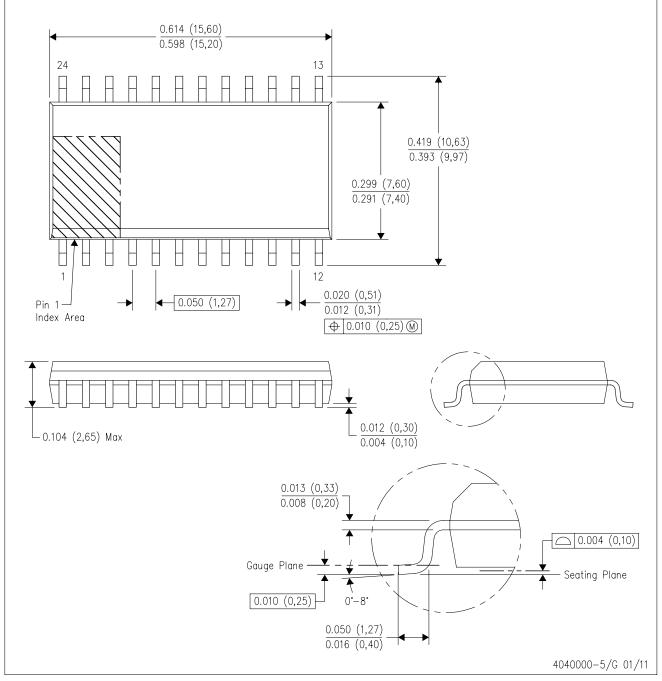

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Jan-2022

TUBE

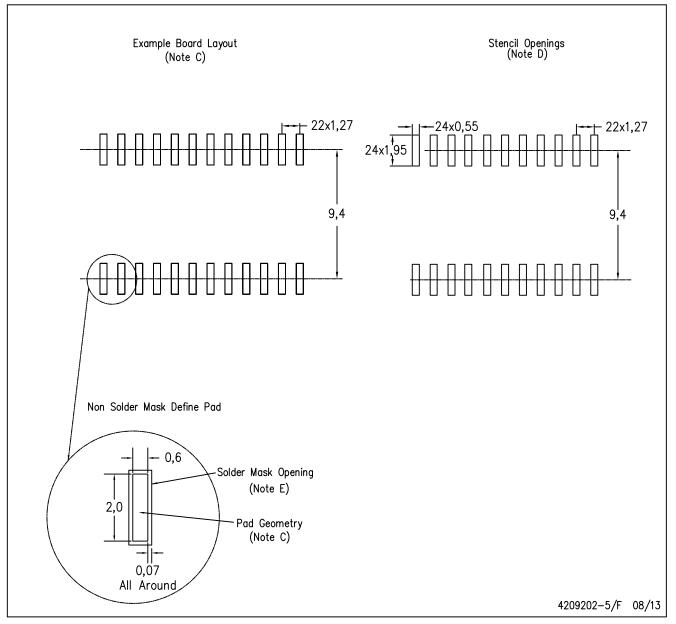


*All dimensions are nominal

Device	Device Package Name		Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)	
SN74ABT861DW	DW	SOIC	24	25	506.98	12.7	4826	6.6	

DW (R-PDSO-G24)

PLASTIC SMALL OUTLINE


NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AD.

DW (R-PDSO-G24)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated