This 9-bit latch is designed specifically for storing the contents of the input data bus and providing the capability of reading back the stored data onto the input data bus. In addition, this device provides a 3-state buffer-type output and is easily implemented in parity applications.

The nine latches are transparent D-type latches. While the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. The Q outputs are in the 3-state condition when the output-enable (OEQ) input is high.

Read back is provided through the output-enable (OERB) input. When OERB is taken low, the data present at the output of the data latches is allowed to pass back onto the input data bus. When OERB is taken high, the output of the data latches is isolated from the D inputs. OERB does not affect the internal operation of the latches; however, precautions should be taken not to create a bus conflict.

The SN74ALS992 is characterized for operation from 0°C to 70°C.
logic diagram (positive logic)

Timing diagram

Input Data

Read Back

Input Data

Data Bus

LE

OERB

Q

t_{su} \quad t_h \quad t_{dis}

\text{CLR} = \text{H}, \text{OEQ} = \text{L}

† This setup time ensures that the read-back circuit will not create a conflict on the input data bus.

Absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

- Supply voltage, \(V_{CC} \) \(\leq 7 \, \text{V} \)
- Input voltage, \(V_{I} (\text{OERB, OEQ, CLR, and LE}) \) \(\leq 7 \, \text{V} \)
- Voltage applied to \(D \) inputs and to disabled 3-state outputs \(\leq 5.5 \, \text{V} \)
- Operating free-air temperature range, \(T_A \) \(-65^\circ \text{C} \) to \(150^\circ \text{C} \)

‡ Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CC}) Supply voltage</td>
<td>4.5</td>
<td>5</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>(V_{IH}) High-level input voltage</td>
<td>2</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{IL}) Low-level input voltage</td>
<td>0.8</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(I_{OH}) High-level output current</td>
<td>0</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>(I_{OL}) Low-level output current</td>
<td>0</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>(I_{W}) Pulse duration</td>
<td>10</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{SU}) Setup time</td>
<td>10</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{H}) Hold time, data after (\downarrow)</td>
<td>5</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(T_A) Operating free-air temperature</td>
<td>0</td>
<td></td>
<td>70</td>
<td>°C</td>
</tr>
</tbody>
</table>

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP†</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IK})</td>
<td>(V_{CC} = 4.5) V, (I_I = -18) mA</td>
<td></td>
<td></td>
<td>-1.2</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OH}) All outputs</td>
<td>(V_{CC} = 4.5) V to 5.5 V, (I_{OH} = -0.4) mA</td>
<td>2.4</td>
<td></td>
<td>3.2</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OL}) D</td>
<td>(V_{CC} = 4.5) V, (I_{OL} = 4) mA</td>
<td>0.25</td>
<td></td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OH}) Q</td>
<td>(V_{CC} = 4.5) V, (I_{OH} = -2.6) mA</td>
<td>0.35</td>
<td></td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OL}) Q</td>
<td>(V_{CC} = 4.5) V, (I_{OL} = 12) mA</td>
<td>0.25</td>
<td></td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OL}) Q</td>
<td>(V_{CC} = 4.5) V, (I_{OL} = 24) mA</td>
<td>0.35</td>
<td></td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td>(I_{QZH}) Q</td>
<td>(V_{CC} = 5.5) V, (V_O = 2.7) V</td>
<td></td>
<td></td>
<td>20</td>
<td>µA</td>
</tr>
<tr>
<td>(I_{QZL}) Q</td>
<td>(V_{CC} = 5.5) V, (V_O = 0.4) V</td>
<td></td>
<td></td>
<td>-20</td>
<td>µA</td>
</tr>
<tr>
<td>(I_I) D inputs</td>
<td>(V_{CC} = 5.5) V</td>
<td></td>
<td></td>
<td>0.1</td>
<td>mA</td>
</tr>
<tr>
<td>All others</td>
<td>(V_{CC} = 5.5) V</td>
<td></td>
<td></td>
<td>0.1</td>
<td>mA</td>
</tr>
<tr>
<td>(I_{IH}) D inputs‡</td>
<td>(V_{CC} = 5.5) V, (V_I = 2.7) V</td>
<td></td>
<td></td>
<td>20</td>
<td>µA</td>
</tr>
<tr>
<td>All others</td>
<td>(V_{CC} = 5.5) V</td>
<td></td>
<td></td>
<td>20</td>
<td>µA</td>
</tr>
<tr>
<td>(I_{IL}) D inputs‡</td>
<td>(V_{CC} = 5.5) V, (V_I = 0.4) V</td>
<td></td>
<td></td>
<td>-0.1</td>
<td>mA</td>
</tr>
<tr>
<td>All others</td>
<td>(V_{CC} = 5.5) V</td>
<td></td>
<td></td>
<td>-0.1</td>
<td>mA</td>
</tr>
<tr>
<td>(I_{IOS})</td>
<td>(V_{CC} = 5.5) V, (V_O = 2.25) V</td>
<td>-30</td>
<td></td>
<td>-112</td>
<td>mA</td>
</tr>
<tr>
<td>(I_{CC})</td>
<td>(V_{CC} = 5.5) V, Outputs high</td>
<td>30</td>
<td></td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>Outputs low</td>
<td>(V_{CC} = 5.5) V</td>
<td>50</td>
<td></td>
<td>80</td>
<td>mA</td>
</tr>
<tr>
<td>Outputs disabled</td>
<td>(V_{CC} = 5.5) V</td>
<td>35</td>
<td></td>
<td>55</td>
<td>mA</td>
</tr>
</tbody>
</table>

† All typical values are at \(V_{CC} = 5 \) V, \(T_A = 25 \) °C.
‡ For I/O ports (Q_A thru Q_H), the parameters \(I_{IH} \) and \(I_{IL} \) include the off-state output current.
§ The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, \(I_{OS} \).
switching characteristics (see Figure 1)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>FROM (INPUT)</th>
<th>TO (OUTPUT)</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>tPLH</td>
<td>D</td>
<td>Q</td>
<td>3 ns</td>
</tr>
<tr>
<td>tPHL</td>
<td>LE</td>
<td>Q</td>
<td>6 ns</td>
</tr>
<tr>
<td>tPHL</td>
<td>CLR</td>
<td>Q</td>
<td>8 ns</td>
</tr>
<tr>
<td>tPHL</td>
<td>D</td>
<td>OERB</td>
<td>4 ns</td>
</tr>
<tr>
<td>tPHL</td>
<td>OEQ</td>
<td>Q</td>
<td>4 ns</td>
</tr>
</tbody>
</table>

VCC = 4.5 V to 5.5 V, CL = 50 pF, TA = MIN to MAX†

MIN MAX
3 14
4 16
6 20
8 25
6 20
8 26
4 21
2 14
4 18
1 14

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
‡ ten = tPZH or tPZL
§ tdis = tPHZ or tPLZ
PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR Q OUTPUTS

From Output Under Test

\[\begin{align*}
\text{S1} & \quad \text{500} \ \Omega \\
(\text{see Note A}) & \\
\text{Test Point} & \quad \text{500} \ \Omega
\end{align*} \]

LOAD CIRCUIT FOR D OUTPUTS

From Output Under Test

\[\begin{align*}
\text{S1} & \quad \text{1 k} \ \Omega \\
(\text{see Note A}) & \\
\text{Test Point} & \\
\end{align*} \]

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

\[\begin{align*}
\text{Timing Input} & \quad 1.3 \ V \\
& \quad 3.5 \ V \\
& \quad 0.3 \ V \\
\text{Data Input} & \quad 1.3 \ V \\
& \quad 1.3 \ V \\
& \quad 0.3 \ V
\end{align*} \]

VOLTAGE WAVEFORMS
PULSE DURATIONS

\[\begin{align*}
\text{Output Control (low-level enabling)} & \quad 1.3 \ V \\
& \quad 3.5 \ V \\
& \quad 0.3 \ V \\
\text{Waveform 1} & \quad 1.3 \ V \\
\text{S1 Closed} & \quad (\text{see Note C}) \\
\text{Waveform 2} & \quad 1.3 \ V \\
\text{S1 Open} & \quad (\text{see Note C}) \\
\text{In-Phase Output} & \quad 1.3 \ V \\
\text{Out-of-Phase Output (see Note B)} & \quad 1.3 \ V
\end{align*} \]

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

\[\begin{align*}
\text{Input} & \quad 1.3 \ V \\
& \quad 1.3 \ V \\
& \quad 0.3 \ V \\
\text{In-Phase Output} & \quad 1.3 \ V \\
\text{Out-of-Phase Output (see Note B)} & \quad 1.3 \ V \\
\text{tpPLH} & \quad \text{VOL} \\
\text{tpHZ} & \quad \text{VOL} \\
\text{tpPLZ} & \quad \text{VOL}
\end{align*} \]

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS

\[\begin{align*}
\text{Input} & \quad 1.3 \ V \\
& \quad 3.5 \ V \\
& \quad 0.3 \ V \\
\text{Output Control} & \quad 1.3 \ V \\
& \quad 0.3 \ V \\
\text{Waveform 1} & \quad 1.3 \ V \\
\text{S1 Closed} & \quad (\text{see Note C}) \\
\text{Waveform 2} & \quad 1.3 \ V \\
\text{S1 Open} & \quad (\text{see Note C}) \\
\text{In-Phase Output} & \quad 1.3 \ V \\
\text{Out-of-Phase Output (see Note B)} & \quad 1.3 \ V \\
\text{tpPLH} & \quad \text{VOL} \\
\text{tpHZ} & \quad \text{VOL} \\
\text{tpPLZ} & \quad \text{VOL}
\end{align*} \]

NOTES:
A. \(C_L \) includes probe and jig capacitance.
B. When measuring propagation delay times of 3-state outputs, switch S1 is open.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. All input pulses have the following characteristics: \(PRR \leq 1 \text{ MHz}, \ t_r = t_f = 2 \text{ ns}, \text{ duty cycle} = 50\% \).

Figure 1. Load Circuits and Voltage Waveforms
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>PIns</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish (6)</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN74ALS992DW</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>DW</td>
<td>24</td>
<td>25</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>ALS992</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
NOTES:
A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0.15).
D. Falls within JEDEC MS-013 variation AD.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated