1 Features
 • Convert TTL Voltage Levels to MOS Levels
 • High Sink-Current Capability
 • Input Clamping Diodes Simplify System Design
 • Open-Collector Driver for Indicator Lamps and Relays
 • Inputs Fully Compatible With Most TTL Circuits
 • On Products Compliant to MIL-PRF-38535, All Parameters Are Tested Unless Otherwise Noted. On All Other Products, Production Processing Does Not Necessarily Include Testing of All Parameters.

2 Applications
 • Factory Automation
 • Building Automation
 • Line Drivers
 • Electronic Point of Sale
 • Desktop or Notebook PCs

3 Description
The SNx4LS06 devices feature high-voltage, open-collector outputs to interface with high-level circuits (such as MOS), or for driving high-current loads, and also are characterized for use as inverter buffers for driving TTL inputs. The SNx4LS06 devices have a rated output voltage of 30 V.

Device Information(1)

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN54LS06</td>
<td>CDIP (14)</td>
<td>19.50 mm × 6.92 mm</td>
</tr>
<tr>
<td></td>
<td>LCCC (20)</td>
<td>8.89 mm × 8.89 mm</td>
</tr>
<tr>
<td>SN74LS06D</td>
<td>SOIC (14)</td>
<td>8.65 mm × 3.91 mm</td>
</tr>
<tr>
<td>SN74LS06DB</td>
<td>SSOP (14)</td>
<td>5.30 mm × 6.20 mm</td>
</tr>
<tr>
<td>SN74LS06N</td>
<td>PDIP (14)</td>
<td>19.30 mm × 6.35 mm</td>
</tr>
<tr>
<td>SN74LS06NS</td>
<td>SOP (14)</td>
<td>5.30 mm × 10.20 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Logic Diagram (Positive Logic)

Input: 1A, 2A, 3A, 4A, 5A, 6A
Output: 1Y, 2Y, 3Y, 4Y, 5Y, 6Y

Pin numbers shown are for the D, DB, J, N, and NS packages.
Table of Contents

1 Features ... 1
2 Applications .. 1
3 Description ... 1
4 Revision History .. 2
5 Pin Configuration and Functions 3
6 Specifications ... 4
 6.1 Absolute Maximum Ratings 4
 6.2 ESD Ratings .. 4
 6.3 Recommended Operating Conditions 4
 6.4 Thermal Information 5
 6.5 Electrical Characteristics 5
 6.6 Switching Characteristics 5
 6.7 Typical Characteristics 6
7 Parameter Measurement Information 7
8 Detailed Description .. 8
 8.1 Overview ... 8
 8.2 Functional Block Diagram 8
 8.3 Feature Description 8
8.4 Device Functional Modes 8
9 Application and Implementation 9
 9.1 Application Information 9
 9.2 Typical Application 9
10 Power Supply Recommendations 11
11 Layout ... 11
 11.1 Layout Guidelines 11
 11.2 Layout Examples ... 11
12 Device and Documentation Support 12
 12.1 Documentation Support 12
 12.2 Related Links ... 12
 12.3 Receiving Notification of Documentation Updates . 12
 12.4 Community Resources 12
 12.5 Trademarks ... 12
 12.6 Electrostatic Discharge Caution 12
 12.7 Glossary ... 12
13 Mechanical, Packaging, and Orderable 12
 Information ... 12

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision E (February 2004) to Revision F

Page

• Added Applications section, Device Information table, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section...... 1
• Added Military Disclaimer to Features list .. 1
• Added Applications ... 1
• Changed values in the Thermal Information table to align with JEDEC standards.. 5
5 Pin Configuration and Functions

Pin Functions

<table>
<thead>
<tr>
<th>PIN NAME</th>
<th>SOIC, SSOP, CDIP, PDIP, SOP</th>
<th>LCCC</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>1</td>
<td>2</td>
<td>I</td>
<td>1A Input</td>
</tr>
<tr>
<td>1Y</td>
<td>2</td>
<td>3</td>
<td>O</td>
<td>1Y Output</td>
</tr>
<tr>
<td>2A</td>
<td>3</td>
<td>4</td>
<td>I</td>
<td>2A Input</td>
</tr>
<tr>
<td>2Y</td>
<td>4</td>
<td>6</td>
<td>O</td>
<td>2Y Output</td>
</tr>
<tr>
<td>3A</td>
<td>5</td>
<td>8</td>
<td>I</td>
<td>3A Input</td>
</tr>
<tr>
<td>3Y</td>
<td>6</td>
<td>9</td>
<td>O</td>
<td>3Y Output</td>
</tr>
<tr>
<td>4A</td>
<td>9</td>
<td>13</td>
<td>I</td>
<td>4A Input</td>
</tr>
<tr>
<td>4Y</td>
<td>8</td>
<td>12</td>
<td>O</td>
<td>4Y Output</td>
</tr>
<tr>
<td>5A</td>
<td>11</td>
<td>16</td>
<td>I</td>
<td>5A Input</td>
</tr>
<tr>
<td>5Y</td>
<td>10</td>
<td>14</td>
<td>O</td>
<td>5Y Output</td>
</tr>
<tr>
<td>6A</td>
<td>13</td>
<td>19</td>
<td>I</td>
<td>6A Input</td>
</tr>
<tr>
<td>6Y</td>
<td>12</td>
<td>18</td>
<td>O</td>
<td>6Y Output</td>
</tr>
<tr>
<td>GND</td>
<td>7</td>
<td>10</td>
<td>—</td>
<td>Ground</td>
</tr>
<tr>
<td>NC</td>
<td>—</td>
<td>1, 5, 7, 11, 15, 17</td>
<td>—</td>
<td>No internal connection</td>
</tr>
<tr>
<td>VCC</td>
<td>14</td>
<td>20</td>
<td>—</td>
<td>Power pin</td>
</tr>
</tbody>
</table>
6 Specifications

6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)\(^{(1)}\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage, (V_{CC})</td>
<td></td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage, (V_i)(^{(2)})</td>
<td></td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage, (V_o) (SNx4LS06)(^{(2)(3)})</td>
<td>30</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Absolute maximum junction temperature, (T_J)</td>
<td>150</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature, (T_{stg})</td>
<td>–65</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

\(^{(2)}\) All voltage values are with respect to GND.

\(^{(3)}\) This is the maximum voltage that must be applied to any output when it is in the off state.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{ESD}) Electrostatic discharge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(^{(1)})</td>
<td>±500</td>
<td>V</td>
</tr>
<tr>
<td>Charged-device model (CDM), per JEDEC specification JESD22-C101(^{(2)})</td>
<td>±2000</td>
<td>V</td>
</tr>
</tbody>
</table>

\(^{(1)}\) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

\(^{(2)}\) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Tested on N package.

6.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)\(^{(1)}\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CC}) Supply voltage</td>
<td>4.5</td>
<td>5</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>(V_{IH}) High-level input voltage</td>
<td>2</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{IL}) Low-level input voltage</td>
<td>0.8</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OH}) High-level output voltage (SNx4LS06)</td>
<td>30</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{OL}) Low-level output current (SN54LS06)</td>
<td>30</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(SN74LS06)</td>
<td>40</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_A) Operating free-air temperature (SN54LS06)</td>
<td>–55</td>
<td>125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>(SN74LS06)</td>
<td>0</td>
<td>70</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{(1)}\) All unused inputs of the device must be held at \(V_{CC}\) or GND to ensure proper device operation. See the Implications of Slow or Floating CMOS Inputs application report.
6.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(1)</th>
<th>SN74LS06</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D (SOIC)</td>
</tr>
<tr>
<td>Junction-to-ambient thermal resistance</td>
<td>85.8</td>
</tr>
<tr>
<td>Junction-to-case (top) thermal resistance</td>
<td>44</td>
</tr>
<tr>
<td>Junction-to-board thermal resistance</td>
<td>40.3</td>
</tr>
<tr>
<td>Junction-to-top characterization parameter</td>
<td>11.1</td>
</tr>
<tr>
<td>Junction-to-board characterization parameter</td>
<td>40.1</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the *Semiconductor and IC Package Thermal Metrics* application report.

6.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS(1)</th>
<th>MIN</th>
<th>TYP(2)</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IK}</td>
<td>V_{CC} = MIN, I_I = –12 mA</td>
<td>–1.5</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{OH}</td>
<td>V_{CC} = MIN, V_I = 0.8 V, V_OH = 30 V, SN_x4LS06</td>
<td>0.25</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OL}</td>
<td>V_{CC} = MIN, V_I = 2 V</td>
<td>I_OH = 16 mA</td>
<td>0.25</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>I_{IL}</td>
<td>V_{CC} = MAX, V_I = 7 V</td>
<td>1</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{IH}</td>
<td>V_{CC} = MAX, V_I = 2.4 V</td>
<td>20</td>
<td>µA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{IL}</td>
<td>V_{CC} = MAX, V_I = 0.4 V</td>
<td>–0.2</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{OH}</td>
<td>V_{CC} = MAX</td>
<td>18</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{OL}</td>
<td>V_{CC} = MAX</td>
<td>60</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) For conditions shown as MIN or MAX, use the appropriate value specified under *Recommended Operating Conditions*.

(2) All typical values are at V_{CC} = 5 V, and T_A = 25°C.

6.6 Switching Characteristics

V_{CC} = 5 V and T_A = 25°C (see Figure 2)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{PLH}</td>
<td>From A (input) to Y (output), R_L = 110 Ω, C_L = 15 pF</td>
<td>7</td>
<td>15</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>I_{PHL}</td>
<td>From A (input) to Y (output), R_L = 110 Ω, C_L = 15 pF</td>
<td>10</td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.7 Typical Characteristics

Figure 1. Propagation Delay vs Temperature
7 Parameter Measurement Information

A. C_L includes probe and jig capacitance.

B. All diodes are 1N3064 or equivalent.

C. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.

D. S1 and S2 are closed for t_{PLH}, t_{PHL}, t_{PHZ}, and t_{PLZ}; S1 is open and S2 is closed for t_{PZH}; S1 is closed and S2 is open for t_{PZL}.

E. Phase relationships between inputs and outputs have been chosen arbitrarily for these examples.

F. All input pulses are supplied by generators having the following characteristics: $PRR \leq 1 \text{ MHz}$, $Z_O \approx 50 \Omega$, $t_r \leq 1.5 \text{ ns}$, $t_f \leq 2.6 \text{ ns}$.

G. The outputs are measured one at a time, with one input transition per measurement.

Figure 2. Load Circuits and Voltage Waveforms
8 Detailed Description

8.1 Overview
The SNx4LS06 devices are open-collector output inverters. The maximum sink current for the SN54LS06 device is 30 mA, and for the SN74LS06 device it is 40 mA. These devices are compatible with most TTL families. Inputs are diode-clamped to minimize transmission effects, which simplifies design. Typical power dissipation is 175 mW, and average propagation delay time is 8 ns.

8.2 Functional Block Diagram

8.3 Feature Description
The SNx4LS06 devices can convert most TTL voltage circuit voltage level to MOS levels. The devices have high sink-current capability of up to 40 mA. The open-collector driver can be used for typical applications including indicator lamps and relays.

8.4 Device Functional Modes
Table 1 lists the functional modes of the SNx4LS06 devices.

<table>
<thead>
<tr>
<th>INPUT A</th>
<th>OUTPUT Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>L</td>
<td>Hi-Z</td>
</tr>
</tbody>
</table>
9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The open-collector device is suitable for high-drive and high-voltage translation applications.

9.2 Typical Application

9.2.1 Design Requirements

The SNx4LS06 are open-collector devices which can sink current (up to 40 mA on SN74LS06). The devices can be used in applications such as LED drivers and voltage translation using pullup resistors.

9.2.2 Detailed Design Procedure

1. Recommended input conditions:
 - Specified high and low levels. See \(V_{IH}\) and \(V_{IL}\) in the Recommended Operating Conditions.
 - Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid \(V_{CC}\).

2. Recommended output conditions:
 - Load currents must not exceed \(I_{O \text{ max}}\) per output.
 - Outputs can be pulled up to 30 V.
Typical Application (continued)

9.2.3 Application Curve

Figure 4. Propagation Delay vs Temperature
10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the Recommended Operating Conditions.

Each V_{CC} pin must have a good bypass capacitor to prevent power disturbance. For devices with a single supply, TI recommends a 0.1-µF capacitor, and if there are multiple V_{CC} pins, then TI recommends a 0.01-µF or 0.022-µF capacitor for each power pin. It is ok to parallel multiple bypass capacitors to reject different frequencies of noise. 0.1-µF and 1-µF capacitors are commonly used in parallel. The bypass capacitor must be installed as close to the power pin as possible for best results.

11 Layout

11.1 Layout Guidelines

When using multiple bit logic devices, inputs must not ever float. In many cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-input and gate are used or only 3 of the 4 buffer gates are used. Such input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. The following rules must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally they are tied to GND or V_{CC} whichever make more sense or is more convenient. TI recommends keeping the signal lines as short and as straight as possible (see Figure 6). Incorporation of microstrip or stripline techniques are also recommended when signal lines are more than 1" long. These traces must be designed with a characteristic impedance of either 50 Ω or 75 Ω as required by the application.

11.2 Layout Examples

![Figure 5. Layout Schematic](image1)

![Figure 6. Signal Line Layout](image2)
12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation see the following:

Implications of Slow or Floating CMOS Inputs (SCBA004)

12.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

<table>
<thead>
<tr>
<th>PARTS</th>
<th>PRODUCT FOLDER</th>
<th>SAMPLE & BUY</th>
<th>TECHNICAL DOCUMENTS</th>
<th>TOOLS & SOFTWARE</th>
<th>SUPPORT & COMMUNITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN54LS06</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
</tr>
<tr>
<td>SN74LS06</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
</tr>
<tr>
<td>SN74LS16</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
</tr>
</tbody>
</table>

12.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI’s views; see TI’s Terms of Use.

TI E2E™ Online Community *TI’s Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI’s Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.5 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.6 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish (6)</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>5962-9861701Q2A</td>
<td>ACTIVE</td>
<td>LCCC</td>
<td>FK</td>
<td>20</td>
<td>1</td>
<td>TBD</td>
<td>POST-PLATE</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td>5962-9861701Q2A SNJ54LS06FK</td>
<td></td>
</tr>
<tr>
<td>5962-9861701QCA</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>A42</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td>5962-9861701QCA SNJ54LS06J</td>
<td></td>
</tr>
<tr>
<td>SN54LS06J</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>A42</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td>SN54LS06J</td>
<td></td>
</tr>
<tr>
<td>SN74LS06D</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>LS06</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74LS06DBR</td>
<td>ACTIVE</td>
<td>SSOP</td>
<td>DB</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>LS06</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74LS06DG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>LS06</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74LS06DR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>LS06</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74LS06DRE4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>SN74LS06N</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74LS06N</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>0 to 70</td>
<td>SN74LS06N</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74LS06NE4</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>0 to 70</td>
<td>SN74LS06N</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74LS06NSR</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>74LS06</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74LS06NSRG4</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>74LS06</td>
<td>Samples</td>
</tr>
<tr>
<td>SNJ54LS06FK</td>
<td>ACTIVE</td>
<td>LCCC</td>
<td>FK</td>
<td>20</td>
<td>1</td>
<td>TBD</td>
<td>POST-PLATE</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td>SNJ54LS06FK</td>
<td>Samples</td>
</tr>
<tr>
<td>SNJ54LS06J</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>A42</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td>SNJ54LS06J</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

- ACTIVE: Marketing Active
- SAMPLE: Engineering Sample
-樣品
- LAG: Lead/Lag
- TEST: Test

(2) Package Type:
- LCCC: Low Cost Carrier Chip
- CDIP: Ceramic Double In-Line Package
- SOIC: Small Outline Integrated Circuit
- SSOP: Shrink Small Outline Package
- PDIP: Plastic Dual In-Line Package
- SO: Small Outline
- LCC: Low Cost Chip Carrier

(3) MSL Peak Temp:
- N / A: Not Applicable
- TBD: To Be Determined
- -55 to 125: Temperature Range

(4) Device Marking:
- 5962-9861701Q2A SNJ54LS06FK
- SNJ54LS06J

(5) Samples: Available for Sampling

Addendum-Page 1
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBsolete: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54LS06, SN74LS06 :
• Catalog: SN74LS06
• Military: SN54LS06

NOTE: Qualified Version Definitions:
• Catalog - TI's standard catalog product
• Military - QML certified for Military and Defense Applications
TAPE AND REEL INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN74LS06DR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.0</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

All dimensions are nominal.
TAPE AND REEL BOX DIMENSIONS

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN74LS06DR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
</tr>
</tbody>
</table>
Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.
NOTES:

1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This package is hermetically sealed with a ceramic lid using glass frit.
4. Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.
EXAMPLE BOARD LAYOUT

CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE

LAND PATTERN EXAMPLE
NON-SOLDER MASK DEFINED
SCALE: 5X

SEE DETAIL A

1

12X (.100)
[2.54]

14X (⌀.039)
[1]

7

SYMM

SEE DETAIL B

14

SYMM

13X, SCALE: 15X

DETAL A
SCALE: 15X

.002 MAX
[0.05]
ALL AROUND

(.300) TYP
[7.62]

.002 MAX
[0.05]
ALL AROUND

(⌀.063)
[1.6]

.002 MAX
[0.05]
ALL AROUND

MATERIAL

SOLDER MASK OPENING

MATERIAL

SOLDER MASK OPENING

4214771/A 05/2017
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. Falls within JEDEC MS-004
N (R–PDIP–T**)
PLASTIC DUAL–IN–LINE PACKAGE

<table>
<thead>
<tr>
<th>PINs **</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>A MAX</td>
<td>0.775 (19.69)</td>
<td>0.775 (19.69)</td>
<td>0.920 (23.37)</td>
<td>1.060 (26.92)</td>
</tr>
<tr>
<td>A MIN</td>
<td>0.745 (18.92)</td>
<td>0.745 (18.92)</td>
<td>0.850 (21.59)</td>
<td>0.940 (23.88)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS–001 VARIATION</th>
<th>AA</th>
<th>BB</th>
<th>AC</th>
<th>AD</th>
</tr>
</thead>
</table>

Dimensions

- **A**
 - MAX: 0.775 (19.69) mm
 - MIN: 0.745 (18.92) mm
- **B**
 - MAX: 0.260 (6.60) mm
 - MIN: 0.240 (6.10) mm
- **C**
 - MIN: 0.045 (1.14) mm

Notes

A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
 - Falls within JEDEC MS–001, except 18 and 20 pin minimum body length (Dim A).
 - The 20 pin end lead shoulder width is a vendor option, either half or full width.
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

⚠️ Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0.15) each side.
⚠️ Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0.43) each side.
E. Reference JEDEC MS-012 variation AB.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.15.
MECHANICAL DATA

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0.15.
D. Falls within JEDEC MO-150

<table>
<thead>
<tr>
<th>DIM</th>
<th>PINS **</th>
<th>14</th>
<th>16</th>
<th>20</th>
<th>24</th>
<th>28</th>
<th>30</th>
<th>38</th>
</tr>
</thead>
<tbody>
<tr>
<td>A MAX</td>
<td></td>
<td>6.50</td>
<td>6.50</td>
<td>7.50</td>
<td>8.50</td>
<td>10.50</td>
<td>10.50</td>
<td>12.90</td>
</tr>
<tr>
<td>A MIN</td>
<td></td>
<td>5.90</td>
<td>5.90</td>
<td>6.90</td>
<td>7.90</td>
<td>9.90</td>
<td>9.90</td>
<td>12.30</td>
</tr>
</tbody>
</table>

4040065 /E 12/01
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated