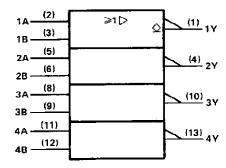
SN5433, SN54LS33, SN7433, SN74LS33 QUADRUPLE 2 INPUT POSITIVE NOR BUFFERS WITH OPEN-COLLECTOR OUTPUTS

SDLS101

DECEMBER 1983-REVISED MARCH 1988

- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

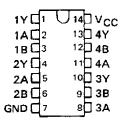
description

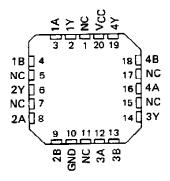

These devices contain four independent 2-input NOR buffer gates with open-collector outputs. Open-collector outputs require resistive pull-up to perform logically but can deliver higher VOH levels and are commonly used in wired-AND applications.

The SN5433 and SN54LS33 are characterized for operation over the full military temperature range of $-55\,^{\circ}\text{C}$ to 125 $\,^{\circ}\text{C}$. The SN7433, and SN74LS33 are characterized for operation from 0 $\,^{\circ}\text{C}$ to 70 $\,^{\circ}\text{C}$.

FUNCTION TABLE (each gate)

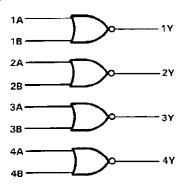
INP	UTS	OUTPUT
Α	В	Y
Н	Х	L
×	н	Ŀ
L	L	н


logic symbol†


 $^{^\}dagger$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

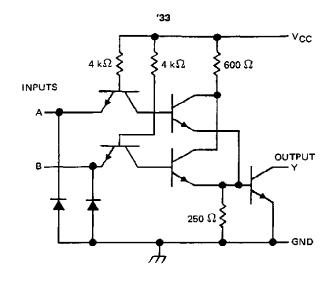
Pin numbers shown are for D, J, N, and W packages.

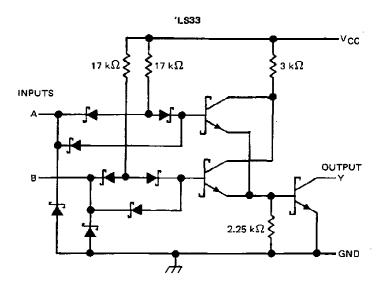
SN5433, SN54LS33...J OR W PACKAGE SN7433...N PACKAGE SN74LS33...D OR N PACKAGE (TOP VIEW)



SN54LS33 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection


logic diagram



positive logic

 $Y = \overline{A + B}$ or $Y = \overline{A \cdot B}$

schematics (each gate)

Resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	Supply voltage, VCC (see Note 1)
	Input voltage: '33
	′LS33
	Off-state output voltage
	Operating free-air temperature: SN54'
	SN74'
	Storage temperature range $\dots -65^{\circ}C$ to $150^{\circ}C$
NOTE 1	I: Voltage values are with respect to network ground terminal.

SN5433, SN7433 QUADRUPLE 2-INPUT POSITIVE-NOR BUFFERS WITH OPEN-COLLECTOR OUTPUTS

recommended operating conditions

				UNIT				
		MIN	NOM	MAX	MIN	NOM	MAX	ONL
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			٧
VIL	Low-level input voltage			0.8			0.8	٧
Voн	High-level output voltage			5.5			5.5	
loL	Low-level output current			48			48	mA
TA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

7494145779	TEST CONDITIONS†	SN5433		-	SN7433	3	UNIT
PARAMETER	TEST CONDITIONS	MIN TYP‡	MAX	MIN	TYP‡	MAX	UNII
VIK	V _{CC} = MIN, I _I = -12 mA		-1.5			- 1.5	v
	$V_{CC} = MIN, V_{IL} = 0.8 \text{ V}, V_{OH} = 5.5 \text{ V}$					0.25	mA
юн	$V_{CC} = MIN, V_{IL} = 0.7 \text{ V}, V_{OH} = 5.5 \text{ V}$		0.25				nia.
VOL	V _{CC} = MIN. V _{IH} = 2 V, I _{OL} = 16 mA	0.2	0.4		0.2	0.4	· V
tı	V _{CC} = MAX, V _I = 5.5 V		. 1		·	1	mΑ
lн	$V_{CC} = MAX$, $V_1 = 2.4 V$		40			40	μА
l)L	$V_{CC} = MAX$, $V_1 = 0.4 V$		-1.6			- 1.6	mA
ІССН	VCC = MAX, VI = 0	3	6		3	6	mA
ICCL	V _{CC} = MAX, See Note 2	9	16.5		9	16.5	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25 \,^{\circ}\text{C}$ (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH			$R_{l} = 133 \text{ k}\Omega, C_{l} = 50 \text{ pF}$		10	15	ns
†PHL	A or B		n[= 133 ktt, C[= 50 pr		12	18	ns
tPLH	AUID	'	D 122 LO C 150 mF		15	22	ns
^t PHL			$R_L = 133 \text{ k}\Omega$, $C_L = 150 \text{ pF}$		16	24	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

 $^{^{\}ddagger}$ All typical values are at V_{CC} = 5 V, T_A = 25 °C. NOTE 2: One input at 4.5 V, all others at 0 V.

SN54LS33, SN74LS33 QUADRUPLE 2-INPUT POSITIVE-NOR BUFFERS WITH OPEN-COLLECTOR OUTPUTS

recommended operating conditions

	S	SN54L\$33			SN74LS33			
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
V _{CC} Supply voltage	4.5	5	5.5	4.75	5	5.25	V	
V _{IH} High-level input voltage	2			2			V	
V _{IL} Low-level input voltage			0,7			8.0	V	
VOH High-level output voltage			5.5			5.5	V	
IOL Low-level output current			12			24	mΑ	
TA Operating free-air temperature	- 55		125	0		70	°C	

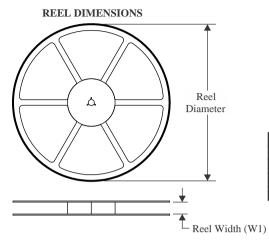
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

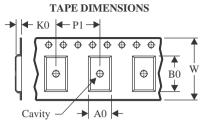
PARAMETER	-	TEST CONDITIONS †			N54LS	33	SN74LS33			UNIT
PARAMETER		TEST CONDIT		MIN	TYP‡	MAX	MIN	TYP ‡	MAX	UNII
VIK	V _{CC} = MIN,	l _† = − 18 mA				- 1.5			- 1.5	V
IOH	VCC = MIN,	V _{IH} = 2 V,	VIL = MAX, VOH = 5.5 V			0.25	-		0.25	mΑ
	$V_{CC} = MIN$	V _{IH} = 2 V,	V _{IL} = MAX, I _{OL} = 12 mA		0.25	0.4		0.25	0.4	
۷٥٢	V _{CC} = MIN,	VIL = MAX,	I _{OL} = 24 mA					0.35	0.5	'
ΙΙ	VCC = MAX,	V ₁ = 7 V				0.1			0.1	mΑ
Ιн	V _{CC} = MAX,	V ₁ = 2.7 V	_			20			20	μА
IL	V _{CC} = MAX,	V1 = 0.4 V				- 0,4			- 0.4	mΑ
Іссн	V _{CC} = MAX.	V ₁ = 0			1.8	3.6		1.8	3.6	mA
ICCL	VCC = MAX,	See Note 2			6.9	13.8		6.9	13.8	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	A or B	Y	$R_1 \approx 667 \Omega$, $C_L = 45 pF$	L	20	32	ns
t₽HL	N 51 D	`		1	18	28	ns


NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

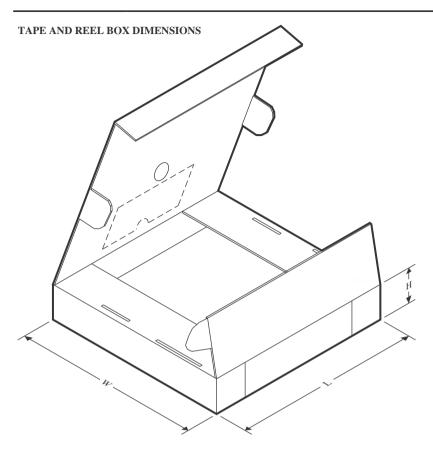

 $^{^{\}ddagger}$ All typical values are at V_{CC} = 5 V, T_A = 25 °C. NOTE 2: One input at 4.5 V, all others at 0 V.

PACKAGE MATERIALS INFORMATION

www.ti.com 16-Apr-2024

TAPE AND REEL INFORMATION

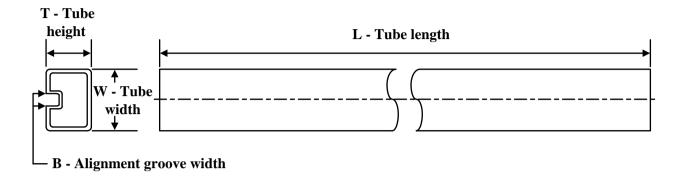
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LS33DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74LS33NSR	so	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

www.ti.com 16-Apr-2024


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS33DR	SOIC	D	14	2500	356.0	356.0	35.0
SN74LS33NSR	SO	NS	14	2000	356.0	356.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 16-Apr-2024

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
8512601DA	W	CFP	14	25	506.98	26.16	6220	NA
SN74LS33N	N	PDIP	14	25	506	13.97	11230	4.32
SN74LS33N	N	PDIP	14	25	506	13.97	11230	4.32
SNJ54LS33W	W	CFP	14	25	506.98	26.16	6220	NA

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated