

SN54LVC02A, SN74LVC02A SCAS280R - JANUARY 1993 - REVISED MARCH 2024

SN74LVC02A Quadruple 2-Input Positive-NOR Gates

1 Features

- Operate from 1.65V to 3.6V
- Specified from -40°C to 85°C, -40°C to 125°C, and -55°C to 125°C
- Inputs accept voltages to 5.5V
- Max t_{pd} of 4.4ns at 3.3V
- Typical V_{OLP} (output ground bounce) • <0.8V at V_{CC} = 3.3V, T_A = 25°C
- Typical V_{OHV} (output V_{OH} undershoot) >2V at V_{CC} = 3.3V, T_A = 25°C
- Latch-up performance exceeds 250mA per JESD 17

2 Description

Inputs can be driven from either 3.3V or 5V devices. This feature allows the use of these devices as translators in a mixed 3.3V/5V system environment.

The device performs the Boolean function $Y = \overline{A + B}$ or $Y = \overline{A} \cdot \overline{B}$ in positive logic.

Inputs can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V system environment.

PART NUMBER	PACKAGE SIZE ⁽¹⁾	PACKAGE SIZE ⁽²⁾	BODY SIZE ⁽³⁾							
	BQA (WQFN, 14)	3mm × 2.5mm	3mm × 2.5mm							
	D (SOIC, 14)	8.65mm × 6mm	8.65mm × 3.9mm							
	DB (SSOP, 14)	6.2mm × 7.8mm	6.2mm × 5.3mm							
	NS (SOP, 14)	10.2mm × 7.8mm	10.3mm × 5.3mm							
SNx4LVC02A	PW (TSSOP, 14)	5mm × 6.4mm	5mm × 4.4mm							
	RGY (VQFN, 14)	3.5mm × 3.5mm	3.5mm × 3.5mm							
	FK (LCCC, 20)	8.9mm x 8.9mm	8.89mm × 8.89mm							
	J (CDIP, 14)	19.55mm x 7.9mm	19.55mm x 6.7mm							
	W (CFP, 14)	9.21mm x 9mm	9.21mm x 6.28mm							

Device Information

For more information, see Section 10. (1)

- (2) The package size (length × width) is a nominal value and includes pins, where applicable.
- The body size (length × width) is a nominal value and does (3) not include pins.

Logic Diagram, Each Gate (Positive Logic)

Table of Contents

1 Features	
2 Description	
3 Pin Configuration and Functions	
4 Specifications	. 4
4.1 Absolute Maximum Ratings	. 4
4.2 ESD Ratings	. 4
4.3 Recommended Operating Conditions,	
SN54LVC02A	. 4
4.4 Recommended Operating Conditions,	
SN74LVC02A	
4.5 Thermal Information	5
4.6 Electrical Characteristics, SN54LVC02A	. 5
4.7 Electrical Characteristics, SN74LVC02A	. 6
4.8 Switching Characteristics, SN54LVC02A	6
4.9 Switching Characteristics, SN74LVC02A	6
4.10 Operating Characteristics	. 7
5 Parameter Measurement Information	

6	Detailed Description	9
	6.1 Functional Block Diagram	9
	6.2 Device Functional Modes	
7	Application and Implementation	10
	7.1 Power Supply Recommendations	10
	7.2 Layout	. 10
8	Device and Documentation Support	
	8.1 Documentation Support	
	8.2 Receiving Notification of Documentation Updates	
	8.3 Support Resources	. 11
	8.4 Trademarks	
	8.5 Electrostatic Discharge Caution	
	8.6 Glossary	
9	Revision History	. 11
	0 Mechanical, Packaging, and Orderable	
	Information	. 12

3 Pin Configuration and Functions

1Y 🖂	10	14	
1A 🗖	2	13	4Y
1B 🗔	3	12	4B
2Y 🗖	4	11	4A
2A 🗖	5	10	3Y
2B 🗖	6	9	3B
GND	7	8	3A

Figure 3-1. SN54LVC02A J or W Package, 14-Pin (Top View) SN74LVC02A D, DB, NS, or PW Package, 14-Pin

SOIC, SSOP, SOP or TSSOP (Top View)

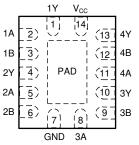


Figure 3-2. SN74LVC02A RGY or BQA Package, 14-Pin VQFN or WQFN (Top View)

	1A	1Y	NC	Vcc	4Y							
	03	2	1 1	1.1 20	19							
1B	∷ 4				18 🖽	4B						
NC	∷:5				17 ∷	NC						
2Y	∷:6				16 ∷	4A						
NC	::: 7				15 ∷	NC						
2A	∷ 8				14 🖽	3Y						
	9	10	11	12	13							
	2B GND NC 3A 3B											

Figure 3-3. SN54LVC02A FK Package, 20-Pin (Top View)

Table 3-1. Pin Functions												
	PIN											
	SN74LVC02A	SN54L	VC02A	TYPE ⁽¹⁾	DESCRIPTION							
NAME	D, DB, NS, PW, RGY, BQA	J, W FK										
1Y	1	1	2	0	1Y Output							
1A	2	2	3	I	1A Input							
1B	3	3	4	I	1B Input							
2Y	4	4	6	0	2Y Output							
2A	5	5	8	I	2A Input							
2B	6	6	9	I	2B Input							
GND	7	7	10	_	Ground Pin							
3A	8	8	12	I	3A Input							
3B	9	9	13	I	3B Input							
3Y	10	20	14	0	3Y Output							
4A	11	11	16	I	4A Input							
4B	12	12	18	I	4B Input							
4Y	13	13	19	0	4Y Output							
V _{cc}	14	14	20	_	Power Pin							
NC	_	_	1, 5, 7, 11, 15, 17	_	No Connection							

(1) I = input, O = output

Copyright © 2024 Texas Instruments Incorporated

4 Specifications

4.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	6.5	V
VI	Input voltage range ⁽¹⁾		-0.5	6.5	V
Vo	Output voltage range ⁽¹⁾ ⁽²⁾		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
I _O	Continuous output current			±50	mA
	Continuous current through V_{CC} or GND			±100	mA
T _{stg}	Storage temperature range		-65	150	°C
P _{tot}	Power dissipation	$T_A = -40^{\circ}C \text{ to } 125^{\circ}C^{(3)}$ (4)		500	mW

(1) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

(2) The value of V_{CC} is provided in the recommended operating conditions table.

(3) For the D package: above 70°C, the value of P_{tot} derates linearly with 8 mW/K.

(4) For the DB, NS, and PW packages: above 60°C, the value of Ptot derates linearly with 5.5 mW/K.

4.2 ESD Ratings

			VALUE	UNIT	
V	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V	Ĺ
V (ESD)	Lieonostano discriarge	Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002 ⁽²⁾	±1000	v	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

4.3 Recommended Operating Conditions, SN54LVC02A

			SN54LV	C02A	
			–55°C to	125°C	UNIT
			MIN	MAX	
V	Supply voltage	Operating	2	3.6	V
V _{cc}	Supply voltage	Data retention only	1.5		v
V _{IH}	High-level input voltage	V _{CC} = 2.7V to 3.6V	2		V
V _{IL}	Low-level input voltage	V _{CC} = 2.7V to 3.6V		0.8	V
VI	Input voltage		0	5.5	V
Vo	Output voltage		0	V _{CC}	V
	Lligh lovel output ourrent	V _{CC} = 2.7V		-12	m۸
I _{OH}	High-level output current	V _{CC} = 3V		-24	mA
	Low lovel output ourrest	V _{CC} = 2.7V		12	س ۸
IOL	Low-level output current	V _{CC} = 3V		24	mA

4.4 Recommended Operating Conditions, SN74LVC02A

					SN74LVC	02A			
			T _A = 25	5°C	–40°C to 8	85°C	–40°C to	125°C	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
V	Supply voltage	Operating	1.65	3.6	1.65	3.6	1.65	3.6	V
V _{CC} Supply voltage		Data retention only	1.5		1.5		1.5		V

SN54LVC02A, SN74LVC02A

SCAS280R – JANUARY 1993 – REVISED MARCH 2024

			SN74LVC02A						
		T _A = 2	T _A = 25°C		T _A = 25°C -40°C t		85°C –40°C to 125°C		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX		
n-level	V _{CC} = 1.65V to 1.95V	0.65 × V _{CC}		0.65 × V _{CC}		0.65 × V _{CC}			
t voltage	V _{CC} = 2.3V to 2.7V	1.7		1.7		1.7		V	
	V _{CC} = 2.7V to 3.6V	2		2		2			
-level	V _{CC} = 1.65V to 1.95V		0.35 × V _{CC}		0.35 × V _{CC}		0.35 × V _{CC}	.,	
input voltage	V _{CC} = 2.3V to 2.7 V		0.7		0.7		0.7	V	
	V _{CC} = 2.7V to 3.6 V		0.8		0.8		0.8		
t voltage		0	5.5	0	5.5	0	5.5	V	
out voltage		0	V _{CC}	0	V _{CC}	0	V _{CC}	V	
	V _{CC} = 1.65V		-4		-4		-4		
n-level	V _{CC} = 2.3V		-8		-8		-8		
ut current	V _{CC} = 2.7V		-12		-12		-12	mA	
	V _{CC} = 3V		-24		-24		-24		
	V _{CC} = 1.65V		4		4		4		
-level	V _{CC} = 2.3V		8		8		8		
ut current	V _{CC} = 2.7V		12		12		12	mA	
	V _{CC} = 3V		24		24		24		
	-level t voltage out voltage -level ut current	$V_{CC} = 2.3 \text{V to } 2.7 \text{V}$ $V_{CC} = 2.3 \text{V to } 2.7 \text{V}$ $V_{CC} = 2.7 \text{V to } 3.6 \text{V}$ $V_{CC} = 1.65 \text{V to } 1.95 \text{V}$ $V_{CC} = 2.3 \text{V to } 2.7 \text{V}$ $V_{CC} = 2.3 \text{V to } 3.6 \text{V}$ $V_{CC} = 2.7 \text{V to } 3.6 \text{V}$ $V_{CC} = 2.7 \text{V to } 3.6 \text{V}$ $V_{CC} = 2.3 \text{V}$ $V_{CC} = 2.3 \text{V}$ $V_{CC} = 2.3 \text{V}$ $V_{CC} = 3 \text{V}$ $V_{CC} = 3 \text{V}$ $V_{CC} = 1.65 \text{V}$ $V_{CC} = 3 \text{V}$ $V_{CC} = 3 \text{V}$ $V_{CC} = 2.3 \text{V}$ $V_{CC} = 2.3 \text{V}$ $V_{CC} = 2.3 \text{V}$ $V_{CC} = 2.3 \text{V}$	MIN Instruction MIN Mine $V_{CC} = 1.65V$ to $1.95V$ $0.65 \times V_{CC}$ V_{CC} = 2.3V to $2.7V$ 1.7 $V_{CC} = 2.7V$ to $3.6V$ 2 Vector $V_{CC} = 2.3V$ to $2.7V$ Vector $V_{CC} = 2.7V$ to $3.6V$ Vector $V_{CC} = 2.7V$ to $3.6V$ Vector $V_{CC} = 2.7V$ Vector $V_{CC} = 2.3V$ Vector $V_{CC} = 2.3V$ Vector $V_{CC} = 3.7V$ Vector $V_{CC} = 2.3V$ Vector $V_{CC} = 2.3V$ Vector $V_{CC} = 2.3V$ Vector $V_{CC} = 2.3V$	MIN MAX Herein tooltage $V_{CC} = 1.65V$ to $1.95V$ $0.65 \times V_{CC}$ $V_{CC} = 2.3V$ to $2.7V$ 1.7 $V_{CC} = 2.7V$ to $3.6V$ 2 $V_{CC} = 2.7V$ to $3.6V$ 2 $V_{CC} = 2.3V$ to $2.7V$ $0.35 \times V_{CC}$ $V_{CC} = 2.3V$ to $2.7V$ 0.7 $V_{CC} = 2.3V$ to $3.6V$ 0.88 t voltage 0 0 put voltage 0 0 $V_{CC} = 2.3V$ -4 $V_{CC} = 2.3V$ -4 $V_{CC} = 2.3V$ -4 $V_{CC} = 3.V$ -24 $V_{CC} = 3.3V$ -24 $V_{CC} = 2.3V$ 8 $V_{CC} = 2.3V$ 8 $V_{CC} = 2.7V$ 12	T_A = 25°C -40°C to MIN MAX MIN Herein V_{CC} = 1.65V to 1.95V $0.65 \times V_{CC}$ $0.65 \times V_{CC}$ V_{CC} = 2.3V to 2.7V 1.7 1.7 V_{CC} = 2.3V to 2.7V 1.7 1.7 V_{CC} = 2.7V to 3.6V 2 2 V_{CC} = 1.65V to 1.95V $0.35 \times V_{CC}$ V_{CC} V_{CC} = 2.3V to 2.7 V 0.7 V_{CC} V_{CC} = 2.3V to 2.7 V 0.8 V_{CC} V_{CC} = 2.7V to 3.6 V 0.8 V_{CC} V_{CC} = 2.3V -4 V_{CC} V_{CC} = 1.65V -4 V_{CC} V_{CC} = 3V -24 V_{CC} V_{CC} = 2.3V 4 V_{CC} V_{CC} = 2.3V 8 V_{CC} V_{CC} = 2.7V	$\frac{T_{A} = 25^{\circ}C \qquad -40^{\circ}C \text{ to } 85^{\circ}C}{MiN} \\ \frac{MiN}{MAX} \qquad \frac{MiN}{MAX} \qquad \frac{MiN}{MAX} \\ \frac{MiN}{V_{CC}} = 1.65V \text{ to } 1.95V \qquad 0.65 \times V_{CC} \\ \hline V_{CC} = 2.3V \text{ to } 2.7V \qquad 1.7 \qquad 1.7 \\ \hline V_{CC} = 2.7V \text{ to } 3.6V \qquad 2 \qquad 2 \\ \hline V_{CC} = 1.65V \text{ to } 1.95V \qquad 0.35 \times V_{CC} \\ \hline V_{CC} = 2.3V \text{ to } 2.7V \qquad 0.7 \qquad 0.35 \times V_{CC} \\ \hline V_{CC} = 2.3V \text{ to } 2.7V \qquad 0.7 \qquad 0.7 \\ \hline V_{CC} = 2.3V \text{ to } 2.7V \qquad 0.7 \qquad 0.7 \\ \hline V_{CC} = 2.3V \text{ to } 2.7V \qquad 0.7 \qquad 0.7 \\ \hline V_{CC} = 2.3V \text{ to } 2.7V \qquad 0.0 \qquad 5.5 \qquad 0 \qquad 5.5 \\ put voltage \qquad 0 \qquad 5.5 \qquad 0 \qquad 5.5 \\ put voltage \qquad 0 \qquad V_{CC} \qquad 0 \qquad V_{CC} \\ put voltage \qquad 0 \qquad V_{CC} = 0 \qquad V_{CC} \\ put voltage \qquad 0 \qquad V_{CC} = 0 \qquad V_{CC} \\ put voltage \qquad 0 \qquad V_{CC} = 2.3V \qquad -4 \qquad -4 \\ \hline V_{CC} = 2.3V \qquad -4 \qquad -4 \\ \hline V_{CC} = 2.3V \qquad -12 \qquad -12 \\ \hline V_{CC} = 3V \qquad -24 \qquad -24 \\ \hline V_{CC} = 2.3V \qquad 8 \qquad 8 \\ \hline V_{CC} = 2.3V \qquad 12 \qquad 12 \\ \hline V_{CC} = 2.7V \qquad 12 \qquad 12 \\ \hline V_{CC} = 2.7V \qquad 12 \qquad 12 \\ \hline V_{CC} = 2.3V \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \\ \hline V_{CC} = 2.3V \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \\ \hline V_{CC} = 2.3V \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \\ \hline V_{CC} = 2.3V \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \\ \hline V_{CC} = 2.3V \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \\ \hline V_{CC} = 2.3V \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \\ \hline V_{CC} = 2.3V \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \\ \hline V_{CC} = 2.3V \qquad 0 \\ \hline V_{CC} = 2.3V \qquad 0 \\ \hline V_{CC} = 0 \qquad 0$	T _A = 25°C -40°C to 85°C -40°C to 00°C to 0	T_A = 25°C-40°C to $85°C$ -40°C to $125°C$ MINMAXMINMAXMINMAXMINMAXMINMAXMINMAXMinMAXMINMAXMINMAXPevelV _{CC} = 1.65V to 1.95V $0.65 \times V_{CC}$ $0.65 \times V_{CC}$ $0.65 \times V_{CC}$ V _{CC} = 2.3V to 2.7V1.71.71.71.7V _{CC} = 2.7V to $3.6V$ 2222Pevel $V_{CC} = 1.65V$ to $1.95V$ $0.35 \times V_{CC}$ V_{CC} V_{CC} V _{CC} = 2.3V to $2.7V$ 0.35 $0.35 \times V_{CC}$ V_{CC} V_{CC} V _{CC} = 2.3V to $2.7V$ $0.35 \times V_{CC}$ V_{CC} V_{CC} V _{CC} = 2.7V to $3.6V$ 0.8 0.8 0.8 t voltage 0 V_{CC} 0 0.5 0 5.5 out voltage 0 V_{CC} 0 V_{CC} 0 V_{CC} Pevel $V_{CC} = 1.65V$ -4 -4 -4 -4 $V_{CC} = 3.3V$ -24 -24 -24 -24 Pevel $V_{CC} = 3.5V$ -24 -24 -24 Pevel $V_{CC} = 1.65V$ -4 -4 4 4 Pevel $V_{CC} = 1.65V$ -4 -4 -4 $V_{CC} = 3.3V$ -24 -24 -24 -24 Pevel $V_{CC} = 1.65V$ -24 -24 -24 $V_{CC} = 2.3V$ -24 -24 -24 -24 $V_{CC} = 2.7V$	

4.5 Thermal Information

тн		BQA (WQFN)	D (SOIC)	DB (SSOP)	NS (SOP)	PW (TSSOP)	RGY (VQFN)	UNIT
			14 PINS	14 PINS	14 PINS	14 PINS	14 PINS	
R _{θJA}	Junction-to-ambient thermal resistance	102.3	86	96	76	113	47	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC package thermal metrics application report.

4.6 Electrical Characteristics, SN54LVC02A

over recommended operating free-air temperature range (unless otherwise noted)

			SN54L	VC02A			
PARAMETER	TEST CONDITIONS	V _{cc}	–55°C 1	to 125°C		UNIT	
			MIN	TYP	MAX		
	I _{OH} = -100μA	2.7V to 3.6V	$V_{CC} - 0.2$				
V _{OH}	I _{OH} = -12mA	2.7V	2.2			V	
	10H = -1210A	3V	2.4			v	
	$I_{OH} = -24mA$	3V	2.2				
	Ι _{OL} = 100μΑ	2.7V to 3.6V			0.2		
V _{OL}	I _{OL} = 12mA	2.7V			0.4	V	
	I _{OL} = 24mA	3V			0.55		
li .	V _I = 5.5V or GND	3.6V			±5	μA	
I _{CC}	$V_{I} = V_{CC}$ or GND, $I_{O} = 0$	3.6V			10	μA	
ΔI _{CC}	One input at V _{CC} $-$ 0.6V, Other inputs at V _{CC} or GND	2.7V to 3.6V			500	μA	

Copyright © 2024 Texas Instruments Incorporated

over recommended operating free-air temperature range (unless otherwise noted)

			SN54LVC02A	
PARAMETER	TEST CONDITIONS	V _{cc}	–55°C to 125°C	UNIT
			MIN TYP MAX	
Ci	V _I = V _{CC} or GND	3.3V	5 ⁽¹⁾	pF

(1) T_A = 25°C

4.7 Electrical Characteristics, SN74LVC02A

over recommended operating free-air temperature range (unless otherwise noted)

					SN74LVC02A				_
PARAMETER	TEST CONDITIONS	Vcc	T _A =	25°C	-40°C to 8	35°C	–40°C to 12	25°C	UNIT
			MIN	ΤΥΡ ΜΑΧ	MIN	MAX	MIN	MAX	
	Ι _{ΟΗ} = –100μΑ	1.65V to 3.6V	V _{CC} - 0.2		V _{CC} - 0.2		$V_{CC} - 0.3$		
	I _{OH} = -4mA	1.65V	1.29		1.2		1.05		
V	I _{OH} = -8mA	2.3V	1.9		1.7		1.55		V
V _{OH}	L = 10mA	2.7V	2.2		2.2		2.05		v
	$I_{OH} = -12mA$	3V	2.4		2.4		2.25		
	I _{OH} = -24mA	3V	2.3		2.2		2		
	I _{OL} = 100μA	1.65V to 3.6V		0.1		0.2		0.3	
	I _{OL} = 4mA	1.65V		0.24		0.45		0.6	
V _{OL}	I _{OL} = 8mA	2.3V		0.3	5	0.7		0.75	V
	I _{OL} = 12mA	2.7V		0.4		0.4		0.6	
	I _{OL} = 24mA	3V		0.55	5	0.55		0.8	
I _I	V _I = 5.5V or GND	3.6V		ť		±5		±20	μA
I _{CC}	$V_{I} = V_{CC}$ or GND, $I_{O} = 0$	3.6V				10		40	μA
ΔI _{CC}	One input at $V_{CC} - 0.6 V$, Other inputs at V_{CC} or GND	2.7V to 3.6V		500)	500		5000	μA
C _i	V _I = V _{CC} or GND	3.3 V		5					pF

4.8 Switching Characteristics, SN54LVC02A

over recommended operating free-air temperature range (unless otherwise noted) (see Load Circuit and Voltage Waveforms)

					SN54LV	C02A		
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{cc}	–55°C to 125°C		UNIT		
		((001101)		MIN	MAX		
	+	A or B	×	2.7V		5.4	nc	
	t _{pd}	A of B		3.3V ± 0.3V	1	4.4	ns	

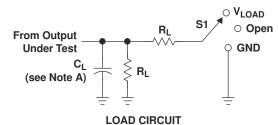
4.9 Switching Characteristics, SN74LVC02A

over recommended operating free-air temperature range (unless otherwise noted) (see Load Circuit and Voltage Waveforms)

		TO (OUTPUT)	V _{cc}	SN74LVC02A							
PARAMETER	FROM (INPUT)			T _A = 25°C		–40°C to 85°C		–40°C to 125°C		UNIT	
		(001101)		MIN	TYP	MAX	MIN	MAX	MIN	MAX	
			1.8V ± 0.15V	1	3.8	8.4	1	8.9	1	10.4	
+	A or B	Y	2.5V ± 0.2V	1	2.9	6.9	1	7.4	1	9.5	ns
t _{pd}			2.7V	1	3	5.2	1	5.4	1	7	
			3.3V ± 0.3V	1	3.6	4.2	1	4.4	1	5.5	

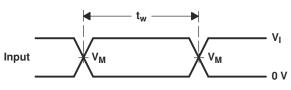
over recommended operating free-air temperature range (unless otherwise noted) (see Load Circuit and Voltage Waveforms)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{cc}	SN74LVC02A							
				T _A = 25°C		–40°C to 85°C		–40°C to 125°C		UNIT	
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
t _{sk(o)}			3.3V ± 0.3V					1		1.5	ns

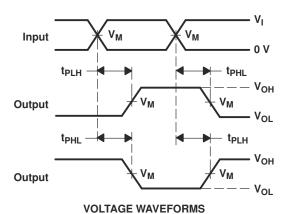

4.10 Operating Characteristics

T_A = 25°C

PARAMETER	TEST CONDITIONS	V _{cc}	ТҮР	UNIT	
		1.8V	7.5		
C _{pd} Power dissipation capacitance per gate	f = 10MHz	2.5V	8.5	pF	
		3.3V	9.5		

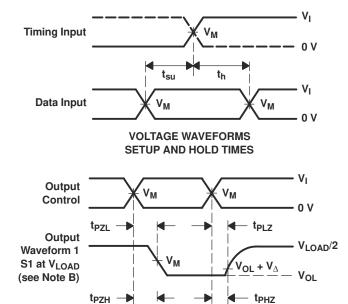


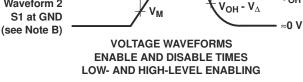
5 Parameter Measurement Information



TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

	IN	PUTS		N	•	-	N
V _{CC}	VI	t _r /t _f	V _M	V _{LOAD}	CL	RL	V_{Δ}
1.8 V \pm 0.15 V	V _{CC}	≤2 ns	V _{CC} /2	$2 \times V_{CC}$	30 pF	1 k Ω	0.15 V
2.5 V \pm 0.2 V	V _{CC}	≤2 ns	V _{CC} /2	$2 \times V_{CC}$	30 pF	500 Ω	0.15 V
2.7 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
3.3 V \pm 0.3 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V




VOLTAGE WAVEFORMS PULSE DURATION

PROPAGATION DELAY TIMES

INVERTING AND NONINVERTING OUTPUTS

NOTES: A. C_L includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω .

Output

Waveform 2

- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 5-1. Load Circuit and Voltage Waveforms

V_{он}

6 Detailed Description

6.1 Functional Block Diagram

Figure 6-1. Logic Diagram, Each Gate (Positive Logic)

6.2 Device Functional Modes

	Function Table (Each Gate)										
INPUTS OUTPUT											
Α	В	Y									
Н	Х	L									
X	Н	L									
L	L	Н									

7 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

7.1 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions*. Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. A 0.1-µF capacitor is recommended for this device. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. The 0.1-µF and 1-µF capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results, as shown in given example layout image.

7.2 Layout

7.2.1 Layout Guidelines

When using multiple-input and multiple-channel logic devices inputs must not ever be left floating. In many cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such unused input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. All unused inputs of digital logic devices must be connected to a logic high or logic low voltage, as defined by the input voltage specifications, to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally, the inputs are tied to GND or V_{CC} , whichever makes more sense for the logic function or is more convenient.

7.2.2 Layout Example

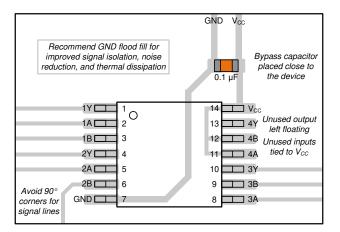


Figure 7-1. Example Layout for the SNx4LVC02A

8 Device and Documentation Support

8.1 Documentation Support

8.1.1 Related Documentation

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS			TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY	
SN54LVC02A	Click here	Click here	Click here	Click here	Click here	
SN74LVC02A	Click here	Click here	Click here	Click here	Click here	

Table 8-1. Related Links

8.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

8.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

8.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.6 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

9 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision Q (July 2005) to Revision R (March 2024)

- Added Package Information table, Pin Functions table, ESD Ratings table, Thermal Information table, Device Functional Modes, Application and Implementation section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section

Page

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
5962-9760401Q2A	ACTIVE	LCCC	FK	20	55	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 9760401Q2A SNJ54LVC 02AFK	Samples
5962-9760401QCA	ACTIVE	CDIP	J	14	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9760401QC A SNJ54LVC02AJ	Samples
5962-9760401QDA	ACTIVE	CFP	W	14	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9760401QD A SNJ54LVC02AW	Samples
SN74LVC02ABQAR	ACTIVE	WQFN	BQA	14	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC02A	Samples
SN74LVC02AD	ACTIVE	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC02A	Samples
SN74LVC02ADBR	ACTIVE	SSOP	DB	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC02A	Samples
SN74LVC02ADR	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC02A	Samples
SN74LVC02ADRG4	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC02A	Samples
SN74LVC02ANSR	ACTIVE	SO	NS	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC02A	Samples
SN74LVC02APW	ACTIVE	TSSOP	PW	14	90	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC02A	Samples
SN74LVC02APWE4	ACTIVE	TSSOP	PW	14	90	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC02A	Samples
SN74LVC02APWR	ACTIVE	TSSOP	PW	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC02A	Samples
SN74LVC02APWT	ACTIVE	TSSOP	PW	14	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC02A	Samples
SN74LVC02ARGYR	ACTIVE	VQFN	RGY	14	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	LC02A	Samples
SNJ54LVC02AFK	ACTIVE	LCCC	FK	20	55	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 9760401Q2A SNJ54LVC 02AFK	Samples
SNJ54LVC02AJ	ACTIVE	CDIP	J	14	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9760401QC A	Samples

www.ti.com

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
										SNJ54LVC02AJ	
SNJ54LVC02AW	ACTIVE	CFP	W	14	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9760401QD A SNJ54LVC02AW	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

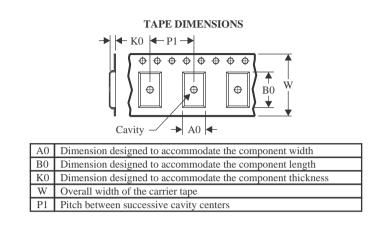
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54LVC02A, SN74LVC02A :

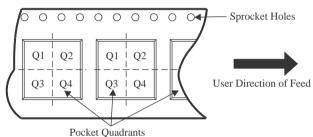
- Catalog : SN74LVC02A
- Automotive : SN74LVC02A-Q1, SN74LVC02A-Q1
- Enhanced Product : SN74LVC02A-EP, SN74LVC02A-EP
- Military : SN54LVC02A

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications

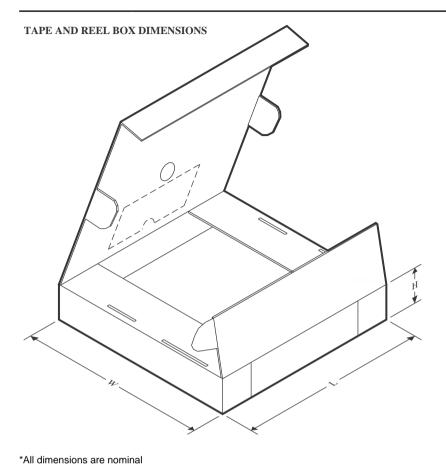


Texas


STRUMENTS

TAPE AND REEL INFORMATION

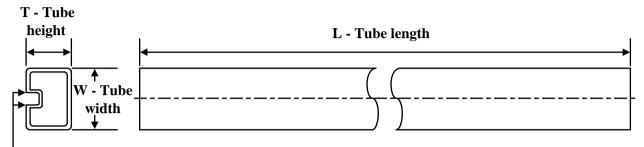
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC02ABQAR	WQFN	BQA	14	3000	180.0	12.4	2.8	3.3	1.1	4.0	12.0	Q1
SN74LVC02ADBR	SSOP	DB	14	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
SN74LVC02ADR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74LVC02ANSR	SO	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN74LVC02APWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LVC02APWT	TSSOP	PW	14	250	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LVC02ARGYR	VQFN	RGY	14	3000	330.0	12.4	3.75	3.75	1.15	8.0	12.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

20-Mar-2024

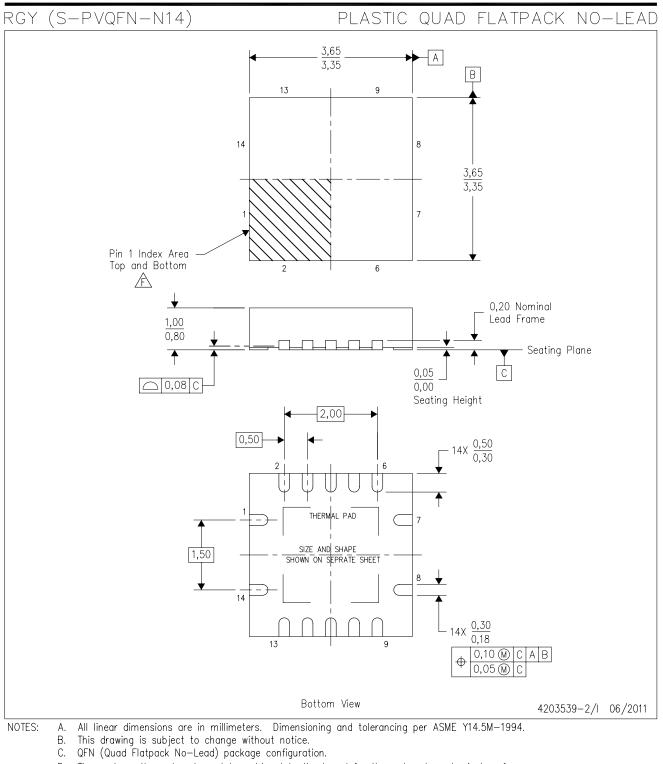

All ultrensions are norminal								
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
SN74LVC02ABQAR	WQFN	BQA	14	3000	210.0	185.0	35.0	
SN74LVC02ADBR	SSOP	DB	14	2000	356.0	356.0	35.0	
SN74LVC02ADR	SOIC	D	14	2500	356.0	356.0	35.0	
SN74LVC02ANSR	SO	NS	14	2000	356.0	356.0	35.0	
SN74LVC02APWR	TSSOP	PW	14	2000	356.0	356.0	35.0	
SN74LVC02APWT	TSSOP	PW	14	250	356.0	356.0	35.0	
SN74LVC02ARGYR	VQFN	RGY	14	3000	356.0	356.0	35.0	

TEXAS INSTRUMENTS

www.ti.com

20-Mar-2024

TUBE



- B - Alignment groove width

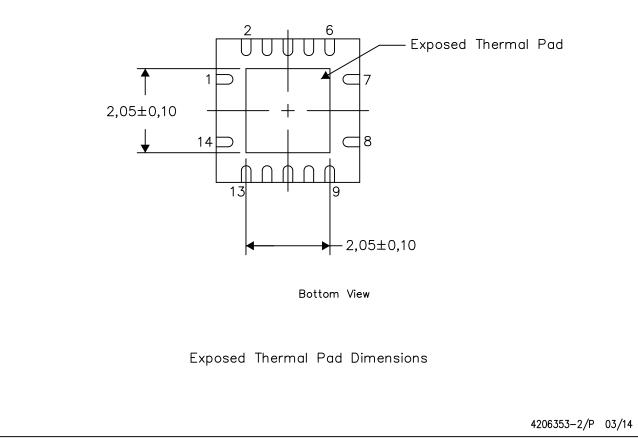
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
5962-9760401Q2A	FK	LCCC	20	55	506.98	12.06	2030	NA
5962-9760401QDA	W	CFP	14	25	506.98	26.16	6220	NA
SN74LVC02AD	D	SOIC	14	50	506.6	8	3940	4.32
SN74LVC02APW	PW	TSSOP	14	90	530	10.2	3600	3.5
SN74LVC02APWE4	PW	TSSOP	14	90	530	10.2	3600	3.5
SNJ54LVC02AFK	FK	LCCC	20	55	506.98	12.06	2030	NA
SNJ54LVC02AW	W	CFP	14	25	506.98	26.16	6220	NA

MECHANICAL DATA

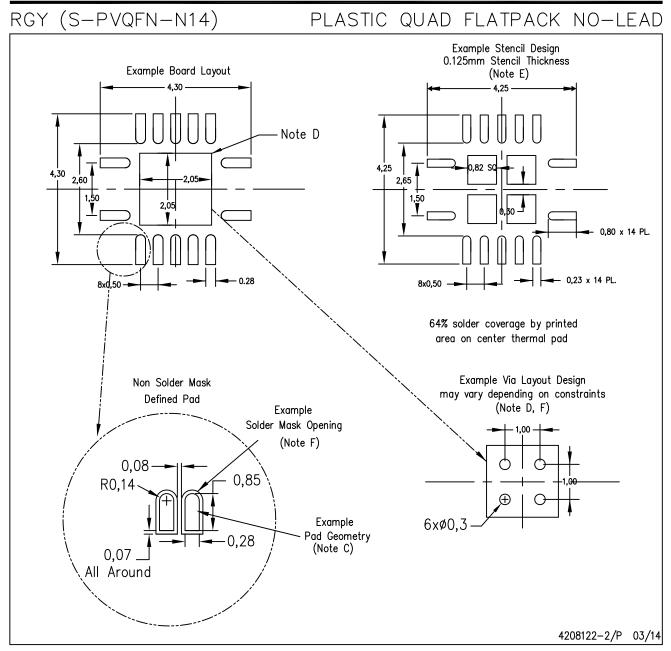
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- earrow Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated.
- The Pin 1 identifiers are either a molded, marked, or metal feature.
- G. Package complies to JEDEC MO-241 variation BA.

RGY (S-PVQFN-N14)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).


For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: All linear dimensions are in millimeters

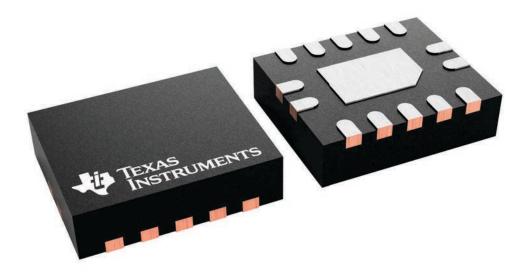
NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.

D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.

- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

BQA 14

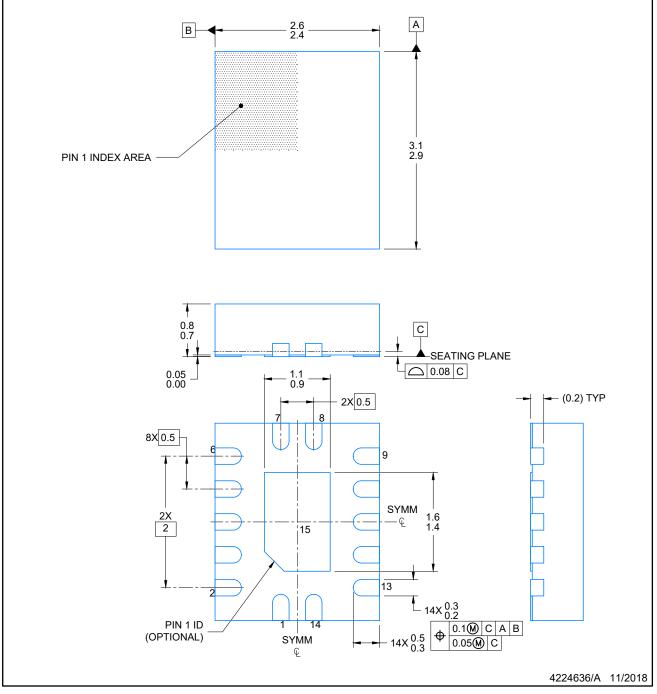

2.5 x 3, 0.5 mm pitch

GENERIC PACKAGE VIEW

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.



BQA0014A

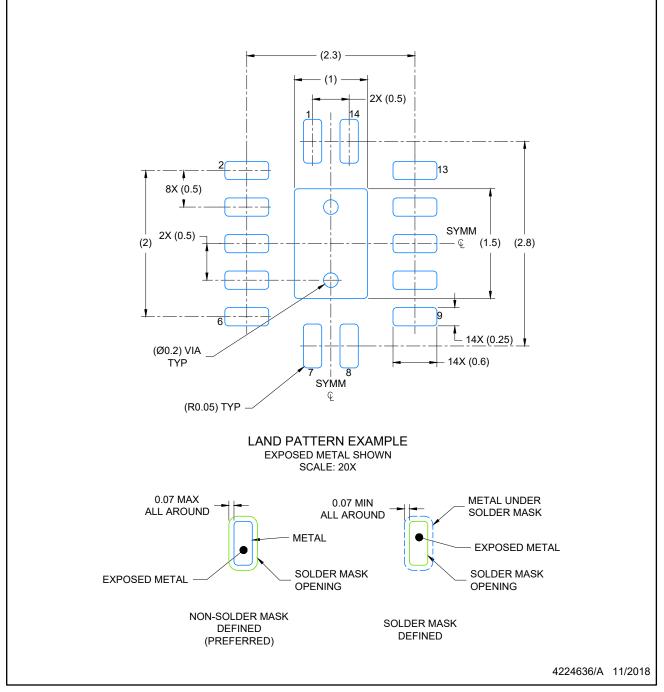
PACKAGE OUTLINE

WQFN - 0.8 mm max height

PLASTIC QUAD FLAT PACK-NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.



BQA0014A

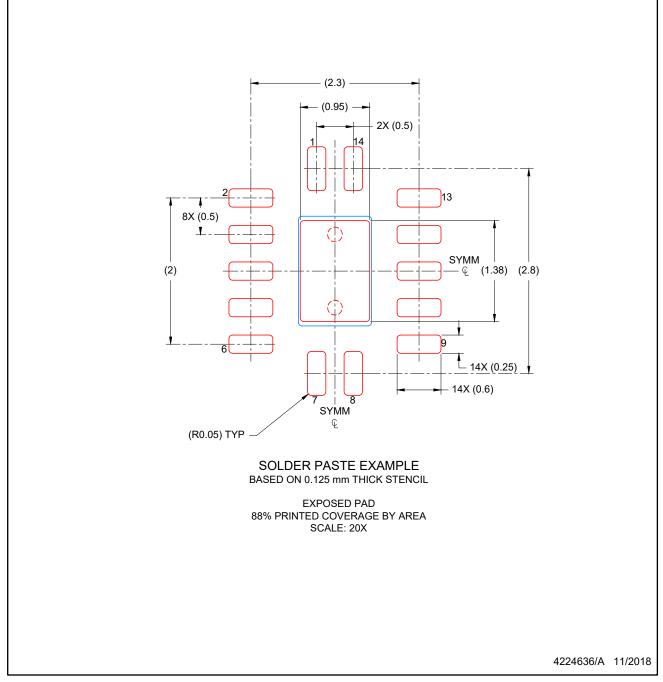
EXAMPLE BOARD LAYOUT

WQFN - 0.8 mm max height

PLASTIC QUAD FLAT PACK-NO LEAD

NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



BQA0014A

EXAMPLE STENCIL DESIGN

WQFN - 0.8 mm max height

PLASTIC QUAD FLAT PACK-NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

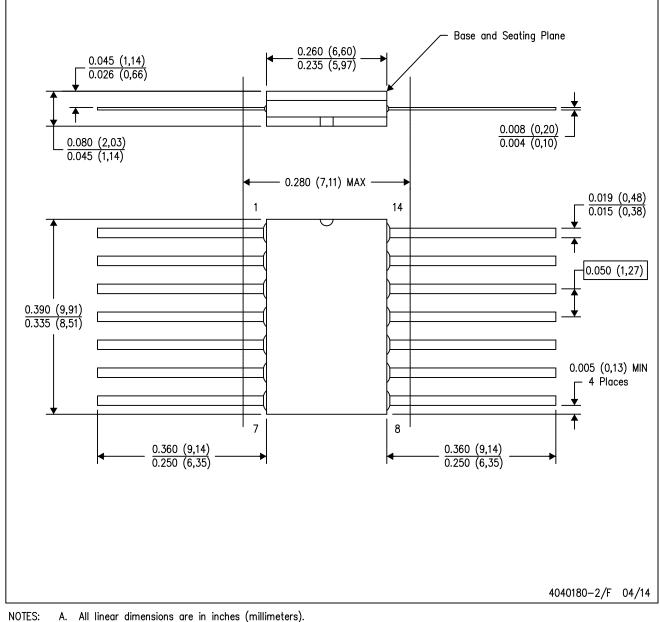
MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)


14-PINS SHOWN

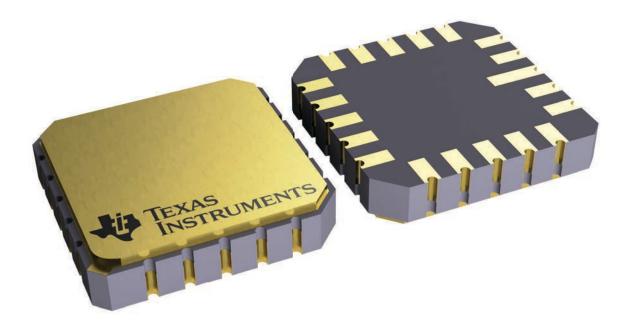
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

W (R-GDFP-F14)

CERAMIC DUAL FLATPACK

- A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within MIL STD 1835 GDFP1-F14

FK 20

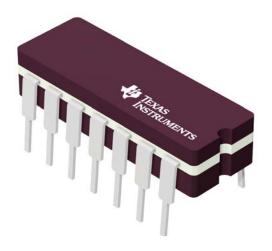

8.89 x 8.89, 1.27 mm pitch

GENERIC PACKAGE VIEW

LCCC - 2.03 mm max height

LEADLESS CERAMIC CHIP CARRIER

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

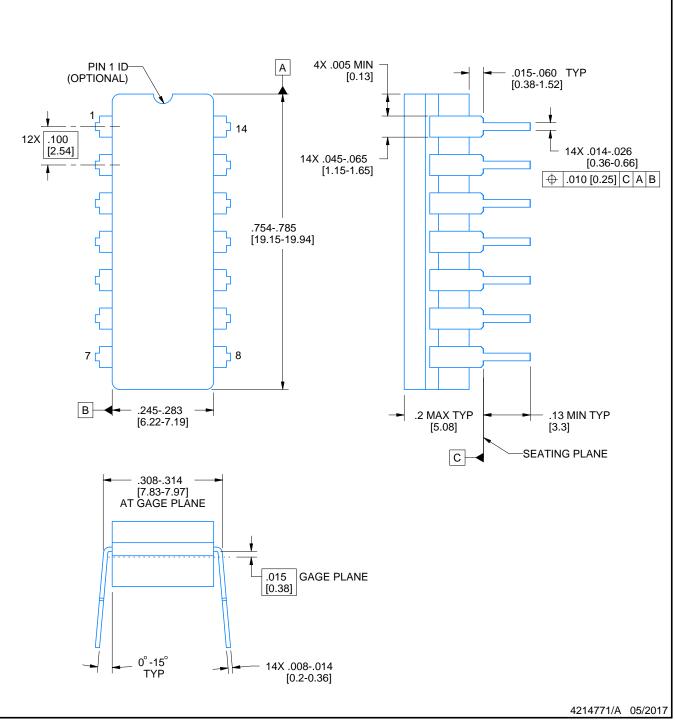


GENERIC PACKAGE VIEW

CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


J0014A

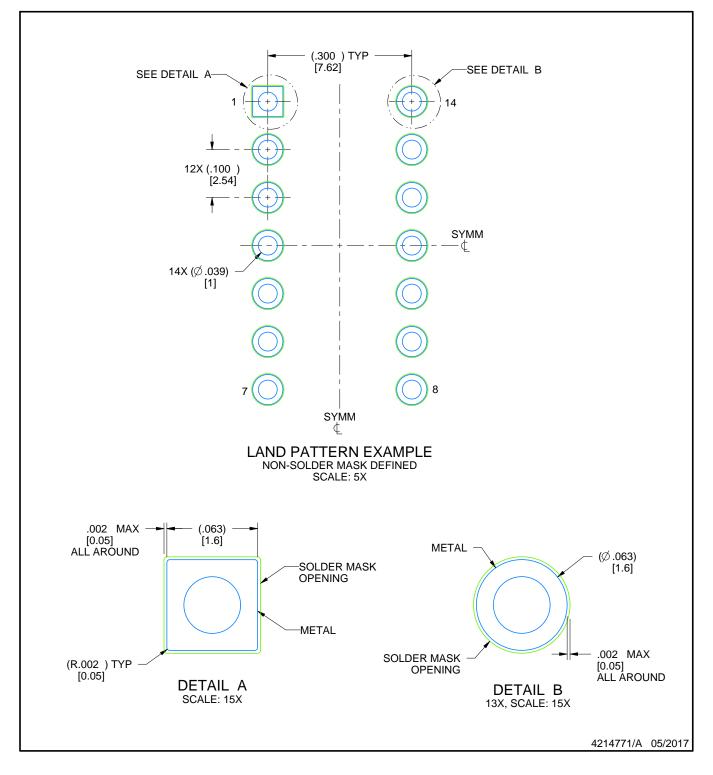
PACKAGE OUTLINE

CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE

NOTES:

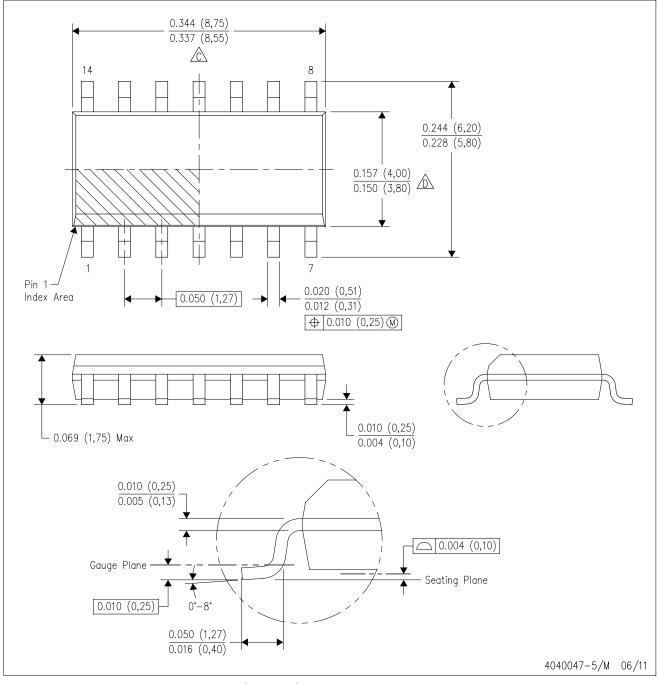
- 1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This package is hermitically sealed with a ceramic lid using glass frit.
- Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.
 Falls within MIL-STD-1835 and GDIP1-T14.



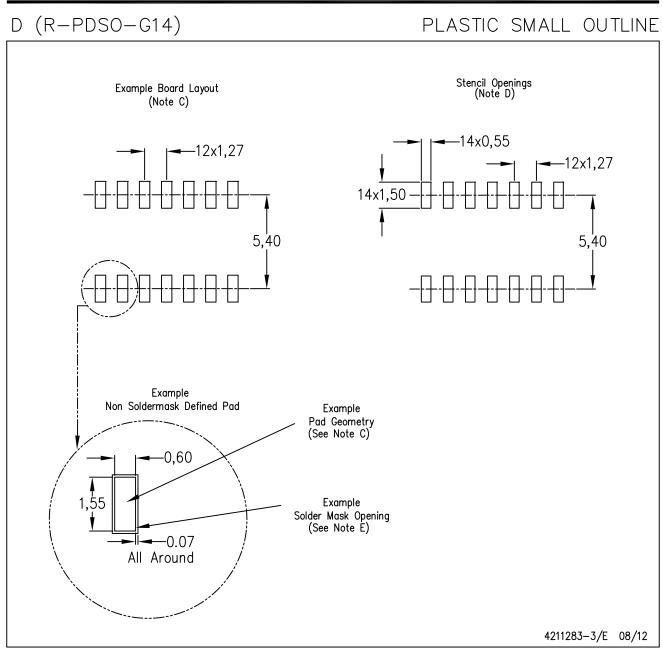
J0014A

EXAMPLE BOARD LAYOUT

CDIP - 5.08 mm max height

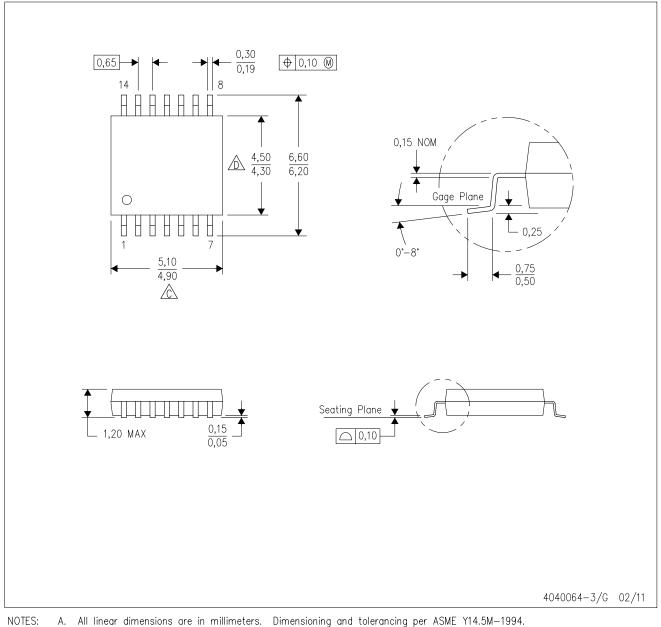

CERAMIC DUAL IN LINE PACKAGE

D (R-PDSO-G14)


PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

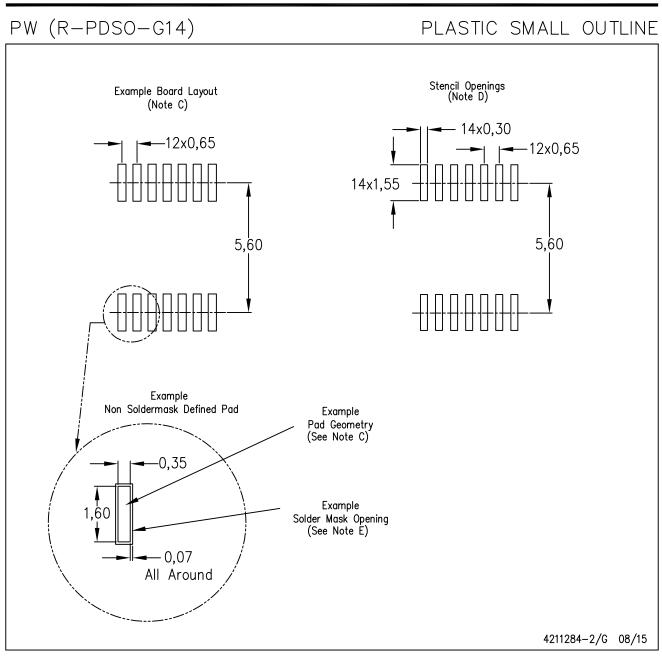
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE


A. An integration of the information o

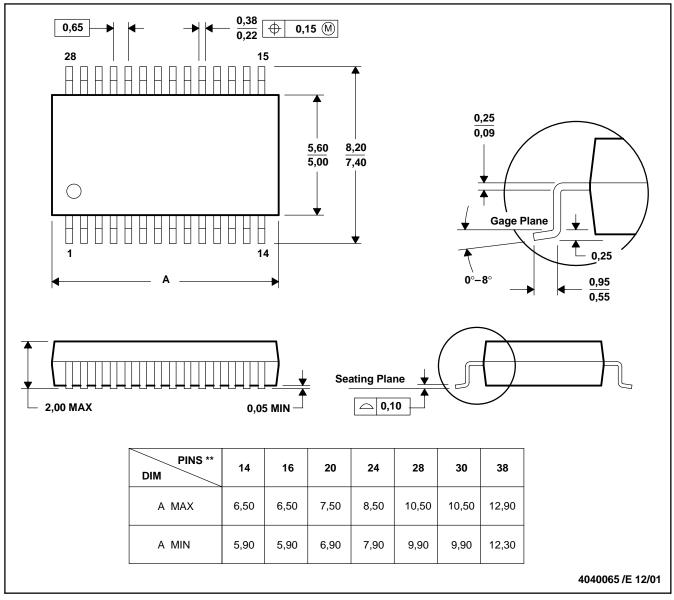
Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.


MECHANICAL DATA

MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated