Single 3-Input Positive-OR Gate

Check for Samples: SN74LVC1G332

FEATURES
- Available in the Texas Instruments NanoStar™ and NanoFree™ Packages
- Supports 5-V V_{CC} Operation
- Inputs Accept Voltages to 5.5 V
- Supports Down Translation to V_{CC}
- Max t_{pd} of 4.5 ns at 3.3 V
- Low Power Consumption, 10-µA Max I_{CC}
- I_{off} Supports Live Insertion, Partial-Power-Down Mode, and Back-Drive Protection
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

DESCRIPTION
- The SN74LVC1G332 device performs the Boolean function in $Y = A + B + C$ or $Y = \overline{A} \cdot B \cdot C$ positive logic.
- NanoStar™ and NanoFree™ package technology is a major breakthrough in IC packaging concepts, using the die as the package.
- This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

<table>
<thead>
<tr>
<th>FEATURES</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available in the Texas Instruments NanoStar™ and NanoFree™ Packages</td>
<td>The SN74LVC1G332 device performs the Boolean function in $Y = A + B + C$ or $Y = \overline{A} \cdot B \cdot C$ positive logic.</td>
</tr>
<tr>
<td>Supports 5-V V_{CC} Operation</td>
<td>NanoStar™ and NanoFree™ package technology is a major breakthrough in IC packaging concepts, using the die as the package.</td>
</tr>
<tr>
<td>Inputs Accept Voltages to 5.5 V</td>
<td>This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.</td>
</tr>
<tr>
<td>Supports Down Translation to V_{CC}</td>
<td></td>
</tr>
<tr>
<td>Max t_{pd} of 4.5 ns at 3.3 V</td>
<td></td>
</tr>
<tr>
<td>Low Power Consumption, 10-µA Max I_{CC}</td>
<td></td>
</tr>
<tr>
<td>I_{off} Supports Live Insertion, Partial-Power-Down Mode, and Back-Drive Protection</td>
<td></td>
</tr>
<tr>
<td>Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II</td>
<td></td>
</tr>
<tr>
<td>ESD Protection Exceeds JESD 22</td>
<td></td>
</tr>
<tr>
<td>– 2000-V Human-Body Model (A114-A)</td>
<td></td>
</tr>
<tr>
<td>– 200-V Machine Model (A115-A)</td>
<td></td>
</tr>
<tr>
<td>– 1000-V Charged-Device Model (C101)</td>
<td></td>
</tr>
</tbody>
</table>

See mechanical drawings for dimensions.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

NanoStar, NanoFree are trademarks of Texas Instruments.
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Function Table

<table>
<thead>
<tr>
<th>INPUTS</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>H</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>H</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
</tr>
</tbody>
</table>

Logic Diagram (Positive Logic)

A
C

Y

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CC})</td>
<td>Supply voltage range</td>
<td>–0.5</td>
<td>6.5</td>
</tr>
<tr>
<td>(V_I)</td>
<td>Input voltage range(^{(2)})</td>
<td>–0.5</td>
<td>6.5</td>
</tr>
<tr>
<td>(V_O)</td>
<td>Voltage range applied to any output in the high-impedance or power-off state(^{(2)})</td>
<td>–0.5</td>
<td>6.5</td>
</tr>
<tr>
<td>(V_O)</td>
<td>Voltage range applied to any output in the high or low state(^{(2)(3)})</td>
<td>–0.5</td>
<td>(V_{CC} + 0.5)</td>
</tr>
<tr>
<td>(I_{IK})</td>
<td>Input clamp current</td>
<td>(V_I < 0)</td>
<td>–50</td>
</tr>
<tr>
<td>(I_{OK})</td>
<td>Output clamp current</td>
<td>(V_O < 0)</td>
<td>–50</td>
</tr>
<tr>
<td>(I_O)</td>
<td>Continuous output current</td>
<td></td>
<td>±50</td>
</tr>
<tr>
<td></td>
<td>Continuous current through (V_{CC}) or GND</td>
<td></td>
<td>±100</td>
</tr>
<tr>
<td>(\theta_{JA})</td>
<td>Package thermal impedance(^{(4)})</td>
<td>DBV package</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DCK package</td>
<td>259</td>
</tr>
<tr>
<td></td>
<td></td>
<td>YEP or YZP package</td>
<td>123</td>
</tr>
<tr>
<td>(T_{stg})</td>
<td>Storage temperature range</td>
<td></td>
<td>–65</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The value of \(V_{CC} \) is provided in the recommended operating conditions table.

(4) The package thermal impedance is calculated in accordance with JESD 51-7.
Recommended Operating Conditions *(1)*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>V</td>
<td>1.65</td>
<td>5.5</td>
</tr>
<tr>
<td>Data retention only</td>
<td></td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>V_{IH}</td>
<td>V</td>
<td>0.65 $\times V_{CC}$</td>
<td>1.7</td>
</tr>
<tr>
<td>V_{IL}</td>
<td>V</td>
<td>0.35 $\times V_{CC}$</td>
<td>0.8</td>
</tr>
<tr>
<td>V_{I}</td>
<td>V</td>
<td>0</td>
<td>5.5</td>
</tr>
<tr>
<td>V_{O}</td>
<td>V</td>
<td>0 V_{CC}</td>
<td></td>
</tr>
<tr>
<td>I_{OH}</td>
<td>mA</td>
<td>–4</td>
<td>–8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–16</td>
<td>–24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–32</td>
<td></td>
</tr>
<tr>
<td>I_{OL}</td>
<td>mA</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>$\Delta V/\Delta t$</td>
<td>ns/V</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>T_A</td>
<td>°C</td>
<td>–40</td>
<td>125</td>
</tr>
</tbody>
</table>

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number *SCBA004*.

www.ti.com

SCES489E – SEPTEMBER 2003 – REVISED DECEMBER 2013

Copyright © 2003–2013, Texas Instruments Incorporated

Submit Documentation Feedback

Product Folder Links: *SN74LVC1G332*
Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>V_{CC}</th>
<th>–40°C to 85°C</th>
<th>–40°C to 125°C</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OH}</td>
<td>$I_{OH} = –100 \ \mu A$</td>
<td>1.65 V to 5.5 V</td>
<td>$V_{CC} – 0.1$</td>
<td>$V_{CC} – 0.1$</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>$I_{OH} = –4 \ \ mA$</td>
<td>1.65 V</td>
<td>1.2</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_{OH} = –8 \ \ mA$</td>
<td>2.3 V</td>
<td>1.9</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_{OH} = –16 \ \ mA$</td>
<td>3 V</td>
<td>2.4</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_{OH} = –24 \ \ mA$</td>
<td>2.3 V</td>
<td>2.3</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_{OH} = –32 \ \ mA$</td>
<td>4.5 V</td>
<td>3.8</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>V_{OL}</td>
<td>$I_{OL} = 100 \ \mu A$</td>
<td>1.65 V to 5.5 V</td>
<td>0.1</td>
<td>0.1</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>$I_{OL} = 4 \ \ mA$</td>
<td>1.65 V</td>
<td>0.45</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_{OL} = 8 \ \ mA$</td>
<td>2.3 V</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_{OL} = 16 \ \ mA$</td>
<td>3 V</td>
<td>0.4</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_{OL} = 24 \ \ mA$</td>
<td>3 V</td>
<td>0.55</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_{OL} = 32 \ \ mA$</td>
<td>4.5 V</td>
<td>0.55</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>I_{I}</td>
<td>All inputs $V_{I} = 5.5 \ \text{V or GND}$</td>
<td>0 to 5.5 V</td>
<td>±5</td>
<td>±5</td>
<td>μA</td>
</tr>
<tr>
<td>I_{UI}</td>
<td>V_{I} or $V_{O} = 5.5 \ \text{V}$</td>
<td>0</td>
<td>±10</td>
<td>±10</td>
<td>μA</td>
</tr>
<tr>
<td>I_{CC}</td>
<td>$V_{I} = 5.5 \ \text{V or GND}, \ \ I_{O} = 0$</td>
<td>1.65 V to 5.5 V</td>
<td>10</td>
<td>10</td>
<td>μA</td>
</tr>
<tr>
<td>ΔI_{CC}</td>
<td>One input at $V_{CC} = 0.6 \ \text{V}$, Other inputs at V_{CC} or GND</td>
<td>3 V to 5.5 V</td>
<td>500</td>
<td>500</td>
<td>μA</td>
</tr>
<tr>
<td>C_{i}</td>
<td>$V_{I} = V_{CC}$ or GND</td>
<td>3.3 V</td>
<td>3.5</td>
<td></td>
<td>pF</td>
</tr>
</tbody>
</table>

(1) All typical values are at $V_{CC} = 3.3 \ \text{V}, \ \ T_{A} = 25^\circ \text{C}$.
Switching Characteristics

over recommended operating free-air temperature range, \(C_L = 15 \text{ pF} \) (unless otherwise noted) (see Figure 1)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>FROM (INPUT)</th>
<th>TO (OUTPUT)</th>
<th>(V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V})</th>
<th>(V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V})</th>
<th>(V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V})</th>
<th>(V_{CC} = 5 \text{ V} \pm 0.5 \text{ V})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{pd})</td>
<td>A, B, or C</td>
<td>Y</td>
<td>MIN MAX</td>
<td>MIN MAX</td>
<td>MIN MAX</td>
<td>MIN MAX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.4 17</td>
<td>1.4 6</td>
<td>1.2 4.5</td>
<td>0.8 3</td>
</tr>
</tbody>
</table>

Switching Characteristics

over recommended operating free-air temperature range, \(C_L = 30 \text{ pF} \) or \(50 \text{ pF} \) (unless otherwise noted) (see Figure 2)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>FROM (INPUT)</th>
<th>TO (OUTPUT)</th>
<th>(V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V})</th>
<th>(V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V})</th>
<th>(V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V})</th>
<th>(V_{CC} = 5 \text{ V} \pm 0.5 \text{ V})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{pd})</td>
<td>A, B, or C</td>
<td>Y</td>
<td>MIN MAX</td>
<td>MIN MAX</td>
<td>MIN MAX</td>
<td>MIN MAX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.8 17.2</td>
<td>1.5 6.2</td>
<td>1.4 4.8</td>
<td>1 3.5</td>
</tr>
</tbody>
</table>

Switching Characteristics

over recommended operating free-air temperature range, \(C_L = 30 \text{ pF} \) or \(50 \text{ pF} \) (unless otherwise noted) (see Figure 2)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>FROM (INPUT)</th>
<th>TO (OUTPUT)</th>
<th>(V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V})</th>
<th>(V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V})</th>
<th>(V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V})</th>
<th>(V_{CC} = 5 \text{ V} \pm 0.5 \text{ V})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{pd})</td>
<td>A, B, or C</td>
<td>Y</td>
<td>MIN MAX</td>
<td>MIN MAX</td>
<td>MIN MAX</td>
<td>MIN MAX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.8 20.0</td>
<td>1.5 7.8</td>
<td>1.4 6.2</td>
<td>1.0 4.5</td>
</tr>
</tbody>
</table>

Operating Characteristics

\(T_A = 25^\circ C \)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>(V_{CC} = 1.8 \text{ V})</th>
<th>(V_{CC} = 2.5 \text{ V})</th>
<th>(V_{CC} = 3.3 \text{ V})</th>
<th>(V_{CC} = 5 \text{ V})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{pd})</td>
<td>Power dissipation capacitance</td>
<td>TYP</td>
<td>TYP</td>
<td>TYP</td>
<td>TYP</td>
</tr>
<tr>
<td></td>
<td>(f = 10 \text{ MHz})</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>23</td>
</tr>
</tbody>
</table>

Copyright © 2003–2013, Texas Instruments Incorporated

Submit Documentation Feedback

Product Folder Links: SN74LVC1G332
Parameter Measurement Information

From Output Under Test
(see Note A)

LOAD CIRCUIT

<table>
<thead>
<tr>
<th>Vcc</th>
<th>Inputs</th>
<th>Vw</th>
<th>Vload</th>
<th>C</th>
<th>RL</th>
<th>Rl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8 V ± 0.15 V</td>
<td>Vcc</td>
<td>≤2 ns</td>
<td>Vcc/2</td>
<td>15 pF</td>
<td>1 MΩ</td>
<td>0.15 V</td>
</tr>
<tr>
<td>2.5 V ± 0.2 V</td>
<td>Vcc</td>
<td>≤2 ns</td>
<td>Vcc/2</td>
<td>15 pF</td>
<td>1 MΩ</td>
<td>0.15 V</td>
</tr>
<tr>
<td>3.3 V ± 0.3 V</td>
<td>3 V</td>
<td>≤2.5 ns</td>
<td>1.5 V</td>
<td>6 V</td>
<td>15 pF</td>
<td>1 MΩ</td>
</tr>
<tr>
<td>5 V ± 0.5 V</td>
<td>Vcc</td>
<td>≤2.5 ns</td>
<td>Vcc/2</td>
<td>15 pF</td>
<td>1 MΩ</td>
<td>0.3 V</td>
</tr>
</tbody>
</table>

Timing Input

VOLTAGE WAVEFORMS
PULSE DURATION

Data Input

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

Output Control

Output Waveform 1
S1 at Vload
(see Note B)

Output Waveform 2
S1 at GND
(see Note B)

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING

NOTES:
A. C includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Zo = 50 Ω.
D. The outputs are measured one at a time, with one transition per measurement.
E. tPLZ and tPDL are the same as tw.
F. tPHL and tDPL are the same as tw.
G. tPZH and tDZL are the same as tw.
H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms
Parameter Measurement Information

<table>
<thead>
<tr>
<th>V_{CC}</th>
<th>INPUTS</th>
<th>V_{i}</th>
<th>t_{PLH}</th>
<th>V_{OL}</th>
<th>t_{PHL}</th>
<th>V_{OH}</th>
<th>C_L</th>
<th>R_L</th>
<th>V_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8 V ± 0.15 V</td>
<td>V_{CC}</td>
<td>≤ 2 ns</td>
<td>$V_{CC}/2$</td>
<td>2 × V_{CC}</td>
<td>30 pF</td>
<td>1 kΩ</td>
<td>0.15 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5 V ± 0.2 V</td>
<td>V_{CC}</td>
<td>≤ 2 ns</td>
<td>$V_{CC}/2$</td>
<td>2 × V_{CC}</td>
<td>30 pF</td>
<td>500 Ω</td>
<td>0.15 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3 V ± 0.3 V</td>
<td>3 V</td>
<td>≤ 2.5 ns</td>
<td>$V_{CC}/2$</td>
<td>1.5 V</td>
<td>6 V</td>
<td>50 pF</td>
<td>500 Ω</td>
<td>0.3 V</td>
<td></td>
</tr>
<tr>
<td>5 V ± 0.5 V</td>
<td>V_{CC}</td>
<td>≤ 2.5 ns</td>
<td>$V_{CC}/2$</td>
<td>2 × V_{CC}</td>
<td>50 pF</td>
<td>500 Ω</td>
<td>0.3 V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

A. C_C includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, $Z_o = 50$ Ω.

D. The outputs are measured one at a time, with one transition per measurement.

E. t_{PHL} and t_{PLZ} are the same as t_w.

F. t_{PZH} and t_{ZOL} are the same as t_w.

G. t_{PLH} and t_{ZOL} are the same as t_w.

H. All parameters and waveforms are not applicable to all devices.

Figure 2. Load Circuit and Voltage Waveforms
Revision History

Changes from Revision D (September 2006) to Revision E

<table>
<thead>
<tr>
<th>Change</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updated document to new TI data sheet format.</td>
<td>1</td>
</tr>
<tr>
<td>Updated Features.</td>
<td>1</td>
</tr>
<tr>
<td>Removed Ordering Information table.</td>
<td>1</td>
</tr>
<tr>
<td>Added ESD warning.</td>
<td>2</td>
</tr>
<tr>
<td>Updated operating temperature range.</td>
<td>3</td>
</tr>
</tbody>
</table>
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>PIns</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LVC1G332DBVRG4</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>6</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>C2CF</td>
<td>Samples</td>
</tr>
<tr>
<td>74LVC1G332DCKRE4</td>
<td>ACTIVE</td>
<td>SC70</td>
<td>DCK</td>
<td>6</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>CZF</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74LVC1G332DBVR</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>6</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>(C2CF, C2CK, C2CR)</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74LVC1G332DCKR</td>
<td>ACTIVE</td>
<td>SC70</td>
<td>DCK</td>
<td>6</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>(CZF, CZJ, CZK, CZR)</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74LVC1G332DCKR4</td>
<td>ACTIVE</td>
<td>SC70</td>
<td>DCK</td>
<td>6</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>CZF</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74LVC1G332DRLR</td>
<td>ACTIVE</td>
<td>SOT-5X3</td>
<td>DRL</td>
<td>6</td>
<td>4000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>(CZ7, CZR)</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74LVC1G332DRY2</td>
<td>ACTIVE</td>
<td>SON</td>
<td>DRY</td>
<td>6</td>
<td>5000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>CZ</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74LVC1G332DRYR</td>
<td>ACTIVE</td>
<td>SON</td>
<td>DRY</td>
<td>6</td>
<td>5000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>CZ</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74LVC1G332DSF2</td>
<td>ACTIVE</td>
<td>SON</td>
<td>DSF</td>
<td>6</td>
<td>5000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>CZ</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74LVC1G332DSFR</td>
<td>ACTIVE</td>
<td>SON</td>
<td>DSF</td>
<td>6</td>
<td>5000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>CZ</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74LVC1G332YZPR</td>
<td>ACTIVE</td>
<td>DSBGA</td>
<td>YZP</td>
<td>6</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>SNAGCU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>CZN</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE:** Product device recommended for new designs.
- **LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE:** TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". **RoHS Exempt:** TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. **Green:** TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin 1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LVC1G332DBVRG4</td>
<td>SOT-23</td>
<td>DBV</td>
<td>6</td>
<td>3000</td>
<td>178.0</td>
<td>9.0</td>
<td>3.23</td>
<td>1.37</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
<td></td>
</tr>
<tr>
<td>SN74LVC1G332DBVR</td>
<td>SOT-23</td>
<td>DBV</td>
<td>6</td>
<td>3000</td>
<td>178.0</td>
<td>9.0</td>
<td>3.23</td>
<td>1.37</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
<td></td>
</tr>
<tr>
<td>SN74LVC1G332DBV</td>
<td>SOT-23</td>
<td>DBV</td>
<td>6</td>
<td>3000</td>
<td>180.0</td>
<td>8.4</td>
<td>3.23</td>
<td>1.37</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
<td></td>
</tr>
<tr>
<td>SN74LVC1G332DCKR</td>
<td>SC70</td>
<td>DCK</td>
<td>6</td>
<td>3000</td>
<td>178.0</td>
<td>9.0</td>
<td>2.4</td>
<td>1.2</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
<td></td>
</tr>
<tr>
<td>SN74LVC1G332DCKRG4</td>
<td>SC70</td>
<td>DCK</td>
<td>6</td>
<td>3000</td>
<td>178.0</td>
<td>9.0</td>
<td>2.4</td>
<td>1.2</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
<td></td>
</tr>
<tr>
<td>SN74LVC1G332DRY2</td>
<td>SON</td>
<td>DRY</td>
<td>6</td>
<td>5000</td>
<td>180.0</td>
<td>9.5</td>
<td>1.78</td>
<td>1.78</td>
<td>0.69</td>
<td>4.0</td>
<td>Q3</td>
<td></td>
</tr>
<tr>
<td>SN74LVC1G332DSF2</td>
<td>SON</td>
<td>DSF</td>
<td>6</td>
<td>5000</td>
<td>180.0</td>
<td>8.4</td>
<td>1.98</td>
<td>1.78</td>
<td>0.69</td>
<td>4.0</td>
<td>Q3</td>
<td></td>
</tr>
<tr>
<td>SN74LVC1G332DSFR</td>
<td>SON</td>
<td>DSF</td>
<td>6</td>
<td>5000</td>
<td>180.0</td>
<td>8.4</td>
<td>1.16</td>
<td>1.16</td>
<td>0.63</td>
<td>4.0</td>
<td>Q3</td>
<td></td>
</tr>
<tr>
<td>SN74LVC1G332YZPR</td>
<td>DSBGA</td>
<td>YZP</td>
<td>6</td>
<td>3000</td>
<td>178.0</td>
<td>9.2</td>
<td>1.02</td>
<td>1.52</td>
<td>0.63</td>
<td>4.0</td>
<td>Q1</td>
<td></td>
</tr>
</tbody>
</table>

All dimensions are nominal.
TAPE AND REEL BOX DIMENSIONS

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LVC1G332DBVRG4</td>
<td>SOT-23</td>
<td>DBV</td>
<td>6</td>
<td>3000</td>
<td>180.0</td>
<td>180.0</td>
<td>18.0</td>
</tr>
<tr>
<td>SN74LVC1G332DBVR</td>
<td>SOT-23</td>
<td>DBV</td>
<td>6</td>
<td>3000</td>
<td>180.0</td>
<td>180.0</td>
<td>18.0</td>
</tr>
<tr>
<td>SN74LVC1G332DBVR</td>
<td>SOT-23</td>
<td>DBV</td>
<td>6</td>
<td>3000</td>
<td>202.0</td>
<td>201.0</td>
<td>28.0</td>
</tr>
<tr>
<td>SN74LVC1G332DCKR</td>
<td>SC70</td>
<td>DCK</td>
<td>6</td>
<td>3000</td>
<td>180.0</td>
<td>180.0</td>
<td>18.0</td>
</tr>
<tr>
<td>SN74LVC1G332DCKR</td>
<td>SC70</td>
<td>DCK</td>
<td>6</td>
<td>3000</td>
<td>180.0</td>
<td>180.0</td>
<td>18.0</td>
</tr>
<tr>
<td>SN74LVC1G332DCKRG4</td>
<td>SC70</td>
<td>DCK</td>
<td>6</td>
<td>3000</td>
<td>180.0</td>
<td>180.0</td>
<td>18.0</td>
</tr>
<tr>
<td>SN74LVC1G332DRLR</td>
<td>SOT-5X3</td>
<td>DRL</td>
<td>6</td>
<td>4000</td>
<td>184.0</td>
<td>184.0</td>
<td>19.0</td>
</tr>
<tr>
<td>SN74LVC1G332DRLR</td>
<td>SOT-5X3</td>
<td>DRL</td>
<td>6</td>
<td>4000</td>
<td>202.0</td>
<td>201.0</td>
<td>28.0</td>
</tr>
<tr>
<td>SN74LVC1G332DRY2</td>
<td>SON</td>
<td>DRY</td>
<td>6</td>
<td>5000</td>
<td>184.0</td>
<td>184.0</td>
<td>19.0</td>
</tr>
<tr>
<td>SN74LVC1G332DRY2</td>
<td>SON</td>
<td>DRY</td>
<td>6</td>
<td>5000</td>
<td>202.0</td>
<td>201.0</td>
<td>28.0</td>
</tr>
<tr>
<td>SN74LVC1G332DRYR</td>
<td>SON</td>
<td>DRY</td>
<td>6</td>
<td>5000</td>
<td>202.0</td>
<td>201.0</td>
<td>28.0</td>
</tr>
<tr>
<td>SN74LVC1G332DSF2</td>
<td>SON</td>
<td>DSF</td>
<td>6</td>
<td>5000</td>
<td>184.0</td>
<td>184.0</td>
<td>19.0</td>
</tr>
<tr>
<td>SN74LVC1G332DSF2</td>
<td>SON</td>
<td>DSF</td>
<td>6</td>
<td>5000</td>
<td>184.0</td>
<td>184.0</td>
<td>19.0</td>
</tr>
<tr>
<td>SN74LVC1G332DSFR</td>
<td>SON</td>
<td>DSF</td>
<td>6</td>
<td>5000</td>
<td>184.0</td>
<td>184.0</td>
<td>19.0</td>
</tr>
<tr>
<td>SN74LVC1G332YZPR</td>
<td>DSBGA</td>
<td>YZP</td>
<td>6</td>
<td>3000</td>
<td>220.0</td>
<td>220.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Reference JEDEC registration MO-287, variation X2AAF.
4. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
NOTES: (continued)

4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SBVA017 (www.ti.com/lit/sbva017).
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.
Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
NOTES: (continued)

3. For more information, see QFN/SON PCB application report in literature No. SLUA271 (www.ti.com/lit/slua271).
NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
5. Reference JEDEC MO-178.
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
D. Falls within JEDEC MO-203 variation AB.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
D. Publication IPC-7351 is recommended for alternate designs.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
NOTES: (continued)

4. Publication IPC-7351 may have alternate designs.
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

7. Board assembly site may have different recommendations for stencil design.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated