MC1489, MC1489A, SN55189, SN55189A, SN75189, SN75189A
QUADRUPLE LINE RECEIVERS

- Input Resistance ... 3 kΩ to 7 kΩ
- Input Signal Range ... ±30 V
- Operate From Single 5-V Supply
- Built-In Input Hysteresis (Double Thresholds)
- Response Control that Provides:
 - Input Threshold Shifting
 - Input Noise Filtering
- Meet or Exceed the Requirements of TIA/EIA-232-F and ITU Recommendation V.28
- Fully Interchangeable With Motorola™ MC1489 and MC1489A

These devices are monolithic low-power Schottky quadruple line receivers designed to satisfy the requirements of the standard interface between data-terminal equipment and data-communication equipment as defined by TIA/EIA-232-F. A separate response-control (CONT) terminal is provided for each receiver. A resistor or a resistor and bias-voltage source can be connected between this terminal and ground to shift the input threshold levels. An external capacitor can be connected between this terminal and ground to provide input noise filtering.

The SN55189 and SN55189A are characterized for operation over the full military temperature range of −55°C to 125°C. The MC1489, MC1489A, SN75189, and SN75189A are characterized for operation from 0°C to 70°C.

Motorola is a trademark of Motorola, Incorporated.
logic symbol

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the D, J, N, NS, and W packages.

logic diagram (positive logic)

schematic (each receiver)

Resistor values shown are nominal.
absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Supply voltage, \(V_{CC} \) (see Note 1) ... 10 V
Input voltage, \(V_I \) ... \(\pm 30 \) V
Output voltage, \(I_O \) .. 20 mA
Continuous total power dissipation .. See Dissipation Rating Table
Operating free-air temperature range, \(T_A \): SN55189, SN55189A \(-55^\circ\)C to \(125^\circ\)C
MC1489, MC1489A, SN75189, SN75189A \(0^\circ\)C to \(70^\circ\)C
Storage temperature range, \(T_{stg} \) .. \(-65^\circ\)C to \(150^\circ\)C
Case temperature for 60 seconds, FK package 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J or W package 300°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, or NS package 260°C

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values are with respect to the network ground terminal.

DISSIPATION RATING TABLE

<table>
<thead>
<tr>
<th>PACKAGE</th>
<th>(T_A \leq 25^\circ)C POWER RATING</th>
<th>DERATING FACTOR ABOVE (T_A = 25^\circ)C</th>
<th>(T_A = 70^\circ)C POWER RATING</th>
<th>(T_A = 125^\circ)C POWER RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>950 mW</td>
<td>7.6 mW/°C</td>
<td>608 mW</td>
<td>N/A</td>
</tr>
<tr>
<td>FK</td>
<td>1375 mW</td>
<td>11.0 mW/°C</td>
<td>880 mW</td>
<td>275 mW</td>
</tr>
<tr>
<td>J‡</td>
<td>1375 mW</td>
<td>9.2 mW/°C</td>
<td>736 mW</td>
<td>N/A</td>
</tr>
<tr>
<td>N</td>
<td>1150 mW</td>
<td>4.0 mW/°C</td>
<td>445 mW</td>
<td>N/A</td>
</tr>
<tr>
<td>NS</td>
<td>625 mW</td>
<td>8.0 mW/°C</td>
<td>640 mW</td>
<td>200 mW</td>
</tr>
<tr>
<td>W</td>
<td>1000 mW</td>
<td>8.0 mW/°C</td>
<td>640 mW</td>
<td>200 mW</td>
</tr>
</tbody>
</table>

‡ In the J package, SN55189 and SN55189A chips are either silver glass or alloy mounted.

recommended operating conditions

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage, (V_{CC})</td>
<td>4.5</td>
<td>5</td>
<td>5.5</td>
</tr>
<tr>
<td>Input voltage, (V_I)</td>
<td>-25</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>High-level output current, (I_{OH})</td>
<td>-0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-level output current, (I_{OL})</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating free-air temperature, (T_A)</td>
<td>0</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>
electrical characteristics over operating free-air temperature range, $V_{CC} = 5 \, V \pm 1\%$ (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST FIGURE</th>
<th>TEST CONDITIONS†</th>
<th>SN55189 SN55189A</th>
<th>MC1489, MC1489A SN75189 SN75189A</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IT+} Positive-going input threshold voltage</td>
<td>1</td>
<td>†</td>
<td>$T_A = 25^\circ C$</td>
<td>1</td>
<td>1.3</td>
</tr>
<tr>
<td>‡</td>
<td>$T_A = 0^\circ C$ to $70^\circ C$</td>
<td>0.9</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>‡</td>
<td>$T_A = -55^\circ C$ to $125^\circ C$</td>
<td>0.6</td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 '89</td>
<td>1.75</td>
<td>1.9</td>
<td>2.25</td>
<td>1.75</td>
</tr>
<tr>
<td>‡</td>
<td>$T_A = 0^\circ C$ to $70^\circ C$</td>
<td>1.55</td>
<td>2.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>‡</td>
<td>$T_A = -55^\circ C$ to $125^\circ C$</td>
<td>1.30</td>
<td>2.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{IT-} Negative-going input threshold voltage</td>
<td>1</td>
<td>†</td>
<td>$T_A = 25^\circ C$</td>
<td>0.75</td>
<td>1.0</td>
</tr>
<tr>
<td>‡</td>
<td>$T_A = 0^\circ C$ to $70^\circ C$</td>
<td>0.65</td>
<td>1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>‡</td>
<td>$T_A = -55^\circ C$ to $125^\circ C$</td>
<td>0.35</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OH} High-level output voltage</td>
<td>1</td>
<td></td>
<td>$V_I = 0.75 , V$, $I_{OH} = -0.5 , mA$</td>
<td>2.6</td>
<td>4</td>
</tr>
<tr>
<td>‡</td>
<td>Input open, $I_{OH} = -0.5 , mA$</td>
<td>2.6</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>V_{OL} Low-level output voltage</td>
<td>1</td>
<td></td>
<td>$V_I = 3 , V$, $I_{OL} = 10 , mA$</td>
<td>0.2</td>
<td>0.45</td>
</tr>
<tr>
<td>I_{IH} High-level input current</td>
<td>2</td>
<td></td>
<td>$V_I = 25 , V$</td>
<td>3.6</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$V_I = 3 , V$</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>I_{IL} Low-level input current</td>
<td>2</td>
<td></td>
<td>$V_I = -25 , V$</td>
<td>-3.6</td>
<td>-8.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$V_I = -3 , V$</td>
<td>-0.43</td>
<td></td>
</tr>
<tr>
<td>I_{OS} Short-circuit output current</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{CC} Supply current</td>
<td>2</td>
<td></td>
<td>$V_I = 5 , V$, Outputs open</td>
<td>20</td>
<td>26</td>
</tr>
</tbody>
</table>

† All characteristics are measured with the response-control terminal open.
‡ All typical values are at $V_{CC} = 5 \, V$, $T_A = 25^\circ C$.

switching characteristics, $V_{CC} = 5 \, V$, $C_L = 15 \, pF$, $T_A = 25^\circ C$

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST FIGURE</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{PLH} Propagation delay time, low- to high-level output</td>
<td>4</td>
<td>$R_L = 3.9 , k\Omega$</td>
<td>25</td>
<td>85</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t_{PHL} Propagation delay time, high- to low-level output</td>
<td></td>
<td>$R_L = 390 , \Omega$</td>
<td>25</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{THL} Transition time, low- to high-level output</td>
<td></td>
<td>$R_L = 3.9 , k\Omega$</td>
<td>120</td>
<td>175</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>I_{THL} Transition time, high- to low-level output</td>
<td></td>
<td>$R_L = 390 , \Omega$</td>
<td>10</td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Texas Instruments

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION†

Figure 1. V_{IT+}, V_{IT-}, V_{OH}, V_{OL}

NOTE A: I_{CC} is tested for all four receivers simultaneously.

Figure 2. I_{IH}, I_{IL}, I_{CC}

Figure 3. I_{OS}

† Arrows indicate actual direction of current flow. Current into a terminal is a positive value.
PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

NOTES:
A. The pulse generator has the following characteristics: $Z_O = 50\, \Omega$, $t_w = 500\, \text{ns}$.
B. C_L includes probe and jig capacitances.
C. All diodes are 1N3064 or equivalent.

Figure 4. Test Circuit and Voltage Waveforms
TYPICAL CHARACTERISTICS

SN65189, SN75189
OUTPUT VOLTAGE
vs
INPUT VOLTAGE

\[
\begin{array}{cccc}
V_\text{O} & V_\text{C} = 5 \text{ V} & V_\text{C} = 5 \text{ V} & V_\text{C} = -5 \text{ V} \\
R_\text{C} & 5 \text{ k}\Omega & 13 \text{ k}\Omega & \infty \\
V_\text{IT} & \text{VIT} & \text{VIT} & \text{VIT} \\
V_\text{IT+} & \text{VIT+} & \text{VIT+} & \text{VIT+} \\
V_\text{IT–} & \text{VIT–} & \text{VIT–} & \text{VIT–} \\
\end{array}
\]

Figure 5

SN65189A, SN75189A
OUTPUT VOLTAGE
vs
INPUT VOLTAGE

\[
\begin{array}{cccc}
V_\text{O} & V_\text{C} = 5 \text{ V} & V_\text{C} = -5 \text{ V} \\
R_\text{C} & 5 \text{ k}\Omega & 11 \text{ k}\Omega & \infty \\
\text{VCC} & 5 \text{ V} & 5 \text{ V} & 5 \text{ V} \\
T_\text{A} & 25^\circ \text{C} & 25^\circ \text{C} & 25^\circ \text{C} \\
\end{array}
\]

Figure 6
TYPICAL CHARACTERISTICS†

INPUT THRESHOLD VOLTAGE

vs

FREE-AIR TEMPERATURE

![Input Threshold Voltage vs Free-Air Temperature](image)

Figure 7

INPUT THRESHOLD VOLTAGE

vs

SUPPLY VOLTAGE

![Input Threshold Voltage vs Supply Voltage](image)

Figure 8

SN75189

NOISE REJECTION

![Noise Rejection for SN75189](image)

Figure 9

NOTE A: Maximum amplitude of a positive-going pulse that, starting from 0 V, will not cause a change in the output level.

SN75189A

NOISE REJECTION

![Noise Rejection for SN75189A](image)

Figure 10

NOTE A: Maximum amplitude of a positive-going pulse that, starting from 0 V, will not cause a change in the output level.

† Data for free-air temperatures below 0°C and above 70°C are applicable to SN55189 and SN55189A circuits only.
TYPICAL CHARACTERISTICS

INPUT CURRENT

VS

INPUT VOLTAGE

I_i – Input Current – mA

V_{Ii} – Input Voltage – V

$V_{CC} = 5 \text{ V}$

Control Open

$T_A = 25^\circ \text{C}$

Figure 11
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>5962-86888022A</td>
<td>ACTIVE</td>
<td>LCCC</td>
<td>FK</td>
<td>20</td>
<td>1</td>
<td>TBD</td>
<td>POST-PLATE</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td>5962-86888022A SNJ55 189APK</td>
<td>Samples</td>
</tr>
<tr>
<td>5962-8688802CA</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>A42</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td>5962-8688802CA SNJ55189AJ</td>
<td>Samples</td>
</tr>
<tr>
<td>5962-8688802DA</td>
<td>ACTIVE</td>
<td>CFP</td>
<td>W</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>A42</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td>5962-8688802DA SNJ55189AW</td>
<td>Samples</td>
</tr>
<tr>
<td>MC1489AN</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>0 to 70</td>
<td>MC1489AN</td>
<td>Samples</td>
</tr>
<tr>
<td>MC1489N</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>0 to 70</td>
<td>MC1489N</td>
<td>Samples</td>
</tr>
<tr>
<td>MC1489NE4</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>0 to 70</td>
<td>MC1489N</td>
<td>Samples</td>
</tr>
<tr>
<td>SN55189AJ</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>A42</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td>SN55189AJ</td>
<td>Samples</td>
</tr>
<tr>
<td>SN75189AD</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>SN75189A</td>
<td>Samples</td>
</tr>
<tr>
<td>SN75189ADR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>SN75189A</td>
<td>Samples</td>
</tr>
<tr>
<td>SN75189ADRG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>SN75189A</td>
<td>Samples</td>
</tr>
<tr>
<td>SN75189AN</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>0 to 70</td>
<td>SN75189AN</td>
<td>Samples</td>
</tr>
<tr>
<td>SN75189ANSR</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>SN75189A</td>
<td>Samples</td>
</tr>
<tr>
<td>SN75189ANSRG4</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>SN75189A</td>
<td>Samples</td>
</tr>
<tr>
<td>SN75189APWR</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>A189A</td>
<td>SN75189</td>
<td>Samples</td>
</tr>
<tr>
<td>SN75189D</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>SN75189</td>
<td>Samples</td>
</tr>
<tr>
<td>SN75189DR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>SN75189</td>
<td>Samples</td>
</tr>
<tr>
<td>Orderable Device</td>
<td>Status</td>
<td>Package Type</td>
<td>Package Drawing</td>
<td>PIns</td>
<td>Package Qty</td>
<td>Lead/Ball Finish</td>
<td>MSL Peak Temp</td>
<td>Op Temp (°C)</td>
<td>Device Marking</td>
<td>Samples</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------</td>
<td>--------------</td>
<td>-----------------</td>
<td>------</td>
<td>-------------</td>
<td>------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>------------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>SN75189N</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>0 to 70</td>
<td>SN75189N</td>
<td>Samples</td>
</tr>
<tr>
<td>SN75189NSR</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>SN75189</td>
<td>Samples</td>
</tr>
<tr>
<td>SNJ55189AFK</td>
<td>ACTIVE</td>
<td>LCCC</td>
<td>FK</td>
<td>20</td>
<td>1</td>
<td>TBD</td>
<td>POST-PLATE</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td>5962-86888022A SNJ55189AFK</td>
<td>Samples</td>
</tr>
<tr>
<td>SNJ55189AJ</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>A42</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td>5962-8688802CA SNJ55189AJ</td>
<td>Samples</td>
</tr>
<tr>
<td>SNJ55189AW</td>
<td>ACTIVE</td>
<td>CFP</td>
<td>W</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>A42</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td>5962-8688802DA SNJ55189AW</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substances do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
- **RoHS Exempt**: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
- **Green**: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of ≤1000ppm threshold. Antimony trioxide based flame retardants must also meet the ≤1000ppm threshold requirement.

(3) **MSL, Peak Temp.**: The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) **Lead/Ball Finish**: Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN55189A, SN75189A:
- Catalog: SN75189A
- Military: SN55189A

NOTE: Qualified Version Definitions:
- Catalog - TI's standard catalog product
- Military - QML certified for Military and Defense Applications
TAPE AND REEL INFORMATION

*All dimensions are nominal.

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN75189ADR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.0</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>SN75189ADR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.0</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>SN75189APWR</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>330.0</td>
<td>12.4</td>
<td>6.9</td>
<td>5.6</td>
<td>1.6</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>SN75189DR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.0</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>SN75189NSR</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>330.0</td>
<td>16.4</td>
<td>8.2</td>
<td>10.5</td>
<td>2.5</td>
<td>12.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN75189ADR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
</tr>
<tr>
<td>SN75189ADR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>333.2</td>
<td>345.9</td>
<td>28.6</td>
</tr>
<tr>
<td>SN75189APWR</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>SN75189DR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
</tr>
<tr>
<td>SN75189NSR</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.
NOTES:

1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This package is hermetically sealed with a ceramic lid using glass frit.
4. Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.
EXAMPLE BOARD LAYOUT

CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE

LAND PATTERN EXAMPLE
NON-SOLDER MASK DEFINED
SCALE: 5X

DETAIL A
SCALE: 15X

DETIAL B
13X, SCALE: 15X

4214771/A 05/2017
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

⚠️ Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0.15) each side.

⚠️ Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0.43) each side.
E. Reference JEDEC MS-012 variation AB.
NOTES:

A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
NOTES:

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 each side.
D. Body width does not include interlead flash. Interlead flash shall not exceed 0.25 each side.
E. Falls within JEDEC MO-153
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
PLASTIC DUAL-IN-LINE PACKAGE

N (R-PDIP-T**)

16 PINS SHOWN

<table>
<thead>
<tr>
<th>DIM</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>A MAX</td>
<td>0.775 (19.69)</td>
<td>0.775 (19.69)</td>
<td>0.920 (23.37)</td>
<td>1.060 (26.92)</td>
</tr>
<tr>
<td>A MIN</td>
<td>0.745 (18.92)</td>
<td>0.745 (18.92)</td>
<td>0.850 (21.59)</td>
<td>0.940 (23.88)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VARIATION</th>
<th>AA</th>
<th>BB</th>
<th>AC</th>
<th>AD</th>
</tr>
</thead>
</table>

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
△ Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
△ The 20 pin end lead shoulder width is a vendor option, either half or full width.

4040049/E 12/2002

Texas Instruments
www.ti.com
FK (S-QCCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

<table>
<thead>
<tr>
<th>NO. OF TERMINALS **</th>
<th>A (MIN, MAX)</th>
<th>B (MIN, MAX)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.342 (8.69), 0.358 (9.09)</td>
<td>0.307 (7.80), 0.358 (9.09)</td>
</tr>
<tr>
<td>28</td>
<td>0.442 (11.23), 0.458 (11.63)</td>
<td>0.406 (10.31), 0.458 (11.63)</td>
</tr>
<tr>
<td>44</td>
<td>0.640 (16.26), 0.660 (16.76)</td>
<td>0.495 (12.58), 0.560 (14.22)</td>
</tr>
<tr>
<td>52</td>
<td>0.740 (18.78), 0.761 (19.32)</td>
<td>0.495 (12.58), 0.560 (14.22)</td>
</tr>
<tr>
<td>68</td>
<td>0.938 (23.83), 0.962 (24.43)</td>
<td>0.850 (21.6), 0.858 (21.8)</td>
</tr>
<tr>
<td>84</td>
<td>1.141 (28.99), 1.165 (29.59)</td>
<td>1.047 (26.6), 1.063 (27.0)</td>
</tr>
</tbody>
</table>

NOTES:

A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. Falls within JEDEC MS-004
MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

14-PINS SHOWN

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.15.

DIM PINS ** | 14 | 16 | 20 | 24
A MAX | 10.50 | 10.50 | 12.90 | 15.30
A MIN | 9.90 | 9.90 | 12.30 | 14.70
W (R-GDFP-F14) CERAMIC DUAL FLATPACK

Base and Seating Plane

0.045 (1.14) 0.026 (0.66)
0.080 (2.03) 0.045 (1.14)

0.260 (6.60) 0.235 (5.97)
0.008 (0.20) 0.004 (0.10)

0.280 (7.11) MAX

0.390 (9.91) 0.335 (8.51)

1 14

0.019 (0.48) 0.015 (0.38)

0.050 (1.27)

0.005 (0.13) MIN
4 Places

0.360 (9.14) 0.250 (6.35)

0.360 (9.14) 0.250 (6.35)

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only.
E. Falls within MIL STD 1835 GDFP1-F14
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated