TL430
ADJUSTABLE SHUNT REGULATORS
SLVS050D – JUNE 1976 – REVISED JANUARY 2005

- Temperature Compensated
- Programmable Output Voltage
- Low Output Resistance
- Low Output Noise
- Sink Capability up to 100 mA

description/ordering information

The TL430 is a 3-terminal adjustable shunt regulator, featuring excellent temperature stability, wide operating current range, and low output noise. The output voltage can be set by two external resistors to any desired value between 3 V and 30 V. The TL430 can replace Zener diodes in many applications, providing improved performance.

The TL430C is characterized for operation from 0°C to 70°C.

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>T_A</th>
<th>PACKAGE†</th>
<th>ORDERABLE PART NUMBER</th>
<th>TOP-SIDE MARKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°C to 70°C</td>
<td>TO-226 / TO-92 (LP)</td>
<td>Bulk of 1000 TL430CLP</td>
<td>TL430C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reel of 2000 TL430CLPR</td>
<td></td>
</tr>
</tbody>
</table>

†Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

symbol

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
TL430

ADJUSTABLE SHUNT REGULATORS

SLVS050D – JUNE 1976 – REVISED JANUARY 2005

Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) †

- **Regulator voltage**: 30 V
- **Continuous regulator current**: 150 mA
- **Package thermal impedance, \(\theta_{JA} \)** (see Notes 2 and 3): 140°C/W
- **Operating virtual junction temperature, \(T_J \)**: 150°C
- **Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds**: 260°C
- **Storage temperature range, \(T_{stg} \)**: −65°C to 150°C

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Notes:

1. All voltage values are with respect to the anode terminal.
2. Maximum power dissipation is a function of \(T_J(\text{max}) \), \(\theta_{JA} \), and \(T_A \). The maximum allowable power dissipation at any allowable ambient temperature is \(P_D = (T_J(\text{max}) − T_A)/\theta_{JA} \). Operating at the absolute maximum \(T_J \) of 150°C can impact reliability.
3. The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_Z)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulator voltage</td>
<td>(V_{\text{ref}})</td>
<td>30</td>
<td>V</td>
</tr>
<tr>
<td>(I_Z)</td>
<td>2</td>
<td>100</td>
<td>mA</td>
</tr>
<tr>
<td>(T_A)</td>
<td>TL430C</td>
<td>0</td>
<td>70</td>
</tr>
</tbody>
</table>

Electrical Characteristics

Over recommended operating conditions, \(T_A = 25°C \) (unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Figure</th>
<th>Test Conditions</th>
<th>TL430C</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_I(\text{ref}))</td>
<td>1</td>
<td>(V_Z = V_I(\text{ref}), I_Z = 10 \text{ mA})</td>
<td>1</td>
<td>2.5</td>
</tr>
<tr>
<td>(\alpha_V(\text{ref}))</td>
<td>1</td>
<td>(V_Z = V_I(\text{ref}), T_A = 0°C \text{ to } 70°C, I_Z = 10 \text{ mA})</td>
<td>120</td>
<td>ppm/°C</td>
</tr>
<tr>
<td>(I_{I(\text{ref})})</td>
<td>2</td>
<td>(I_Z = 10 \text{ mA}, R_1 = 10 \text{ kΩ}, R_2 = \infty)</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>(I_{ZK})</td>
<td>1</td>
<td>(V_Z = V_I(\text{ref}))</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>(I_{ZK})</td>
<td>1</td>
<td>(V_Z = V_I(\text{ref}))</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>(r_z)</td>
<td>1</td>
<td>(V_Z = V_I(\text{ref})), (\Delta I_Z = (52 - 2) \text{ mA})</td>
<td>1.5</td>
<td>3</td>
</tr>
<tr>
<td>(V_n)</td>
<td>2</td>
<td>(f = 0.1 \text{ Hz to } 10 \text{ Hz})</td>
<td>50, 120, 650</td>
<td>μV</td>
</tr>
</tbody>
</table>

Notes:

4. The average power dissipation, \(V_Z \cdot I_Z \) duty cycle, must not exceed the maximum continuous rating in any 10-ms interval.
5. The regulator resistance for \(V_Z > V_I(\text{ref}) \), \(r_z \), is given by:

\[
 r_z' = r_z \left(1 + \frac{R_1}{R_2} \right)
\]
PARAMETER MEASUREMENT INFORMATION

Figure 1. Test Circuit for $V_Z = V_{I(\text{ref})}$

$V_Z = V_{I(\text{ref})} \left(1 + \frac{R_1}{R_2} \right) + I_{I(\text{ref})} \times R_1$

Figure 2. Test Circuit for $V_Z > V_{I(\text{ref})}$
TYPICAL CHARACTERISTICS

SMALL-SIGNAL REGULATOR IMPEDANCE

\[Z_Z = V_I(\text{ref}) \]

\[T_A = 25^\circ C \]

![Small-Signal Regulator Impedance](image)

CATHODE CURRENT

\[I = V_I(\text{ref}) \]

\[T_A = 25^\circ C \]

![Cathode Current](image)

APPLICATION INFORMATION

\[V_O = \left(1 + \frac{R1}{R2} \right) V_I(\text{ref}) \]

Figure 3

![Small-Signal Regulator Impedance](image)

Figure 4

![Cathode Current](image)

Figure 5. Shunt Regulator

\[V_O = \left(1 + \frac{R1}{R2} \right) V_I(\text{ref}) \]

Figure 6. Series Regulator

\[V_O = 30 \Omega \]

\[4.7 \, k\Omega \]

\[R2 \]

\[R1 \]
APPLICATION INFORMATION

Figure 7. Current Limiter

\[I_O = \frac{V_{I\text{(ref)}}}{R_{CL}} \]

Figure 8. Output Control of a 3-Terminal Fixed Regulator

\[V_O = \left(1 + \frac{R_1}{R_2} \right) V_{I\text{(ref)}} \]

\[\text{Min } V_O = V_{I\text{(ref)}} + 5\text{V} \]

Figure 9. Higher-Current Applications

\[V_O = \left(1 + \frac{R_1}{R_2} \right) V_{I\text{(ref)}} \]

Figure 10. Crowbar

\[V_{\text{limit}} = \left(1 + \frac{R_1}{R_2} \right) \left(V_{I\text{(ref)}} + V_{BE(Q1)} \right) \]

Figure 11. \(V_{CC} \) Monitor

\[\text{Low limit} = V_{I\text{(ref)}} \left(1 + \frac{R_{1B}}{R_{2B}} \right) + V_D \]

\[\text{High limit} = V_{I\text{(ref)}} \left(1 + \frac{R_{1A}}{R_{2A}} \right) \]
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL430CLP</td>
<td>ACTIVE</td>
<td>TO-92</td>
<td>LP</td>
<td>3</td>
<td>1000</td>
<td>Pb-Free (RoHS)</td>
<td>CU SN</td>
<td>N/A for Pkg Type</td>
</tr>
<tr>
<td>TL430CLPE3</td>
<td>ACTIVE</td>
<td>TO-92</td>
<td>LP</td>
<td>3</td>
<td>1000</td>
<td>Pb-Free (RoHS)</td>
<td>CU SN</td>
<td>N/A for Pkg Type</td>
</tr>
<tr>
<td>TL430CLPR</td>
<td>ACTIVE</td>
<td>TO-92</td>
<td>LP</td>
<td>3</td>
<td>2000</td>
<td>Pb-Free (RoHS)</td>
<td>CU SN</td>
<td>N/A for Pkg Type</td>
</tr>
<tr>
<td>TL430CLPRE3</td>
<td>ACTIVE</td>
<td>TO-92</td>
<td>LP</td>
<td>3</td>
<td>2000</td>
<td>Pb-Free (RoHS)</td>
<td>CU SN</td>
<td>N/A for Pkg Type</td>
</tr>
<tr>
<td>TL430ILP</td>
<td>OBSOLETE</td>
<td>TO-92</td>
<td>LP</td>
<td>3</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE:** Product device recommended for new designs.
- **LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
- **TBD:** The Pb-Free/Green conversion plan has not been defined.
- **Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
- **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
- **Green (RoHS & no Sb/Br):** TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Lead dimensions are not controlled within this area
D. Falls within JEDEC TO-226 Variation AA (TO-226 replaces TO-92)
E. Shipping Method:
 Straight lead option available in bulk pack only.
 Formed lead option available in tape & reel or ammo pack.
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Tape and Reel information for the Format Lead Option package.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, and acknowledge and agree that they have acquired all other rights, title, and possession necessary to use TI products in their applications, and that TI is not responsible or liable for any such uses. Buyers are solely responsible for compliance with all legal and regulatory requirements concerning their products.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td></td>
</tr>
<tr>
<td>DSP</td>
<td>Automotive</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Broadband</td>
</tr>
<tr>
<td>Interface</td>
<td>Digital Control</td>
</tr>
<tr>
<td>Logic</td>
<td>Medical</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Military</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Optical Networking</td>
</tr>
<tr>
<td>RFID</td>
<td>Security</td>
</tr>
<tr>
<td>RF/I and ZigBee® Solutions</td>
<td>Telephony</td>
</tr>
<tr>
<td></td>
<td>Video & Imaging</td>
</tr>
<tr>
<td></td>
<td>Wireless</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated