Excellent Dynamic Range
Wide Bandwidth
Built-In Temperature Compensation
Log Linearity (30-dB Sections) . . . 1 dB Typ
Wide Input Voltage Range

description

This amplifier circuit contains four 30-dB logarithmic stages. Gain in each stage is such that the output of each stage is proportional to the logarithm of the input voltage over the 30-dB input voltage range. Each half of the circuit contains two of these 30-dB stages summed together in one differential output that is proportional to the sum of the logarithms of the input voltages of the two stages. The four stages may be interconnected to obtain a theoretical input voltage range of 120-dB. In practice, this permits the input voltage range typically to be greater than 80-dB with log linearity of ±0.5-dB (see application data). Bandwidth is from dc to 40 MHz.

This circuit is useful in data compression and analog compensation. This logarithmic amplifier is used in log IF circuitry as well as video and log amplifiers.

The TL441 is characterized for operation over 0°C to 70°C.
Y = \log A1 + \log A2; \ Z = \log B1 + \log B2 \text{ where: } A1, A2, B1, \text{ and } B2 \text{ are in } \text{dBV}, \ 0 \text{ dBV} = 1 \text{ V.}

\text{CA2}, \text{CA2}', \text{CB2}, \text{and CB2}' \text{ are detector compensation inputs.}
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltages (see Note 1): \(V_{CC+} \) 8 V
\(V_{CC-} \) ... 6 V
Input voltage (see Note 1) ... 6 V
Output sink current (any one output) ... 30 mA
Package thermal impedance, \(\theta_{JA} \) (see Notes 2 and 3) ... 67°C/W
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ... 260°C
Storage temperature range, \(T_{stg} \) ... −65°C to 150°C

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltages, except differential out voltages, are with respect to network ground terminal.
2. Maximum power dissipation is a function of \(T_J(\text{max}) \), \(\theta_{JA} \), and \(T_A \). The maximum allowable power dissipation at any allowable ambient temperature is \(P_D = (T_J(\text{max}) – T_A)/\theta_{JA} \). Operating at the absolute maximum \(T_J \) of 150°C can affect reliability.
3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST FIGURE</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak-to-peak input voltage for each 30-dB stage</td>
<td></td>
<td>0.01</td>
<td>1</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Operating free-air temperature, (T_A)</td>
<td></td>
<td>0</td>
<td>70</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

electrical characteristics, \(V_{CC\pm} = \pm 6 \text{ V}, T_A = 25°C \)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST FIGURE</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential output offset voltage</td>
<td>1</td>
<td>±40</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quiescent output voltage</td>
<td>2</td>
<td>5.45</td>
<td>5.6</td>
<td>5.85</td>
<td>V</td>
</tr>
<tr>
<td>DC scale factor (differential output), each 3-dB stage, –35 dBV to –5 dBV</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>12</td>
<td>mV/dB</td>
</tr>
<tr>
<td>AC scale factor (differential output)</td>
<td></td>
<td>8</td>
<td>mV/dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC error at –20 dBV (midpoint of –35 dBV to –5 dBV range)</td>
<td>3</td>
<td>1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input impedance</td>
<td></td>
<td>500</td>
<td>Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output impedance</td>
<td></td>
<td>200</td>
<td>Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise time, 10% to 90% points, (C_L = 24 \text{ pF})</td>
<td>4</td>
<td>20</td>
<td>30</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Supply current from (V_{CC+})</td>
<td>2</td>
<td>14.5</td>
<td>18.5</td>
<td>23</td>
<td>mA</td>
</tr>
<tr>
<td>Supply current from (V_{CC-})</td>
<td>2</td>
<td>–6</td>
<td>–8.5</td>
<td>–10.5</td>
<td>mA</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>2</td>
<td>123</td>
<td>162</td>
<td>201</td>
<td>mW</td>
</tr>
</tbody>
</table>
PARAMETER MEASUREMENT INFORMATION

Figure 1

Figure 2

$$P_D = V_{CC+} \cdot I_{CC+} + V_{CC-} \cdot I_{CC-}$$
PARAMETER MEASUREMENT INFORMATION

\[
\text{Scale Factor} = \frac{V_{\text{out}(560 \text{ mV})} - V_{\text{out}(18 \text{ mV})}}{30 \text{ dBV}}
\]

\[
\text{Error} = \frac{V_{\text{out}(100 \text{ mV})} - 0.5 V_{\text{out}(560 \text{ mV})} - 0.5 V_{\text{out}(18 \text{ mV})}}{\text{Scale Factor}}
\]

Figure 3

NOTES:
A. The input pulse has the following characteristics: \(t_w = 200 \text{ ns}, \ t_r \leq 2 \text{ ns}, \ t_f \leq 2 \text{ ns}, \ \text{PRR} \leq 10 \text{ MHz} \).
B. Capacitor \(C_l \) consists of three capacitors in parallel: 1 \(\mu \text{F} \), 0.1 \(\mu \text{F} \), and 0.01 \(\mu \text{F} \).
C. \(C_L \) includes probe and jig capacitance.

Figure 4
† Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.
TYPICAL CHARACTERISTICS

OUTPUT RISE TIME
VS
LOAD CAPACITANCE

Figure 9
APPLICATION INFORMATION

Although designed for high-performance applications such as infrared detection, this device has a wide range of applications in data compression and analog computation.

basic logarithmic function

The basic logarithmic response is derived from the exponential current-voltage relationship of collector current and base-emitter voltage. This relationship is given in the equation:

\[m \cdot V_{BE} = \ln \left(\frac{I_C + I_{CES}}{I_{CES}} \right) \]

where:
- \(I_C \) = collector current
- \(I_{CES} \) = collector current at \(V_{BE} = 0 \)
- \(m \) = \(\frac{q}{kT} \) (in V \(-1 \))
- \(V_{BE} \) = base-emitter voltage

The differential input amplifier allows dual-polarity inputs, is self-compensating for temperature variations, and is relatively insensitive to common-mode noise.

logarithmic sections

As can be seen from the schematic, there are eight differential pairs. Each pair is a 15-dB log subsection, and each input feeds two pairs, for a range of 30-dB per stage.

Four compensation points are available to allow slight variations in the gain (slope) of the two individual 15-dB stages of input A2 and B2. By slightly changing the voltage on any of the compensation pins from their quiescent values, the gain of that particular 15-dB stage can be adjusted to match the other 15-dB stage in the pair. The compensation pins also can be used to match the transfer characteristics of input A2 to A1 or B2 to B1.

The log stages in each half of the circuit are summed by directly connecting their collectors together and summing through a common-base output stage. The two sets of output collectors are used to give two log outputs, \(Y \) and \(Y' \) (or \(Z \) and \(Z' \)), which are equal in amplitude, but opposite in polarity. This increases the versatility of the device.

By proper choice of external connections, linear amplification, and linear attenuation, and many different applications requiring logarithmic signal processing are possible.

input levels

The recommended input voltage range of any one stage is given as 0.01 V to 1 V. Input levels in excess of 1 V may result in a distorted output. When several log sections are summed together, the distorted area of one section overlaps with the next section and the resulting distortion is insignificant. However, there is a limit to the amount of overdrive that can be applied. As the input drive reaches \(\pm 3.5 \) V, saturation occurs, clamping the collector-summing line and severely distorting the output. Therefore, the signal to any input must be limited to approximately \(\pm 3 \) V to ensure a clean output.
APPLICATION INFORMATION

output levels

Differential-output-voltage levels are low, generally less than 0.6 V. As demonstrated in Figure 12, the output swing and the slope of the output response can be adjusted by varying the gain by means of the slope control. The coordinate origin also can be adjusted by positioning the offset of the output buffer.

circuits

Figures 12 through 19 show typical circuits using this logarithmic amplifier. Operational amplifiers not otherwise designated are TLC271. For operation at higher frequencies, the TL592 is recommended instead of the TLC271.

![Typical Transfer Characteristics](chart)

Figure 12. Output Slope and Origin Adjustment
APPLICATION INFORMATION

TRANSFER CHARACTERISTICS
OF TWO TYPICAL INPUT STAGES

![Graph showing transfer characteristics](image)

Figure 13. Utilization of Separate Stages
APPLICATION INFORMATION

TRANSFER CHARACTERISTICS
WITH BOTH SIDES PARALLELED

Figure 14. Utilization of Paralleled Inputs
APPLICATION INFORMATION

TRANSFER CHARACTERISTICS

NOTES:
A. Inputs are limited by reducing the supply voltages for the input amplifiers to ±4 V.
B. The gains of the input amplifiers are adjusted to achieve smooth transitions.

Figure 15. Logarithmic Amplifier With Input Voltage Range Greater Than 80 dB
APPLICATION INFORMATION

NOTES:
A. Connections shown are for multiplication. For division, Z and Z connections are reversed.
B. Output W may need to be amplified to give actual product or quotient of A and B.
C. R designates resistors of equal value, typically 2 kΩ to 10 kΩ.

Multiplication: \(W = A \cdot B \Rightarrow \log W = \log A + \log B, \) or \(W = a^{(\log a A + \log a B)} \)

Division: \(W = A/B \Rightarrow \log W = \log A - \log B, \) or \(W = a^{(\log a A - \log a B)} \)

Figure 16. Multiplication or Division

NOTE: R designates resistors of equal value, typically 2 kΩ to 10 kΩ. The power to which the input variable is raised is fixed by setting nR.

Output W may need to be amplified to give the correct value.

Exponential: \(W = A^n \Rightarrow \log W = n \log A, \) or \(W = a^{(n \log a A)} \)

Figure 17. Raising a Variable to a Fixed Power
APPLICATION INFORMATION

```
2 kΩ  2 kΩ  2 kΩ
Input A  Origin  Slope
20 kΩ

A1  Y
A2  TL441

2 kΩ

W
Output

NOTE: Adjust the slope to correspond to the base “a”.
Exponential to any base: W = a.
```

Figure 18. Raising a Fixed Number to a Variable Power

```
Input 1
TL592
Open
0.2 µF
50 Ω
Gain Adj. = 400 Ω
For 30 dB

Input 2
TL592
Open
0.2 µF
50 Ω
Gain Adj. = 400 Ω
For 30 dB

A1  Y
A2  TL441

B1  Z
B2  Z

TL592
0.2 µF
1 kΩ
Gain Adj.

Gain Adj.

Gain Adj.

Output 1
0.2 µF
1 kΩ

Output 2
0.2 µF
1 kΩ

VCC

Figure 19. Dual-Channel RF Logarithmic Amplifier With 50-dB Input Range Per Channel at 10 MHz
```
<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL441CN</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>16</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
</tr>
<tr>
<td>TL441CNE4</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>16</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
</tr>
<tr>
<td>TL441CNSR</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>16</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
</tr>
<tr>
<td>TL441CNSRE4</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>16</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
</tr>
<tr>
<td>TL441CNSRG4</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>16</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBsolete: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI’s liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TL441:
- Enhanced Product: TL441-EP

NOTE: Qualified Version Definitions:
- Enhanced Product - Supports Defense, Aerospace and Medical Applications
TAPE AND REEL INFORMATION

Reel Dimensions
- Reel Diameter

Tape Dimensions
- K0: Dimension designed to accommodate the component length
- B0: Dimension designed to accommodate the component width
- A0: Dimension designed to accommodate the component width
- W: Overall width of the carrier tape
- P1: Pitch between successive cavity centers

Quadrant Assignments for Pin 1 Orientation in Tape
- Q1, Q2, Q3, Q4

Table: TAPE AND REEL INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL441CNSR</td>
<td>SO</td>
<td>NS</td>
<td>16</td>
<td>2000</td>
<td>330.0</td>
<td>16.4</td>
<td>8.2</td>
<td>10.5</td>
<td>2.5</td>
<td>12.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

All dimensions are nominal.
TAPE AND REEL BOX DIMENSIONS

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL441CNSR</td>
<td>SO</td>
<td>NS</td>
<td>16</td>
<td>2000</td>
<td>346.0</td>
<td>346.0</td>
<td>33.0</td>
</tr>
</tbody>
</table>
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.15.
N (R—PDIP—T**) PLASTIC DUAL—IN—LINE PACKAGE

16 PINS SHOWN

<table>
<thead>
<tr>
<th>PINS **</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A MAX</td>
<td>0.775 (19.69)</td>
<td>0.775 (19.69)</td>
<td>0.920 (23.37)</td>
<td>1.060 (26.92)</td>
</tr>
<tr>
<td>A MIN</td>
<td>0.745 (18.92)</td>
<td>0.745 (18.92)</td>
<td>0.850 (21.59)</td>
<td>0.940 (23.88)</td>
</tr>
<tr>
<td>MS—001</td>
<td>AA</td>
<td>BB</td>
<td>AC</td>
<td>AD</td>
</tr>
<tr>
<td>VARIATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

⚠️ Falls within JEDEC MS—001, except 18 and 20 pin minimum body length (Dim A).
⚠️ The 20 pin end lead shoulder width is a vendor option, either half or full width.

4040049/E 12/2002

TEXAS INSTRUMENTS
www.ti.com
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to test the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible for or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
</tr>
<tr>
<td>DSP</td>
<td>Broadband</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Digital Control</td>
</tr>
<tr>
<td>Interface</td>
<td>Medical</td>
</tr>
<tr>
<td>Logic</td>
<td>Military</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Optical Networking</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
</tr>
<tr>
<td>RFID</td>
<td>Telephony</td>
</tr>
<tr>
<td>RF/I/F and ZigBee® Solutions</td>
<td>Video & Imaging</td>
</tr>
<tr>
<td></td>
<td>Wireless</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated