1 Features

- Qualified for Automotive Applications
- Qualified in Accordance With AEC-Q100
- Output Swing Includes Both Supply Rails
- Low Noise: 9 nV/√Hz Typ at f = 1 kHz
- Low Input Bias Current: 1 pA Typical
- Fully Specified for Both Single-Supply and Split-Supply Operation
- Common-Mode Input Voltage Range Includes Negative Rail
- High-Gain Bandwidth: 2.2 MHz Typical
- High Slew Rate: 3.6 V/μs Typical
- Low Input Offset Voltage 2500-μV Max at T_A = 25°C
- Macromodel Included

2 Applications

- Supports Extreme Temperature Applications:
 - Controlled Baseline
 - One Assembly and Test Site
 - One Fabrication Site
 - Available in Extreme (−40°C to 150°C) Temperature Range
 - Extended Product Life Cycle
 - Extended Product-Change Notification
 - Product Traceability
- Texas Instruments’ high temperature products use highly-optimized silicon (die) solutions with design and process enhancements to maximize performance over extended temperatures. All devices are characterized and qualified for 1000 hours continuous operating life at maximum rated temperature.

3 Description

The TLC2274 is a quadruple operational amplifier from Texas Instruments. The device exhibits rail-to-rail output performance for increased dynamic range in single- or split-supply applications. The TLC2274 offers 2 MHz of bandwidth and 3 V/μs of slew rate for higher speed applications. These device offers comparable ac performance while having better noise, input offset voltage, and power dissipation than existing CMOS operational amplifiers. The TLC2274 has a noise voltage of 9nV/√Hz, two times lower than competitive solutions.

The TLC2274, exhibiting high input impedance and low noise, is excellent for small-signal conditioning for high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels, this device works well in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature, with single- or split-supplies, makes this device a great choice when interfacing with analog-to-digital converters (ADCs). This family is fully characterized at 5 V and ±5 V.

It offers increased output dynamic range, lower noise voltage, and lower input offset voltage. This enhanced feature set allows the device to be used in a wider range of applications.

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLC2274-HT</td>
<td>TSSOP (14)</td>
<td>6.60 mm × 5.10 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Maximum Peak-to-Peak Output Voltage vs Supply Voltage

![Graph showing Maximum Peak-to-Peak Output Voltage vs Supply Voltage](image)

(1) Custom temperature ranges available

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.
Table of Contents

1 Features ... 1
2 Applications ... 1
3 Description .. 1
4 Revision History .. 2
5 Pin Configuration and Functions 3
6 Specifications .. 4
 6.1 Absolute Maximum Ratings 4
 6.2 ESD Ratings ... 4
 6.3 Recommended Operating Conditions 4
 6.4 Thermal Information .. 4
 6.5 Electrical Characteristics, \(V_{DD} = 5 \text{ V} \) 5
 6.6 Operating Characteristics, \(V_{DD} = 5 \text{ V} \) 6
 6.7 Electrical Characteristics, \(V_{DD \pm} = \pm 5 \text{ V} \) 7
 6.8 Operating Characteristics, \(V_{DD \pm} = \pm 5 \text{ V} \) 8
 6.9 Typical Characteristics .. 10
7 Detailed Description ... 17
8 Application and Implementation 18
 8.1 Application Information 18
 8.2 Typical Application .. 19
9 Power Supply Recommendations 22
10 Layout ... 22
 10.1 Layout Guidelines ... 22
 10.2 Layout Example .. 22
11 Device and Documentation Support 23
 11.1 Trademarks ... 23
 11.2 Electrostatic Discharge Caution 23
 11.3 Glossary ... 23
12 Mechanical, Packaging, and Orderable Information 23

4 Revision History

<table>
<thead>
<tr>
<th>DATE</th>
<th>REVISION</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 2015</td>
<td>*</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>
5 Pin Configuration and Functions

Figure 1. Equivalent Schematic (Each Amplifier)

Table 1. Actual Device Component Count

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>TLC2274</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transistors</td>
<td>76</td>
</tr>
<tr>
<td>Resistors</td>
<td>52</td>
</tr>
<tr>
<td>Diodes</td>
<td>18</td>
</tr>
<tr>
<td>Capacitors</td>
<td>6</td>
</tr>
</tbody>
</table>

(1) Includes both amplifiers and all ESD, bias, and trim circuitry
6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD+} Supply voltage (2)</td>
<td>8</td>
<td>V</td>
</tr>
<tr>
<td>V_{DD-} Supply voltage (2)</td>
<td>–8</td>
<td>V</td>
</tr>
<tr>
<td>V_D Differential input voltage (3)</td>
<td>–16</td>
<td>16</td>
</tr>
<tr>
<td>V_{I+} Input voltage (2) Any input</td>
<td>V_{DD-} – 0.3</td>
<td>V_{DD+}</td>
</tr>
<tr>
<td>I_{I+} Input current Any input</td>
<td>–5</td>
<td>5</td>
</tr>
<tr>
<td>I_{O} Output current</td>
<td>–50</td>
<td>50</td>
</tr>
<tr>
<td>Total current into V_{DD+}</td>
<td>–50</td>
<td>50</td>
</tr>
<tr>
<td>Total current out of V_{DD-}</td>
<td>–50</td>
<td>50</td>
</tr>
<tr>
<td>Duration of short-circuit current at (or below) 25°C (4) Unlimited</td>
<td>Unlimited</td>
<td></td>
</tr>
<tr>
<td>T_A Operating free-air temperature</td>
<td>–40</td>
<td>150</td>
</tr>
<tr>
<td>T_{stg} Storage temperature</td>
<td>–65</td>
<td>150</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values, except differential voltages, are with respect to the midpoint between V_{DD+} and V_{DD-}.

(3) Differential voltages are at I_{IN+} with respect to I_{IN-}. Excessive current will flow if input is brought below V_{DD-} – 0.3 V.

(4) The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{ESD} Electrostastic discharge</td>
<td>±2500 V</td>
</tr>
<tr>
<td>Human-body model (HBM), per AEC Q100-002 (1)</td>
<td></td>
</tr>
<tr>
<td>Charged-device model (CDM), per AEC Q100-011 All pins</td>
<td>±1500 V</td>
</tr>
</tbody>
</table>

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD+} Supply voltage</td>
<td>±2.2</td>
<td>±8</td>
</tr>
<tr>
<td>V_{I+} Input voltage</td>
<td>V_{DD-} – V_{DD+} – 1.5</td>
<td>V</td>
</tr>
<tr>
<td>V_{IC} Common-mode input voltage</td>
<td>V_{DD-} – V_{DD+} – 1.5</td>
<td>V</td>
</tr>
<tr>
<td>T_A Operating free-air temperature</td>
<td>–40</td>
<td>150</td>
</tr>
</tbody>
</table>

6.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC (1)</th>
<th>TLC2274</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{OJA} Junction-to-ambient thermal resistance</td>
<td>106.0</td>
<td>°C/W</td>
</tr>
<tr>
<td>R_{JJA,JC,top} Junction-to-case (top) thermal resistance</td>
<td>35.5</td>
<td></td>
</tr>
<tr>
<td>R_{JJB} Junction-to-board thermal resistance</td>
<td>47.6</td>
<td></td>
</tr>
<tr>
<td>\psi_{JT} Junction-to-top characterization parameter</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>\psi_{JB} Junction-to-board characterization parameter</td>
<td>47.1</td>
<td></td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
6.5 Electrical Characteristics, $V_{DD} = 5$ V

at specified free-air temperature, $V_{DD} = 5$ V (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>T_A<sup>(1)</sup></th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IO} Input offset voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>μV</td>
</tr>
<tr>
<td>aV_{IO} Temperature coefficient of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>μV/°C</td>
</tr>
<tr>
<td>input offset voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>μV/°C</td>
</tr>
<tr>
<td>Input offset voltage long-term drift<sup>(2)</sup></td>
<td>$V_{IC} = 0$ V, $V_{O} = 0$ V, $V_{DD} = 12.5$ V, $R_S = 50$ Ω</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>μV/°C</td>
</tr>
<tr>
<td>I_{IO} Input offset current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pA</td>
</tr>
<tr>
<td>I_{IB} Input bias current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pA</td>
</tr>
<tr>
<td>V_{ICR} Common-mode input voltage</td>
<td>$R_S = 50$ Ω, $</td>
<td>V_{IC}</td>
<td>\leq 5$ mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{DH} High-level output voltage</td>
<td>$I_{DH} = -20$ μA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>$I_{DH} = -200$ μA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>$I_{DH} = -1$ mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{OL} Low-level output voltage</td>
<td>$V_{IC} = 2.5$ V, $I_{OL} = 50$ μA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{OL} Low-level output voltage</td>
<td>$V_{IC} = 2.5$ V, $I_{OL} = 500$ μA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{OL} Low-level output voltage</td>
<td>$V_{IC} = 2.5$ V, $I_{OL} = 5$ mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>A_{VD} Large-signal differential</td>
<td>$V_{IC} = 2.5$ V, $V_{O} = 1$ V to 4 V, $R_L = 10$ kΩ<sup>(3)</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V/mV</td>
</tr>
<tr>
<td>A_{VD} Large-signal differential</td>
<td>$V_{IC} = 2.5$ V, $V_{O} = 1$ V to 4 V, $R_L = 1$ MΩ<sup>(3)</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V/mV</td>
</tr>
<tr>
<td>r_{id} Differential input resistance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>r_i Common-mode input resistance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>c_i Common-mode input capacitance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>z_o Closed-loop output impedance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>CMRR Common-mode rejection ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>k_{SVR} Supply voltage rejection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>k_{SVR} Supply voltage rejection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>I_{DD} Supply current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

⁽¹⁾ Full range is −40°C to 150°C for this part.

⁽²⁾ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_A = 150°C$ extrapolated to $T_A = 25°C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV.

⁽³⁾ Referenced to 2.5 V
6.6 Operating Characteristics, \(V_{\text{DD}} = 5 \text{ V} \)

at specified free-air temperature, \(V_{\text{DD}} = 5 \text{ V} \) (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>(T_A^{(1)})</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR Slew rate at unity gain</td>
<td>(V_O = 0.5 \text{ V to } 2.5 \text{ V},) (R_L = 10 \text{ k}\Omega^{(2)})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>\text{V/\mu s}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25°C</td>
<td>2.3</td>
<td>3.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Full range</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{\text{in}})</td>
<td>Equivalent input noise voltage</td>
<td>f = 10 Hz</td>
<td>25°C</td>
<td>50</td>
<td></td>
<td>\text{nV/\sqrt{Hz}}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f = 1 kHz</td>
<td>25°C</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{\text{Nppl}})</td>
<td>Peak-to-peak equivalent input noise voltage</td>
<td>f = 0.1 to 1 Hz</td>
<td>25°C</td>
<td>1</td>
<td></td>
<td>\text{\mu V}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f = 0.1 to 10 Hz</td>
<td>25°C</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{\text{in}})</td>
<td>Equivalent input noise current</td>
<td></td>
<td>25°C</td>
<td>0.6</td>
<td></td>
<td>\text{fA/\sqrt{Hz}}</td>
</tr>
<tr>
<td>THD + N</td>
<td>Total harmonic distortion plus noise</td>
<td>(V_O = 0.5 \text{ V to } 2.5 \text{ V},) (R_L = 10 \text{ k}\Omega^{(2)}) f = 20 kHz</td>
<td>25°C</td>
<td>0.004%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gain-bandwidth product</td>
<td>f = 10 kHz, (R_L = 10 \text{ k}\Omega^{(2)})</td>
<td>25°C</td>
<td>0.03%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B_{\text{DM}})</td>
<td>Maximum output-swing bandwidth</td>
<td>(V_{\text{Oppp}} = 2 \text{V},) (R_L = 10 \text{ k}\Omega^{(2)})</td>
<td>25°C</td>
<td>2.18 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_s)</td>
<td>Settling time</td>
<td>(A_v = 1,) (C_L = 100 \text{ pF}^{(2)})</td>
<td>To 0.1%</td>
<td>1.5</td>
<td></td>
<td>\text{\mu s}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(A_v = 10,) (C_L = 100 \text{ pF}^{(2)})</td>
<td>To 0.01%</td>
<td>2.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\phi_m)</td>
<td>Phase margin at unity gain</td>
<td>(R_L = 10 \text{ k}\Omega,) (C_L = 100 \text{ pF}^{(2)})</td>
<td>25°C</td>
<td>50°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{Gain margin})</td>
<td></td>
<td>(R_L = 10 \text{ k}\Omega,) (C_L = 100 \text{ pF}^{(2)})</td>
<td>25°C</td>
<td>10</td>
<td></td>
<td>\text{dB}</td>
</tr>
</tbody>
</table>

(1) Full range is -40°C to 150°C for this part.
(2) Referenced to 2.5 V
6.7 Electrical Characteristics, $V_{DD\pm} = \pm 5$ V

at specified free-air temperature, $V_{DD\pm} = \pm 5$ V (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>T_A (1)</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IO}</td>
<td>Input offset voltage</td>
<td>$V_{IC} = 0$ V, $R_S = 50$ Ω</td>
<td>$V_O = 0$ V</td>
<td>25°C</td>
<td>300</td>
<td>2500</td>
</tr>
<tr>
<td>α_{VIO}</td>
<td>Temperature coefficient of input offset voltage</td>
<td>$V_{IC} = 0$ V, $R_S = 50$ Ω</td>
<td>$V_O = 0$ V</td>
<td>25°C to 125°C</td>
<td>2</td>
<td>μV/°C</td>
</tr>
<tr>
<td></td>
<td>Input offset voltage long-term drift (2)</td>
<td>$V_{IC} = 0$ V, $R_S = 50$ Ω</td>
<td>$V_O = 0$ V</td>
<td>25°C</td>
<td>0.002</td>
<td>μV/μmo</td>
</tr>
<tr>
<td>I_{IO}</td>
<td>Input offset current</td>
<td>$V_{IC} = 0$ V, $R_S = 50$ Ω</td>
<td>$V_O = 0$ V</td>
<td>25°C</td>
<td>0.5</td>
<td>60</td>
</tr>
<tr>
<td>I_{IB}</td>
<td>Input bias current</td>
<td>$V_{IC} = 0$ V, $R_S = 50$ Ω</td>
<td>$V_O = 0$ V</td>
<td>25°C</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>V_{ICR}</td>
<td>Common-mode input voltage range</td>
<td>$R_S = 50$ Ω</td>
<td>$</td>
<td>V_{IO}</td>
<td>\leq 5$ mV</td>
<td>25°C</td>
</tr>
<tr>
<td></td>
<td>Maximum positive peak output voltage</td>
<td>$V_{IC} = 0$ V, $</td>
<td>V_O</td>
<td>\leq 5$ mV</td>
<td>$R_S = 50$ Ω</td>
<td>25°C</td>
</tr>
<tr>
<td>V_{OM+}</td>
<td>Maximum negative peak output voltage</td>
<td>$V_{IC} = 0$ V, $</td>
<td>V_O</td>
<td>\leq 5$ mV</td>
<td>$R_S = 50$ Ω</td>
<td>25°C</td>
</tr>
<tr>
<td>A_{VD}</td>
<td>Large-signal differential voltage amplification</td>
<td>$V_{IC} = \pm 4$ V, $R_L = 10$ kΩ</td>
<td>$R_L = 1$ MΩ</td>
<td>25°C</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>r_{ds}</td>
<td>Differential input resistance</td>
<td>25°C</td>
<td>10^{12}</td>
<td>Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r_i</td>
<td>Common-mode input resistance</td>
<td>25°C</td>
<td>10^{12}</td>
<td>Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_i</td>
<td>Common-mode input capacitance</td>
<td>$f = 10$ kHz, N package</td>
<td>25°C</td>
<td>8</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>z_o</td>
<td>Closed-loop output impedance</td>
<td>$f = 1$ MHz, $AV = 10$</td>
<td>25°C</td>
<td>130</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>CMRR</td>
<td>Common-mode rejection ratio</td>
<td>$V_{IC} = -5$ V to 2.7 V, $R_S = 50$ Ω</td>
<td>$V_O = 0$ V</td>
<td>25°C</td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td>k_{SVR}</td>
<td>Supply voltage rejection ratio ($\Delta V_{OC}/\Delta V_{IO}$)</td>
<td>$V_{IC} = \pm 2.2$ V to ±8 V, $V_O = 0$ V, No load</td>
<td>25°C</td>
<td>80</td>
<td>95</td>
<td>dB</td>
</tr>
<tr>
<td>I_{IO}</td>
<td>Supply current</td>
<td>$V_{IC} = 0$ V, No load</td>
<td>Full range</td>
<td>4.4</td>
<td>6</td>
<td>mA</td>
</tr>
</tbody>
</table>

(1) Full range is -40°C to 150°C for this part.

(2) Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_A = 150°C$ extrapolated to $T_A = 25°C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6.8 Operating Characteristics, \(V_{\text{DD}} = \pm 5 \text{ V} \)

at specified free-air temperature, \(V_{\text{DD}} = \pm 5 \text{ V} \) (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>(T_A)(^{(1)})</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR</td>
<td>(V_O = \pm 2.3 \text{ V},) (R_L = 10 \text{ k}\Omega) (C_L = 100 \text{ pF})</td>
<td>25°C</td>
<td>2.3</td>
<td>3.6</td>
<td>V/\mu s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Full range</td>
<td></td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_I)</td>
<td>(f = 10 \text{ Hz})</td>
<td>25°C</td>
<td>50</td>
<td></td>
<td></td>
<td>nV/\sqrt{Hz}</td>
</tr>
<tr>
<td></td>
<td>(f = 1 \text{ kHz})</td>
<td>25°C</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{\text{NPP}})</td>
<td>(f = 0.1 \text{ to } 1 \text{ Hz})</td>
<td>25°C</td>
<td>1</td>
<td></td>
<td></td>
<td>\mu V</td>
</tr>
<tr>
<td></td>
<td>(f = 0.1 \text{ to } 10 \text{ Hz})</td>
<td>25°C</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_n)</td>
<td>Equivalent input noise current</td>
<td>25°C</td>
<td>0.6</td>
<td></td>
<td></td>
<td>fA/\sqrt{Hz}</td>
</tr>
<tr>
<td>THD + N</td>
<td>(V_O = \pm 2.3 \text{ V},) (f = 20 \text{ kHz},) (R_L = 10 \text{ k}\Omega)</td>
<td>25°C</td>
<td>0.0011%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(A_v = 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(A_v = 10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(A_v = 100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain-bandwidth product</td>
<td>(f = 10 \text{ kHz},) (C_L = 100 \text{ pF}) (R_L = 10 \text{ k}\Omega)</td>
<td>25°C</td>
<td>2.25</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>(B_{OM})</td>
<td>Maximum output-swing bandwidth</td>
<td>25°C</td>
<td>0.54</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td>(V_{O\text{PP}} = 4.6 \text{ V},) (R_L = 10 \text{ k}\Omega) (A_v = 1,) (C_L = 100 \text{ pF})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tau_s)</td>
<td>Settling time</td>
<td>(A_v = -1,) (\text{Step} = -2.3 \text{ V} \text{ to } 2.3 \text{ V},) (R_L = 10 \text{ k}\Omega) (C_L = 100 \text{ pF}) To 0.1%</td>
<td>25°C</td>
<td>1.5</td>
<td></td>
<td>\mu s</td>
</tr>
<tr>
<td></td>
<td>To 0.01%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\phi_{\text{m}})</td>
<td>Phase margin at unity gain</td>
<td>25°C</td>
<td>52°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain margin</td>
<td>(R_L = 10 \text{ k}\Omega ,) (C_L = 100 \text{ pF})</td>
<td>25°C</td>
<td>10</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
</tbody>
</table>

(1) Full range is −40°C to 150°C for this part.

A. See data sheet for Absolute Maximum Ratings and minimum Recommended Operating Conditions.
B. Silicon operating life design goal is 10 years at 105°C junction temperature (does not include package interconnect life).

Figure 2. TLC2274EPWRQ1 Operating Life Derating Chart
Figure 3. Estimated Wire Bond Life
6.9 Typical Characteristics

Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the devices.

![Figure 4. Distribution of TLC2274 Input Offset Voltage](image1)

![Figure 5. Input Offset Voltage vs Common-Mode Voltage](image2)

![Figure 6. Input Offset Voltage vs Common-Mode Voltage](image3)

![Figure 7. Input Voltage vs Supply Voltage](image4)

![Figure 8. Input Voltage vs Free-Air Temperature](image5)

![Figure 9. High-Level Output Voltage vs High-Level Output Current](image6)

Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

Product Folder Links: TLC2274-HT
Typical Characteristics (continued)

Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the devices.

- **Figure 10. Low-Level Output Voltage vs Low-Level Output Current**
- **Figure 11. Low-Level Output Voltage vs Low-Level Output Current**
- **Figure 12. Maximum Positive Peak Output Voltage vs Output Current**
- **Figure 13. Maximum Negative Peak Output Voltage vs Output Current**
- **Figure 14. Maximum Peak-to-Peak Output Voltage vs Frequency**
- **Figure 15. Short-Circuit Output Current vs Supply Voltage**
Typical Characteristics (continued)

Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the devices.

Figure 16. Output Voltage vs Differential Input Voltage

Figure 17. Output Voltage vs Differential Input Voltage

Figure 18. Large-Signal Differential Voltage Amplification vs Load Resistance

Figure 19. Large-Signal Differential Voltage Amplification and Phase Margin vs Frequency

Figure 20. Large-Signal Differential Voltage Amplification and Phase Margin vs Frequency

Figure 21. Large-Signal Differential Voltage Amplification vs Free-Air Temperature

Typical Characteristics (continued)

Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the devices.

![Diagram](image-url)

Figure 16. Output Voltage vs Differential Input Voltage

Figure 17. Output Voltage vs Differential Input Voltage

Figure 18. Large-Signal Differential Voltage Amplification vs Load Resistance

Figure 19. Large-Signal Differential Voltage Amplification and Phase Margin vs Frequency

Figure 20. Large-Signal Differential Voltage Amplification and Phase Margin vs Frequency

Figure 21. Large-Signal Differential Voltage Amplification vs Free-Air Temperature

Typical Characteristics (continued)

Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the devices.

![Diagram](image-url)

Figure 16. Output Voltage vs Differential Input Voltage

Figure 17. Output Voltage vs Differential Input Voltage

Figure 18. Large-Signal Differential Voltage Amplification vs Load Resistance

Figure 19. Large-Signal Differential Voltage Amplification and Phase Margin vs Frequency

Figure 20. Large-Signal Differential Voltage Amplification and Phase Margin vs Frequency

Figure 21. Large-Signal Differential Voltage Amplification vs Free-Air Temperature

Typical Characteristics (continued)

Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the devices.

![Diagram](image-url)

Figure 16. Output Voltage vs Differential Input Voltage

Figure 17. Output Voltage vs Differential Input Voltage

Figure 18. Large-Signal Differential Voltage Amplification vs Load Resistance

Figure 19. Large-Signal Differential Voltage Amplification and Phase Margin vs Frequency

Figure 20. Large-Signal Differential Voltage Amplification and Phase Margin vs Frequency

Figure 21. Large-Signal Differential Voltage Amplification vs Free-Air Temperature

Typical Characteristics (continued)

Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the devices.

![Diagram](image-url)

Figure 16. Output Voltage vs Differential Input Voltage

Figure 17. Output Voltage vs Differential Input Voltage

Figure 18. Large-Signal Differential Voltage Amplification vs Load Resistance

Figure 19. Large-Signal Differential Voltage Amplification and Phase Margin vs Frequency

Figure 20. Large-Signal Differential Voltage Amplification and Phase Margin vs Frequency

Figure 21. Large-Signal Differential Voltage Amplification vs Free-Air Temperature

Typical Characteristics (continued)

Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the devices.

![Diagram](image-url)

Figure 16. Output Voltage vs Differential Input Voltage

Figure 17. Output Voltage vs Differential Input Voltage

Figure 18. Large-Signal Differential Voltage Amplification vs Load Resistance

Figure 19. Large-Signal Differential Voltage Amplification and Phase Margin vs Frequency

Figure 20. Large-Signal Differential Voltage Amplification and Phase Margin vs Frequency

Figure 21. Large-Signal Differential Voltage Amplification vs Free-Air Temperature

Typical Characteristics (continued)

Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the devices.

![Diagram](image-url)

Figure 16. Output Voltage vs Differential Input Voltage

Figure 17. Output Voltage vs Differential Input Voltage

Figure 18. Large-Signal Differential Voltage Amplification vs Load Resistance

Figure 19. Large-Signal Differential Voltage Amplification and Phase Margin vs Frequency

Figure 20. Large-Signal Differential Voltage Amplification and Phase Margin vs Frequency

Figure 21. Large-Signal Differential Voltage Amplification vs Free-Air Temperature

Typical Characteristics (continued)

Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the devices.
Typical Characteristics (continued)

Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the devices.

![Figure 22. Large-Signal Differential Voltage Amplification vs Free-Air Temperature](image1)

![Figure 23. Output Impedance vs Frequency](image2)

![Figure 24. Output Impedance vs Frequency](image3)

![Figure 25. Common-Mode Rejection Ratio vs Frequency](image4)

![Figure 26. Common-Mode Rejection Ratio vs Free-Air Temperature](image5)

![Figure 27. Supply-Voltage Rejection Ratio vs Frequency](image6)
Typical Characteristics (continued)

Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the devices.

Figure 28. Supply-Voltage Rejection Ratio vs Frequency

Figure 29. Supply-Voltage Rejection Ratio vs Free-Air Temperature

Figure 30. Slew Rate vs Load Capacitance

Figure 31. Slew Rate vs Free-Air Temperature

Figure 32. Inverting Large-Signal Pulse Response

Figure 33. Inverting Large-Signal Pulse Response
Typical Characteristics (continued)

Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the devices.

Figure 34. Voltage-Follower Large-Signal Pulse Response

Figure 35. Voltage-Follower Large-Signal Pulse Response

Figure 36. Inverting Small-Signal Pulse Response

Figure 37. Inverting Small-Signal Pulse Response

Figure 38. Voltage-Follower Small-Signal Pulse Response

Figure 39. Voltage-Follower Small-Signal Pulse Response
Typical Characteristics (continued)

Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the devices.

Figure 40. Equivalent Input Noise Voltage vs Frequency

Figure 41. Equivalent Input Noise Voltage vs Frequency

Figure 42. Noise Voltage Over a 10-s Period

Figure 43. Integrated Noise Voltage vs Frequency

Figure 44. Total Harmonic Distortion Plus Noise vs Frequency

Figure 45. Gain-Bandwidth Product vs Supply Voltage
7 Detailed Description

7.1 Overview
The TLC2274 device exhibits rail-to-rail output performance for increased dynamic range in single- or split-supply applications. These devices offer comparable ac performance while having better noise, input offset voltage and power dissipation than existing CMOS operational amplifiers. The TLC2274 device, exhibiting high input impedance and low noise, is excellent for small signal conditioning for high-impedance sources, such as piezoelectric transducers. It offers increased output dynamic range, lower noise voltage, and lower input offset voltage. This enhanced feature set allows the device to be used in a wider range of applications.

7.2 Functional Block Diagram

7.3 Feature Description
These devices use the Texas Instruments silicon gate LinCMOS™ process, giving them stable input offset voltages, very high input impedances, and extremely low input offset and bias currents. In addition, the rail-to-rail output feature with single- or split-supplies, makes this device a great choice when interfacing with analog-to-digital converters (ADCs).
8 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

8.1.1 Macromodel Information

Macromodel information provided was derived using Microsim Parts, the model generation software used with Microsim PSpice. The Boyle macromodel (1) and subcircuit in Figure 46 are generated using the TLC227x typical electrical and operating characteristics at $T_A = 25^\circ C$. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

- Maximum positive output voltage swing
- Maximum negative output voltage swing
- Slew rate
- Quiescent power dissipation
- Input bias current
- Open-loop voltage amplification
- Unity-gain frequency
- Common-mode rejection ratio
- Phase margin
- DC output resistance
- AC output resistance
- Short-circuit output current limit

8.2 Typical Application

The TLC2274 is designed to drive larger capacitive loads than most CMOS operational amplifiers. Figure 48 and Figure 49 show its ability to drive loads up to 1000 pF while maintaining good gain and phase margins (Rnull = 0).

Figure 46. Boyle Macromodels and Subcircuit

Figure 47. Typical Application Schematic
Typical Application (continued)

8.2.1 Design Requirements

As per Equation 1:

Table 2. Design Parameters

<table>
<thead>
<tr>
<th>Improvement in Phase Margin</th>
<th>UGBW (kHz)</th>
<th>R null (Ω)</th>
<th>CL (pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1000</td>
<td>0</td>
<td>1000</td>
</tr>
<tr>
<td>7.15</td>
<td>1000</td>
<td>20</td>
<td>1000</td>
</tr>
<tr>
<td>17.43</td>
<td>1000</td>
<td>50</td>
<td>1000</td>
</tr>
<tr>
<td>32.12</td>
<td>1000</td>
<td>100</td>
<td>1000</td>
</tr>
</tbody>
</table>

8.2.2 Detailed Design Procedure

A smaller series resistor (R_{null}) at the output of the device (see Figure 47) improves the gain and phase margins when driving large capacitive loads. Figure 48 and Figure 49 show the effects of adding series resistances of 10 Ω, 50 Ω, 100 Ω, 200 Ω, and 500 Ω. The addition of this series resistor has two effects: the first is that it adds a zero to the transfer function and the second is that it reduces the frequency of the pole associated with the output load in the transfer function.

The zero introduced to the transfer function is equal to the series resistance times the load capacitance. To calculate the improvement in phase margin, Equation 1 can be used.

$$\Delta \phi_{m1} = \tan^{-1} \left(2 \times \pi \times UGBW \times R_{null} \times C_L \right)$$

where
- $\Delta \phi_{m1}$ = Improvement in phase margin
- $UGBW$ = Unity-gain bandwidth frequency
- R_{null} = Output series resistance
- C_L = Load capacitance

The unity-gain bandwidth (UGBW) frequency decreases as the capacitive load increases (see Figure 47). To use equation 1, UGBW must be approximated from Figure 47. Using Equation 1 alone overestimates the improvement in phase margin, as illustrated in Figure 51. The overestimation is caused by the decrease in the frequency of the pole associated with the load, thus providing additional phase shift and reducing the overall improvement in phase margin. Using Figure 47, with Equation 1 enables the designer to choose the appropriate output series resistance to optimize the design of circuits driving large capacitance loads.

8.2.3 Application Curves

$T_A = 25^\circ C$
$T_A = 25^\circ C$

Figure 50. Unity-Gain Bandwidth vs Load Capacitance

Figure 51. Overestimation of Phase Margin vs Load Capacitance
9 Power Supply Recommendations

TLC2274 operates from ±2.2- to ±8-V. In addition, key parameters are assured over the specified temperature range, –55°C to 125°C. Parameters which vary significantly with operating voltage or temperature are shown in the Typical Characteristics.

10 Layout

10.1 Layout Guidelines

The TLC2274 has very-low offset voltage and drift. To achieve highest performance, optimize circuit layout and mechanical conditions. Offset voltage and drift can be degraded by small thermoelectric potentials at the operational amplifier inputs. Connections of dissimilar metals generate thermal potential, which can degrade the ultimate performance of the TLC2274. Cancel these thermal potentials by assure that they are equal in both input terminals.

- Keep the thermal mass of the connections made to the two input terminals similar.
- Locate heat sources as far as possible from the critical input circuitry.
- Shield operational amplifier and input circuitry from air currents such as cooling fans.

10.2 Layout Example

Figure 52. Board Layout Example
11 Device and Documentation Support

11.1 Trademarks
LinCMOS is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

11.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.3 Glossary

SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish (6)</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLC2274EPWRQ1</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 150</td>
<td>2274EQ1</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF TLC2274-HT:

- Catalog: TLC2274
- Automotive: TLC2274-Q1
- Enhanced Product: TLC2274-EP
- Military: TLC2274M

NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog product
- Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product - Supports Defense, Aerospace and Medical Applications
- Military - QML certified for Military and Defense Applications
NOTES:
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 each side.
D. Body width does not include interlead flash. Interlead flash shall not exceed 0.25 each side.
E. Falls within JEDEC MO-153
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers’ applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY TECHNICAL, PROPRIETARY, TRADE SECRET, PATENT, COPYRIGHT, TRADEMARK, TRADE NAME, PRODUCT, PROCESS, DESIGN, KNOW-HOW, INFORMATION, DATA OR OTHER INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE, IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designers may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.