• Input Noise Voltage
 0.5 µV (Peak-to-Peak) Typ, f = 0 to 1 Hz
 1.5 µV (Peak-to-Peak) Typ, f = 0 to 10 Hz
 47 nV/√Hz Typ, f = 10 Hz
 13 nV/√Hz Typ, f = 1 kHz

• High Chopping Frequency . . . 10 kHz Typ
• No Clock Noise Below 10 kHz
• No Intermodulation Error Below 5 kHz
• Low Input Offset Voltage
 10 µV Max (TLC2654A)
• Excellent Offset Voltage Stability
 With Temperature . . . 0.05 µV/°C Max
• A_{VD} . . . 135 dB Min (TLC2654A)
• CMRR . . . 110 dB Min (TLC2654A)
• k_{SVR} . . . 110 dB Min
• Single-Supply Operation
• Common-Mode Input Voltage Range
 Includes the Negative Rail
• No Noise Degradation With External
 Capacitors Connected to V_{DD–}
• Available in Q-Temp Automotive
 HighRel Automotive Applications
 Configuration Control/Print Support
 Qualification to Automotive Standards

description

The TLC2654 and TLC2654A are low-noise chopper-stabilized operational amplifiers using the Advanced LinCMOS™ process. Combining this process with chopper-stabilization circuitry makes excellent dc precision possible. In addition, circuit techniques are added that give the TLC2654 and TLC2654A superior noise performance.

Chopper-stabilization techniques provide for extremely high dc precision by continuously nulling input offset voltage even during variations in temperature, time, common-mode voltage, and power-supply voltage. The high chopping frequency of the TLC2654 and TLC2654A (see Figure 1) provides excellent noise performance in a frequency spectrum from near dc to 10 kHz. In addition, intermodulation or aliasing error is eliminated from frequencies up to 5 kHz.

This high dc precision and low noise, coupled with the extremely high input impedance of the CMOS input stage, makes the TLC2654 and TLC2654A ideal choices for a broad range of applications such as low-level, low-frequency thermocouple amplifiers and strain gauges and wide-bandwidth and subsonic circuits. For applications requiring even greater dc precision, use the TLC2652 or TLC2652A devices, which have a chopping frequency of 450 Hz.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Advanced LinCMOS is a trademark of Texas Instruments.
The TLC2654 and TLC2654A common-mode input voltage range includes the negative rail, thereby providing superior performance in either single-supply or split-supply applications, even at power supply voltage levels as low as ±2.3 V.

Two external capacitors are required to operate the device; however, the on-chip chopper-control circuitry is transparent to the user. On devices in the 14-pin and 20-pin packages, the control circuitry is accessible, allowing the user the option of controlling the clock frequency with an external frequency source. In addition, the clock threshold of the TLC2554 and TLC2654A requires no level shifting when used in the single-supply configuration with a normal CMOS or TTL clock input.

Innovative circuit techniques used on the TLC2654 and TLC2654A allow exceptionally fast overload recovery time. An output clamp pin is available to reduce the recovery time even further.

The device inputs and outputs are designed to withstand −100-mA surge currents without sustaining latch-up. In addition, the TLC2654 and TLC2654A incorporate internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015; however, exercise care in handling these devices, as exposure to ESD may result in degradation of the device parametric performance.

The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from −40°C to 85°C. The Q-suffix devices are characterized for operation from −40°C to 125°C. The M-suffix devices are characterized for operation over the full military temperature range of −55°C to 125°C.

AVAILABLE OPTIONS

<table>
<thead>
<tr>
<th>TA</th>
<th>VMакс</th>
<th>8 PIN</th>
<th>14 PIN</th>
<th>20 PIN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AT 25°C</td>
<td>SMALL OUTLINE (D)</td>
<td>CERAMIC DIP (JG)</td>
<td>PLASTIC DIP (P)</td>
</tr>
<tr>
<td>0°C to 70°C</td>
<td>10 µV</td>
<td>TLC2654AC-8D</td>
<td>—</td>
<td>TLC2654ACP</td>
</tr>
<tr>
<td>- 40°C to 85°C</td>
<td>10 µV</td>
<td>TLC2654AI-8D</td>
<td>—</td>
<td>TLC2654AIP</td>
</tr>
<tr>
<td>- 40°C to 125°C</td>
<td>10 µV</td>
<td>TLC2654AQ-8D</td>
<td>—</td>
<td>TLC2654AQP</td>
</tr>
<tr>
<td>- 55°C to 125°C</td>
<td>10 µV</td>
<td>TLC2654AM-8D</td>
<td>—</td>
<td>TLC2654AMP</td>
</tr>
</tbody>
</table>

The 8-pin and 14-pin D packages are available taped and reeled. Add R suffix to device type (e.g., TLC2654AC-8DR).
functional block diagram

Pin numbers shown are for the D (14 pin), J, and N packages.
TLC2654, TLC2654A

Advanced LinCMOS™ LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

- **Supply voltage, \(V_{DD+} \) (see Note 1)**: 8 V
- **Supply voltage, \(V_{DD-} \) (see Note 1)**: –8 V
- **Differential input voltage, \(V_{ID} \) (see Note 2)**: ±16 V
- **Input voltage, \(V_I \) (any input, see Note 1)**: ±8 V
- **Voltage range on CLK IN and INT/EXT**: \(V_{DD-} \) to \(V_{DD+} + 5.2 \) V
- **Input current, \(I_I \) (each input)**: ±5 mA
- **Output current, \(I_O \)**: ±50 mA
- **Duration of short-circuit current at (or below) 25°C (see Note 3)**: unlimited
- **Current into CLK IN and INT/EXT**: ±5 mA
- **Continuous total dissipation**: See Dissipation Rating Table
- **Operating free-air temperature range, \(T_A \)**: C suffix 0°C to 70°C
- **Storage temperature range**: –65°C to 150°C
- **Case temperature for 60 seconds: FK package**: 260°C
- **Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds: D, N, or P package**: 260°C
- **Lead temperature 1.6 mm (1/16 inch) from case for 60 seconds: J or JG package**: 300°C

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES:

1. All voltage values, except differential voltages, are with respect to the midpoint between \(V_{DD+} \) and \(V_{DD-} \).
2. Differential voltages are at IN+ with respect to IN–.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.

DISSIPATION RATING TABLE

<table>
<thead>
<tr>
<th>PACKAGE</th>
<th>(T_A \leq 25°C) POWER RATING</th>
<th>DERATING FACTOR ABOVE (T_A \leq 25°C)</th>
<th>(T_A = 70°C) POWER RATING</th>
<th>(T_A = 85°C) POWER RATING</th>
<th>(T_A = 125°C) POWER RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>D (8 pin)</td>
<td>725 mW</td>
<td>5.8 mW/°C</td>
<td>464 mW</td>
<td>377 mW</td>
<td>145 mW</td>
</tr>
<tr>
<td>D (14 pin)</td>
<td>950 mW</td>
<td>7.6 mW/°C</td>
<td>608 mW</td>
<td>494 mW</td>
<td>190 mW</td>
</tr>
<tr>
<td>FK</td>
<td>1375 mW</td>
<td>11.0 mW/°C</td>
<td>880 mW</td>
<td>715 mW</td>
<td>275 mW</td>
</tr>
<tr>
<td>J</td>
<td>1375 mW</td>
<td>11.0 mW/°C</td>
<td>880 mW</td>
<td>715 mW</td>
<td>275 mW</td>
</tr>
<tr>
<td>JG</td>
<td>1050 mW</td>
<td>8.4 mW/°C</td>
<td>672 mW</td>
<td>546 mW</td>
<td>210 mW</td>
</tr>
<tr>
<td>N</td>
<td>1150 mW</td>
<td>9.2 mW/°C</td>
<td>736 mW</td>
<td>598 mW</td>
<td>230 mW</td>
</tr>
<tr>
<td>P</td>
<td>1000 mW</td>
<td>8.0 mW/°C</td>
<td>640 mW</td>
<td>520 mW</td>
<td>200 mW</td>
</tr>
</tbody>
</table>

recommended operating conditions

<table>
<thead>
<tr>
<th>C SUFFIX</th>
<th>I SUFFIX</th>
<th>Q SUFFIX</th>
<th>M SUFFIX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{DD+})</td>
<td>(\pm 2.3)</td>
<td>(\pm 8)</td>
<td>(\pm 2.3)</td>
<td>(\pm 8)</td>
</tr>
<tr>
<td>(V_{DD-})</td>
<td>(V_{DD-} + 2.3)</td>
</tr>
<tr>
<td>(V_{DD+})</td>
<td>(V_{DD+} + 5)</td>
</tr>
<tr>
<td>(T_A)</td>
<td>(0)</td>
<td>(70)</td>
<td>(-40)</td>
<td>(85)</td>
</tr>
</tbody>
</table>
Electrical Characteristics

Input Offset Voltage (see Note 4)
- **Conditions**: Full range
- **Values**:
 - TA = 25°C: 5 μV
 - Full range: 34 μV

Temperature Coefficient of Input Offset Voltage
- **Conditions**: Full range
- **Values**:
 - TA = 25°C: 0.01 μV/°C
 - Full range: 0.01 μV/°C

Input Offset Voltage Long-term Drift (see Note 5)
- **Conditions**: Full range
- **Values**:
 - TA = 25°C: 0.003 μV
 - Full range: 0.003 μV

Input Offset Current
- **Conditions**: Full range
- **Values**:
 - TA = 25°C: 150 pA
 - Full range: 150 pA

Input Bias Current
- **Conditions**: Full range
- **Values**:
 - TA = 25°C: 150 pA
 - Full range: 150 pA

Common-mode Input Voltage Range
- **Conditions**: Full range
- **Values**:
 - TA = 25°C: –5 V to 2.7 V
 - Full range: –5 V to 2.7 V

Maximum Positive Peak Output Voltage Swing
- **Conditions**: Full range
- **Values**:
 - TA = 25°C: 4.7 V
 - Full range: 4.7 V

Maximum Negative Peak Output Voltage Swing
- **Conditions**: Full range
- **Values**:
 - TA = 25°C: –4.7 V
 - Full range: –4.7 V

Large-signal Differential Voltage Amplification
- **Conditions**: Full range
- **Values**:
 - TA = 25°C: 120 dB
 - Full range: 120 dB

Internal Chopping Frequency
- **Conditions**: Full range
- **Values**:
 - TA = 25°C: 10 kHz
 - Full range: 10 kHz

Clamp on-state Current
- **Conditions**: Full range
- **Values**:
 - TA = 25°C: 25 μA
 - Full range: 25 μA

Clamp off-state Current
- **Conditions**: Full range
- **Values**:
 - TA = 25°C: 100 pA
 - Full range: 100 pA

Common-mode Rejection Ratio
- **Conditions**: Full range
- **Values**:
 - TA = 25°C: 105 dB
 - Full range: 105 dB

Supply Voltage Rejection Ratio (ΔVDD ± ΔVIN)
- **Conditions**: Full range
- **Values**:
 - TA = 25°C: 110 dB
 - Full range: 110 dB

Supply Current
- **Conditions**: Full range
- **Values**:
 - TA = 25°C: 2.5 mA
 - Full range: 2.5 mA

Notes:
1. Full range is 0°C to 70°C.
2. This parameter is not production tested full range. Thermocouple effects preclude measurement of the actual V_{IO} of these devices in high-speed automated testing. V_{IO} is measured to a limit determined by the test equipment capability at the temperature extremes. The test ensures that the stabilization circuitry is performing properly.
3. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_A = 150°C$ extrapolated to $T_A = 25°C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV.
4. This parameter is not production tested full range. Thermocouple effects preclude measurement of the actual V_{IO} of these devices in high-speed automated testing. V_{IO} is measured to a limit determined by the test equipment capability at the temperature extremes. The test ensures that the stabilization circuitry is performing properly.
5. Output clamp is not connected.

Texas Instruments

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, $V_{DD} = \pm 5$ V

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>T_A^\dagger</th>
<th>TLC2654C</th>
<th>TLC2654AC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>T_A</td>
<td>MIN</td>
<td>TYP</td>
</tr>
<tr>
<td>SR^+ Positive slew rate at unity gain</td>
<td>$V_O = \pm 2.3$ V, $R_L = 10$ kΩ, $C_L = 100$ pF</td>
<td>25°C</td>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Full range</td>
<td>1.3</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>SR^- Negative slew rate at unity gain</td>
<td>25°C</td>
<td>2.3</td>
<td>3.7</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>Full range</td>
<td>1.7</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>V_n Equivalent input noise voltage (see Note 7)</td>
<td>$f = 10$ Hz</td>
<td>25°C</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>$f = 1$ kHz</td>
<td>13</td>
<td>13</td>
<td>20</td>
</tr>
<tr>
<td>$V_{N(PP)}$ Peak-to-peak equivalent input noise voltage</td>
<td>$f = 0$ to 1 Hz</td>
<td>25°C</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>$f = 0$ to 10 Hz</td>
<td>1.5</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>I_n Equivalent input noise current</td>
<td>$f = 10$ kHz</td>
<td>25°C</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>ϕ_m Phase margin at unity gain</td>
<td>$R_L = 10$ kΩ, $C_L = 100$ pF</td>
<td>25°C</td>
<td>48$^\circ$</td>
<td>48$^\circ$</td>
</tr>
</tbody>
</table>

† Full range is 0°C to 70°C.

NOTE 7: This parameter is tested on a sample basis for the TLC2654A. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters.
electrical characteristics at specified free-air temperature, $V_{DD} = \pm 5\, \text{V}$ (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>T_A†</th>
<th>TLC2654I</th>
<th>TLC2654AI</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IO}</td>
<td>Input offset voltage (see Note 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{IC} = 0$, $R_S = 50, \Omega$</td>
<td>25°C</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a_{VIO}</td>
<td>Temperature coefficient of input offset voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Full range</td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>V_{ICT}</td>
<td>Input offset voltage long-term drift (see Note 5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>25°C</td>
<td></td>
<td>0.003</td>
<td>0.06</td>
</tr>
<tr>
<td>I_{IO}</td>
<td>Input offset current</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>25°C</td>
<td></td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>I_{IB}</td>
<td>Input bias current</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>25°C</td>
<td></td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>V_{ICR}</td>
<td>Common-mode input voltage range</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_S = 50, \Omega$</td>
<td>Full range</td>
<td>–5</td>
<td>to</td>
</tr>
<tr>
<td>V_{OM+}</td>
<td>Maximum positive peak output voltage swing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_L = 10, k\Omega$, See Note 6</td>
<td>25°C</td>
<td>4.7</td>
<td>4.8</td>
</tr>
<tr>
<td>V_{OM-}</td>
<td>Maximum negative peak output voltage swing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_L = 10, k\Omega$, See Note 6</td>
<td>25°C</td>
<td>–4.7</td>
<td>–4.9</td>
</tr>
<tr>
<td>A_{VD}</td>
<td>Large-signal differential voltage amplification</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_O = \pm 4, \text{V}$, $R_L = 10, k\Omega$</td>
<td>25°C</td>
<td>120</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Internal chopping frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>25°C</td>
<td></td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Clamp on-state current</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_L = 100, k\Omega$</td>
<td>25°C</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clamp off-state current</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_O = –4, \text{V}$ to $4, \text{V}$</td>
<td>25°C</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>CMRR</td>
<td>Common-mode rejection ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_O = 0$, $V_{IC} = V_{ICRmin}$, $R_S = 50, \Omega$</td>
<td>25°C</td>
<td>105</td>
<td>125</td>
</tr>
<tr>
<td>SVR</td>
<td>Supply voltage rejection ratio ($\Delta V_{DD} \pm \Delta V_{IO}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DD} = \pm 2.3, \text{V}$ to $8, \text{V}$, $V_O = 0$, $R_S = 50, \Omega$</td>
<td>25°C</td>
<td>110</td>
<td>125</td>
</tr>
<tr>
<td>I_{DD}</td>
<td>Supply current</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_O = 0$, No load</td>
<td>25°C</td>
<td>1.5</td>
<td>2.4</td>
</tr>
</tbody>
</table>

† Full range is –40°C to 85°C

NOTES: 4. This parameter is not production tested full range. Thermocouple effects preclude measurement of the actual V_{IO} of these devices in high-speed automated testing. V_{IO} is measured to a limit determined by the test equipment capability at the temperature extremes. See Note 6.
5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_A = 150^\circ\text{C}$ extrapolated to $T_A = 25^\circ\text{C}$ using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6. Output clamp is not connected.
operating characteristics at specified free-air temperature, V_DD± = ±5 V

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>T_A†</th>
<th>TL2654</th>
<th>TL2654AI</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR+ Positive slew rate at unity gain</td>
<td>V_O = ±2.3 V, R_L = 10 kΩ, C_L = 100 pF</td>
<td>25°C</td>
<td>1.5</td>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>SR– Negative slew rate at unity gain</td>
<td>C_L = 100 pF full range</td>
<td>25°C</td>
<td>2.3</td>
<td>3.7</td>
<td>2.3</td>
</tr>
<tr>
<td>V_n Equivalent input noise voltage (see Note 7)</td>
<td>f = 10 Hz</td>
<td>25°C</td>
<td>47</td>
<td>47</td>
<td>75</td>
</tr>
<tr>
<td>V_N(PP) Peak-to-peak equivalent input noise voltage</td>
<td>f = 0 to 1 Hz</td>
<td>25°C</td>
<td>0.5</td>
<td>0.5</td>
<td>μV</td>
</tr>
<tr>
<td>I_n Equivalent input noise current</td>
<td>f = 1 kHz</td>
<td>25°C</td>
<td>1.5</td>
<td>1.5</td>
<td>pA/√Hz</td>
</tr>
<tr>
<td>Gain-bandwidth product</td>
<td>R_L = 10 kΩ, C_L = 100 pF</td>
<td>25°C</td>
<td>1.9</td>
<td>1.9</td>
<td>MHz</td>
</tr>
<tr>
<td>φ_m Phase margin at unity gain</td>
<td>R_L = 10 kΩ, C_L = 100 pF</td>
<td>25°C</td>
<td>48°</td>
<td>48°</td>
<td></td>
</tr>
</tbody>
</table>

† Full range is –40°C to 85°C.

NOTE 7: This parameter is tested on a sample basis for the TLC2654A. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters.
electrical characteristics at specified free-air temperature, V_{DD} ± = ±5 V (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>TA†</th>
<th>TLC2654Q</th>
<th>TLC2654AM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>MIN</td>
<td>TYP</td>
</tr>
<tr>
<td>V<sub>IO</sub> (see Note 4)</td>
<td></td>
<td>25°C</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>αV<sub>IO</sub></td>
<td></td>
<td>Full range</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>α<sub>VIC</sub> (see Note 5)</td>
<td>V<sub.IC</sub> = 0, R<sub>S</sub> = 50 Ω</td>
<td>25°C</td>
<td>0.01</td>
<td>0.05*</td>
</tr>
<tr>
<td>I<sub>O</sub></td>
<td></td>
<td>Full range</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>I<sub>B</sub></td>
<td></td>
<td>Full range</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>V<sub>ICR</sub></td>
<td>R<sub>S</sub> = 50 Ω</td>
<td>Full range</td>
<td>−5</td>
<td>to</td>
</tr>
<tr>
<td>V<sub>OM+</sub></td>
<td>R<sub>L</sub> = 10 kΩ, See Note 6</td>
<td>25°C</td>
<td>4.7</td>
<td>4.8</td>
</tr>
<tr>
<td>V<sub>OM−</sub></td>
<td>R<sub>L</sub> = 10 kΩ, See Note 6</td>
<td>25°C</td>
<td>−4.7</td>
<td>−4.9</td>
</tr>
<tr>
<td>AVD</td>
<td>V<sub>O</sub> = ±4 V, R<sub>L</sub> = 10 kΩ</td>
<td>25°C</td>
<td>120</td>
<td>155</td>
</tr>
<tr>
<td>Internal chopping frequency</td>
<td></td>
<td>25°C</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Clamp on-state current</td>
<td>R<sub>L</sub> = 100 kΩ</td>
<td>25°C</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Clamp off-state current</td>
<td>V<sub>O</sub> = −4 V to 4 V</td>
<td>25°C</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>CMRR</td>
<td>V<sub>O</sub> = 0, V<sub>IC</sub> = V<sub>ICR</sub>min, R<sub>S</sub> = 50 Ω</td>
<td>25°C</td>
<td>105</td>
<td>125</td>
</tr>
<tr>
<td>kSVR</td>
<td>V<sub>DD</sub> ± = ±2.3 V to ±8 V, V<sub>O</sub> = 0, R<sub>S</sub> = 50 Ω</td>
<td>25°C</td>
<td>110</td>
<td>125</td>
</tr>
<tr>
<td>IDD</td>
<td>V<sub>O</sub> = 0, No load</td>
<td>25°C</td>
<td>1.5</td>
<td>2.4</td>
</tr>
</tbody>
</table>

NOTES:
4. This parameter is not production tested full range. Thermocouple effects preclude measurement of the actual V_{IO} of these devices in high-speed automated testing. V_{IO} is measured to a limit determined by the test equipment capability at the temperature extremes. The test ensures that the stabilization circuitry is performing properly.
5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T_A = 150°C extrapolated to T_A = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6. Output clamp is not connected.

† On products compliant to MIL-STD-883, Class B, this parameter is not production tested.
* Full range is −40° to 125°C for Q suffix, −55° to 125°C for M suffix.
operating characteristics at specified free-air temperature, $V_{DD} = \pm 5$ V

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>T_A†</th>
<th>TLC2654Q</th>
<th>TLC2654M</th>
<th>TLC2654AQ</th>
<th>TLC2654AM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>MIN</td>
<td>TYP</td>
<td>MAX</td>
<td>MIN</td>
</tr>
<tr>
<td>Positive slew rate at unity gain</td>
<td>$V_O = \pm 2.3$ V, $R_L = 10$ kΩ, $C_L = 100$ pF</td>
<td>25°C</td>
<td>1.5</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative slew rate at unity gain</td>
<td>$V_O = \pm 2.3$ V, $R_L = 10$ kΩ, $C_L = 100$ pF</td>
<td>25°C</td>
<td>2.3</td>
<td>3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equivalent input noise voltage</td>
<td>$f = 10$ Hz</td>
<td>25°C</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak-to-peak equivalent input noise voltage</td>
<td>$f = 0$ to 1 Hz</td>
<td>25°C</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equivalent input noise current</td>
<td>$f = 1$ kHz</td>
<td>25°C</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain-bandwidth product</td>
<td>$f = 10$ kHz, $R_L = 10$ kΩ, $C_L = 100$ pF</td>
<td>25°C</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase margin at unity gain</td>
<td>$R_L = 10$ kΩ, $C_L = 100$ pF</td>
<td>25°C</td>
<td>48°</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† Full range is -40° to 125°C for Q suffix, -55° to 125°C for M suffix.
Typical Characteristics

Table of Graphs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>FIGURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IO}</td>
<td>Input offset voltage</td>
<td>2</td>
</tr>
<tr>
<td>Normalized V_{IO}</td>
<td>vs Chopping frequency</td>
<td>3</td>
</tr>
<tr>
<td>I_{IO}</td>
<td>Input offset current</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>vs Chopping frequency</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>vs Common-mode input voltage</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>vs Chopping frequency</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>vs Free-air temperature</td>
<td>8</td>
</tr>
<tr>
<td>I_{IB}</td>
<td>Input bias current</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>vs Free-air temperature</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>vs Common-mode input voltage</td>
<td>11</td>
</tr>
<tr>
<td>V_{OM}</td>
<td>Maximum peak output voltage swing</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>vs Output current</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>vs Free-air temperature</td>
<td>14</td>
</tr>
<tr>
<td>$V_{O(PP)}$</td>
<td>Maximum peak-to-peak output voltage swing</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>vs Frequency</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>vs Supply voltage</td>
<td>17</td>
</tr>
<tr>
<td>$CMRR$</td>
<td>Common-mode rejection ratio</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>vs Frequency</td>
<td>19</td>
</tr>
<tr>
<td>A_{VD}</td>
<td>Large-signal differential voltage amplification</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>vs Frequency</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>vs Free-air temperature</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>vs Supply voltage</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>vs Free-air temperature</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Voltage-follower pulse response</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Small signal</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Large signal</td>
<td>27</td>
</tr>
<tr>
<td>$V_{N(PP)}$</td>
<td>Peak-to-peak input noise voltage</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>vs Chopping frequency</td>
<td>29</td>
</tr>
<tr>
<td>V_{n}</td>
<td>Equivalent input noise voltage</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>vs Frequency</td>
<td>31</td>
</tr>
<tr>
<td>K_{SVR}</td>
<td>Supply voltage rejection ratio</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>vs Frequency</td>
<td>33</td>
</tr>
<tr>
<td>GB_{prod}</td>
<td>Gain-bandwidth product</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>vs Supply voltage</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>vs Free-air temperature</td>
<td>16</td>
</tr>
<tr>
<td>ϕ_m</td>
<td>Phase margin</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>vs Supply voltage</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>vs Load capacitance</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>vs Frequency</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>vs Free-air temperature</td>
<td>21</td>
</tr>
</tbody>
</table>

Texas Instruments

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLC2654, TLC2654A
Advanced LinCMOS™ LOW-NOISE CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS

TYPICAL CHARACTERISTICS†

DISTRIBUTION OF TLC2654 INPUT OFFSET VOLTAGE

NORMALIZED INPUT OFFSET VOLTAGE
vs
CHOPPING FREQUENCY

INPUT OFFSET CURRENT
vs
CHOPPING FREQUENCY

INPUT OFFSET CURRENT
vs
FREE-AIR TEMPERATURE

456 Units Tested From 4 Wafer Lots

VDD = ±5 V

TA = 25°C

N Package

VIO – Input Offset Voltage – µV

0
20
16
12
8
4
0
–20
–16
–12
–8
–4
0
4
8
12
16
20

VDD = ±5 V

VIC = 0

TA = 25°C

0
100
1K
10K
100K

VIO – Normalized Input Offset Voltage - µV

0
10
20
30
40

Chopping Frequency – Hz

VDD = ±5 V

VIC = 0

TA = 25°C

0
100
1k
10k
100k

IIO – Input Offset Current – pA

0
20
40
60
80
100
120
140

Chopping Frequency – Hz

VDD = ±5 V

VIC = 0

TA = 25°C

0
25
45
65
85
105
125

TIO – Input Offset Current – pA

0
20
40
60
80
100

T A – Free-Air Temperature – °C

†Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TYPICAL CHARACTERISTICS†

Figure 6

Figure 7

Figure 8

Figure 9

†Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TYPICAL CHARACTERISTICS†

MAXIMUM PEAK OUTPUT VOLTAGE vs OUTPUT CURRENT

Figure 10

MAXIMUM PEAK OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE

Figure 11

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY

Figure 12

COMMON-MODE REJECTION RATIO vs FREQUENCY

Figure 13

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TYPICAL CHARACTERISTICS†

Figure 14

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY

A VD – Large-Signal Differential Voltage Amplification – dB

Phase Shift

VDD = ±5 V
RL = 10 kΩ
CL = 100 pF
TA = 25°C

Figure 15

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE

A VD – Large-Signal Differential Voltage Amplification – dB

Phase Shift

VDD = ±5 V
RL = 10 kΩ
VO = ±4 V

Figure 16

CHOPPING FREQUENCY vs SUPPLY VOLTAGE

Chopping Frequency – kHz

|VDD| – Supply Voltage – V

TA = 25°C

Figure 17

CHOPPING FREQUENCY vs FREE-AIR TEMPERATURE

Chopping Frequency – kHz

TA – Free-Air Temperature – °C

|VDD| = ±5 V

†Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TYPICAL CHARACTERISTICS†

SUPPLY CURRENT vs SUPPLY VOLTAGE

![Graph showing supply current vs supply voltage with curves for different temperatures.]

SUPPLY CURRENT vs FREE-AIR TEMPERATURE

![Graph showing supply current vs free-air temperature with curves for different supply voltages.]

SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE

![Graph showing short-circuit output current vs supply voltage with curves for different voltages.]

SHORT-CIRCUIT OUTPUT CURRENT vs FREE-AIR TEMPERATURE

![Graph showing short-circuit output current vs free-air temperature with curves for different voltages.]

†Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TYPICAL CHARACTERISTICS†

SLEW RATE

SLEW RATE

VOLTAGE-FOLLOWER

VOLTAGE-FOLLOWER

SMALL-SIGNAL

LARGE-SIGNAL

PULSE RESPONSE

PULSE RESPONSE

Figure 22

Figure 23

Figure 24

Figure 25

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TYPICAL CHARACTERISTICS

PEAK-TO-PEAK INPUT NOISE VOLTAGE

vs CHOPPING FREQUENCY

![Graph showing peak-to-peak input noise voltage vs chopping frequency.](image)

Figure 26

EQUIVALENT INPUT NOISE VOLTAGE

vs FREQUENCY

![Graph showing equivalent input noise voltage vs frequency.](image)

Figure 28

SUPPLY VOLTAGE REJECTION RATIO

vs FREQUENCY

![Graph showing supply voltage rejection ratio vs frequency.](image)

Figure 29

Figure 27

Figure 29
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
APPLICATION INFORMATION

capacitor selection and placement

Leakage and dielectric absorption are the two important factors to consider when selecting external capacitors \(C_{XA}\) and \(C_{XB}\). Both factors can cause system degradation, negating the performance advantages realized by using the TLC2654.

Degradation from capacitor leakage becomes more apparent with increasing temperatures. Low-leakage capacitors and standoffs are recommended for operation at \(T_A = 125^\circ\mathrm{C}\). In addition, guard bands are recommended around the capacitor connections on both sides of the printed-circuit board to alleviate problems caused by surface leakage on circuit boards.

Capacitors with high dielectric absorption tend to take several seconds to settle upon application of power, which directly affects input offset voltage. In applications needing fast settling of input voltage, high-quality film capacitors such as mylar, polystyrene, or polypropylene should be used. In other applications, a ceramic or other low-grade capacitor can suffice.

Unlike many choppers available today, the TLC2654 is designed to function with values of \(C_{XA}\) and \(C_{XB}\) in the range of 0.1 \(\mu\text{F}\) to 1 \(\mu\text{F}\) without degradation to input offset voltage or input noise voltage. These capacitors should be located as close as possible to \(C_{XA}\) and \(C_{XB}\) and return to either \(V_{DD}\) or \(C_{RETURN}\). On many choppers, connecting these capacitors to \(V_{DD}\) causes degradation in noise performance; this problem is eliminated on the TLC2654.

internal/external clock

The TLC2654 has an internal clock that sets the chopping frequency to a nominal value of 10 kHz. On 8-pin packages, the chopping frequency can only be controlled by the internal clock; however, on all 14-pin packages and the 20-pin FK package the device chopping frequency can be set by the internal clock or controlled externally by use of the INT/EXT and CLK IN. To use the internal 10-kHz clock, no connection is necessary. If external clocking is desired, connect INT/EXT to \(V_{DD}\) and the external clock to CLK IN. The external clock trip point is 2.5 V above the negative rail; however, CLK IN can be driven from the negative rail to 5 V above the negative rail. This allows the TLC2654 to be driven directly by 5-V TTL and CMOS logic when operating in the single-supply configuration. If this 5-V level is exceeded, damage could occur to the device unless the current into CLK IN is limited to \(\pm 5\text{ mA}\). A divide-by-two frequency divider interfaces with CLK IN and sets the chopping frequency. The chopping frequency appears on CLK OUT.

overload recovery/output clamp

When large differential-input-voltage conditions are applied to the TLC2654, the nulling loop attempts to prevent the output from saturating by driving \(C_{XA}\) and \(C_{XB}\) to internally-clamped voltage levels. Once the overdrive condition is removed, a period of time is required to allow the built-up charge to dissipate. This time period is defined as overload recovery time (see Figure 34). Typical overload recovery time for the TLC2654 is significantly faster than competitive products; however, this time can be reduced further by use of internal clamp circuitry accessible through CLAMP if required.
overload recovery/output clamp (continued)

The clamp is a switch that is automatically activated when the output is approximately 1 V from either supply rail. When connected to the inverting input (in parallel with the closed-loop feedback resistor), the closed-loop gain is reduced and the TLC2654 output is prevented from going into saturation. Since the output must source or sink current through the switch (see Figure 9), the maximum output voltage swing is slightly reduced.

thermoelectric effects

To take advantage of the extremely low offset voltage temperature coefficient of the TLC2654, care must be taken to compensate for the thermoelectric effects present when two dissimilar metals are brought into contact with each other (such as device leads being soldered to a printed-circuit board). It is not uncommon for dissimilar metal junctions to produce thermoelectric voltages in the range of several microvolts per degree Celsius (orders of magnitude greater than the 0.01 µV/°C typical of the TLC2654).

To help minimize thermoelectric effects, pay careful attention to component selection and circuit-board layout. Avoid the use of nonsoldered connections (such as sockets, relays, switches, etc.) in the input signal path. Cancel thermoelectric effects by duplicating the number of components and junctions in each device input. The use of low-thermoelectric-coefficient components, such as wire-wound resistors, is also beneficial.

latch-up avoidance

Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC2654 inputs and outputs are designed to withstand −100-mA surge currents without sustaining latch-up; however, techniques to reduce the chance of latch-up should be used whenever possible. Internal protection diodes should not, by design, be forward biased. Applied input and output voltages should not exceed the supply voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators. Supply transients should be stunted by the use of decoupling capacitors (0.1 µF typical) located across the supply rails as close to the device as possible.

The current path established if latch-up occurs is usually between the supply rails and is limited only by the impedance of the power supply and the forward resistance of the parasitic thyristor. The chance of latch-up occurring increases with increasing temperature and supply voltage.

electrostatic-discharge protection

The TLC2654 incorporates internal ESD-protection circuits that prevent functional failures at voltages at or below 2000 V. Care should be exercised in handling these devices, as exposure to ESD may result in degradation of the device parametric performance.

theory of operation

Chopper-stabilized operational amplifiers offer the best dc performance of any monolithic operational amplifier. This superior performance is the result of using two operational amplifiers — a main amplifier and a nulling amplifier — plus oscillator-controlled logic and two external capacitors to create a system that behaves as a single amplifier. With this approach, the TLC2654 achieves submicrovolt input offset voltage, submicrovolt noise voltage, and offset voltage variations with temperature in the nV/°C range.

The TLC2654 on-chip control logic produces two dominant clock phases: a nulling phase and an amplifying phase. The term chopper-stabilized derives from the process of switching between these two clock phases. Figure 35 shows a simplified block diagram of the TLC2654. Switches A and B are make-before-break types.
APPLICATION INFORMATION

theory of operation (continued)

During the nulling phase, switch A is closed, shorting the nulling amplifier inputs together and allowing the nulling amplifier to reduce its own input offset voltage by feeding its output signal back to an inverting input node. Simultaneously, external capacitor C_XA stores the nulling potential to allow the offset voltage of the amplifier to remain nulled during the amplifying phase.

During the amplifying phase, switch B is closed, connecting the output of the nulling amplifier to a noninverting input of the main amplifier. In this configuration, the input offset voltage of the main amplifier is nulled. Also, external capacitor C_XB stores the nulling potential to allow the offset voltage of the main amplifier to remain nulled during the next nulling phase.

This continuous chopping process allows offset voltage nulling during variations in time and temperature and over the common-mode input voltage range and power supply range. In addition, because the low-frequency signal path is through both the null and main amplifiers, extremely high gain is achieved.

The low-frequency noise of a chopper amplifier depends on the magnitude of the component noise prior to chopping and the capability of the circuit to reduce this noise while chopping. The use of the Advanced LinCMOS process, with its low-noise analog MOS transistors and patent-pending input stage design, significantly reduces the input noise voltage.

The primary source of nonideal operation in chopper-stabilized amplifiers is error charge from the switches. As charge imbalance accumulates on critical nodes, input offset voltage can increase especially with increasing chopping frequency. This problem has been significantly reduced in the TLC2654 by use of a patent-pending compensation circuit and the Advanced LinCMOS process.

The TLC2654 incorporates a feed-forward design that ensures continuous frequency response. Essentially, the gain magnitude of the nulling amplifier and compensation network crosses unity at the break frequency of the main amplifier. As a result, the high-frequency response of the system is the same as the frequency response of the main amplifier. This approach also ensures that the slewing characteristics remain the same during both the nulling and amplifying phases.

The primary limitation on ac performance is the chopping frequency. As the input signal frequency approaches the chopper’s clock frequency, intermodulation (or aliasing) errors result from the mixing of these frequencies. To avoid these error signals, the input frequency must be less than half the clock frequency. Most choppers available today limit the internal chopping frequency to less than 500 Hz in order to eliminate errors due to the charge imbalancing phenomenon mentioned previously. However, to avoid intermodulation errors on a 500-Hz chopper, the input signal frequency must be limited to less than 250 Hz.
APPLICATION INFORMATION

theory of operation (continued)

The TLC2654 removes this restriction on ac performance by using a 10-kHz internal clock frequency. This high chopping frequency allows amplification of input signals up to 5 kHz without errors due to intermodulation and greatly reduces low-frequency noise.

THERMAL INFORMATION

temperature coefficient of input offset voltage

Figure 36 shows the effects of package-induced thermal EMF. The TLC2654 can null only the offset voltage within its nulling loop. There are metal-to-metal junctions outside the nulling loop (bonding wires, solder joints, etc.) that produce EMF. In Figure 36, a TLC2654 packaged in a 14-pin plastic package (N package) was placed in an oven at 25°C at t = 0, biased up, and allowed to stabilize. At t = 3 min, the oven was turned on and allowed to rise in temperature to 125°C. As evidenced by the curve, the overall change in input offset voltage with temperature is less than the specified maximum limit of 0.05 μV/°C.

![Figure 36. Effects of Package-Induced Thermal EMF](image.png)
Packaging Information

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>5962-9089504QPA</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>JG</td>
<td>8</td>
<td>1</td>
<td>TBD</td>
<td>A42</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td>9089504QPA</td>
<td>TLC2654AM</td>
</tr>
<tr>
<td>TLC2654AC-8D</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>2654AC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLC2654ACP</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>P</td>
<td>8</td>
<td>50</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>0 to 70</td>
<td>TLC2654AC</td>
<td></td>
</tr>
<tr>
<td>TLC2654AI-8D</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>2654AI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLC2654AI-8DG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>2654AI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLC2654AIP</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>P</td>
<td>8</td>
<td>50</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>TLC2654AI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLC2654AMJGB</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>JG</td>
<td>8</td>
<td>1</td>
<td>TBD</td>
<td>A42</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td>9089504QPA</td>
<td>TLC2654AM</td>
</tr>
<tr>
<td>TLC2654C-14DR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>TLC2654C</td>
<td></td>
</tr>
<tr>
<td>TLC2654C-8D</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>2654C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLC2654C-8DG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>2654C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLC2654C-8DR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>2654C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLC2654C-8DRG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>2654C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLC2654CP</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>0 to 70</td>
<td>TLC2654CP</td>
<td></td>
</tr>
<tr>
<td>TLC2654CPE4</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>P</td>
<td>8</td>
<td>50</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>TLC2654CP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLC2654I-8D</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>2654I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLC2654I-8DR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>2654I</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PACKAGE OPTION ADDENDUM

Orderable Device	**Status**⁽¹⁾	**Package Type**	**Package Drawing**	**Pins**	**Package Qty**	**Eco Plan**⁽²⁾	**Lead/Ball Finish**⁽⁶⁾	**MSL Peak Temp**⁽³⁾	**Op Temp (°C)**	**Device Marking**^(4/5)	**Samples**
TLC2654IP | ACTIVE | PDIP | P | 8 | 50 | Pb-Free (RoHS) | CU NIPDAU | N / A for Pkg Type | | TLC2654IP | [Samples](#)
TLC2654IPE4 | ACTIVE | PDIP | P | 8 | 50 | Pb-Free (RoHS) | CU NIPDAU | N / A for Pkg Type | -40 to 85 | TLC2654IP | [Samples](#)

Note:

1. The marketing status values are defined as follows:
 - **ACTIVE:** Product device recommended for new designs.
 - **LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
 - **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
 - **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.
 - **OBSOLETE:** TI has discontinued the production of the device.

2. **Eco Plan:** The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

3. **MSL, Peak Temp:** The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

4. **Lead/Ball Finish:** Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

5. Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a “~” will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

6. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI’s liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF TLC2654A, TLC2654AM:

- Catalog: TLC2654A
- Military: TLC2654AM

NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog product
- Military - QML certified for Military and Defense Applications
TAPE AND REEL INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLC2654C-14DR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.0</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TLC2654C-8DR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TLC2654I-8DR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TLC2654I-8DR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

All dimensions are nominal.
Tape and Reel Box Dimensions

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLC2654C-14DR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
</tr>
<tr>
<td>TLC2654C-8DR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>340.5</td>
<td>338.1</td>
<td>20.6</td>
</tr>
<tr>
<td>TLC2654I-8DR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>340.5</td>
<td>338.1</td>
<td>20.6</td>
</tr>
<tr>
<td>TLC2654I-8DR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
NOTES:

A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

⚠️ Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0.15) each side.

⚠️ Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0.43) each side.

E. Reference JEDEC MS-012 variation AB.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
MECHANICAL DATA

D (R-PDSO-G8) PLASTIC SMALL OUTLINE

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
 ▶ Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0.15) each side.
 ▶ Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0.43) each side.
E. Reference JEDEC MS-012 variation AA.

TEXAS INSTRUMENTS
www.ti.com
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification.
E. Falls within MIL STD 1835 GDIP1-T8
MECHANICAL DATA

P (R-PDIP-T8) PLASTIC DUAL-IN-LINE PACKAGE

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001 variation BA.

4040382/E 04/2010
N (R—PDIP—T) PLASTIC DUAL-IN—LINE PACKAGE**

NOTES:

A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

⚠ Falls within JEDEC MS—001, except 18 and 20 pin minimum body length (Dim A).

⚠ The 20 pin end lead shoulder width is a vendor option, either half or full width.
IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and/or implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers’ applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice. TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY TECHNOLOGY, PATENT RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated