TLV906xS 10-MHz, RRIO, CMOS Operational Amplifiers for Cost-Sensitive Systems

1 Features
- Rail-to-rail input and output
- Low input offset voltage: ±0.3 mV
- Unity-gain bandwidth: 10 MHz
- Low broadband noise: 10 nV/√Hz
- Low input bias current: 0.5 pA
- Low quiescent current: 538 µA
- Unity-gain stable
- Internal RFI and EMI filter
- Operational at supply voltages as low as 1.8 V
- Easier to stabilize with higher capacitive load due to resistive open-loop output impedance
- Shutdown version: TLV906xS
- Extended temperature range: –40°C to 125°C

2 Applications
- E-bikes
- Smoke detectors
- HVAC: heating, ventilating, and air conditioning
- Motor control: AC induction
- Refrigerators
- Wearable devices
- Laptop computers
- Washing machines
- Sensor signal conditioning
- Power modules
- Barcode scanners
- Active filters
- Low-side current sensing

3 Description
The TLV9061 (single), TLV9062 (dual), and TLV9064 (quad) are single-, dual-, and quad- low-voltage (1.8 V to 5.5 V) operational amplifiers (op amps) with rail-to-rail input- and output-swing capabilities. These devices are highly cost-effective solutions for applications where low-voltage operation, a small footprint, and high capacitive load drive are required. Although the capacitive load drive of the TLV906x is 100 pF, the resistive open-loop output impedance makes stabilizing with higher capacitive loads simpler. These op amps are designed specifically for low-voltage operation (1.8 V to 5.5 V) with performance specifications similar to the OPAx316 and TLVx316 devices.

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLV9061</td>
<td>SOT-23 (5)</td>
<td>1.60 mm × 2.90 mm</td>
</tr>
<tr>
<td></td>
<td>SC70 (5)</td>
<td>1.25 mm × 2.00 mm</td>
</tr>
<tr>
<td></td>
<td>SOT553 (5)(2)</td>
<td>1.65 mm × 1.20 mm</td>
</tr>
<tr>
<td></td>
<td>X2SON (5)</td>
<td>0.80 mm × 0.80 mm</td>
</tr>
<tr>
<td>TLV9061S</td>
<td>SOT-23 (6)</td>
<td>1.60 mm × 2.90 mm</td>
</tr>
<tr>
<td></td>
<td>SOIC (8)</td>
<td>3.91 mm × 4.90 mm</td>
</tr>
<tr>
<td></td>
<td>TSSOP (8)</td>
<td>3.00 mm × 4.00 mm</td>
</tr>
<tr>
<td></td>
<td>VSOP (8)</td>
<td>3.00 mm × 3.00 mm</td>
</tr>
<tr>
<td></td>
<td>SOT-23 (8)</td>
<td>1.60 mm × 2.90 mm</td>
</tr>
<tr>
<td></td>
<td>WSON (8)</td>
<td>2.00 mm × 2.00 mm</td>
</tr>
<tr>
<td>TLV9062</td>
<td>VSOP (10)</td>
<td>3.00 mm × 3.00 mm</td>
</tr>
<tr>
<td></td>
<td>X2QFN (10)</td>
<td>1.50 mm × 2.00 mm</td>
</tr>
<tr>
<td>TLV9064</td>
<td>SOIC (14)</td>
<td>8.65 mm × 3.91 mm</td>
</tr>
<tr>
<td></td>
<td>TSSOP (14)</td>
<td>4.40 mm × 5.00 mm</td>
</tr>
<tr>
<td></td>
<td>WQFN (16)</td>
<td>3.00 mm × 3.00 mm</td>
</tr>
<tr>
<td></td>
<td>X2QFN (14)</td>
<td>2.00 mm × 2.00 mm</td>
</tr>
<tr>
<td>TLV9064S</td>
<td>WQFN (16)</td>
<td>3.00 mm × 3.00 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.
(2) Package is for preview only.

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. UNLESS OTHERWISE NOTED, this document contains PRODUCTION DATA.
4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision I (May 2019) to Revision J

- Deleted TLV9062IDDFR (SOT-23 (8)) package preview notations throughout data sheet .. 1
- Added industry standard package names to Device Comparison Table .. 5
- Added note to packages with thermal pads, specifying that the thermal pads need to be connected to V-............................... 7
- Added link to Shutdown Function section in SHDN pin function rows .. 11
- Added EMI Rejection section to the Feature Description section .. 24
- Changed Shutdown Function section to add more clarification ... 25

Changes from Revision H (April 2019) to Revision I

- Added DDF (SOT-23) thermal information to replace TBDs .. 13

Changes from Revision G (December 2018) to Revision H

- Added SOT-23 (8) information to Device Information .. 1
- Added DDF package column to Device Comparison Table .. 5
- Added DDF (SOT-23) package to Pin Functions .. 7
- Added DDF (SOT-23) package to Thermal Information .. 13
- Added TLV9062 RUG (X2QFN) thermal information to replace TBDs .. 14
TLV9061, TLV9062, TLV9064

www.ti.com

Changes from Revision F (September 2018) to Revision G

Changes from Revision E (July 2018) to Revision F

Changes from Revision D (June 2018) to Revision E

Changes from Revision C (March 2018) to Revision D

Copyright © 2017–2019, Texas Instruments Incorporated
• Added Shutdown Function section ... 25

Changes from Revision B (October 2017) to Revision C Page

• Changed device status from Production Data/Mixed Status to Production Data ... 1
• Deleted package preview note from TLV9061 DPW (X2SON) package in Device Information table .. 1
• Deleted package preview note from TLV9061 DPW (X2SON) package pinout drawing ... 6
• Changed formatting of ESD Ratings table to show different results for all packages .. 12
• Deleted package preview note from DPW (X2SON) package in Thermal Information: TLV9061 table 13
• Deleted package preview note from DPW (X2SON) package in Thermal Information: TLV9061 table 13

Changes from Revision A (June 2017) to Revision B Page

• Added 8-pin PW package to Pin Configuration and Functions section ... 7
• Added DSG (WSON) package to Thermal Information table ... 13
• Added PW (TSSOP) to TLV9062 Thermal Information table .. 13
• Changed maximum input offset voltage value from ±1.6 mV to 2 mV ... 15
• Changed maximum input offset voltage value from ±1.5 to ±1.6 mV .. 15
• Changed minimum common-mode rejection ratio input voltage range from 86 dB to 80 dB ... 15
• Changed typical input current noise density value from 10 to 23 fA/√Hz ... 15
• Changed THD + N test conditions from $V_S = 5$ V to $V_S = 5.5$ V ... 15
• Added $V_{CM} = 2.5$ V test condition to THD + N parameter in Electrical Characteristics table .. 15
• Added maximum output voltage swing value from 25 mV to 60 mV ... 15
• Changed maximum output voltage swing value from 15 mV to 20 mV ... 15

Changes from Original (March 2017) to Revision A Page

• Changed device status from Advance Information to Production Data .. 1
5 Description (continued)

The TLV906xS devices include a shutdown mode that allow the amplifiers to switch into standby mode with typical current consumption less than 1 µA.

The TLV906xS family helps simplify system design, because the family is unity-gain stable, integrates the RFI and EMI rejection filter, and provides no phase reversal in overdrive condition.

Micro size packages, such as X2SON and X2QFN, are offered for all the channel variants (single, dual and quad), along with industry-standard packages, such as SOIC, MSOP, SOT-23, and TSSOP.

6 Device Comparison Table

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>NO. OF CHANNELS</th>
<th>PACKAGE LEADS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SOIC D</td>
<td>SOT-23 D</td>
</tr>
<tr>
<td>TLV9061</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>TLV9061S</td>
<td>—</td>
<td>6</td>
</tr>
<tr>
<td>TLV9062</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>TLV9062S</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>TLV9064</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>TLV9064S</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
7 Pin Configuration and Functions

TLV9061 DBV, DRL Packages
5-Pin SOT-23, SOT-553
Top View

TLV9061 DCK Package
5-Pin SC70
Top View

TLV9061 DPW Package
5-Pin X2SON
Top View

Pin Functions: TLV9061

<table>
<thead>
<tr>
<th>PIN</th>
<th>NAME</th>
<th>SOT-23, SOT-553</th>
<th>SC70</th>
<th>X2SON</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN–</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td></td>
<td>I Inverting input</td>
</tr>
<tr>
<td>IN+</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
<td>I Noninverting input</td>
</tr>
<tr>
<td>OUT</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td></td>
<td>O Output</td>
</tr>
<tr>
<td>V–</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td>1 or — Negative (low) supply or ground (for single-supply operation)</td>
</tr>
<tr>
<td>V+</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td>1 Positive (high) supply</td>
</tr>
</tbody>
</table>
TLV9061S DBV Package
6-Pin SOT-23
Top View

<table>
<thead>
<tr>
<th>PIN</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN–</td>
<td>4</td>
<td>Inverting input</td>
</tr>
<tr>
<td>IN+</td>
<td>3</td>
<td>Noninverting input</td>
</tr>
<tr>
<td>OUT</td>
<td>1</td>
<td>Output</td>
</tr>
<tr>
<td>SHDN</td>
<td>5</td>
<td>Shutdown: low = amp disabled, high = amp enabled. See Shutdown Function section for more information.</td>
</tr>
<tr>
<td>V–</td>
<td>2</td>
<td>I or — Negative (low) supply or ground (for single-supply operation)</td>
</tr>
<tr>
<td>V+</td>
<td>6</td>
<td>I Positive (high) supply</td>
</tr>
</tbody>
</table>

TLV9062 D, DGK, PW, DDF Packages
8-Pin SOIC, VSSOP, TSSOP, SOT-23
Top View

<table>
<thead>
<tr>
<th>PIN</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN1–</td>
<td>2</td>
<td>Inverting input, channel 1</td>
</tr>
<tr>
<td>IN1+</td>
<td>3</td>
<td>Noninverting input, channel 1</td>
</tr>
<tr>
<td>IN2–</td>
<td>6</td>
<td>Inverting input, channel 2</td>
</tr>
<tr>
<td>IN2+</td>
<td>5</td>
<td>Noninverting input, channel 2</td>
</tr>
<tr>
<td>OUT1</td>
<td>1</td>
<td>Output, channel 1</td>
</tr>
<tr>
<td>OUT2</td>
<td>7</td>
<td>Output, channel 2</td>
</tr>
<tr>
<td>V–</td>
<td>4</td>
<td>— Negative (lowest) supply or ground (for single-supply operation)</td>
</tr>
<tr>
<td>V+</td>
<td>8</td>
<td>— Positive (highest) supply</td>
</tr>
</tbody>
</table>
TLV9062S DGS Package
10-Pin VSSOP
Top View

TLV9062S DGS Package
10-Pin VSSOP
Top View

TLV9062S DGS Package
10-Pin VSSOP
Top View

TLV9062S RUG Package
10-Pin X2QFN
Top View

Pin Functions: TLV9062S

<table>
<thead>
<tr>
<th>PIN</th>
<th>VSSOP</th>
<th>X2QFN</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>VSSOP</td>
<td>X2QFN</td>
<td>I or —</td>
<td>Description</td>
</tr>
<tr>
<td>IN1−</td>
<td>2</td>
<td>9</td>
<td>I</td>
<td>Inverting input, channel 1</td>
</tr>
<tr>
<td>IN1+</td>
<td>3</td>
<td>10</td>
<td>I</td>
<td>Noninverting input, channel 1</td>
</tr>
<tr>
<td>IN2−</td>
<td>8</td>
<td>5</td>
<td>I</td>
<td>Inverting input, channel 2</td>
</tr>
<tr>
<td>IN2+</td>
<td>7</td>
<td>4</td>
<td>I</td>
<td>Noninverting input, channel 2</td>
</tr>
<tr>
<td>OUT1</td>
<td>1</td>
<td>8</td>
<td>O</td>
<td>Output, channel 1</td>
</tr>
<tr>
<td>OUT2</td>
<td>9</td>
<td>6</td>
<td>O</td>
<td>Output, channel 2</td>
</tr>
<tr>
<td>SHDN1</td>
<td>5</td>
<td>2</td>
<td>I</td>
<td>Shutdown: low = amp disabled, high = amp enabled. Channel 1. See Shutdown Function section for more information.</td>
</tr>
<tr>
<td>SHDN2</td>
<td>6</td>
<td>3</td>
<td>I</td>
<td>Shutdown: low = amp disabled, high = amp enabled. Channel 2. See Shutdown Function section for more information.</td>
</tr>
<tr>
<td>V−</td>
<td>4</td>
<td>1</td>
<td>I</td>
<td>Negative (low) supply or ground (for single-supply operation)</td>
</tr>
<tr>
<td>V+</td>
<td>10</td>
<td>7</td>
<td>I</td>
<td>Positive (high) supply</td>
</tr>
</tbody>
</table>
Pin Functions: TLV9064

<table>
<thead>
<tr>
<th>PIN</th>
<th>NAME</th>
<th>SOIC, TSSOP</th>
<th>WQFN</th>
<th>X2QFN</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN1–</td>
<td>2</td>
<td>16</td>
<td>1</td>
<td></td>
<td>I</td>
<td>Inverting input, channel 1</td>
</tr>
<tr>
<td>IN1+</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td>I</td>
<td>Noninverting input, channel 1</td>
</tr>
<tr>
<td>IN2–</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td></td>
<td>I</td>
<td>Inverting input, channel 2</td>
</tr>
<tr>
<td>IN2+</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td></td>
<td>I</td>
<td>Noninverting input, channel 2</td>
</tr>
<tr>
<td>IN3–</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td></td>
<td>I</td>
<td>Inverting input, channel 3</td>
</tr>
<tr>
<td>IN3+</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td></td>
<td>I</td>
<td>Noninverting input, channel 3</td>
</tr>
<tr>
<td>IN4–</td>
<td>13</td>
<td>13</td>
<td>12</td>
<td></td>
<td>I</td>
<td>Inverting input, channel 4</td>
</tr>
<tr>
<td>IN4+</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td></td>
<td>I</td>
<td>Noninverting input, channel 4</td>
</tr>
</tbody>
</table>

(1) Connect thermal pad to V–
Pin Functions: TLV9064 (continued)

<table>
<thead>
<tr>
<th>PIN</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>SOIC, TSSOP</td>
<td>WQFN</td>
</tr>
<tr>
<td>NC</td>
<td>—</td>
<td>6, 7</td>
</tr>
<tr>
<td>OUT1</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>OUT2</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>OUT3</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>OUT4</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>V–</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>V+</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>
(1) Connect thermal pad to V–

Pin Functions: TLV9064S

<table>
<thead>
<tr>
<th>PIN</th>
<th>NO.</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN1–</td>
<td>16</td>
<td>I</td>
<td>Inverting input, channel 1</td>
</tr>
<tr>
<td>IN1+</td>
<td>1</td>
<td>I</td>
<td>Noninverting input, channel 1</td>
</tr>
<tr>
<td>IN2–</td>
<td>4</td>
<td>I</td>
<td>Inverting input, channel 2</td>
</tr>
<tr>
<td>IN2+</td>
<td>3</td>
<td>I</td>
<td>Noninverting input, channel 2</td>
</tr>
<tr>
<td>IN3–</td>
<td>9</td>
<td>I</td>
<td>Inverting input, channel 3</td>
</tr>
<tr>
<td>IN3+</td>
<td>10</td>
<td>I</td>
<td>Noninverting input, channel 3</td>
</tr>
<tr>
<td>IN4–</td>
<td>13</td>
<td>I</td>
<td>Inverting input, channel 4</td>
</tr>
<tr>
<td>IN4+</td>
<td>12</td>
<td>I</td>
<td>Noninverting input, channel 4</td>
</tr>
<tr>
<td>OUT1</td>
<td>15</td>
<td>O</td>
<td>Output, channel 1</td>
</tr>
<tr>
<td>OUT2</td>
<td>5</td>
<td>O</td>
<td>Output, channel 2</td>
</tr>
<tr>
<td>OUT3</td>
<td>8</td>
<td>O</td>
<td>Output, channel 3</td>
</tr>
<tr>
<td>OUT4</td>
<td>14</td>
<td>O</td>
<td>Output, channel 4</td>
</tr>
<tr>
<td>SHDN34</td>
<td>7</td>
<td>I</td>
<td>Shutdown: low = amp disabled, high = amp enabled. Channel 1. See Shutdown Function section for more information.</td>
</tr>
<tr>
<td>V–</td>
<td>11</td>
<td>I or —</td>
<td>Negative (low) supply or ground (for single-supply operation)</td>
</tr>
<tr>
<td>V+</td>
<td>2</td>
<td>I</td>
<td>Positive (high) supply</td>
</tr>
</tbody>
</table>
Specifications

8.1 Absolute Maximum Ratings

over operating ambient temperature (unless otherwise noted)\(^{(1)}\)

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage ([V+ – (V–)])</td>
<td>0</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>Voltage (^{(2)}) Common-mode</td>
<td>((V–) – 0.5)</td>
<td>((V+) + 0.5)</td>
<td>V</td>
</tr>
<tr>
<td>Differential</td>
<td>((V+) – (V–) + 0.2)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Current (^{(2)})</td>
<td>–10</td>
<td>10</td>
<td>mA</td>
</tr>
<tr>
<td>Output short-circuit (^{(3)})</td>
<td>Continuous</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Temperature Specified, (T_A)</td>
<td>–40</td>
<td>125</td>
<td>°C</td>
</tr>
<tr>
<td>Junction, (T_J)</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage, (T_{stg})</td>
<td>–65</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

\(^{(1)}\) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

\(^{(2)}\) Input pins are diode-clamped to the power-supply rails. Current limit input signals that can swing more than 0.5 V beyond the supply rails to 10 mA or less.

\(^{(3)}\) Short-circuit to ground, one amplifier per package.

8.2 ESD Ratings

<table>
<thead>
<tr>
<th></th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLV9061 PACKAGES(^{(1)})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrostatic discharge</td>
<td>(V_{(ESD)})</td>
<td>Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001</td>
</tr>
<tr>
<td>Charged-device model</td>
<td>(CDM), per JEDEC specification JESD22-C101</td>
<td>±1500</td>
</tr>
<tr>
<td>ALL OTHER PACKAGES(^{(2)})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrostatic discharge</td>
<td>(V_{(ESD)})</td>
<td>Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001</td>
</tr>
<tr>
<td>Charged-device model</td>
<td>(CDM), per JEDEC specification JESD22-C101</td>
<td>±1500</td>
</tr>
</tbody>
</table>

\(^{(1)}\) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

\(^{(2)}\) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

8.3 Recommended Operating Conditions

over operating ambient temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_S) Supply voltage ([V_S = [V+] – (V–)])</td>
<td>1.8</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>(V_I) Input voltage range</td>
<td>((V–) – 0.1)</td>
<td>((V+) + 0.1)</td>
<td>V</td>
</tr>
<tr>
<td>(V_O) Output voltage range</td>
<td>(V–)</td>
<td>(V+)</td>
<td>V</td>
</tr>
<tr>
<td>(V_{SHDN_I_H}) High level input voltage at shutdown pin (amplifier enabled)</td>
<td>1.1</td>
<td>(V+)</td>
<td>V</td>
</tr>
<tr>
<td>(V_{SHDN_I_L}) Low level input voltage at shutdown pin (amplifier disabled)</td>
<td>(V–)</td>
<td>0.2</td>
<td>V</td>
</tr>
<tr>
<td>(T_A) Specified temperature</td>
<td>–40</td>
<td>125</td>
<td>°C</td>
</tr>
</tbody>
</table>
8.4 Thermal Information: TLV9061

<table>
<thead>
<tr>
<th>THERMAL METRIC(1)</th>
<th>TLV9061</th>
<th></th>
<th></th>
<th></th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DBV (SOT-23)</td>
<td>DCK (SC70)</td>
<td>DPW (X2SON)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 PINS</td>
<td>5 PINS</td>
<td>5 PINS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_{\text{JA}})</td>
<td>221.7°C/W</td>
<td>263.3°C/W</td>
<td>467°C/W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_{\text{JC(top)}})</td>
<td>144.7°C/W</td>
<td>75.5°C/W</td>
<td>211.6°C/W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_{\text{JB}})</td>
<td>49.7°C/W</td>
<td>51°C/W</td>
<td>332.2°C/W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\psi_{\text{JT}})</td>
<td>26.1°C/W</td>
<td>1°C/W</td>
<td>29.3°C/W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\psi_{\text{JB}})</td>
<td>49°/W</td>
<td>50.3°/W</td>
<td>330.6°/W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_{\text{JC(bot)}})</td>
<td>N/A</td>
<td>N/A</td>
<td>125°/W</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.

8.5 Thermal Information: TLV9061S

<table>
<thead>
<tr>
<th>THERMAL METRIC(1)</th>
<th>TLV9061S</th>
<th></th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DBV (SOT-23)</td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td>6 PINS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_{\text{JA}})</td>
<td>216.5°C/W</td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{\text{JC(top)}})</td>
<td>155.1°C/W</td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{\text{JB}})</td>
<td>96.2°C/W</td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td>(\psi_{\text{JT}})</td>
<td>80.3°/W</td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td>(\psi_{\text{JB}})</td>
<td>95.9°C/W</td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{\text{JC(bot)}})</td>
<td>N/A</td>
<td></td>
<td>°C/W</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics.

8.6 Thermal Information: TLV9062

<table>
<thead>
<tr>
<th>THERMAL METRIC(1)</th>
<th>TLV9062</th>
<th></th>
<th></th>
<th></th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D (SOIC)</td>
<td>DGK (VSSOP)</td>
<td>DSG (WSON)</td>
<td>PW (TSSOP)</td>
<td>DDF (SOT-23)</td>
</tr>
<tr>
<td></td>
<td>8 PINS</td>
<td>8 PINS</td>
<td>8 PINS</td>
<td>8 PINS</td>
<td>8 PINS</td>
</tr>
<tr>
<td>(R_{\text{JA}})</td>
<td>157.6°C/W</td>
<td>201.2°C/W</td>
<td>94.4°/W</td>
<td>205.8°/W</td>
<td>184.4°/W</td>
</tr>
<tr>
<td>(R_{\text{JC(top)}})</td>
<td>104.6°C/W</td>
<td>85.7°C/W</td>
<td>116.5°/W</td>
<td>106.7°/W</td>
<td>112.8°/W</td>
</tr>
<tr>
<td>(R_{\text{JB}})</td>
<td>99.7°/W</td>
<td>122.9°/W</td>
<td>61.3°/W</td>
<td>133.9°/W</td>
<td>99.9°/W</td>
</tr>
<tr>
<td>(\psi_{\text{JT}})</td>
<td>55.6°/W</td>
<td>21.2°/W</td>
<td>13°/W</td>
<td>34.4°/W</td>
<td>18.7°/W</td>
</tr>
<tr>
<td>(\psi_{\text{JB}})</td>
<td>99.2°/W</td>
<td>121.4°/W</td>
<td>61.7°/W</td>
<td>132.6°/W</td>
<td>99.3°/W</td>
</tr>
<tr>
<td>(R_{\text{JC(bot)}})</td>
<td>N/A</td>
<td>N/A</td>
<td>34.4°/W</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.
8.7 Thermal Information: TLV9062S

<table>
<thead>
<tr>
<th>THERMAL METRIC(1)</th>
<th>TLV9062S</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DGS (VSSOP)</td>
<td>RUG (X2QFN)</td>
</tr>
<tr>
<td></td>
<td>10 PINS</td>
<td>10 PINS</td>
</tr>
<tr>
<td>R_{JA} (Junction-to-ambient thermal resistance)</td>
<td>170.4</td>
<td>197.2</td>
</tr>
<tr>
<td>$R_{JC(top)}$ (Junction-to-case (top) thermal resistance)</td>
<td>84.9</td>
<td>93.3</td>
</tr>
<tr>
<td>R_{JB} (Junction-to-board thermal resistance)</td>
<td>113.5</td>
<td>123.8</td>
</tr>
<tr>
<td>ψ_{JT} (Junction-to-top characterization parameter)</td>
<td>16.4</td>
<td>3.7</td>
</tr>
<tr>
<td>ψ_{JB} (Junction-to-board characterization parameter)</td>
<td>112.3</td>
<td>120.2</td>
</tr>
<tr>
<td>$R_{JC(bot)}$ (Junction-to-case (bottom) thermal resistance)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see [Semiconductor and IC Package Thermal Metrics](#).

8.8 Thermal Information: TLV9064

<table>
<thead>
<tr>
<th>THERMAL METRIC(1)</th>
<th>TLV9064</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PW (TSSOP)</td>
<td>D (SOIC)</td>
</tr>
<tr>
<td></td>
<td>14 PINS</td>
<td>14 PINS</td>
</tr>
<tr>
<td>R_{JA} (Junction-to-ambient thermal resistance)</td>
<td>135.8</td>
<td>106.9</td>
</tr>
<tr>
<td>$R_{JC(top)}$ (Junction-to-case (top) thermal resistance)</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>R_{JB} (Junction-to-board thermal resistance)</td>
<td>79</td>
<td>63</td>
</tr>
<tr>
<td>ψ_{JT} (Junction-to-top characterization parameter)</td>
<td>15.7</td>
<td>25.9</td>
</tr>
<tr>
<td>ψ_{JB} (Junction-to-board characterization parameter)</td>
<td>78.4</td>
<td>62.7</td>
</tr>
<tr>
<td>$R_{JC(bot)}$ (Junction-to-case (bottom) thermal resistance)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see [Semiconductor and IC Package Thermal Metrics](#).

8.9 Thermal Information: TLV9064S

<table>
<thead>
<tr>
<th>THERMAL METRIC(1)</th>
<th>TLV9064S</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RTE (WQFN)</td>
<td>16 PINS</td>
</tr>
<tr>
<td>R_{JA} (Junction-to-ambient thermal resistance)</td>
<td>65.1</td>
<td>°C/W</td>
</tr>
<tr>
<td>$R_{JC(top)}$ (Junction-to-case (top) thermal resistance)</td>
<td>67.9</td>
<td>°C/W</td>
</tr>
<tr>
<td>R_{JB} (Junction-to-board thermal resistance)</td>
<td>40.4</td>
<td>°C/W</td>
</tr>
<tr>
<td>ψ_{JT} (Junction-to-top characterization parameter)</td>
<td>5.5</td>
<td>°C/W</td>
</tr>
<tr>
<td>ψ_{JB} (Junction-to-board characterization parameter)</td>
<td>40.2</td>
<td>°C/W</td>
</tr>
<tr>
<td>$R_{JC(bot)}$ (Junction-to-case (bottom) thermal resistance)</td>
<td>23.8</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see [Semiconductor and IC Package Thermal Metrics](#).
8.10 Electrical Characteristics

For V_S (Total Supply Voltage) = $(V+) - (V-) = 1.8 \text{ V} \text{ to } 5.5 \text{ V}$ at $T_A = 25^\circ \text{C}$, $R_L = 10 \text{ k}\Omega$ connected to $V_S / 2$, $V_{CM} = V_S / 2$, and $V_{OUT} = V_S / 2$ (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFFSET VOLTAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OS}</td>
<td>Input offset voltage</td>
<td>$V_S = 5 \text{ V}$</td>
<td>± 0.3</td>
<td>± 1.6</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>$V_S = 5 \text{ V}$, $T_A = -40^\circ \text{C}$ to 125°C</td>
<td>± 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dV_{OS}/dT</td>
<td>Drift</td>
<td>$V_S = 5 \text{ V}$, $T_A = -40^\circ \text{C}$ to 125°C</td>
<td>± 0.53</td>
<td>µV/°C</td>
<td></td>
</tr>
<tr>
<td>PSRR</td>
<td>Power-supply rejection ratio</td>
<td>$V_S = 1.8 \text{ V} - 5.5 \text{ V}$, $V_{CM} = (V-)$</td>
<td>± 7</td>
<td>± 80</td>
<td>µV/V</td>
</tr>
<tr>
<td></td>
<td>Channel separation, DC</td>
<td>At DC</td>
<td></td>
<td>100</td>
<td>dB</td>
</tr>
<tr>
<td>INPUT VOLTAGE RANGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{CM}</td>
<td>Common-mode voltage range</td>
<td>$V_S = 1.8 \text{ V}$ to 5.5 V</td>
<td>$(V-) - 0.1$</td>
<td>$(V+) + 0.1$</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V_{CM} = $(V-)$</td>
<td>80</td>
<td>103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMRR</td>
<td>Common-mode rejection ratio</td>
<td>$V_S = 5.5 \text{ V}$, $V_{CM} = -0.1 \text{ V}$</td>
<td>57</td>
<td>87</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>V_{CM} = 5.6 V, $T_A = -40^\circ \text{C}$ to 125°C</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V_{CM} = -0.1 V, $T_A = -40^\circ \text{C}$ to 125°C</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INPUT BIAS CURRENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{BB}</td>
<td>Input bias current</td>
<td></td>
<td>± 0.5</td>
<td></td>
<td>pA</td>
</tr>
<tr>
<td>I_{OS}</td>
<td>Input offset current</td>
<td></td>
<td>± 0.05</td>
<td></td>
<td>pA</td>
</tr>
<tr>
<td>NOISE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_n</td>
<td>Input voltage noise (peak-to-peak)</td>
<td>$V_S = 5 \text{ V}$, $f = 0.1 \text{ Hz}$ to 10 Hz</td>
<td>4.77</td>
<td></td>
<td>µVpp</td>
</tr>
<tr>
<td>e_n</td>
<td>Input voltage noise density</td>
<td>$V_S = 5 \text{ V}$, $f = 10 \text{ kHz}$</td>
<td>10</td>
<td></td>
<td>nV/√Hz</td>
</tr>
<tr>
<td>i_n</td>
<td>Input current noise density</td>
<td>$f = 1 \text{ kHz}$</td>
<td>16</td>
<td></td>
<td>fA/√Hz</td>
</tr>
<tr>
<td>INPUT CAPACITANCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{ID}</td>
<td>Differential</td>
<td>2</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>C_{IC}</td>
<td>Common-mode</td>
<td>4</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>OPEN-LOOP GAIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_{OL}</td>
<td>Open-loop voltage gain</td>
<td>$V_S = 1.8 \text{ V}$, $(V-) + 0.04 \text{ V} < V_O < (V+) - 0.04 \text{ V}$, $R_L = 10 \text{ k}\Omega$</td>
<td>100</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>$V_S = 5.5 \text{ V}$, $(V-) + 0.05 \text{ V} < V_O < (V+) - 0.05 \text{ V}$, $R_L = 10 \text{ k}\Omega$</td>
<td>104</td>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_S = 1.8 \text{ V}$, $(V-) + 0.06 \text{ V} < V_O < (V+) - 0.06 \text{ V}$, $R_L = 2 \text{ k}\Omega$</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_S = 5.5 \text{ V}$, $(V+) - 0.15 \text{ V} < V_O < (V-) + 0.15 \text{ V}$, $R_L = 2 \text{ k}\Omega$</td>
<td>130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FREQUENCY RESPONSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBP</td>
<td>Gain bandwidth product</td>
<td>$V_S = 5 \text{ V}$, $G = +1$</td>
<td>10</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>η_m</td>
<td>Phase margin</td>
<td>$V_S = 5 \text{ V}$, $G = +1$</td>
<td>55</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>SR</td>
<td>Slew rate</td>
<td>$V_S = 5 \text{ V}$, $G = +1$</td>
<td>6.5</td>
<td></td>
<td>V/µs</td>
</tr>
<tr>
<td>t_s</td>
<td>Settling time</td>
<td>To 0.1%, $V_S = 5 \text{ V}$, 2-V step , $G = +1$, $C_L = 100 \text{ pF}$</td>
<td>0.5</td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td>To 0.01%, $V_S = 5 \text{ V}$, 2-V step, $G = +1$, $C_L = 100 \text{ pF}$</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{OR}</td>
<td>Overload recovery time</td>
<td>$V_S = 5 \text{ V}$, $V_{IN} \times \text{gain} > V_S$</td>
<td>0.2</td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>$THD + N$</td>
<td>Total harmonic distortion + noise(1)</td>
<td>$V_S = 5.5 \text{ V}$, $V_{CM} = 2.5 \text{ V}$, $V_O = 1 \text{ V}_{RMS}$, $G = +1$, $f = 1 \text{ kHz}$</td>
<td>0.0008%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OUTPUT

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_O</td>
<td>Voltage output swing from supply rails</td>
<td>$V_S = 5.5 \text{ V}$, $R_L = 10 \text{ k}\Omega$</td>
<td>20</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>$V_S = 5.5 \text{ V}$, $R_L = 2 \text{ k}\Omega$</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{SC}</td>
<td>Short-circuit current</td>
<td>$V_S = 5 \text{ V}$</td>
<td>50</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Z_O</td>
<td>Open-loop output impedance</td>
<td>$V_S = 5 \text{ V}$, $f = 10 \text{ MHz}$</td>
<td>100</td>
<td></td>
<td>Ω</td>
</tr>
</tbody>
</table>

(1) Third-order filter; bandwidth = 80 kHz at –3 dB.
Electrical Characteristics (continued)

For V_S (Total Supply Voltage) = $(V+) − (V−) = 1.8$ V to 5.5 V at $T_A = 25°C$, $R_L = 10 \, k\Omega$ connected to $V_S / 2$, $V_{CM} = V_S / 2$, and $V_{OUT} = V_S / 2$ (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_Q Quiescent current per amplifier</td>
<td>$V_S = 5.5$ V, $I_O = 0$ mA</td>
<td>538</td>
<td>750</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>$V_S = 5.5$ V, $I_O = 0$ mA, $T_A = −40°C$ to 125°C</td>
<td></td>
<td></td>
<td>800</td>
<td>µA</td>
</tr>
<tr>
<td>I_QSD Quiescent current per amplifier</td>
<td>$V_S = 1.8$ V to 5.5 V, all amplifiers disabled, $SHDN = Low$</td>
<td>0.5</td>
<td>1.5</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>Z_{SHDN} Output impedance during shutdown</td>
<td>$V_S = 1.8$ V to 5.5 V, amplifier disabled</td>
<td>10</td>
<td></td>
<td>8</td>
<td>GΩ</td>
</tr>
<tr>
<td>V_{SHDN,THR_HI} High level voltage shutdown threshold (amplifier enabled)</td>
<td>$V_S = 1.8$ V to 5.5 V</td>
<td>$(V−) + 0.9$ V</td>
<td>$(V−) + 1.1$ V</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{SHDN,THR_LO} Low level voltage shutdown threshold (amplifier disabled)</td>
<td>$V_S = 1.8$ V to 5.5 V</td>
<td>$(V−) + 0.2$ V</td>
<td>$(V−) + 0.7$ V</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>t_{ON} Amplifier enable time (shutdown)</td>
<td>$V_S = 1.8$ V to 5.5 V, full shutdown; $G = 1$, $V_{OUT} = 0.9 \times V_S / 2$, R_L connected to $V−$</td>
<td>10</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>t_{OFF} Amplifier disable time</td>
<td>$V_S = 1.8$ V to 5.5 V, $G = 1$, $V_{OUT} = 0.1 \times V_S / 2$, R_L connected to $V−$</td>
<td>0.6</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>$SHDN$ pin input bias current (per pin)</td>
<td>$V_S = 1.8$ V to 5.5 V, $V+ ≤ SHDN ≥ (V+) − 0.8$ V</td>
<td>130</td>
<td></td>
<td></td>
<td>pA</td>
</tr>
<tr>
<td></td>
<td>$V_S = 1.8$ V to 5.5 V, $V− ≤ SHDN ≤ V− + 0.8$ V</td>
<td></td>
<td></td>
<td>40</td>
<td>pA</td>
</tr>
</tbody>
</table>

(2) Disable time (t_{OFF}) and enable time (t_{ON}) are defined as the time interval between the 50% point of the signal applied to the $SHDN$ pin and the point at which the output voltage reaches the 10% (disable) or 90% (enable) level.
8.11 Typical Characteristics

at $T_A = 25^\circ C$, $V_S = 5.5$ V, $R_L = 10$ kΩ connected to $V_S / 2$, $V_{CM} = V_S / 2$, and $V_{OUT} = V_S / 2$ (unless otherwise noted)
Typical Characteristics (continued)

at $T_A = 25^\circ C$, $V_S = 5.5$ V, $R_L = 10$ kΩ connected to $V_S / 2$, $V_{CM} = V_S / 2$, and $V_{OUT} = V_S / 2$ (unless otherwise noted)

Figure 7. Open-Loop Gain vs Temperature

Figure 8. Closed-Loop Gain vs Frequency

Figure 9. Input Bias Current vs Temperature

Figure 10. Output Voltage Swing vs Output Current

Figure 11. CMRR and PSRR vs Frequency (Referred to Input)

Figure 12. CMRR vs Temperature
Typical Characteristics (continued)

at \(T_A = 25°C \), \(V_S = 5.5 \) V, \(R_L = 10 \) kΩ connected to \(V_S / 2 \), \(V_{CM} = V_S / 2 \), and \(V_{OUT} = V_S / 2 \) (unless otherwise noted)

\[V_{CM} = (V–) - 0.1 \text{ V to } (V+) - 1.4 \text{ V} \]
\[T_A = -40°C \text{ to } 125°C \]
\[R_L = 10 \text{ kΩ} \]
\[V_S = 5.5 \text{ V} \]

Figure 13. CMRR vs Temperature

Figure 14. PSRR vs Temperature

\[V_S = 1.8 \text{ V to } 5.5 \text{ V} \]

Figure 15. 0.1-Hz to 10-Hz Input Voltage Noise

Figure 16. Input Voltage Noise Spectral Density vs Frequency

\[V_S = 5.5 \text{ V} \]
\[V_{CM} = 2.5 \text{ V} \]
\[R_L = 2 \text{ kΩ} \]
\[BW = 80 \text{ kHz} \]
\[G = +1 \]

Figure 17. THD + N vs Frequency

Figure 18. THD + N vs Amplitude
Typical Characteristics (continued)

at $T_A = 25^\circ C$, $V_S = 5.5$ V, $R_L = 10$ kΩ connected to $V_S / 2$, $V_{CM} = V_S / 2$, and $V_{OUT} = V_S / 2$ (unless otherwise noted)

Figure 19. THD + N vs Amplitude

$V_S = 5.5$ V
$V_{CM} = 2.5$ V
$R_L = 2$ kΩ
$G = -1$
$BW = 80$ kHz
$f = 1$ kHz

Figure 20. Quiescent Current vs Supply Voltage

Figure 21. Quiescent Current vs Temperature

V_{OUT} step = 100 mVp-p
$R_L = 10$ kΩ
$V_+ = 2.75$ V
$V_- = -2.75$ V
$G = +1$ V/V

Figure 22. Open-Loop Output Impedance vs Frequency

V_{OUT} step = 100 mVp-p
$R_L = 10$ kΩ
$V_+ = 2.75$ V
$V_- = -2.75$ V
$G = -1$ V/V

Figure 23. Small-Signal Overshoot vs Load Capacitance

Figure 24. Small-Signal Overshoot vs Load Capacitance
Typical Characteristics (continued)

at $T_A = 25^\circ C$, $V_S = 5.5\, \text{V}$, $R_L = 10\, \text{k}\Omega$ connected to $V_S/2$, $V_{CM} = V_S/2$, and $V_{OUT} = V_S/2$ (unless otherwise noted)

Figure 25. No Phase Reversal

$V^+ = 2.75\, \text{V}$ $V^- = -2.75\, \text{V}$

Figure 26. Overload Recovery

$V^+ = 2.75\, \text{V}$ $V^- = -2.75\, \text{V}$ $G = -10\, \text{V/V}$

Figure 27. Small-Signal Step Response

$V^+ = 2.75\, \text{V}$ $V^- = -2.75\, \text{V}$ $G = 1\, \text{V/V}$

Figure 28. Large-Signal Step Response

$V^+ = 2.75\, \text{V}$ $V^- = -2.75\, \text{V}$ $G = 1\, \text{V/V}$ $C_L = 100\, \text{pF}$

Figure 29. Short-Circuit Current vs Temperature

$R_L = 10\, \text{k}\Omega$ $C_L = 10\, \text{pF}$

Figure 30. Maximum Output Voltage vs Frequency and Supply Voltage

$R_S = 10\, \text{k}\Omega$ $V_S = 5.5\, \text{V}$ $V_S = 1.8\, \text{V}$
Typical Characteristics (continued)
at \(T_A = 25^\circ\text{C}, V_S = 5.5 \text{ V}, R_L = 10 \text{ k}\Omega \) connected to \(V_S / 2, V_{CM} = V_S / 2, \) and \(V_{OUT} = V_S / 2 \) (unless otherwise noted)

![Graph](image1)

Figure 31. Electromagnetic Interference Rejection Ratio (EMIRR+) vs Frequency

![Graph](image2)

Figure 32. Channel Separation vs Frequency

![Graph](image3)

Figure 33. Phase Margin vs Capacitive Load

![Graph](image4)

Figure 34. Open Loop Voltage Gain vs Output Voltage

![Graph](image5)

Figure 35. Large Signal Settling Time (Positive)

![Graph](image6)

Figure 36. Large Signal Settling Time (Negative)
9 Detailed Description

9.1 Overview
The TLV906x devices are a family of low-power, rail-to-rail input and output op amps. These devices operate from 1.8 V to 5.5 V, are unity-gain stable, and are designed for a wide range of general-purpose applications. The input common-mode voltage range includes both rails and allows the TLV906x series to be used in virtually any single-supply application. Rail-to-rail input and output swing significantly increases dynamic range, especially in low-supply applications. The high bandwidth enables this family to drive the sample-hold circuitry of analog-to-digital converters (ADCs).

9.2 Functional Block Diagram
9.3 Feature Description

9.3.1 Rail-to-Rail Input

The input common-mode voltage range of the TLV906x family extends 100 mV beyond the supply rails for the full supply voltage range of 1.8 V to 5.5 V. This performance is achieved with a complementary input stage: an N-channel input differential pair in parallel with a P-channel differential pair, as shown in the Functional Block Diagram. The N-channel pair is active for input voltages close to the positive rail, typically (V+) – 1.4 V to 200 mV above the positive supply, whereas the P-channel pair is active for inputs from 200 mV below the negative supply to approximately (V+) – 1.4 V. There is a small transition region, typically (V+) – 1.2 V to (V+) – 1 V, in which both pairs are on. This 200-mV transition region can vary up to 200 mV with process variation. Thus, the transition region (with both stages on) can range from (V+) – 1.4 V to (V+) – 1.2 V on the low end, and up to (V+) – 1 V to (V+) – 0.8 V on the high end. Within this transition region, PSRR, CMRR, offset voltage, offset drift, and THD can degrade compared to device operation outside this region.

9.3.2 Rail-to-Rail Output

Designed as a low-power, low-voltage operational amplifier, the TLV906x series delivers a robust output drive capability. A class AB output stage with common-source transistors achieves full rail-to-rail output swing capability. For resistive loads of 10 kΩ, the output swings to within 15 mV of either supply rail, regardless of the applied power-supply voltage. Different load conditions change the ability of the amplifier to swing close to the rails.

9.3.3 EMI Rejection

The TLV906x uses integrated electromagnetic interference (EMI) filtering to reduce the effects of EMI from sources such as wireless communications and densely-populated boards with a mix of analog signal chain and digital components. EMI immunity can be improved with circuit design techniques; the TLV906x benefits from these design improvements. Texas Instruments has developed the ability to accurately measure and quantify the immunity of an operational amplifier over a broad frequency spectrum extending from 10 MHz to 6 GHz. Figure 37 shows the results of this testing on the TLV906x. Table 1 shows the EMIRR IN+ values for the TLV906x at particular frequencies commonly encountered in real-world applications. The EMI Rejection Ratio of Operational Amplifiers application report contains detailed information on the topic of EMIRR performance as it relates to op amps and is available for download from www.ti.com.

<table>
<thead>
<tr>
<th>FREQUENCY</th>
<th>APPLICATION OR ALLOCATION</th>
<th>EMIRR IN+</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 MHz</td>
<td>Mobile radio, mobile satellite, space operation, weather, radar, UHF</td>
<td>59.5 dB</td>
</tr>
<tr>
<td>900 MHz</td>
<td>Global system for mobile communications (GSM), radio communication, GPS</td>
<td>68.9 dB</td>
</tr>
<tr>
<td>1.8 GHz</td>
<td>GSM applications, mobile personal communications, broadband, satellite,</td>
<td>77.8 dB</td>
</tr>
</tbody>
</table>

Figure 37. EMIRR Testing
Feature Description (continued)

Table 1. TLV906x EMIRR In+ For Frequencies of Interest (continued)

<table>
<thead>
<tr>
<th>FREQUENCY</th>
<th>APPLICATION OR ALLOCATION</th>
<th>EMIRR In+</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4 GHz</td>
<td>802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications, industrial, scientific and medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz)</td>
<td>78.0 dB</td>
</tr>
<tr>
<td>3.6 GHz</td>
<td>Radiolocation, aero communication and navigation, satellite, mobile, S-band</td>
<td>88.8 dB</td>
</tr>
<tr>
<td>5 GHz</td>
<td>802.11a, 802.11n, aero communication and navigation, mobile communication, space and satellite operation, C-band (4 GHz to 8 GHz)</td>
<td>87.6 dB</td>
</tr>
</tbody>
</table>

9.3.4 Overload Recovery

Overload recovery is defined as the time required for the operational amplifier output to recover from a saturated state to a linear state. The output devices of the operational amplifier enter a saturation region when the output voltage exceeds the rated operating voltage, because of the high input voltage or the high gain. After the device enters the saturation region, the charge carriers in the output devices require time to return to the linear state. After the charge carriers return to the linear state, the device begins to slew at the specified slew rate. Therefore, the propagation delay (in case of an overload condition) is the sum of the overload recovery time and the slew time. The overload recovery time for the TLV906x family is approximately 200 ns.

9.3.5 Shutdown Function

The TLV906xS devices feature SHDN pins that disable the op amp, placing it into a low-power standby mode. In this mode, the op amp typically consumes less than 1 µA. The SHDN pins are active-low, meaning that shutdown mode is enabled when the input to the SHDN pin is a valid logic low.

The SHDN pins are referenced to the negative supply voltage of the op amp. The threshold of the shutdown feature lies around 800 mV (typical) and does not change with respect to the supply voltage. Hysteresis has been included in the switching threshold to ensure smooth switching characteristics. To ensure optimal shutdown behavior, the SHDN pins should be driven with valid logic signals. A valid logic low is defined as a voltage between V– and V– + 0.2 V. A valid logic high is defined as a voltage between V– + 1.2 V and V+. The shutdown pin must either be connected to a valid high or a low voltage or driven, and not left as an open circuit. There is no internal pull-up to enable the amplifier.

The SHDN pins are high-impedance CMOS inputs. Dual op amp versions are independently controlled, and quad op amp versions are controlled in pairs with logic inputs. For battery-operated applications, this feature may be used to greatly reduce the average current and extend battery life. The enable time is 10 µs for full shutdown of all channels; disable time is 6 µs. When disabled, the output assumes a high-impedance state. This architecture allows the TLV906xS to be operated as a gated amplifier (or to have the device output multiplexed onto a common analog output bus). Shutdown time (tOFF) depends on loading conditions and increases as load resistance increases. To ensure shutdown (disable) within a specific shutdown time, the specified 10-kΩ load to midsupply (VS / 2) is required. If using the TLV906xS without a load, the resulting turnoff time is significantly increased.

9.4 Device Functional Modes

The TLV906x family are operational when the power-supply voltage is between 1.8 V (±0.9 V) and 5.5 V (±2.75 V). The TLV906xS devices feature a shutdown mode and are shut down when a valid logic low is applied to the shutdown pin.
10 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information
The TLV906x family features 10-MHz bandwidth and 6.5-V/µs slew rate with only 538 µA of supply current per channel, providing good AC-performance at very low power consumption. DC applications are well served with a very low input noise voltage of 10 nV/√Hz at 10 kHz, low input bias current, and a typical input offset voltage of 0.3 mV.

10.2 Typical Applications
10.2.1 Typical Low-Side Current Sense Application
Figure 38 shows the TLV906x configured in a low-side current-sensing application.

![Figure 38. TLV906x in a Low-Side, Current-Sensing Application](image)

10.2.1.1 Design Requirements
The design requirements for this design are:
- Load current: 0 A to 1 A
- Output voltage: 4.95 V
- Maximum shunt voltage: 100 mV
Typical Applications (continued)

10.2.1.2 Detailed Design Procedure

The transfer function of the circuit in Figure 38 is given in Equation 1.

\[V_{OUT} = I_{LOAD} \times R_{SHUNT} \times Gain \] \hspace{1cm} (1)

The load current (\(I_{LOAD} \)) produces a voltage drop across the shunt resistor (\(R_{SHUNT} \)). The load current is set from 0 A to 1 A. To keep the shunt voltage below 100 mV at maximum load current, the largest shunt resistor is defined using Equation 2.

\[R_{SHUNT} = \frac{V_{SHUNT_MAX}}{I_{LOAD_MAX}} = \frac{100mV}{1A} = 100m\Omega \] \hspace{1cm} (2)

Using Equation 2, \(R_{SHUNT} \) equals 100 m\(\Omega \). The voltage drop produced by \(I_{LOAD} \) and \(R_{SHUNT} \) is amplified by the TLV906x to produce an output voltage of approximately 0 V to 4.95 V. Equation 3 calculates the gain required for the TLV906x to produce the required output voltage.

\[\text{Gain} = \frac{V_{OUT_MAX} - V_{OUT_MIN}}{V_{IN_MAX} - V_{IN_MIN}} \] \hspace{1cm} (3)

Using Equation 3, the required gain equals 49.5 V/V, which is set with the \(R_F \) and \(R_G \) resistors. Equation 4 sizes the \(R_F \) and \(R_G \) resistors to set the gain of the TLV906x to 49.5 V/V.

\[\text{Gain} = 1 + \left(\frac{R_F}{R_G} \right) \] \hspace{1cm} (4)

Selecting \(R_F \) to equal 165 k\(\Omega \) and \(R_G \) to equal 3.4 k\(\Omega \) provides a combination that equals approximately 49.5 V/V. Figure 39 shows the measured transfer function of the circuit shown in Figure 38. Notice that the gain is only a function of the feedback and gain resistors. This gain is adjusted by varying the ratio of the resistors and the actual resistor values are determined by the impedance levels that the designer wants to establish. The impedance level determines the current drain, the effect that stray capacitance has, and a few other behaviors. There is no optimal impedance selection that works for every system, you must choose an impedance that is ideal for your system parameters.

10.2.1.3 Application Curve

![Figure 39. Low-Side, Current-Sense, Transfer Function](image-url)
11 Power Supply Recommendations

The TLV906x series is specified for operation from 1.8 V to 5.5 V (±0.9 V to ±2.75 V); many specifications apply from –40°C to 125°C. The Typical Characteristics section presents parameters that can exhibit significant variance with regard to operating voltage or temperature.

CAUTION

Supply voltages larger than 6 V can permanently damage the device; see the Absolute Maximum Ratings table.

Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-impedance power supplies. For more detailed information on bypass capacitor placement, see the Layout section.

11.1 Input and ESD Protection

The TLV906x series incorporates internal ESD protection circuits on all pins. For input and output pins, this protection primarily consists of current-steering diodes connected between the input and power-supply pins. These ESD protection diodes provide in-circuit, input overdrive protection, as long as the current is limited to 10 mA, as shown in the Absolute Maximum Ratings table. Figure 40 shows how a series input resistor can be added to the driven input to limit the input current. The added resistor contributes thermal noise at the amplifier input and the value must be kept to a minimum in noise-sensitive applications.

![Figure 40. Input Current Protection](image-url)
12 Layout

12.1 Layout Guidelines

For best operational performance of the device, use good printed circuit board (PCB) layout practices, including:

- Noise can propagate into analog circuitry through the power pins of the circuit as a whole and of the op amp itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources local to the analog circuitry.
 - Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is adequate for single-supply applications.

- Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise pickup. Take care to physically separate digital and analog grounds, paying attention to the flow of the ground current. For more detailed information, see Circuit Board Layout Techniques.

- In order to reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If these traces cannot be kept separate, crossing the sensitive trace at a 90 degree angle is much better as opposed to running the traces in parallel with the noisy trace.

- Place the external components as close to the device as possible. As illustrated in Figure 42, keeping R_F and R_G close to the inverting input minimizes parasitic capacitance on the inverting input.

- Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit.

- Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials.

- Cleaning the PCB following board assembly is recommended for best performance.

- Any precision integrated circuit can experience performance shifts resulting from moisture ingress into the plastic package. Following any aqueous PCB cleaning process, baking the PCB assembly is recommended to remove moisture introduced into the device packaging during the cleaning process. A low-temperature, post-cleaning bake at 85°C for 30 minutes is sufficient for most circumstances.
12.2 Layout Example

Place components close to device and to each other to reduce parasitic errors.

Use low-ESR ceramic bypass capacitor. Place as close to the device as possible.

Ground (GND) plane on another layer
Keep input traces short and run the input traces as far away from the supply lines as possible.

Use low-ESR ceramic bypass capacitor. Place as close to the device as possible.

Figure 41. Schematic Representation for Figure 42

Figure 42. Layout Example
13 Device and Documentation Support

13.1 Documentation Support

13.1.1 Related Documentation
Texas Instruments, **TLVx313 Low-Power, Rail-to-Rail In/Out, 500-μV Typical Offset, 1-MHz Operational Amplifier for Cost-Sensitive Systems**

Texas Instruments, **TLVx314 3-MHz, Low-Power, Internal EMI Filter, RRIO, Operational Amplifier**

Texas Instruments, **EMI Rejection Ratio of Operational Amplifiers**

Texas Instruments, **QFN/SON PCB Attachment**

Texas Instruments, **Quad Flatpack No-Lead Logic Packages**

Texas Instruments, **Circuit Board Layout Techniques**

Texas Instruments, **Single-Ended Input to Differential Output Conversion Circuit Reference Design**

13.2 Related Links
The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to order now.

<table>
<thead>
<tr>
<th>PARTS</th>
<th>PRODUCT FOLDER</th>
<th>ORDER NOW</th>
<th>TECHNICAL DOCUMENTS</th>
<th>TOOLS & SOFTWARE</th>
<th>SUPPORT & COMMUNITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLV9061</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
</tr>
<tr>
<td>TLV9062</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
</tr>
<tr>
<td>TLV9064</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
</tr>
</tbody>
</table>

13.3 Receiving Notification of Documentation Updates
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on **Alert me** to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

13.4 Community Resources
TI E2ETM support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided “AS IS” by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

13.5 Trademarks
E2E is a trademark of Texas Instruments.
Bluetooth is a registered trademark of Bluetooth SIG, Inc.
All other trademarks are the property of their respective owners.

13.6 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

13.7 Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.
14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most-current data available for the designated devices. This data is subject to change without notice and without revision of this document. For browser-based versions of this data sheet, see the left-hand navigation pane.
<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (1)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp (2)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (3)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLV9061IDBVR</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>Green (RoHs & no Sb/Br)</td>
<td>NiPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>10AF</td>
<td></td>
</tr>
<tr>
<td>TLV9061IDCKR</td>
<td>ACTIVE</td>
<td>SC70</td>
<td>DCK</td>
<td>5</td>
<td>3000</td>
<td>Green (RoHs & no Sb/Br)</td>
<td>SN</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>1CA</td>
<td></td>
</tr>
<tr>
<td>TLV9061IDPWR</td>
<td>ACTIVE</td>
<td>X2SON</td>
<td>DPW</td>
<td>5</td>
<td>3000</td>
<td>Green (RoHs & no Sb/Br)</td>
<td>NiPDAUAG</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>CG</td>
<td></td>
</tr>
<tr>
<td>TLV9061SIDBVR</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>6</td>
<td>3000</td>
<td>Green (RoHs & no Sb/Br)</td>
<td>NiPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>10EF</td>
<td></td>
</tr>
<tr>
<td>TLV9062IDDFR</td>
<td>ACTIVE</td>
<td>SOT-23-THIN</td>
<td>DDF</td>
<td>8</td>
<td>3000</td>
<td>Green (RoHs & no Sb/Br)</td>
<td>NiPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>T062</td>
<td>Samples</td>
</tr>
<tr>
<td>TLV9062IDGKR</td>
<td>ACTIVE</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHs & no Sb/Br)</td>
<td>NiPDAUAG</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>T062</td>
<td>Samples</td>
</tr>
<tr>
<td>TLV9062IDGKT</td>
<td>ACTIVE</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHs & no Sb/Br)</td>
<td>NiPDAUAG</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>T062</td>
<td>Samples</td>
</tr>
<tr>
<td>TLV9062IDR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHs & no Sb/Br)</td>
<td>SN</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>TL9062</td>
<td>Samples</td>
</tr>
<tr>
<td>TLV9062IDSGR</td>
<td>ACTIVE</td>
<td>WSON</td>
<td>DSG</td>
<td>8</td>
<td>3000</td>
<td>Green (RoHs & no Sb/Br)</td>
<td>NiPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>T062</td>
<td>Samples</td>
</tr>
<tr>
<td>TLV9062IDSGT</td>
<td>ACTIVE</td>
<td>WSON</td>
<td>DSG</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHs & no Sb/Br)</td>
<td>NiPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>T062</td>
<td>Samples</td>
</tr>
<tr>
<td>TLV9062IPWR</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>8</td>
<td>2000</td>
<td>Green (RoHs & no Sb/Br)</td>
<td>SN</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>TL9062</td>
<td>Samples</td>
</tr>
<tr>
<td>TLV9062SIDGSR</td>
<td>ACTIVE</td>
<td>VSSOP</td>
<td>DGS</td>
<td>10</td>
<td>2500</td>
<td>Green (RoHs & no Sb/Br)</td>
<td>NiPDAUAG</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>1TDX</td>
<td>Samples</td>
</tr>
<tr>
<td>TLV9062SIRUGR</td>
<td>ACTIVE</td>
<td>X2QFN</td>
<td>RUG</td>
<td>10</td>
<td>3000</td>
<td>Green (RoHs & no Sb/Br)</td>
<td>NiPDAUAG</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>EOF</td>
<td>Samples</td>
</tr>
<tr>
<td>TLV9064IDR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHs & no Sb/Br)</td>
<td>NiPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>TLV9064D</td>
<td>Samples</td>
</tr>
<tr>
<td>TLV9064IPWR</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHs & no Sb/Br)</td>
<td>SN</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>TLV9064</td>
<td>Samples</td>
</tr>
<tr>
<td>TLV9064IPWT</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHs & no Sb/Br)</td>
<td>SN</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>TLV9064</td>
<td>Samples</td>
</tr>
<tr>
<td>TLV9064IRTER</td>
<td>ACTIVE</td>
<td>WQFN</td>
<td>RTE</td>
<td>16</td>
<td>3000</td>
<td>Green (RoHs & no Sb/Br)</td>
<td>NiPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>T9064</td>
<td>Samples</td>
</tr>
</tbody>
</table>
PACKAGE OPTION ADDENDUM

www.ti.com

6-Feb-2020

Addendum-Page 2

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (1)</th>
<th>Lead/Ball Finish (2)</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLV9064IRUCR</td>
<td>ACTIVE</td>
<td>QFN</td>
<td>RUC</td>
<td>14</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>1DD</td>
<td>Samples</td>
</tr>
<tr>
<td>TLV9064SIRTER</td>
<td>ACTIVE</td>
<td>WQFN</td>
<td>RTE</td>
<td>16</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>T9064S</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) **Lead/Ball Finish** - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TLV9062, TLV9064 :
Automotive: TLV9062-Q1, TLV9064-Q1

NOTE: Qualified Version Definitions:

- Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
TAPE AND REEL INFORMATION

Device
- **TLV9061IDBVR**
 - Package Type: SOT-23
 - Package Drawing: DBV
 - Pins: 5
 - SPQ: 3000
 - Reel Diameter (mm): 180.0
 - Reel Width W1 (mm): 8.4
 - A0 (mm): 3.2
 - B0 (mm): 3.2
 - K0 (mm): 1.4
 - P1 (mm): 4.0
 - W (mm): 8.0
 - Pin1 Quadrant: Q3

- **TLV9061IDCKR**
 - Package Type: SC70
 - Package Drawing: DCK
 - Pins: 5
 - SPQ: 3000
 - Reel Diameter (mm): 178.0
 - Reel Width W1 (mm): 9.0
 - A0 (mm): 2.4
 - B0 (mm): 2.5
 - K0 (mm): 1.2
 - P1 (mm): 4.0
 - W (mm): 8.0
 - Pin1 Quadrant: Q3

- **TLV9061IDPWR**
 - Package Type: X2SON
 - Package Drawing: DPW
 - Pins: 5
 - SPQ: 3000
 - Reel Diameter (mm): 178.0
 - Reel Width W1 (mm): 8.4
 - A0 (mm): 0.91
 - B0 (mm): 0.91
 - K0 (mm): 0.5
 - P1 (mm): 2.0
 - W (mm): 8.0
 - Pin1 Quadrant: Q2

- **TLV9061SIDBVR**
 - Package Type: SOT-23
 - Package Drawing: DBV
 - Pins: 6
 - SPQ: 3000
 - Reel Diameter (mm): 180.0
 - Reel Width W1 (mm): 8.4
 - A0 (mm): 3.2
 - B0 (mm): 3.2
 - K0 (mm): 1.4
 - P1 (mm): 4.0
 - W (mm): 8.0
 - Pin1 Quadrant: Q3

- **TLV9062IDDFR**
 - Package Type: SOT-23-THIN
 - Package Drawing: DDF
 - Pins: 8
 - SPQ: 3000
 - Reel Diameter (mm): 180.0
 - Reel Width W1 (mm): 8.4
 - A0 (mm): 3.2
 - B0 (mm): 3.2
 - K0 (mm): 1.4
 - P1 (mm): 4.0
 - W (mm): 8.0
 - Pin1 Quadrant: Q3

- **TLV9062IDGKR**
 - Package Type: VSSOP
 - Package Drawing: DGK
 - Pins: 8
 - SPQ: 2500
 - Reel Diameter (mm): 330.0
 - Reel Width W1 (mm): 12.4
 - A0 (mm): 5.3
 - B0 (mm): 3.4
 - K0 (mm): 1.4
 - P1 (mm): 8.0
 - W (mm): 12.0
 - Pin1 Quadrant: Q1

- **TLV9062IDGKT**
 - Package Type: VSSOP
 - Package Drawing: DGK
 - Pins: 8
 - SPQ: 2500
 - Reel Diameter (mm): 330.0
 - Reel Width W1 (mm): 12.4
 - A0 (mm): 5.3
 - B0 (mm): 3.4
 - K0 (mm): 1.4
 - P1 (mm): 8.0
 - W (mm): 12.0
 - Pin1 Quadrant: Q1

- **TLV9062IDR**
 - Package Type: SOIC
 - Package Drawing: D
 - Pins: 8
 - SPQ: 2500
 - Reel Diameter (mm): 330.0
 - Reel Width W1 (mm): 15.4
 - A0 (mm): 6.4
 - B0 (mm): 5.2
 - K0 (mm): 2.1
 - P1 (mm): 8.0
 - W (mm): 12.0
 - Pin1 Quadrant: Q1

- **TLV9062IDSGR**
 - Package Type: WSON
 - Package Drawing: DSG
 - Pins: 8
 - SPQ: 3000
 - Reel Diameter (mm): 180.0
 - Reel Width W1 (mm): 8.4
 - A0 (mm): 2.3
 - B0 (mm): 2.3
 - K0 (mm): 1.15
 - P1 (mm): 4.0
 - W (mm): 8.0
 - Pin1 Quadrant: Q2

- **TLV9062IDSGT**
 - Package Type: WSON
 - Package Drawing: DSG
 - Pins: 8
 - SPQ: 2500
 - Reel Diameter (mm): 180.0
 - Reel Width W1 (mm): 8.4
 - A0 (mm): 2.3
 - B0 (mm): 2.3
 - K0 (mm): 1.15
 - P1 (mm): 4.0
 - W (mm): 8.0
 - Pin1 Quadrant: Q2

- **TLV9062IPWR**
 - Package Type: TSSOP
 - Package Drawing: PW
 - Pins: 8
 - SPQ: 2000
 - Reel Diameter (mm): 330.0
 - Reel Width W1 (mm): 12.4
 - A0 (mm): 7.0
 - B0 (mm): 3.6
 - K0 (mm): 1.6
 - P1 (mm): 8.0
 - W (mm): 12.0
 - Pin1 Quadrant: Q1

- **TLV9062SIRUGR**
 - Package Type: X2QFN
 - Package Drawing: RUG
 - Pins: 10
 - SPQ: 3000
 - Reel Diameter (mm): 178.0
 - Reel Width W1 (mm): 8.4
 - A0 (mm): 1.75
 - B0 (mm): 2.25
 - K0 (mm): 0.56
 - P1 (mm): 4.0
 - W (mm): 8.0
 - Pin1 Quadrant: Q1

- **TLV9064IDR**
 - Package Type: SOIC
 - Package Drawing: D
 - Pins: 14
 - SPQ: 2500
 - Reel Diameter (mm): 330.0
 - Reel Width W1 (mm): 15.4
 - A0 (mm): 6.4
 - B0 (mm): 5.2
 - K0 (mm): 2.1
 - P1 (mm): 8.0
 - W (mm): 12.0
 - Pin1 Quadrant: Q1

- **TLV9064IDR**
 - Package Type: SOIC
 - Package Drawing: D
 - Pins: 14
 - SPQ: 2500
 - Reel Diameter (mm): 330.0
 - Reel Width W1 (mm): 16.4
 - A0 (mm): 6.5
 - B0 (mm): 9.0
 - K0 (mm): 2.1
 - P1 (mm): 8.0
 - W (mm): 16.0
 - Pin1 Quadrant: Q1

- **TLV9064IPWR**
 - Package Type: TSSOP
 - Package Drawing: PW
 - Pins: 14
 - SPQ: 2000
 - Reel Diameter (mm): 330.0
 - Reel Width W1 (mm): 12.4
 - A0 (mm): 6.9
 - B0 (mm): 5.6
 - K0 (mm): 1.6
 - P1 (mm): 8.0
 - W (mm): 12.0
 - Pin1 Quadrant: Q1

- **TLV9064IPWT**
 - Package Type: TSSOP
 - Package Drawing: PW
 - Pins: 14
 - SPQ: 2500
 - Reel Diameter (mm): 330.0
 - Reel Width W1 (mm): 12.4
 - A0 (mm): 6.9
 - B0 (mm): 5.6
 - K0 (mm): 1.6
 - P1 (mm): 8.0
 - W (mm): 12.0
 - Pin1 Quadrant: Q1

All dimensions are nominal.
<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLV9064IRTER</td>
<td>WQFN</td>
<td>RTE</td>
<td>16</td>
<td>3000</td>
<td>330.0</td>
<td>12.4</td>
<td>3.3</td>
<td>3.3</td>
<td>1.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
</tr>
<tr>
<td>TLV9064IRUCR</td>
<td>QFN</td>
<td>RUC</td>
<td>14</td>
<td>3000</td>
<td>180.0</td>
<td>9.5</td>
<td>2.16</td>
<td>2.16</td>
<td>0.5</td>
<td>4.0</td>
<td>8.0</td>
<td>Q2</td>
</tr>
<tr>
<td>TLV9064SIRTRE</td>
<td>WQFN</td>
<td>RTE</td>
<td>16</td>
<td>3000</td>
<td>330.0</td>
<td>12.4</td>
<td>3.3</td>
<td>3.3</td>
<td>1.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
</tr>
</tbody>
</table>

TAPE AND REEL BOX DIMENSIONS

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLV9061IDBVR</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TLV9061IDCKR</td>
<td>SC70</td>
<td>DCK</td>
<td>5</td>
<td>3000</td>
<td>190.0</td>
<td>190.0</td>
<td>30.0</td>
</tr>
<tr>
<td>TLV9061DPWR</td>
<td>X2SON</td>
<td>DPW</td>
<td>5</td>
<td>3000</td>
<td>205.0</td>
<td>200.0</td>
<td>33.0</td>
</tr>
<tr>
<td>TLV9061SIDBVR</td>
<td>SOT-23</td>
<td>DBV</td>
<td>6</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TLV9062IDFRR</td>
<td>SOT-23-THIN</td>
<td>DDF</td>
<td>8</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TLV9062IDGKR</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>2500</td>
<td>366.0</td>
<td>364.0</td>
<td>50.0</td>
</tr>
<tr>
<td>TLV9062IDGKT</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>250</td>
<td>366.0</td>
<td>364.0</td>
<td>50.0</td>
</tr>
<tr>
<td>TLV9062IDDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>336.6</td>
<td>336.6</td>
<td>41.3</td>
</tr>
<tr>
<td>TLV9062IDSGR</td>
<td>WSON</td>
<td>DSG</td>
<td>8</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TLV9062IDSGT</td>
<td>WSON</td>
<td>DSG</td>
<td>8</td>
<td>2500</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TLV9062IPWR</td>
<td>TSSOP</td>
<td>PW</td>
<td>8</td>
<td>2000</td>
<td>366.0</td>
<td>364.0</td>
<td>50.0</td>
</tr>
<tr>
<td>TLV9062IDGSR</td>
<td>VSSOP</td>
<td>DGS</td>
<td>10</td>
<td>2500</td>
<td>366.0</td>
<td>364.0</td>
<td>50.0</td>
</tr>
<tr>
<td>TLV9062SIRUGR</td>
<td>X2QFN</td>
<td>RUG</td>
<td>10</td>
<td>3000</td>
<td>205.0</td>
<td>200.0</td>
<td>33.0</td>
</tr>
<tr>
<td>TLV9064IDR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>336.6</td>
<td>336.6</td>
<td>41.3</td>
</tr>
<tr>
<td>Device</td>
<td>Package Type</td>
<td>Package Drawing</td>
<td>Pins</td>
<td>SPQ</td>
<td>Length (mm)</td>
<td>Width (mm)</td>
<td>Height (mm)</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>------</td>
<td>------</td>
<td>-------------</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>TLV9064IDR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
</tr>
<tr>
<td>TLV9064IPWR</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>366.0</td>
<td>364.0</td>
<td>50.0</td>
</tr>
<tr>
<td>TLV9064IPWT</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>250</td>
<td>366.0</td>
<td>364.0</td>
<td>50.0</td>
</tr>
<tr>
<td>TLV9064IRTER</td>
<td>WQFN</td>
<td>RTE</td>
<td>16</td>
<td>3000</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TLV9064IRUCR</td>
<td>QFN</td>
<td>RUC</td>
<td>14</td>
<td>3000</td>
<td>205.0</td>
<td>200.0</td>
<td>30.0</td>
</tr>
<tr>
<td>TLV9064SIRTER</td>
<td>WQFN</td>
<td>RTE</td>
<td>16</td>
<td>3000</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
5. Reference JEDEC MO-178.
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
9. Board assembly site may have different recommendations for stencil design.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
8. Board assembly site may have different recommendations for stencil design.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-187, variation BA.
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.
Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The size and shape of this feature may vary.
NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, refer to QFN/SON PCB application note in literature No. SLUA271 (www.ti.com/lit/slua271).
NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
NOTES:

A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

⚠️ Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0.15) each side.

⚠️ Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0.43) each side.

E. Reference JEDEC MS-012 variation AB.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
NOTES:
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

B. This drawing is subject to change without notice.

⚠️ Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 each side.

⚠️ Body width does not include interlead flash. Interlead flash shall not exceed 0.25 each side.

E. Falls within JEDEC MO-153
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
NOTES:
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M–1994.
B. This drawing is subject to change without notice.
C. QFN (Quad Flatpack No-Lead) package configuration.
D. This package compiles to JEDEC MO-298 variation X2EFD.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
E. Maximum stencil thickness 0.127 mm (5 mils). All linear dimensions are in millimeters.
F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
G. Side aperture dimensions over-print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.
NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.

2. This drawing is subject to change without notice.

3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.

4. This dimension does not include interlead flash.

5. Reference JEDEC registration MS-012, variation AA.
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.
NOTES:

A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
D. Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
E. Falls within JEDEC MO-187 variation AA, except interlead flash.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC–7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC–7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.
NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153, variation AA.
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

2. This drawing is subject to change without notice.
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
MECHANICAL DATA

DCK (R-PDSO-G5) PLASTIC SMALL-OUTLINE PACKAGE

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
D. Falls within JEDEC MO-203 variation AA.

TEXAS INSTRUMENTS
www.ti.com
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
D. Publication IPC-7351 is recommended for alternate designs.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525A for other stencil recommendations.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
NOTES: (continued)

4. Publication IPC-7351 may have alternate designs.
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

7. Board assembly site may have different recommendations for stencil design.
NOTES:
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M–1994.
B. This drawing is subject to change without notice.
C. Quad Flatpack, No-leads (QFN) package configuration.
 The package thermal pad must be soldered to the board for thermal and mechanical performance.
 See the Product Data Sheet for details regarding the exposed thermal pad dimensions.
E. Falls within JEDEC MO-220.
THERMAL INFORMATION
This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

![Exposed Thermal Pad Dimensions Diagram](image_url)

NOTE: A. All linear dimensions are in millimeters
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC–7351 is recommended for alternate designs.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat–Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com (http://www.ti.com).
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated